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Abstract

We study the treatment plan optimization problem for volumetric modulated
arc therapy (VMAT). We propose a new column-generation-based algorithm
that takes into account bounds on the gantry speed and dose rate, as well
as an upper bound on the rate of change of the gantry speed, in addition to
MLC constraints. The algorithm iteratively adds one aperture at each control
point along the treatment arc. In each iteration, a restricted problem optimizing
intensities at previously selected apertures is solved, and its solution is used to
formulate a pricing problem, which selects an aperture at another control point
that is compatible with previously selected apertures and leads to the largest
rate of improvement in the objective function value of the restricted problem.
Once a complete set of apertures is obtained, their intensities are optimized and
the gantry speeds and dose rates are adjusted to minimize treatment time while
satisfying all machine restrictions. Comparisons of treatment plans obtained by
our algorithm to idealized IMRT plans of 177 beams on five clinical prostate
cancer cases demonstrate high quality with respect to clinical dose—volume
criteria. For all cases, our algorithm yields treatment plans that can be delivered
in around 2 min. Implementation on a graphic processing unit enables us to
finish the optimization of a VMAT plan in 25-55 s.

(Some figures may appear in colour only in the online journal)

1. Introduction

Rotational delivery of intensity modulated radiation therapy (IMRT) was first proposed by Yu
(1995) as intensity modulated arc therapy (IMAT). This radiation therapy treatment modality
delivers radiation as the gantry rotates around the patient in one or more arcs while, at
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the same time, field shapes (apertures) are formed to modulate fluence using a multi-leaf
collimator (MLC) system. Recently, this modality has gained popularity and interest due
to the introduction of several commercially available implementations, and is now usually
referred to as volumetric modulated arc therapy (VMAT). These advances have also made it
possible to dynamically change the dose rate and gantry speed. As compared to more standard
IMRT treatments, which use a relatively small number of fixed-beam directions, VMAT has the
potential to significantly reduce treatment time. This has the additional benefits of decreasing
patient discomfort, mitigating intrafraction motion uncertainties and increasing the utilization
rate of the equipment.

Since the conception of VMAT, researchers have investigated inverse planning techniques
as well as methods to make VMAT plans deliverable in one single arc. Various studies utilized
techniques including simulated annealing (Cameron 2005, Earl et al 2003) and transformation
of an IMRT treatment plan (Crooks et al 2003) to design VMAT treatments. These studies
showed that, with constant gantry speed and dose rate, either multiple arcs or an excessively
long time for a single arc is required to deliver a high-quality treatment. In a theoretical
study, Bortfeld and Webb (2009) compared single-arc VMAT treatment to traditional IMRT
on a phantom and argued that single-arc VMAT may not be able to replicate the optimal
intensity profile without intensity modulation at individual angles—a claim that was denied in
a response by Otto (2009). Today, the potential quality of VMAT treatment plans is generally
believed to be comparable to IMRT treatment plans (Palma et al 2008, Verbakel et al 2009).

The nature of VMAT treatments makes the treatment plan optimization problem much
more complex than a corresponding IMRT treatment plan optimization problem due to the
continuous nature of the gantry motion, gantry speed constraints, dose rate constraints and
MLC leaf speed constraints. Even when the set of angles is discretized, exact methods quickly
become intractable. Hence, the literature has exclusively focused on simplifications of the
model and/or heuristic solution approaches. Many approaches to the VMAT treatment plan
optimization problem rely on converting an IMRT plan in some fashion. Shepard et al
(2007), Wang et al (2008) and Luan et al (2008) propose algorithms that rely on (i) first
identifying an optimal IMRT treatment plan using 10°-spaced beam directions and then (ii)
producing a deliverable VMAT plan by minimizing the difference between the sequenced
and the ideal IMRT fluence maps. Cao et al (2009) started the treatment planning process
by performing IMRT planning with direct machine parameter optimization, which directly
optimizes aperture shapes and weights. They then used a simulated annealing-based arc
sequencer to convert the resulting fluence maps into deliverable VMAT plans while again
minimizing the difference between the IMRT and VMAT fluence maps. Craft et al (2011)
performed IMRT optimization on 2°-spaced beam angles and, noting that adjacent fluence
maps were similar, used a combination of beam merging and sliding window leaf sequences
to obtain a VMAT deliverable plan whose quality is close to the ‘ideal’ IMRT plan. However,
their observation that adjacent fluence maps in the high-resolution IMRT treatment plan are
similar appears to depend strongly on the particular treatment plan optimization algorithm
employed, so the approach may not be robust to changes in treatment plan evaluation criteria
that would require using a different algorithm.

Several approaches to VMAT treatment plan optimization use the concept of control
points, which represent beam directions along the arc where machine parameters such as
gantry speed, aperture shape and dose rate are controlled. Between control points, the machine
parameters are then either kept constant or interpolated in some fashion. Otto (2008) proposed
a simulated annealing algorithm that adds control points sequentially and, in each iteration,
randomly samples aperture weights and shapes. Bedford (2009) discretized an IMRT fluence
map into multiple intensity levels and assigned each level to a control point close to the
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corresponding angle in the IMRT plan. A subsequent local search procedure then attempts to
improve leaf positions and segment weights. Bzdusek et al (2009) started with an IMRT plan
on a coarse set of angles, then generated two apertures to approximate each of the fluence
maps and placed these at predetermined control points. Additional control points were assigned
interpolations of these apertures, and the remaining machine parameters were calculated in
a subsequent optimization step. Gozbasi (2010) formulated the problem as a large integer
programming model, but for tractability reasons resorted to grouping beamlets and solved a
series of approximate problems. Unfortunately, the required computation time of the algorithm
is still impractical and the algorithm also failed to provide clinically acceptable results on their
test cases.

Finally, Men et al (2010b) proposed a column-generation-based approach which
sequentially adds aperture shapes at control points while ensuring that each newly generated
aperture is compatible with previously chosen ones. However, no bounds on the dose rate
were taken into account, and gantry speed was considered to be constant. In this paper we
formalize and extend this approach to explicitly take the following physical restrictions into
account during the course of the algorithm:

e apertures at consecutive control points must be compatible, i.e. the leaves in individual
rows of the MLC must be able to finish their transition from the previous aperture to the
next aperture before the gantry reaches the next control point;

e restrictions on machine parameters, such as upper and lower bounds on the gantry speed
and dose rate, as well as the upper bound on the rate of change of the gantry speed must
be obeyed.

Although some of the algorithmic approaches proposed in the literature and discussed
above account for some of these restrictions by either explicitly incorporating them into the
treatment plan optimization or by modifying the optimized plan into one that satisfies them in
a post-processing step; to the best of our knowledge, none incorporates all of the restrictions
explicitly in the treatment plan optimization process. Our algorithm is implemented using
the compute unified device architecture (CUDA) to take advantage of the parallel processing
power of the graphic processing unit (GPU).

2. Methods and materials

2.1. The VMAT optimization model

Let K denote the total number of (not necessarily equispaced) control points along one or
more treatment arc(s) (in the case of multiple arcs, K represents the total number of control
points along all arcs, which will be ordered so that the first control point on the second arc
succeeds the last control point on the first arc, etc). We associate with each control point k an
aperture Ay, a dose rate 7 (in MU s™!), and a gantry speed s, (in deg s~!). In addition, we can
express the fluence rate (in MU deg™!) at control point k as y; = ry/s;. Note that each control
point represents a snapshot of the continuous gantry rotation, i.e. ry, s, yx and A; represent the
state of the treatment machine as the gantry passes through control point k. For convenience,
we will add a dummy control point K + 1 at the end of the arc. For tractability, we will then
calculate the dose delivered to each voxel by making the approximation that the aperture, dose
rate and gantry speed (and hence fluence rate) are constant throughout the arc spanning from
one control point to the next. Note in particular that this means that we do not need to specify
any of the variables at the dummy control point K + 1. If the angular distances §; between pairs
of control points k and k + 1 are small, then this approximation will be sufficiently accurate
(Otto 2008).
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The gantry speeds and apertures specified at consecutive control points need to be
compatible with each other. This compatibility requirement derives from the characteristics of
the MLC system used to form the apertures during the treatment. As the gantry travels from
control point k to control point k41, the leaves of the MLC system need to shift from positions
prescribed by aperture A; to those prescribed by aperture A, ;. Since the speed of such leaf
movement is bounded, the time spent by the gantry moving between the control points needs
to be sufficiently large (and hence its speed sufficiently small) to allow for the required leaf
movement to take place. We will denote the maximum gantry speed that will allow aperture
A’ at control point k + 1 to be reached from aperture A at control point k by S,l({ i1 (A, A) for
k=1,..., K, where, for convenience, S%’ K41 (A, A”) = oo for all pairs of apertures A and A’.

In addition to the discretization parameters &; (k = 1, ..., K), there are several other
machine parameters that need to be taken into account. First, a VMAT delivery machine may
have upper and lower bounds on gantry speed (denoted by SV and S%), and an upper bound on
dose rate (denoted by RY). Furthermore, there typically is an upper bound on the rate of change
in speed that the gantry can sustain, which may be given per degree or per control point. We
will denote the upper bound on the change in speed between control points k and k + 1 by
ASy. Finally, we let A denote the set of all apertures that are deliverable by the MLC system.
In particular, we will assume that left and right leaves within each pair can be positioned
at any non-overlapping continuous points within their range, and that motion is independent
between leaf pairs. In particular, we assume that there are no interdigitation constraints. After
formulating our base model and developing our algorithm, we will discuss how additional
constraints, such as a lower bound on dose rate, independent bounds on the fluence rate and
interdigitation constraints, can be incorporated into our solution approach when necessary.

Finally, let the discretized set of voxels be V, and denote the delivered dose distribution
byz=(zj:j¢€ V)T, where 7 ; 1s the total dose delivered to voxel j € V. The quality of
the dose distribution z is evaluated using an objective function F : RVl — R. Under our
approximation, z; is equal to the sum of the doses delivered to the voxel from all control
points. Moreover, since the delivered dose is linear in fluence, it is convenient to denote the
dose received by voxel j € V from aperture A € A at control point k at unit fluence by Dy ;(A)
(k=1,...,K).

The complete VMAT optimization model, which we refer to as the full problem (FP),
then reads:

(FP) minimize F(z)

subject to

K
7= kZ Dii(A)diyr  jEV
=1

Tk
Yk = — k=1,....K
Sk (D
|Sk—Sk+1|<ASk k:l,...,K—l
sk € [SE, Y] k=1,....K
re € [0, RY] k=1,....K
Sk < S A Ay k=1,...,K
AkGA k=1»‘-'5K9

where the terminal aperture Ag; in (1) can be chosen arbitrarily and is added for convenience
only.

We can simplify this model by first noting that for any feasible solution s, r,y, z and
(Ax : k=1,...,K) of (FP) we can obtain another feasible solution with the same apertures
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and the same values of y and z (and hence the same objective function value), but with all
the gantry speeds at their lower bound value S* by scaling the dose rates by a factor of
Stisp <1, k=1,...,K, to compensate. As a result, we can eliminate the gantry speed
variables from the model. In addition, we can then replace the upper bound constraints on the
dose rates by upper bounds on fluence rate and eliminate the dose rate variables as well. The
problem thus reduces to the following master problem (MP):

(MP) minimize F(z)

subject to
K
zj =) Dij(A)dye jeV 2)
=1
yi €10,YY] k=1,....K
SLSS;(({k+1(Ak,Ak+1) k=1,...,K 3)
Are A k=1,...,K, 4)

where YV = RY /St We will refer to (MP) as the master problem, for reasons made clear in
the following section. By construction, for any feasible solution to (MP) we can construct an
equivalent feasible solution to (FP), in the sense that it has the same apertures and values of
y and z, by setting s, = St and r; = yis; for k = 1, ..., K. Moreover, there may be several
combinations of gantry speeds and dose rates that lead to equivalent solutions to (FP), and
some may be more desirable than others, e.g., due to shorter treatment times. We will discuss
this in more detail in section 2.5.

Note that (MP) is not convex because of the nonlinearities associated with the apertures
in constraints (2)—(4). Therefore, instead of solving problem (MP) exactly, we propose a
column-generation-based algorithm.

2.2. An algorithm for solving (MP)

Our proposed algorithm starts with a dose distribution z = 0 and without an aperture specified
at any of the control points. The algorithm then proceeds by, in each iteration, attempting
to improve the current treatment plan and dose distribution by selecting an aperture at one
of the control points for which none has been specified yet (that is, generating a column in
constraint (2) of (MP)), and terminates when a completely specified treatment plan is obtained.
In any given iteration, which is characterized by a set C C {1, ..., K} of control points and
the corresponding collection of apertures {A;, k € C}, we optimize fluence rates of these
apertures by solving the so-called restricted master problem (RMP). The RMP is constructed
so that a feasible solution to this problem implicitly provides a deliverable plan that can be
fully specified by feasibly completing the sequence of apertures while retaining the current
aperture fluence rates (in particular, y; = O for k ¢ C). The optimal solution to the RMP then
defines the so-called pricing problem (PP) which is used to select the next control point and
aperture to be added to the plan. The intuition behind the PP is that, relative to the current
solution, each candidate aperture at each control point & ¢ C has an associated price which is
defined as the rate of improvement in the objective function value if the fluence rate of that
aperture is increased (from its current value of 0). The PP then finds the control point/aperture
combination that has the best price. In contrast with direct aperture optimization for IMRT
treatment planning (Preciado-Walters er al 2004, Romeijn et al 2005, Shepard et al 2002),
only a single aperture is added for each control point. This makes our algorithm heuristic in
nature and, in particular, a greedy heuristic.
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Figure 1. Flow chart for the column-generation-based greedy heuristic for (MP).

More formally, our algorithm can be described as follows:

Column generation based greedy heuristic for (MP)

Step0 SetC = @ andz = 0.

Step 1 Use the information on the current treatment plan (control points C, apertures A; for
k € C, and dose distribution z) to formulate and solve an instance of the PP.

Step 2 If the optimal value of the PP is nonpositive, go to step 5. Otherwise, denote the optimal
solution to the PP by ¢ and A¢, and replace C by C U {c}.

Step 3 Solve the instance of the RMP associated with C and Ay = Ai, keC.
Step 4 If |C| < K, return to step 1.

Step 5 If necessary, complete the treatment plan by identifying feasible apertures (which will
have fluence 0) at control points ¢ ¢ C, and denote the final set of fluence rates by y
k=1,...,K).

Figure 1 provides a graphical representation of the structure of this algorithm.

In the remainder of this section, we will provide additional details on steps 1-3 of this
algorithm in sections 2.3 and 2.4. Section 2.5 discusses obtaining a solution to (FP) based on
the solution to (MP) returned by our algorithm. Finally, section 2.6 discusses how additional
constraints on the setting of the VMAT delivery machine can be incorporated into (FP)
formulation and our solution.
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2.3. Restricted master problem

At each iteration of the algorithm, we obtain the RMP from (MP) by fixing the apertures
Ay = Ay for all control points in the current set C C {1, ..., K} and setting the fluence rates
vk = 0 for all control points k ¢ C. The RMP then reads

(RMP©)) minimize F(z)

subject to .
zj =2 Dyj(Adiye jeV )
keC
yi € [0,YY] keC.

(RMP©) can be thought of as a restriction of (MP) in that it considers a subset of control
points, and considers the apertures Ak, k € C, to be fixed and given. Note that (RMP©)
is a nonlinear optimization problem with linear constraints, and it is a convex optimization
problem provided that F is a convex function.

Recall that any feasible solution to (RMP(©)) should correspond to a deliverable plan
that can be fully specified by completing the sequence of apertures at control points k & C
in a way that is compatible with apertures Ay, k € C, and setting y; = 0, k & C. To
ensure that this is indeed the case, the set of apertures Ay, k € C in the restricted problem
should satisfy the following condition. For all k € C, let k* be the successor of k in C, i.e.
kt =min{k’ € C : k' > k}, where k™ = K + 1 if k = max{k’ : ¥’ € C}. Any feasible solution
to (RMP(©) for any C C {1, ..., K} can be extended to a feasible solution to (MP), provided
that

SYi (Ag, Ap) = SE, ke C. (6)

Here we have generalized the notation of (FP) and (MP) by denoting the maximum gantry
speed that will allow aperture A’ at control point X’ to be reached from aperture A at control
point k < k' by S, (A, A’) (where again, for convenience, we will let S,(({K @A A) =0
for all pairs of apertures A and A" and all k = 1, ..., K). The PP described in the following
section is designed to ensure that the apertures added at each iteration of the column generation
algorithm satisfy (6).

2.4. Pricing problem

2.4.1. PP derivation. Consider an optimal solution (¥, z) to (RMP(©)). Suppose we were to
add aperture A € A, atacontrol pointc ¢ C, where A, C Ais aset of deliverable apertures that
can feasibly be added to the current treatment plan. Based on first-order optimality conditions,
the rate of improvement (i.e. decrease) in objective function value per unit fluence rate in this
aperture can be calculated as

T (A) = ) i (#)Dej (A,
jevy
where (7;(z) : j € W' = n(z) = —VF(Z). Our strategy will be to select a control point ¢

and aperture A that solve the following optimization problem, which we will refer to as the
PP:

(PP) max max m.(A).
cdC AcA.
In order to ensure that solutions to PP satisfy condition (6), we need to specify the set A, in
such a way that

A clAeA:SY (A A) > 8", SL (A Ax) > St} = AL
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The choice of A, € AY in the PP dictates a tradeoff in the behavior of our heuristic algorithm.
On the one hand, choosing a smaller set .4, at the current iteration results in lesser flexibility
in the current selection of apertures. On the other hand, this can potentially allow for more
flexibility in later iterations of the heuristic. We will consider the following family of potential
choices for A, in (PP), parameterized by a lower bound s on the speed between two control
points:

Acs)={Ae A:SY (A, A) =5, SL.(A,A) > s} fors > S (7)

It is easy to see that A.(s') € A.(s) whenever s’ > s, with A.(S¥) = AV. Note also that,
although the choice of s does not explicitly determine the final gantry speed used at different
control points, because it affects the selection of apertures A, (s), it implicitly affects the final
gantry speed and thus the delivery time. We will explore the impact of the choice of parameter
s on the overall performance of the algorithm in our experiments.

If the optimal value of (PP) is non-positive, we conclude that the current solution cannot
be improved by adding any aperture at any control point (at least in the framework of our
algorithm). In this case, the algorithm will be terminated (see step 2), and fluence rates at
control points k ¢ C will remain at zero. However, if an improving control point/aperture is
found, the algorithm will proceed to step 3.

2.4.2. Solving the PP. We will now describe a solution approach for the PP. First, it is easy to
see that this problem decomposes into a collection of independent problems for the different
candidate control points ¢, so that we can focus on the problem for a given ¢ ¢ C:

(PP)ymax 3 7;(Z)De;(A),
< jev

where we have also eliminated the scaling constant §..

Next, in the absence of interdigitation constraints, we can decompose PP by MLC
row. In particular, if the MLC system consists of M leaf pairs, we can represent any aperture
A € A as a collection of leaf settings for its individual rows. Let us denote an aperture by

A = (ay,...,ay), where a,, € o describes the leaf settings of MLC row m of aperture A, and
« is the set of deliverable ‘row apertures’. The set A, can be written as A, = Xf,leAcm, with
Aan € {a: S (ae-m,a) =S¥, SL.(a,dcrm) = S"}, (8)

where Gy, is the mth row aperture of A; at control point k € C and, with a slight abuse
of notation, S (a, ') denotes the maximum gantry speed that will allow row aperture @’ of
aperture A’ at control point ¢ to be reached from row aperture a at control point k < c. Let
D.,,j(a) denote the dose received by voxel j € V from row aperture a € o in row m and control
point ¢ at unit fluence rate, with D.;(A) = an/]:l D.pj(ay). The pricing problem (PP©)) can
then be decomposed by row:
(PP“™) max an(i)Dcmj(a).
acAem

Jjev
Recall that we would like to consider the family of feasible regions A, = A.(s) defined by
(7) for s > SE. The corresponding family A, (s) of feasible regions for (PP™) is
Aan(s) = {a: 8L (Gc-m.a) = s, Ses (@, dcrm) > s} fors > S 9)

Let us analyze the structure of these sets in more detail. Any row aperture a can be characterized
as a pair of leaf settings (¢, r), where 0 < £ < r < N are the positions of the left and
right leaves, respectively (V, which we assume to be integer, is the range of the MLC row).
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Furthermore, let v denote the maximum leaf speed (in distance/second, with the unit of distance
depending on the choice of N). Then, for k < c,

Ske
{aeazsg.(a,a’)>s}={(z,r):ogzgrgN; e =2, |r—7| < Vo }
S

where 8. = Zi;l « 0w . Therefore,

_ S
A (8) = {(L rN:0<Ee<r <N, [ —Lepl, |r—Feml < e C;
S
- _ chc*
|£ - Zc*mlv |r - rc*m| < } s (10)
S

with the appropriate and obvious definitions of (E_Cfm, Fe-m) and (fc+m, Fe+m). Thus, the set
A (s) is simply the set of all (€, r) such that 0 < £ < r < N and with upper and lower
bounds on £ and r which get tighter as s increases.

Finally, in order to fully specify (PP“"), we need to characterize D,,, (@) = Depj(L, 1),
Specifying D.,,j(£, r) as a function of continuous variables (¢, r) will require an immense
amount of data. Instead, we use a common approximation obtained by discretizing each
MLC row into N beamlets (thus specifying an appropriate MLC row range), where beamlet n
represents the interval [n—1, n]. We then precompute traditional beamlet-based dose deposition
coefficients D, i.e. the dose rate to voxel j € V from beamlet n in MLC row m at control
pointc (m = 1,....Nom =1,...,M, c = 1,...,K) at unit fluence rate and make the
following approximation:

Dcmj(e’r) Z/ ¢cmj(x)dx’
4

where ¢, : [0, N] — R is the following step function:
Gemj(X) =Deppj, n—1<x<n; n=1,...,N.

To summarize, the pricing problem (PP“") with A.,, = A, (s) can be written as

max / e (x; Z) dx, (11)
.reAms) Jy
where
Tem(X; Z) = Z T (2)¢c;nj(x)~
jevy
The problem (11) can be solved efficiently by noting that the only candidate values for ¢ and
r that have to be considered are (i) integers, and (ii) the bounds derived from (10).

2.5. From (MP) to (FP): gantry speeds and dose rates

Our column generation algorithm will return a feasible solution y, z and A, k=1,...,K
to the problem (MP). As a final step of our solution procedure, we need to compute gantry
speed and dose rate vectors s and r consistent with this solution. Substituting the apertures
and fluence rates into constraints of (FP), we need to find a feasible solution to the following
system:

_ 147

Ve = — k=1,...,.K (12)
Sk

Isy — Ska1] < ASy k=1,...,K—1 (13)

sk € [SE, sY] k=1,....K (14)
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re € [0, RY] k=1,....K (15)

sk < St A A)  k=1,... K. (16)

This system has a feasible solution since the apertures and fluence rates computed by the
algorithm are guaranteed to be compatible with the gantry moving at speed S*. However, this
solution would lead to a treatment with undesirably long delivery time. Instead, we would like
to identify a solution to (12)—(16) that can be delivered in the shortest time possible. Adding
this objective function and rewriting constraints (12)—(16) in terms of the gantry speeds only,
we obtain the following convex optimization problem:

K §,
(SP) minimize ) —
k=1 Sk
subject to
ske[SL,S,lf] k=1,....K
ISk — Skl < ASy k=1,...,K—1, (17)

where

- RY
Sy =min{SU,S£k+l(Ak,Ak+1), _—}, k=1,....K.
’ Yk

If s; is an optimal solution to this problem, then the corresponding dose rates are ry = Sk,
k=1,...,K.

In order to assess the impact on delivery time of the bound on the change in speed we will
also consider a relaxation of (SP) in which constraints (17) are removed. It is easy to see that
the corresponding solution will be to choose s; = S,f] and r, = y"kS,f] (fork=1,...,K).

2.6. Extensions

We conclude this section by discussing how additional constraints on the setting of the VMAT
delivery machine can be incorporated into the model (FP), its reformulation (MP) and our
solution heuristic.

2.6.1. Upper bound on fluence rate. Our basic model contained no bounds on the fluence rate,
other than those implied by bounds on the gantry speed and dose rate. An independent upper
bound on the fluence rate can be easily incorporated by including it among the constraints of
(FP), and by calculating YV in (MP) and (RMP©)) as the minimum of this upper bound and
the ratio RV /ST

2.6.2. Lower bounds on fluence and dose rates.  Our basic model did not include lower bounds
on fluence and dose rates, other than nonnegativity constraints. If such lower bounds Y* and
RY, respectively, are dictated by the VMAT delivery specification, they can be easily included
among the constraints of (FP). However, inclusion of one or both such bounds invalidates the
reformulation steps that lead to the equivalent problem (MP). We could then, instead, consider
a generalization (MP) in which we add lower bounds on the fluence which are the larger of Y
and RL/SY and apply our heuristic solution procedure without modification (aside from the
obvious addition of lower bounds on fluence rates to (RMP(©))). The resulting mater problem,
however, is no longer equivalent to (FP), but rather is a relaxation. The consequences of using
this relaxation are:
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(i) An intermediate solution obtained by solving (RMP©)) with |C|] < K may not be
extendable to a feasible solution to (FP). This means, in particular, that we have to modify
step 2 of the greedy heuristic and add an aperture even if the optimal solution value to the
PP is nonpositive.

(i1) Postprocessing problem (SP) may not have a feasible solution. Therefore, we may have to
slightly modify the final treatment plan to be able to satisfy the constraints on the rate of
change in gantry speed.

2.6.3. Interdigitation and other MLC constraints. Lastly, consider a VMAT delivery system
that does not allow interdigitation of MLC leaves in adjacent rows. The main impact of this
constraint is a modification of the solution process of the PP discussed in section 2.4.2.

Before discussing the required modification, we will argue that if interdigitation
constraints are satisfied in each iteration of the algorithm (i.e. for all apertures A, k € C), and
we obtain a VMAT plan by linearly interpolating these apertures between control points in C,
then the interdigitation constraints will also hold for MLC apertures throughout the treatment.
To obtain the interpolation, we assume that both the gantry and each of the leaves move at
constant speeds between two consecutive control points. Let us examine two adjacent MLC
rows m and m + 1 at two control points k and k™. We assume that

Ekm < ;k,m-H and gk*’m < fk‘*’,m+1v (18)

i.e. the left leaf in row m and the right leaf in row m 4 1 do not overlap at either control point,
and denote the time it takes the gantry to rotate from k to k™ by At. At an intermediate time
t € (0, At), with the gantry at location ¢ : k < ¢ < k™, the leaf positions are computed by
linear interpolation as follows:

and

t At —t t

Tl = Tigmg1 + Pkt g1 — Toomg1) - N Flmt1 A7 + ettt AL

It is easy to see that because of (18), we have £,, < r,4+1; using the same technique, we can
show that £, < r,,, assuming same is true at control points k and k + 1. Thus, at any location
between the control points, the interdigitation constraints are satisfied.

Now we study the impact of the interdigitation constraints on the PP. Because of the
dependence between individual MLC rows created by these constraints, we cannot no longer
decompose the problem PP®) by row. As before, we characterize row aperture a,, € o at MLC
row m of aperture A by (£,,, r,,) where 0 < ¢,, < r,, < N and the (integer) N represents the
range of the MLC row, and denote by S,[(]C(aﬁn, a,,) the maximum gantry speed that will allow
row m of aperture A = (ay, ..., ay) at a control point c to be reached from row m of aperture
A" = (d},...,a)) at control point k < c. To incorporate the interdigitation constraints, we
add the inequalities

Emgmin{rm-klarm—l}v m=1""7M (19)

to the description of the set A.(s) in (7), where we let ro = ryy+; = co. By construction,
A (s) # ¢ throughout the algorithm.
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Table 1. Problem dimensions of different cases (after downsampling).

No.of No. of No. of
Case voxels beamlets Dy, # 0 S k=2,...,175) 61,617

1 13047 21417 89360831 % % . %
2 10130 17700 63359780 % %%
3 12102 29913 106 889 530 15 ERRH
4 9602 21417 79889713 % % . ?Ts
5 13769 25488 114315187 % %%
The PP for ¢ ¢ C under interdigitation constraints can then be written as
M
(PPI)) maximize Y 7;(Z) Y. Demj(lms Tm)
jev m=1
subject to
OgemgrmgN m=l,...,M
_ V5.~
|€m_zc*m|a|rm_fc*m|< <L m:l,._.,M (20)
s
~ _ 1)855+
|£m_£c+m|a|rm_rc+m|< s mzl,...,M (21)
L < min{ryq1, o1} m=1,...,M,

where D.,,; (£, 1), as before, is approximated by an integral of the beamlet-based step
function ¢, : [0, N] — R™. Given this discretization of each MLC row into beamlets,
this version of the PP can still be solved efficiently using a dynamic programming approach
described in Romeijn et al (2005), with potential left and right leaf positions including integers
and bounds in (20) and (21).

3. Experiments and results

3.1. Data and implementation

Our algorithm was evaluated on a clinical dataset of prostate cancer patients treated at UCSD
Moores Cancer Center. The preprocessing steps, including image processing and calculation
of the dose deposition coefficients D,,,,; are performed using our in-house treatment planning
system. The dose calculations in this system are based on a finite-sized pencil-beam algorithm
with 3D density correction (Gu et al 2009a, 2009b). For each case, we used beamlets of size
1 x 1 cm? and voxels of size 4 x 4 x 2.5 mm?>. However, in order to reduce its size, the
optimization problem used a downsampled voxel grid that selected one of every two voxels
along each of the three dimensions in critical structures and one of every four in unspecified
tissue. The dimensions (after downsampling) and other characteristics of the five cases are
summarized in table 1. Figure 2 illustrates the distribution of control points around the arc. For
all cases we used K = 176 control points, and the angular distances between control points are
shown in table 1. Finally, the machine parameters we used are based on the Varian RapidArc
machine (Varian Medical Systems, Inc., Palo Alto, CA, USA) and are shown in table 2 (where
AS, =ASforallk=1,...,K).

The prescription dose to the PTV was set to 79.2 Gy, corresponding to a 44-fraction
treatment with 1.8 Gy delivered in each fraction. All dose—volume histogram (DVH)-based
criteria for the PTV and critical structures, in particular rectum, bladder and femoral heads,
that were used to evaluate all treatment plans are based on clinical protocols at UCSD as well
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Figure 2. Distribution of 177 control points around the arc for (a) cases 1-4, and (b) case 5.

Table 2. Machine parameters.

Rt RY St sY AS v
MUs™)  MUs )  (degs™!) (degs™) (degs™!) (cms™!)

0 10 0.83 6.0 0.75 2.25

as RTOG protocol Radiation Therapy Oncology Group (2004) (see the tables in the remainder
of this section for details). In our optimization model, we chose F to be a voxel-based penalty
function that penalizes the dose received by a voxel quadratically but asymmetrically with
respect to a threshold dose that depends on the structure containing the voxel; consequently,
F is a smooth piece-wise quadratic convex function. The structure-dependent relative weights
of these penalty functions were determined using a manual procedure that iteratively modified
these weights until satisfactory treatment plans were obtained for all five cases. This led to a
common set of weights for all cases, thereby eliminating variation between cases caused by
individual parameter tuning. In order to facilitate the comparison between the treatment plans,
we normalized each treatment plan by scaling the dose distribution so that 95% of the PTV
receives the prescription dose.

Finally, we implemented our algorithm using the CUDA to take advantage of the
processing power of the GPU. CUDA is a platform for the implementation of large-scale
parallelization of computer code, and has been shown to be very suitable for solving radiation
therapy treatment plan optimization problem (Men et al 2009, 2010a, 2010b). The RMP is
solved using our in-house gradient-based solver. On an Nvidia Tesla C1060 GPU card, our
algorithm takes 22-55 s to complete. The high efficiency of our VMAT optimization engine
provides a significant step toward a clinical application of VMAT for adaptive radiotherapy,
although of course a treatment planning system for adaptive radiotherapy would contain several
additional components.

3.2. Benchmark

Before evaluating our VMAT treatment plans, we provide a benchmark for comparison by
solving an IMRT treatment plan optimization problem with the same objective function as
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Table 3. Performance of 177-beam IMRT treatment plans.
Threshold  Volume

Dose Criterion Case
Structure (Gy) (%) 1 2 3 4 5
PTV 73.7 >99 100 100 100 99 100
79.2 >95 95 95 95 95 95
87.1 <10 0 1 0 1 0
Rectum 75 <15 4 16 14 9 9
70 <25 6 18 16 11 11
65 <35 8 20 19 14 13
40 <45 19 30 22 38 25
Bladder 65 <17 7 23 19 42 11
40 <35 14 41 30 65 21
Femoral heads 50 <10 0/0  0/0 0/0 0/0 0/0
(L/R) 45 <25 0/0  0/0 0/0 0/0 0/0
40 <40 0/0  0/0 0/0 0/1 0/0

(FP) and using the K + 1 = 177 beam angles that correspond to control points in the VMAT
treatment plan optimization model. These IMRT plans are used to assess the quality of our
VMAT plans and are not suitable for clinical use due to the unreasonably long time required
to deliver an IMRT plan with 177 beam angles. Since the IMRT treatment plan optimization
model allows intensity modulation at each beam angle and contains no constraints on aperture
compatibility nor gantry speed, they can be viewed as an ideal, likely clinically unattainable,
solution. Therefore, any VMAT treatment plan that is close to this ideal IMRT treatment plan
will also be close to the optimal VMAT treatment plan.

Table 3 includes the clinical dose—volume criteria and the 177-beam IMRT plans evaluated
with these criteria for all five cases. All plans are able to avoid significant hot and cold spots in
the PTYV, and are able to satisfy most of the DVH criteria for the critical structures. For case 2,
14% of the bladder volume and 18% of the rectum volume overlap with the PTV, and for case
4 almost 30% of the bladder volume overlaps with the PTV. For these patients, even additional
patient-dependent parameter tuning did not allow us to resolve the violations highlighted in
the table without introducing more serious ones.

3.3. Performance of VMAT plans

Asdiscussed in section 2.4.1, the column generation heuristic is parameterized by the parameter
s, which represents how ‘greedy’ the heuristic is. Moreover, since the choice of s affects the
choice of A;, which affects SY in the time-minimization problem (SP), it also impacts the
delivery time of the final treatment plans. In this section we test our heuristic under various
settings of s, and study the performance of the resulting treatment plans in terms of quality
and delivery time.

3.3.1. The most greedy heuristic. Recall that a smaller value of s means that there are more
apertures to choose from in each iteration. We will start by choosing the smallest value of s;
i.e. we will start by investigating the most greedy variant of our heuristic. Note that we use
the same objective function as for the 177-beam IMRT optimization without any additional
tuning, so that the results only reflect the differences between the two modalities and treatment
planning techniques.
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Table 4. Performance of VMAT treatment plans with s = S = 0.83 degs~!.
Threshold Volume

Dose Criterion Case
Structure (Gy) (%) 1 2 3 4 5
PTV 73.7 >99 100 100 100 99 99
79.2 >95 99 95 95 95 95
87.1 <10 0 1 0 1 0
Rectum 75 <15 4 16 15 9 10
70 <25 7 19 18 13 13
65 <35 9 23 21 18 17
40 <45 26 38 36 36 33
Bladder 65 <17 7 24 14 45 12
40 <35 14 43 22 68 23
Femoral heads 50 <10 1/0 0/0 1/0 171 2/0
(L/R) 45 <25 2/0 1/0 12/2 3/4 4/0
40 <40 6/0 3/1 16/6 17 12/1
Runtime (s) 50.2  55.1 472 250 356
Treatment time (s) 316.0 285.6 3189 299.8 324.6

The results in table 4 show that our VMAT treatment plans exhibit high quality in general,
closely resembling the IMRT treatment plans when evaluated with the same set of clinical
criteria. The major differences between the IMRT and VMAT plans are with respect to the
dose distribution in the femoral heads, but the VMAT plans still easily meet all clinical criteria.

The second to last row of table 4 contains the plan optimization times, in seconds, using
the algorithm for each case, while the last line shows the treatment delivery time for each case.
These treatment times range between 4.75 and just under 5.5 min.

3.3.2. Effect of the value of s on treatment quality and time. Unfortunately, the treatment
plans in table 4 require relatively long treatment times, which negates some of the benefits
of using VMAT treatments. We therefore study next whether we can choose a larger value
of s, which can be expected to decrease treatment time, without significant deterioration in
treatment plan quality. In these tests we focus on case 2, which is one of the more challenging
cases.

Table 5 shows the performance of the VMAT treatment plans obtained with various values
of s ranging from S to SY. We can conclude that the treatment plan quality is not sensitive
to the choice of s. However, the overall treatment time is reduced dramatically, by a factor of
more than 2 from almost 5 min to just over 2 min, when using s = SU =6.

3.3.3. Least greedy heuristic. Based on the results in the previous section, we focus our
further analysis on obtaining shorter treatment times. Table 6 shows the performance of the
VMAT treatment plans obtained with s = SV = 6. Similar to case 2 we conclude that there
is no significant clinical deterioration in treatment plan quality as compared to the plans in
table 4, but the treatment time is greatly reduced for all cases. In particular, the treatment time
is consistently just over 2 min for all five cases. Finally, we provide an estimate of the total
number of MUs required for treatment given by Zszl O yr where y; is the fluence rate at
control point k in the final solution (see also the definition of the fluence rates yj in section 2.1).

3.3.4. VMAT treatment plan quality as compared to benchmark. Figure 3 shows the DVHs
of the 177-beam IMRT and VMAT (with s = SY = 6) treatment plans for case 2. As can be
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Table 5. Performance of VMAT treatment plans for case 2 obtained with different s values.
Threshold ~ Volume

Dose Criterion s (degs™h)
Structure (Gy) (%) 0.83 2 4 6
PTV 73.7 >99 100 100 100 99
79.2 >95 95 95 95 95
87.1 <10 1 0 1 1
Rectum 75 <15 16 16 17 16
70 <25 19 19 20 20
65 <35 23 22 23 23
40 <45 38 35 37 40
Bladder 65 <17 24 24 25 24
40 <35 43 42 43 45
Femoral heads 50 <10 0/0 0/0 0/0 0/ 4
(L/R) 45 <25 1/0 0/1 174 0/9
40 <40 3/1 3/5 14/10 0/16
Runtime (s) 55.1 55.5 29.9 352
Treatment time (s) 2856 168.6 133.1 128.4

Table 6. Performance of VMAT treatment plans with s = SY.

Threshold Volume

Dose Criterion Case
Structure (Gy) (%) 1 2 3 4 5
PTV 73.7 >99 99 99 99 99 99
79.2 >95 95 95 95 95 95
87.1 <10 1 1 3 4 4
Rectum 75 <15 5 17 15 10 11
70 <25 7 20 19 14 16
65 <35 10 23 22 20 20
40 <45 26 40 36 35 40
Bladder 65 <17 7 24 14 45 12
40 <35 14 45 24 70 25
Femoral heads 50 <10 0/5 0/ 4 1/1 4/3 7/0
(L/R) 45 <25 0/9 0/9 3/2 10/ 9 13/3
40 <40 7/15  0/16 8/5 14/13  24/9
Runtime (s) 248 352 294 22.8 285
Treatment time (s) 128.1 1284 121.7 121.7 1225
Total MU 503.2 5347 4928 483.1 507.6

gleaned from the corresponding tables, the largest differences in these plans are with respect to
the dose distribution in the femoral heads, but these are still well within the clinical protocol.
Given the restrictions that VMAT delivery imposes on a treatment plan, we feel that the quality
of the VMAT plan is not only clinically acceptable, but also high since the degradation from
the idealized 177-beam IMRT plan is relatively small.

3.3.5. Disallowing interdigitation. In order to study the effect of using an MLC system that
does not allow interdigitation, we implemented the modified pricing problem (PPI) described
in section 2.6.3 and applied our resulting algorithm on all five cases. Our experiments revealed
no significant change in solution quality, while the solution time increased by less than 7.5 s
in all cases (see table 7).
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Figure 3. Treatment plans for case 2. Solid: 177-beam IMRT. Dashed: VMAT.

Table 7. Impact of disallowing interdigitation on algorithm solution time.

Case

Solution time (s) 1 2 3 4 5

Allowing interdigitation 248 352 294 228 285
Disallowing interdigitation 30.4 34.8 34.6 258 35.8

3.3.6. Rate of change in gantry speed. Finally, we investigate the effect of the constraint
on the rate of change in gantry speed on treatment time. As discussed in section 2.5, we can
assess the impact of the rate of change restriction by removing the corresponding constraint
(17) from problem (SP). As before, we focus this study on case 2.

Figure 4 plots the gantry speeds and dose rates for control points 1-176 for case 2. Graphs
(a-1) and (b-1) show gantry speeds, and (a-2) and (b-2) show dose rates, obtained by setting
s = SY = 6 in the column generation algorithm, with rate of change constraint (17) omitted
for graphs (a-1) and (a-2), but included for graphs (b-1) and (b-2). Graphs (c-1)—(d-2) contain
analogous results with s = 4. It is clear that without a constraint on the rate of change,
the gantry speed changes rapidly during the treatment in order to extend the time spent at
apparently favorable control points while limiting the time spent at less favorable ones. Note
as well that at most control points, the speed remains equal to the value s used in the column
generation algorithm even after solving (SP).

When the rate of change constraint is enforced, as in parts (a-1) and (c-1), the sequence of
speeds is smoothened so that the change in speed between control points is no more than ASy.
Note that, as discussed in section 2.5, the rate of change constraint does not have any impact
on treatment plan quality. However, if it were technologically feasible to increase or eliminate
the bound on the rate of change in gantry speed, the treatment time could be shortened by
about 30% to less than 1.5 min, as shown in table 8.
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Figure 4. Gantry speeds (left column) and dose rates (right column) versus control points for
case 2: (a) s = 6 degs™!, ignoring rate of change constraint; (b) s = 6 degs™!, considering rate
of change constraints; (c) s = 4 degs™!, ignoring rate of change constraint; (d) s = 4 degs™!,

considering rate of change constraints.
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Table 8. Impact of the presence of the bound AS on the rate of change in gantry speed on treatment

time.

Case
Treatment time (s) 1 2 3 4 5
Without bound 86.0 88.0 84.3 85.4 86.2
With bound 128.1 1284 121.7 121.7 1225

4. Conclusions

We have developed an efficient algorithm for generating VMAT treatment plans. Our approach
incorporates various physical constraints, including bounds on dose rate, gantry speed and rate
of change in the gantry speed during treatment. Moreover, the approach is flexible enough to
allow for additional constraints, including MLC delivery constraints. We have shown that our
algorithm is capable of generating treatment plans of high quality on five prostate cancer cases.
The VMAT plans produced by our algorithm can be delivered in around 2 min. Moreover,
a GPU implementation allows us to complete the optimization within 1 min. Along with
additional 15 s for computing the dose deposition coefficients before the optimization and
15 s for computing the final dose distribution after the optimization using a GPU-based dose
calculation engine (Gu et al 2009a, 2009b), this work provides a major step toward a clinical
application of adaptive VMAT therapy.
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