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Abstract
Active knits are a unique architectural approach to meeting emerging smart structure needs for
distributed high strain actuation with simultaneous force generation. This paper presents an
analytical state-based model for predicting the actuation response of a shape memory alloy
(SMA) garter knit textile. Garter knits generate significant contraction against moderate to
large loads when heated, due to the continuous interlocked network of loops of SMA wire. For
this knit architecture, the states of operation are defined on the basis of the thermal and
mechanical loading of the textile, the resulting phase change of the SMA, and the load path
followed to that state. Transitions between these operational states induce either stick or slip
frictional forces depending upon the state and path, which affect the actuation response. A
load–extension model of the textile is derived for each operational state using elastica theory
and Euler–Bernoulli beam bending for the large deformations within a loop of wire based on
the stress–strain behavior of the SMA material. This provides kinematic and kinetic relations
which scale to form analytical transcendental expressions for the net actuation motion against
an external load. This model was validated experimentally for an SMA garter knit textile over
a range of applied forces with good correlation for both the load–extension behavior in each
state as well as the net motion produced during the actuation cycle (250% recoverable strain
and over 50% actuation). The two-dimensional analytical model of the garter stitch active knit
provides the ability to predict the kinetic actuation performance, providing the basis for the
design and synthesis of large stroke, large force distributed actuators that employ this novel
architecture.

(Some figures may appear in colour only in the online journal)

Nomenclature

A Inflection point at end of loop leg
B Interlacing contact point
C Point at top of loop
C Course height
C1,C2,

C3,C4

Functions of angles used to simplify notation

D Center of the unit cell

D Knitting needle diameter
d Wire diameter
E Elliptic integral of the second kind
EA Base material austenite Young’s modulus
EM Base material martensite Young’s modulus
Ê Difference between complete and incomplete

elliptic integrals of the second kind
F Elliptic integral of the first kind
Fapp Externally applied force to knit textile
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Floop Externally applied force to knit loop
FUC Externally applied force to unit cell
F̂ Difference between complete and incomplete

elliptic integrals of the first kind
I Second moment of inertia of wire cross-section
k1, k2 Geometric functions of angles used in elliptic

integrals
L Knit loop length
Lsubscript State dependent length of knit textile
M Bending moment at top of loop
Nc Number of courses in knit textile
NW Number of wales in knit textile
O Unit cell origin
P Reaction force at end of loop leg
R Reaction force at interlacing contact point
s Length along loop
T Horizontal wire tension at top of loop
W Wale width
X,Y Global coordinate system
x, y Local coordinate system for segment BC
x′, y′ Local coordinate system for segment AB
α Loop state angle of the connecting leg at A
β Loop state angle of the reaction force between

adjacent loops
1 Knit textile deflection
δ Unit cell deflection
ε1, ε2,
ϕ1B, ϕ2B

Geometric functions of angles used in elliptic
integrals

γ Loop state angle of force P at A
µ Coefficient of friction between interlacing loops
θ, θ ′ Deflection angle along loop

Subscripts
A Austenite phase
ACT Actuator
cont Contracted state
ext Extended state
M Martensite phase
w Initial state with zero external load

1. Introduction

Across diverse fields such as transportation, medicine, and
communications, recent research has indicated high promise
if distributed, large-amplitude contractile actuation were
available. For example, in transportation, contractile actuation
such as active skins [1] and morphing control surfaces [2, 3]
can significantly reduce drag, increasing fuel economy and
enabling diverse aerodynamic performance envelopes [4].
To achieve these goals, it is necessary to provide large
strains under aerodynamic loads, which is a challenge for
current actuation technology. Similar needs arise in medical
devices [5, 6]. One application, a catheter actuated by
off-axis contractile shape memory alloy (SMA) wire, has
made improved navigation through the body possible and
has reduced stress to surrounding tissue during deployment
of arthroscopic devices [7]. While SMA actuated catheters
of current research interest are able to overcome the modest
structural forces of the catheter sheath, they cannot provide

the desired level of dexterity to fully navigate bodily conduits
because they are limited by the maximum contractile strains
of the SMA material. Communication infrastructure, such
as antennas, space telescopes and solar arrays, have a
continual demand for large deployment sizes with precise
control of shape despite delivery vehicle constraints and high
launch costs [8–12]. Because of these actuation demands,
communication devices can also benefit from the development
of distributed large contractile surface actuation in structures.
Large strain contractile actuators that could provide the
required surface strains to reassemble large, complex systems
in space would reduce the size and complexity of deployment
mechanisms. These diverse applications illustrate a common
need for distributed large strain contractile actuation under
usable forces that is difficult to meet with current actuation
technology.

While research has advanced actuator capabilities, pro-
viding large distributed actuation strains against application
forces is still difficult with traditional and smart material
actuators. Conventional technologies such as electromagnet-
ics, hydraulics, and pneumatics come close to producing the
necessary kinetic behavior but they have many drawbacks
including large size and weight, substantial infrastructures
(such as pumps and generators), and lack of mechanical
and environmental robustness in addition to actuator specific
problems such as strong electromagnetic signatures and
hydraulic leakage. Smart material based actuators have long
held the promise of increasing the actuation authority and
decreasing weight/size by an order of magnitude because
of their high energy/power densities [13] (up to two
or three orders of magnitude for shape memory alloys
versus electromagnetic actuators). Smart materials can also
generate distributed actuation which conventional actuators
cannot directly accomplish. Unfortunately, smart materials
by themselves either have very low strokes resulting from
material strains of only a fraction of a percent (piezoceramics,
electrostrictives, magnetostrictives) [14–17] or low forces,
typically on the order of milliNewtons up to at most one New-
ton (piezopolymers, electroactive polymers, etc) [18–23]. To
overcome these material shortcomings, substantial research
has been conducted on strain amplification architectures over
the last decade [24–40], these strategies normally result in
point actuators with relatively small strains. To move toward
distributed actuation, active composite architectures using
piezoelectrics [41–53] and shape memory alloys [54–60] have
been developed. While these smart material architectures have
improved actuator performance, large strains (over 50%) with
any reasonable force generation (tens to hundreds of Newtons)
have remained elusive.

Through the development of advanced smart material
actuation architectures, distributed large contractile actuation
motions can be created. Active knits, a novel cellular textile
architecture containing a periodic continuous interlocked
network of loops of active material, produce large distributed
actuation profiles that could enhance actuation capabilities.
All knitted textiles (traditional and active) are differentiated
from other textile architectures (weaving, braiding, stitching,
etc) by their unique unit cells—the knit and purl loops
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Figure 1. Basic garter stitch architecture. Forward knit loops and
backward purl loops make up courses (rows of loops) and wales
(columns of loops), characterized by the course height (C), wale
width (W), wire diameter (d), and loop length (L).

(figure 1). These unit cells are composed of an 180◦ bulb-
shaped loop extending into two legs that interlock with a ridge
formed by the previous row. The loops are distinguished by
the position of the ridge (rear ridge for knit loop, forward
ridge for purl loop) and can be arranged to provide a wide
variety of stitches. The most common stitch, garter stitch,
has a symmetric arrangement of alternating rows of knit
and purl loops (figure 1). This symmetric architecture allows
active garter stitch knitted actuators to supply the most basic
actuation motion—planar contraction. Upon actuation the
smart material fiber tries to return to its original, stress-free
straight shape by recovering the strain induced in the smart
material fiber during loop formation. The fiber straightening
causes the height of the individual loops to decrease (while
slightly expanding the width) and the loops to slip relative
to each other in the plane in which they lie. The change in
loop geometry and the interaction between rows of adjacent
loops combine to reduce the total length of the active knit
textile which results in textiles with net strains that are
orders of magnitude higher than the local strains within the
material itself. While any contractile smart material could
be used in the garter stitch knitted architecture, Dynalloy’s
Flexinol R© shape memory alloy wire is used to investigate this
architectural paradigm, because it was inexpensive, robust,
and readily available. Garter stitch active knit actuators knitted
with Flexinol R© wire have demonstrated large strains in excess
of 50% and forces in the tens of Newtons [61], but larger
strains, up to 100% or more, with hundreds of Newtons
of force are possible through manipulation of geometric
parameters and scaling of the textile, enabling applications
across diverse fields.

The garter stitch active knit architecture is a promising
actuation architecture, however, no predictive models for
active knit actuators which can capture the complex
operational and material transitions between states within the
actuation cycle currently exist. Various models of passive

knitted textiles exist and these can provide a starting point
for modeling active knit textiles. Purely geometric, small
deformation models of plain knit apparel fabrics have been
developed over the last century [62–74]. More recently,
models of knitted engineering materials (such as glass,
steel, and carbon fiber) have been derived to predict the
performance of engineering composites, which may improve
mechanical performance (energy absorption, bearing and
notched strengths, and fracture toughness) [75–79]. While
more sophisticated models have been developed [75–82], they
still apply only to traditional passive engineering materials,
modeling only a single tensile operational state and only a
single phase of the material. None of these models account
for the changes in material phase of an active material,
the thermal and tensile loading states experienced during an
actuation cycle, or the internal friction forces and kinematic
constraints induced by the transitions between these states,
and therefore, they are not easily adaptable for modeling
actuation.

This paper presents an analytical state-based actuation
model of a garter knit actuation textile fabricated from
variable stiffness smart material wire which takes all these
factors into account. The states of operation are defined
based on the mechanical loading of the textile, the transition
between different material stiffness, and the paths followed
to arrive at each state. Operational transitions between these
states induce frictional forces (stick or slip) depending upon
the state and path, which affect the actuation response.
A load–extension model is derived for each state of a
typical actuation cycle with respect to the unit cell of a
single loop of the textile based on the stress–strain behavior
of the active material with assumptions made to allow
analytical tractability. Elastica theory and Euler–Bernoulli
beam bending are used to capture the large deformations
within a loop of wire. The resulting kinematic and kinetic
relations for a single cell scale the load–extension behavior
of the entire knit textile for each state, and provide
analytical algebraic transcendental expressions for the net
actuation motion as a function of the applied tensile load
on the textile. The model was validated experimentally
for a thermally actuated SMA garter knit prototype over
a range of applied forces with good correlation. The
two-dimensional analytical active knit model provides the
ability to predict actuation motions for this large stroke, large
force actuation architecture, enabling the design of active
knitted architectures for a wide range of applications.

2. Garter stitch architecture and operation

Garter knits are capable of generating large strains beyond the
base material capability because of their unique architecture
and multi-state operation, which are both described in this
section.

2.1. Architecture

The architecture of a knit is defined by the arrangement of
knit and purl connections between interlaced loops of adjacent
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Figure 2. Active garter stitch states. (a) Austenite free state, (b) austenite extended state, (c) martensite extended state, and (d) austenite
contracted state reached through thermal or mechanical operational transitions where a typical actuation cycle is alternates between the
martensite extended and austenite contracted states.

courses (figure 1). A course is a row of knit loops, shown in
red in figure 1, which comprises a single strand of alternating
(up and down) curved loops. A wale is a column of knit
loops, the legs of each loop interlocking with the top of the
next loop down the wale (i.e. in the next course). In a knit
connection, the legs of the upper loop in a wale overlap the
top of the lower loop in the same wale and interlace behind the
sides of the loop, whereas in a purl connection the top of the
lower loop overlap the legs of the upper loop which interlace
behind the sides of the lower loop. The ordering of the knit
and purl connections define the architecture where garter
stitch, comprised of alternating courses of all knit and all
purl connections, forms a planar textile symmetric about the
front and back. The loops within the architecture provide large
curvatures through which loops interlace with the adjacent
loop making contact at the interlacing contact point, B. The
interlacing contact point may change position as adjacent
loops slip relative to each other against friction, depending
on the relative magnitudes of the loading and contact forces
and the coefficient of friction between the wires. The garter
knitis geometrically defined by its course height (C), wale
width (W), loop length (L), and fiber diameter (d). The course
height (C) is the vertical distance between identical reference
points of adjacent rows. The wale width (W) is the horizontal
distance between identical reference points on adjacent loops
within a course. The loop length (L) is the length along the
centerline of the fiber of a single knit loop. The fiber diameter
(d) is the diameter of the foundational wire.

2.2. Operation

SMA garter knit textiles go through operational transitions
from one state to another resulting in a change in length
and stiffness of the textile. The operational transitions are
initiated by either a change in thermal loading, inducing a
material transition from flexible martensite to stiff austenite,

or by changes in mechanical loading. During these operational
transitions, different friction conditions occur between loops
of the knit (stick or slip) depending on the loading and the
initial state. The state of the textile is defined by the thermal
loading (austenite or martensite), the mechanical loading and
the loading path by which the textile arrived into that state
(free, extended, or contracted). A typical actuation cycle
(depicted in figure 2) is initiated from the austenite free state
with an operational transition into the austenite extended state,
and then cycles between the martensite extended state and the
austenite contracted state. The length of the textile in each
state, and therefore the motion produced by each operational
transition, depends on four factors: (1) the state it is in,
(2) the state it came from, (3) the magnitude of the mechanical
loading, and (4) the inter-loop friction conditions experienced
during operational transition into its state.

2.2.1. Austenite free state. A typical actuation cycle is
initiated with the SMA garter knit textile in a heated state with
no external loads. When the temperature of the SMA is raised
above its austenite finish transition temperature, it makes a
material transition from a soft martensite phase to a stiff
austenite phase. In transitioning, deformations experienced
in the martensite phase are recovered, producing the shape
memory effect of SMA. While the material phase of SMA
is a function of both temperature and stress, for modeling
purposes, it is assumed that a complete thermal transition
occurs throughout the wire and that the bending stresses are
low enough such that no areas of stress induced martensite are
developed. Because the martensite strains are recovered, the
austenite free state provides a zero reference for computing
material strains. In a knitted structure, however, the material
is not actually in a zero-strain state since the wires, which
come from the manufacturer trained to a straight shape, are
bent in loops. When heated they attempt to return to their
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naturally straight configuration resulting in a relatively wide
wale width, W, and a relatively short course height, C. Even
though many internal stresses and strains exist, the garter knit
textile length LA0 in the austenite free state (figure 2(a)) is set
as the zero deflection reference point for actuation.

2.2.2. Austenite extended state. When a tensile load, Fapp,
is applied to the textile in this heated state, the knit loops
elongate, increasing the course height C, and lengthening the
entire textile by a deflection 1Aext, relative to the austenite
free length, LA0. During this operational transition into the
austenite extended state (figure 2(b)), the adjacent loops of
wire generally slip past each other from an initial point of
contact BA0 along the loop to a final interlacing contact point
BAext. The resulting friction resists the slip and therefore
resists elongation of the textile, reducing the deflection 1Aext
into this state.

2.2.3. Martensite extended state. When the textile is allowed
to cool under load to a temperature below its martensite
finish transition temperature, the textile makes a material
transition into the martensite phase and becomes less stiff.
It is assumed that the stiffness decreases as a result of a
complete thermal transition as all the material cools below the
martensite finish temperature. As a result, the course height
of the loops elongates further into the martensite extended
state (figure 2(c)) in which the textile is deflected by 1Mext
relative to the austenite free length, where 1Mext > 1Aext.
During this operational transition, adjacent loops slip further
past each other from the austenite extended interlacing point
of contact BAext, to the martensite extended interlacing point
of contact BMext such that friction again reduces the deflection
experienced by the textile during this operational transition.
The martensite extended state is the first of two states in the
cyclic portion of the typical actuation cycle.

2.2.4. Austenite contracted state. The next state of the
actuation cycle is entered when the material is heated under
load to above its austenite finish transition temperature to
the austenite phase. The resulting stiffening of the material
causes the wires within each loop to attempt to straighten
to their natural straight shape, reducing the course height,
and inducing contraction of the textile to a length deflected
from the austenite free length by a distance 1Acont, where
1Mext > 1Acont > 1Aext. During this operational transition
into the austenite contracted state (figure 2(d)), friction
between the loops opposes relative motion of the interlacing
point of contact back downward toward the austenite extended
interlacing point of contact BAext. In most cases, the friction is
observed to completely block slippage such that the austenite
contracted interlacing point of contact BAcont remains stuck
at the martensite extended interlacing point of contact BMext.
Thus, even though the thermal and mechanical loading are
identical in the austenite extended state and the austenite
contracted state, the length in the austenite contracted state
is longer than that of the austenite extended state due to
the change in direction and stick–slip nature of the friction
conditions experienced in arriving at each state.

Actuation against an applied force Fapp occurs cyclically
between the austenite contracted state and the martensite
extended state, where the net actuation deflection 1ACT
is equal to the difference between the martensite extended
deflection and the austenite contracted deflection (1ACT =

1Mext −1Aext).

3. Analytical garter stitch model

An analytical state-based actuation model is derived for
the garter knit architecture to predict the load–extension
behavior of each state and net actuation motion as a function
of the applied tensile load on the textile, thermal load
and material phase, and path dependent friction. While
several load–extension models exist for passive textile
knits [62–82], they do not model the multi-state contractile
actuation of active knits. Existing knit models are typically
purely geometric and only capture small deformations, while
engineering models that account for larger deformations only
predict the load–extension behavior of a passive single-state
knit. None of these existing models incorporate thermal and
mechanical operational transitions from one state to another,
and they all neglect the influence of the load path and the
interlacing loop friction.

These passive knit models however, do provide a
starting foundation for the modeling of the load–extension
of individual states of an active knit. By modifying and
combining existing passive knit models, particularly those
developed by Hong [75] and Shanahan [74], a quasi-static
analytical model can be developed that predicts the actuation
of the active knit based on the state it is in, the state it
came from, and the inter-loop friction experienced during
the operational transition into the state. The required
modifications include incorporating slipping and sticking
between adjacent interlacing loops, enforcing compatibility of
displacements and curvature at the interlacing contact point,
and accounting for the change in stiffness between states.

The modeling approach uses a quarter of the knit loop
as the unit cell of the knit architecture. Geometric relations
are established for the unit cell taking advantage of the
high level of symmetry within the structure to describe the
position of key points and inflections within the cell. The
reference austenite free state is modeled to establish the
base geometry and loop shape, as well as the load–extension
behavior of the austenite and martensite extended, and the
austenite contracted states. For each state, the shape of the
loop is established using elastica theory and Euler–Bernoulli
beam bending to capture the large bending rotations using a
small strain linear deflection approximation of the SMA wire
in each phase. Equilibrium equations are developed for the
loop including the stick or slip friction interaction between
loops depending on the particular operational transition. The
resulting governing differential equations are integrated along
the loop using boundary conditions derived from geometry to
provide a set of algebraic equations relating a set of three
unknown loop state angles to the overall size of the cell.
Kinetic relations for each state are formulated to relate the
loading on each loop to its shape providing fully analytical
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transcendental equations from which the load–extension
behavior of the unit cell is derived. The difference between
the load–extension behavior of the martensite extended and
austenite contracted states describes the actuation behavior of
the unit cell. The unit cell properties are scaled by the numbers
of courses and wales to provide the load–extension behavior
and net actuation behavior of the entire knit textile.

3.1. Assumptions

To simplify the modeling approach and to enable ana-
lytical tractability, several assumptions about the fibrous
active material and loop architecture are employed. The
fiber is assumed to be a naturally straight, inextensible,
incompressible, homogeneous, elastic rod that experiences
the shape memory effect. The SMA wire is assumed to
be trained to a straight shape that is recoverable upon
heating at low load levels. While inextensibility is not
traditionally associated with SMA wire because of its
large axial extension and contraction capability, it is used
in the knitted model because at typical load levels the
extension of the knit is assumed to be governed by the
change of shape in the knit loop caused by bending. The
inextensibility assumption implies a constant diameter for the
SMA wire.

The effective modulus of elasticity is phase dependent
(EA, EM), assuming the material fully transforms between
phases as discussed in the operation section, and is derived
from small strain limiting cases of the nonlinear stress–strain
relationships. In reality, the bending curvatures of the SMA
material may not allow complete transformation into the
austenite phase and a portion of the material may be in the
stress induced martensite phase. Also, while linear elastic
assumptions apply well to the full austenite phase they only
apply to the martensite phase for small strains. However,
these simplified material assumptions are made to enable
tractability of the analytical model, and they do apply to
situations with relatively large loop to wire diameter ratios,
therefore to more loosely knit architectures.

In addition to assumptions about the fibrous material
several loop architecture assumptions have been implemented.
Every loop in the knitted textile is assumed to have the
same planar geometry with no out of plane behavior during
deformation. Interlacing loops from adjacent courses are
assumed to always be in contact and the central axes of
these loops are separated by one wire diameter (figure 3).
A simplified fiber reaction force, R, acting at a single point
between the interlacing fibers perpendicular to the fiber axis
is assumed.

3.2. Geometric relations

Geometry plays a crucial role in the development of
an analytical model of active knitted material because it
allows for the establishment of physical constraints between
the known geometric parameters (course height—C, wale
width—W, loop length—L, and wire diameter—d) and the
unknown loop state angles (α, β and γ ). The three angles (the

angle of the reaction force (R) between adjacent loops—β, the
angle of the connecting leg at A − α, and the angle of force
P at A− γ ) describe the geometric loop shape under different
loads. The undetermined loop state angles vary during loading
to allow for the direction of internal forces to change and
slipping of the interlacing contact point during extension.
The geometric constraints are developed by analyzing a unit
cell of the knit architecture. The unit cell is one quarter of
the knit loop and a quarter of the interlacing adjacent loop
(figure 3). A complete knit loop can be assembled using
symmetry by rotating and reflecting the unit cell about the
X and Y-axes defining the origin at this center of symmetry,
O, and matching the connection points at the top (or bottom)
of the loop at C and at the end of the connecting leg at A.
Symmetry dictates the position and curvature at point A. To
ensure compatibility of displacements along the length of the
wire A must be located in the bottom center of the unit cell
at (0, W/4). Continuity requires A to be an inflection point
acting along the angle α, because the direction of the curvature
of the wire in the knit loop changes therefore A cannot support
a moment. From A the wire begins to curve upward until it
reaches the interlacing contact point B, the point along the
central axis of the knit loop through which the resultant force
between adjacent loops acts. To maintain symmetry, the line
of action of the resultant force, R, which acts perpendicular
to the tangent line at B, must pass through the center of the
unit cell, D, located at (W/4,C/2) and representing the point
of interaction between adjacent loops, requiring B to lay a
distance of d/2 from D along an angle of β − π/2. From B,
the foundational wire continues to curve toward the top of the
knit loop, point C, located at an unknown height along the
left-most edge of the unit cell.

Four different geometric relations can be derived from the
unit geometry. The first geometric constraint,

W

4
= XB −

d

2
cos

(
β −

π

2

)
, (1)

relates XB, the X-coordinate of the interlacing contact point,
B, to W/4, the X position of point A, using the assumption
that the adjacent interlocking wires are in contact and
incompressible, therefore separated by the wire diameter, d,
along the line of action of R. Similarly, a second constraint,

XB − XA =
d

2
cos

(
β −

π

2

)
, (2)

couples the difference in the X-coordinates of the interlacing
contact point and leg end, XB and XA, to the horizontal
component of the distance between the loop interaction point,
D, and half the wire diameter. Using the same assumptions
as used for the development of wale width constraint
(equation (1)), a third constraint,

C

2
= YB −

d

2
sin
(
β −

π

2

)
, (3)

associates the Y-coordinate of point B, with the vertical
location of the center of the unit cell, C/2, using the wire
diameter, d, and angle, β. The final geometric constraint,

L

4
= sAB + sBC, (4)
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Figure 3. Knit unit cell. The knit unit cell is one quarter of a knit loop (shown in red) and is defined by geometric parameters (course
height—C, wale width—W, loop length–L, wire diameter—d) and unknown characteristic angles (α, β, and γ ).

Figure 4. Garter knit unit cell free body diagram. The free body
diagram includes the internal forces and moments—T,R, µR,P,
and M and the loop state angles (α, β, and γ ).

is a compatibility equation relating the length of wire in
the loop, L, to the combined length of segment AB, sAB,
and length of segment BC, sBC, in this quarter knit loop
established using the inextensibility assumption.

3.3. Austenite free state (reference state)

The austenite free state acts as a reference state upon which
all further calculations are made. The state is developed
by analyzing the force–equilibrium interactions and the
governing differential equations for the segment of the loop
above and below the interlacing contact point. The analysis
allows for kinematic loop state equations to be derived in
terms of measurable geometric parameters (course height—C,
wale width—W, loop length—L, wire diameter—d) and
unknown loop state angles (α, β, and γ ) which can be solved

to provide the loop state angles. Once the loop state angles
are known, the corresponding kinetic information (internal
forces) can be calculated. The kinematic and kinetic values
provide a reference state for the extension and contraction of
the knitted structure.

3.3.1. Force–equilibrium interactions. The free body
diagram of the planar knit loop (figure 4) is separated into
two segments at the interlacing contact point (B) by the
resultant force, R, transmitted by the adjacent interlocking
loop. A friction force, µR, acts perpendicular to R at B in the
positive X and negative Y direction to resist extension from
the as-knit geometry which typically has more overlap and
slack between courses. A single force P acts on point A at an
angle of γ relative to the X-axis, which is an inflection point
and cannot support a moment. At point C, a horizontal force,
T , acts in the negative X-direction and a bending moment,
M, acts counterclockwise (no shear can be supported due to
symmetry).

Force–equilibrium analysis in the X and Y forces and mo-
ments provides kinetic loop relationships. Force–equilibrium
in the X-direction results in

T = R(sin(β)− µ cos(β))− P cos(γ ). (5)

Equilibrium in the Y-direction produces

R =
−P sin(γ )

µ sin(β)+ cos(β)
, (6)

which can be combined with the tension in the top of the loop
from the X-direction equilibrium (equation (5)) to eliminate R
and give the relationship

T = −P

(
sin(γ )

sin(β)− µ cos(β)
cos(β)+ µ sin(β)

+ cos(γ )
)
. (7)

For future simplification the substitution

7
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(a) (b)

Figure 5. Loop segment free body diagrams. Free body diagrams for analysis of the governing differential equations of (a) segment AB
and (b) segment BC.

k1 = sin(γ )
sin(β)− µ cos(β)
cos(β)+ µ sin(β)

+ cos(γ ) (8)

is made, where k1 is a function of the geometric angles β and
γ only.

The moment balance about B is

M = Py′AB − TyBC (9)

and can be simplified to

M = P(y′AB + k1yBC) (10)

using the modified equation for the tension in the top of the
loop (equation (7)), where y′AB is the perpendicular distance
between the line of action of P and B and yBC is the vertical
distance between B and the top of the loop, C.

3.3.2. Analysis of governing differential equations. The
governing differential equations describing the bending of
the knit loop are developed using elastica theory and
Euler–Bernoulli beam bending. Elastica theory is a theory of
solid mechanics that accounts for large elastic rotations of
structures during bending or buckling [77]. The use of elastica
theory requires manipulation of the governing differential
equations using the relations dx/ds = cos(θ) and dy/ds =
sin(θ) to obtain closed form solutions involving complex
elliptic functions. Bending of the knit unit cell is analyzed
in two sections, segments AB and BC, while imposing
continuity of displacements and slopes at B.

3.3.2a. Lower loop segment AB. Segment AB is treated as
an elastic rod pinned at A with an applied end load, P,
and analyzed using a transformed coordinate system (x′, y′)
centered at A where x′ is along but opposite the line of action
of P (figure 5(a)). The differential equation describing this
portion of the loop is simply

dθ ′

ds
=

Py′

EAI
(11)

as determined from Euler–Bernoulli beam bending where θ ′

is the angle with the x′-axis, s′ is the length along the loop, EA

is the phase dependent effective elastic modulus of the wire in
the austenite phase, and I is the second moment of inertia of
the wire cross-section.

The governing differential equation for segment AB
(equation (11)) is differentiated and the elastica relation
dy/ds = sin(θ) is used to obtain

d2θ ′

ds2 =
P

EAI

dy′

ds
=

P

EAI
sin(θ ′). (12)

This equation is multiplied by dθ/ds and rearranged,
giving

d
ds

[
1
2

(
dθ ′

ds

)2

+
P

EAI
cos(θ ′)

]
= 0, (13)

which can be integrated to determine the length of the wire,
sAB, using the boundary conditions derived from geometry and
the fact that point A is an inflection point

θ ′|s=0 = α − γ, (14)

dθ ′

ds

∣∣∣∣
s=0
= 0, and (15)

θ ′|s=sAB = β − γ. (16)

Two substitutions,

u = cos
(
θ ′

2

)
and (17)

z = arcsin

(
u

cos(α−γ2 )

)
, (18)

are useful to manipulate the integral into a closed form elliptic
integral describing the length of segment AB,

sAB =

√
EAI

P
F̂(ε1, ϕ1B), (19)

where

ε1 = cos
(
α − γ

2

)
, (20)

8
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ϕ1B = arcsin
(

cos
(
β − γ

2

)/
cos

(
α − γ

2

))
, (21)

and

F̂(ε1, ϕ1B) = F(ε1, π/2)− F(ε1, ϕ1B) (22)

given F(ε1, π/2) is a complete elliptic integral of the first kind
and F(ε1, φ1B) is an incomplete elliptic integral of the first
kind. The curvature, dθ/ds, at any point along the length of
segment AB is found by differentiating the length along the
loop (the general form of equation (19)) with respect to θ to
obtain the equation

dθ
ds

∣∣∣∣
s=sBC

= 2ε1

√
EAI

P
cos(ϕ1B). (23)

Integrating the combination of the elastica assumptions and
the curvature relationship (equation (23)) the x′ and y′

coordinates for loop segment AB are determined to be

x′AB =

√
EAI

P
{F̂(ε1, ϕ1B)− 2Ê(ε1, ϕ1B)} and (24)

y′AB = 2

√
EAI

P
ε1 cos(ϕ1B), (25)

where

Ê(ε1, ϕ1B) = E(ε1, π/2)− E(ε1, ϕ1B), (26)

and E(ε1, π/2) is a complete elliptic integral of the second
kind and E(ε1, φ1B) is an incomplete elliptic integral of the
second kind. Transforming the coordinate system from the
local x′, y′ to the global X,Y through the angle γ results in

X =
W

4
+ x′ cos(γ )− y′ sin(γ ) and (27)

Y = x′ sin(γ )+ y′ cos(γ ). (28)

The analysis of the lower loop segment AB provides half
the fundamental equations used in determining the loop state
angles.

3.3.2b. Upper loop segment BC. Segment BC is treated as
an elastic rod clamped at C with a horizontal load, T , and an
applied moment, M, while B is free to move (figure 5(b)) but
must satisfy continuity conditions with AB. Segment BC is
analyzed using the transformed coordinate system (x, y) where
x is shifted vertically from X, C acts as the origin, and y acts in
the negative Y direction. The differential governing equation
for segment BC is given by

dθ
ds
=

Ty+M

EAI
, (29)

where θ is the angle between the x-axis and the tangent line
to the loop. The modified equation for the tension in the
top of the loop (equation (7)) and the moment at the top of
the loop (equation (10)) are substituted into the governing
differential equation for segment BC (equation (29)), which
is differentiated and the elastica relation is employed resulting

in the manipulated equation

d
ds

[
1
2

(
dθ
ds

)2

+
T

EA,MI
cos(θ)

]
= 0. (30)

The differentiated governing differential equation (equa-
tion (30)) can be integrated to determine the length of the wire,
sBC, in segment BC using the geometric boundary conditions

θ |s=0 = 0, (31)

θ |s=sBC = π − β, and (32)

dθ
ds

∣∣∣∣
s=sBC

= 2ε1

√
EAI

P
cos(ϕ1B), (33)

where the boundary condition for the curvature at the
interlacing contact point B (equation (33)) enforces continuity
of wire curvature at B. Employing the substitutions

u = cos
(
θ

2

)
and (34)

z = arccos(u), (35)

this integration results in an equation describing the length of
segment BC,

sBC =

√
EAI

P

√
2

k1 + k2
F(ε2, ϕ2B), (36)

where

ϕ2B =
π − β

2
, (37)

ε2 =

√
2k1

k1 + k2
, and (38)

k2 = 2ε2
1cos2(ϕ1B)+ k1 cos(β), (39)

and F(ε2, φ2B) is an incomplete elliptic integral of the first
kind. The x and y coordinates of B can be determined to be

xBC =

√
EAI

P

√
2

k1 + k2

(
2

ε2
2

E (ε2, ϕ2B)

+

(
1−

2

ε2
2

)
F(ε2, ϕ2B)

)
(40)

and

yBC =

√
EAI

P

√
2

k1 + k2

(
−2

ε2
2

(

√
1− ε2

2 · sin2(ϕ2B)− 1)

)
(41)

using the elastica criteria. No coordinate transformation is
needed for the x-coordinate but the equation

Y = YAB + (yBC − y) (42)

transforms any local coordinate y into a global coordinate Y .

3.3.3. Kinematic relations. The kinematic equations
developed during the analysis of the knit unit cell provides

9



Smart Mater. Struct. 21 (2012) 085011 J Abel et al

a set of nonlinear algebraic loop state equations that relate the
initially measurable geometric parameters: wale width (W),
course height (C), wire diameter (d), and loop length (L), to
the unknown loop state angles. During the austenite free state,
when no external load is applied to the knit unit cell, the loop
state equations can be solved to obtain the loop state angles
and the internal forces can be calculated.

The geometric constraints (equations (1)–(4)) can be
modified with the new definitions of the coordinates and loop
length segments (equations (19), (27), (28), (36) and (41))
in terms of the unknown loop state angles (α, β and γ ) and
manipulated to eliminate the unknown force P to obtain the
three loop state equations:

L

W
=

C4

C1 − C3
, (43)

L

C
=

2C4

C2 + C3 cot(β)
, and (44)

L

d
=

2C4 sin(β)
C3

, (45)

which relate the geometric parameters (W, C, L, and d), which
can be measured from any loop in the austenite free state of
the knit textile, to the unknown loop state angles. The three
algebraic loop state equations provide a set of simultaneous
nonlinear equations where the Cis are only functions of α, β
and γ and are given by

C1 =

√
2

k1 + k2

[
2

ε2
2

E(ε2, ϕ2B)+

{
1−

2

ε2
2

}
F(ε2, ϕ2B)

]
,

(46)

C2 = sin(γ ){f (ε1, ϕ1B)− 2e(ε1, ϕ1B)}

+ 2ε1 cos(γ ) cos(ϕ1B), (47)

C3 = cos(γ ){f (ε1, ϕ1B)− 2e(ε1, ϕ1B)}

− 2ε1 sin(γ ) cos(ϕ1B), and (48)

C4 = f (ε1, ϕ1B)+

√
2

k1 + k2
F(ε2, ϕ2B). (49)

By making the initial material assumptions, the set of
nonlinear differential equations was reduced to a set of three
simultaneous transcendental algebraic equations. Using the
measured geometric parameters, the system of loop state
equations (equations (43)–(45)) can be solved numerically to
determine the unknown loop state angles (α, β and γ ) that
describe the unloaded loop. The kinematic analysis of the
loop state equations provides the unknown geometric angles
describing the loop in the austenite free state.

3.3.4. Kinetic relations. Once the loop state angles are
known the load at A can be determined using the geometric
length constraint and the definition of C4 (equations (4) and
(49)) to be

PA =
16EAIC2

4

L2 (50)

acting at an angle γ to the X axis. The load, PA, is the internal
force at point A that maintains the loop shape.The initial

tension in the top of the loop, T0, can be determined using the
equation of the tension in the top of the loop (equation (7)) and
the initial Y component of the force PA, Py0, can be calculated
using the relationship, Py0 = PA sin(γ ). While there are no
external forces acting on the knit loop, internal tensions exist
within the loop.

3.4. Austenite and martensite extended states

The development of the equations representing the austenite
and martensite extended states parallels that of the austenite
free state. The force–equilibrium interactions are identical
with friction still opposing extension. The governing
differential equations for the austenite extended state are
equivalent to those of the austenite free state, while the
governing differential equations for the martensite extended
state are the same except EA (the austenite elastic modulus)
is replaced by EM (the representative martensite elastic
modulus). However, with the kinematic relations an additional
loop state equation is developed because the relationship
between the wale width and course height must be determined
as the textile is extended. The kinetic relations differ with
the inclusion of an external load in the expression of the
load P at the leg of the unit cell and the development of a
load–deflection relation for both the unit cell and the entire
textile. The kinetic and kinematic relations for the austenite
and martensite extended states are developed for austenite as
an illustration, where the martensite relations differ only by
the material modulus of elasticity EM.

3.4.1. Kinematic relations. The characteristic loop state
angles must be calculated for the extended state under applied
loads as the textile extends, requiring an additional constraint
because the wale width, W, narrows from the austenite free
state as the course height, C, lengthens. The loop length,
L, and the diameter, d, remain constant during extension
therefore the wire diameter/loop length loop state equation
(equation (45)) can still be used. The wale width/loop length
loop state equation (equation (43)) establishes a relationship
to the load dependent loop state angles (α, β and γ ). A third
equation is necessary to solve for these unknown angles. This
is derived from the assumption that the tension in the top of
the loop, T , remains constant from the austenite free state
as increases in the horizontal component of R are taken up
through P due to symmetry thus there can be no change in
horizontal loading [75] of the unit cell. Constant horizontal
loop tension produces the relationship

TA =
−16EAIC2

4k1

L2 , (51)

as derived from the equation for the tension in the top of the
loop (equation (7)) and the equation for the load, P, applied
at A (equation (50)). In the constraint for the tension at the
top of the loop (equation (51)) the tension, TA, is known from
the austenite free state, and the loop length (L), the moment
of inertia (I), and the elastic modulus EA are known values
based on the phase of the material and the measured geometric
properties, while C4 and k1 are geometric functions of the
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unknown loop state angles. The set of three simultaneous
transcendental algebraic equations for the extended state loop
state (equations (45)–(51)) can be solved to obtain the set of
loop state angles that describe the loop shape for that extended
state.

3.4.2. Kinetic relations. The loop state angles are used to
calculate the applied force and the corresponding deflection
of the knit unit cell from the austenite free state. The kinetic
behavior of the textile is calculated by scaling the force on
the knit loop by the number of wales in the textile while the
deflection is scaled by the number of courses.

The applied force distributed on each unit cell, FUC, is the
difference between the initial internal force component acting
in the Y-direction, Py0, and the Y-component of P,Py, in the
extended state and is calculated as

FUC = Py − Py0 (52)

after using the kinetic equation (equation (50)) to determine
the force, P, acting at A for the extended loop. The
associated deflection is calculated using the geometric
constraint between the course height and the wire diameter,
the global Y-coordinate transformation, and the definition of
C2 (equations (3), (28) and (47)) as

δA,ext = 2

(√
EAI

PA
C2 −

√
EAI

PA
C20

)
+ d(cos(β)− cos(β0)), (53)

which represents the difference between the initial course
height and the extended course height under known
applied load. The force–deflection relationship is comprised
of transcendental expressions for the applied loop force
(FUC) and the corresponding deflection (δA,ext) which are
parameterized by the wale width W. The set of loop state
angles (α, β, and γ ) obtained following the kinematic analysis
are used in equations (52) and (53) to compute the force and
deflection relationship as the width of the wale decreases.

The model of the knitted textile is developed by scaling
the force–deflection model of the planar knit unit cell. It was
assumed during the development of the knit model that a knit
loop was made up of four identical unit cells rotated and
reflected about the X and Y axes and a knitted textile was made
of a matrix of knit loops. The total force in a knitted loop,
Floop, is twice that of the unit cell, Floop = 2FUC, because
there are two knit legs supporting the same force in each knit
loop. The total force in a knitted textile is the addition of the
force through all of the loops in the row or wale, NW, and can
be expressed as Fapp = NWFloop. The extension of the unit
cell is the same as the extension of a knitted loop therefore the
extension of the textile is total extension through each course,
NC, and can be calculated using the relationship1 = NCδAext.
The load–extension of the knit unit cell is thus scaled to
predict the load–extension of the entire knitted textile.

3.5. Austenite contracted state

The development of the equations for the austenite
contracted state parallels that of the austenite free state.

the force–equilibrium interactions are similar but sticking at
the interlacing contact point (B) is assumed. The governing
differential equations for the austenite contracted state are
exactly the same as the equations for the austenite free state.
However, the kinematic relations require knowledge of the
martensite extended state to enforce the assumption that no
slipping occurs during actuation under a constant load, leading
to two new loop state equations involving the applied load and
constant segment length. The kinetic relations for the unit cell
and the entire textile produce the load–extension relationship
for the austenite contracted state while actuator displacement
is provided by subtracting the austenite contracted state from
the martensite extended state.

3.5.1. Kinematic relations. During actuation the knit loops
widen as the martensite bending strain in the loop segments is
recovered because the material stiffens during the transition
into austenite. The interlacing contact point acts as a pin
joint due to sticking between adjacent loops. The applied
load in the Y-direction remains constant for the austenite and
martensite extended and the austenite contracted states since
the actuation cycle occurs against a constant applied load,

FUC = PyUC,Aext = PyUC,Mext = PyUC,Acont, (54)

where PyUC,Aext is the load applied to extend the unit cell in
the austenite phase, PyUC,Mext is the load applied to extend
the unit cell in the martensite phase, and PyUC,Acont is the load
under which the unit cell is actuated to the austenite contracted
state from the martensite extended state. The actuation force,
PyUC,Acont, can be broken into two components,

PyUC,Acont = Py,Acont − Py0,Acont

= PAcont sin γAcont − PAcont0 sin γAcont0. (55)

Combining and rearranging the above equations in terms
of known forces and angles gives

PAcont sin γAcont = PyUC,Mext + Py0,Acont, (56)

where the applied load for the martensite extended state,
PyUC,Mext, and the Y-component of the austenite contracted
state, Py0,Acont, are known. The internal force acting on the
knit unit cell at point A, PAcont, can be calculated using
equation (50), resulting in

16EAIC2
4

L2 sin γAcont = Pyapp,Mext + Py0,Acont, (57)

which is a loop state equation for the new contracted loop
geometry.

The geometric constraint that the segment lengths must
add to a quarter of the measured loop length (equation (4))
is given by the same loop state equation as was used for the
extended states, (equation (45)), which is the second loop state
equation for the austenite contracted state.

The third loop state equation is developed using the
sticking assumption, which requires the lengths of segment
AB and BC to remain constant during contraction. Since the
previous constraint requires lengths to add to a quarter of the
measured loop length only one segment (sAB or sBC) can be
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held constant without over-defining the system. Segment AB
is held constant between the martensite extended and austenite
contracted giving the relationship

sAB

L
=

F̂AB

4C4
. (58)

Equations (55)–(58) are the loop state equations for
the austenite contracted state and are expressed in terms of
measured geometric parameters previously determined from
the martensite extended and austenite free state, and the
unknown loop state angles. The set of three simultaneous
algebraic transcendental equations can be solved to determine
the shape of the knit loop in the austenite contracted state.

3.5.2. Kinetic relations. The actuation force is the same
as the force applied to the unit cell, PyUC,Acont and is given
by FUC. The corresponding deflection from the austenite free
state is provided by

δA,cont = 2

(√
EAI

PA
C2 −

√
EAI

PA
C20

)
+ d(cos(β)− cos(β0)) (59)

the same equation used for the austenite and martensite
extended states. The actuation displacement of the knit unit
cell is the difference between the martensite extended and the
austenite contracted deflections,

δact = δM,ext − δA,cont. (60)

3.6. Textile actuation prediction

Prediction of the overall knit textile actuation from the
unit cell model is done by scaling the force and actuation
displacement of the unit cell in the austenite and martensite
extended states by the number of courses (rows) and wales
(columns) in the textile. The total applied force under which
the knit textile is actuating is Fapp = 2NWFUC, while the total
actuator displacement of the knitted textile is 1act = NCδact.
The modeling procedure presented in this section produces
an analytical model that captures the kinematic and kinetic
behavior of each state experienced by this complex actuation
architecture.

4. Garter stitch experimental validation

Experiments were conducted to understand the behavior of
this new architectural actuation approach and assess the
model’s ability to predict the load–extension of each state and
the net actuation. The model predictions were calculated in
MATLAB using the measured initial geometric parameters
of the knit prototype from the austenite free state (course
height—C, wale width—W, wire diameter—d, and loop
length—L) and material properties (EA and EM). The model
prediction was compared to the experimental results for
the load–extension curves in the austenite and martensite
extended states, the austenite contracted state, and also for
net actuation between the martensite extended state and the
austenite contracted state.

Figure 6. Experimental material properties of SMA wire. The
material properties are represented with linear elastic austenite and
martensite moduli.

4.1. SMA material properties

The material properties of the Flexinol R© wire were
experimentally determined before validation of the analytical
model. The austenite force–deflection curve for straight
Flexinol R© 70 ◦C wire was generated by electrically heating
the straight wire above the material’s austenite finish
temperature then measuring the load on the wire during axial
elongation. Upon mechanical unloading, the wire returned
to the austenite free length and wire was cooled to 20 ◦C
(below the martensite finish temperature). The martensite
force–deflection curve was generated by measuring the load
on the wire during wire extension at this lower temperature.
This process produced two stress–strain curves (figure 6):
a nearly linear austenite curve and a less stiff martensite
curve with a nearly constant stress plateau. Linear elastic
approximations of the stress–strain curves in the two phases
were used, because the model assumes small strains during
bending of the loops. The austenite elastic modulus was
found to be EA = 73 GPa while the representative martensite
modulus, taken from the initial low-strain slope, was EM =

19.8 GPa. These values are within the ranges of published
elastic modulus values which vary from 70 to 75 GPa for
austenite and 18–28 GPa for martensite [83, 84].

4.2. Active knit prototype

A knit prototype was fabricated by hand knitting with 8 mil
diameter, d, Dynalloy Flexinol R© 70 ◦C shape memory alloy
wire for 15 courses and 10 wales using 5.5 mm diameter
knitting needles, D (table 1, figure 7). The reference length
and width of the prototype in the austenite free state were
measured to be LA0 = 22.6 mm and WtotalA0 = 85.0 mm. The
average course height, C, was determined by dividing the total
prototype length by the total number of courses (NC = 15)
resulting in a course height of 1.5 mm. Similarly, the wale
width, W, was calculated by dividing the prototype width by
the number of wales, (NW = 10), for a wale width of 8.5 mm.
The total wire length in the knit prototype was determined

12



Smart Mater. Struct. 21 (2012) 085011 J Abel et al

Table 1. Garter stitch prototype geometric parameters. Geometric parameters (d,D,NC,NW ) used to create garter stitch knit and the
measured austenite free state textile and unit cell geometries (LA0,WtotalA0,C0,W0, and L).

d (mil) D (mm) NC NW LA0 (mm) WtotalA0 (mm) C0 (mm) W0 (mm) L (mm)
8.0 5.5 15 10 22.6 85.0 1.5 8.5 20.2

Figure 7. Garter stitch active knit prototype. Picture of the garter
stitch active knit prototype in the martensite extended state under a
1 N applied load labeled with prototype geometric parameters.

post-knitting by comparing the prototype weight to the weight
of a single wire of known length with the same diameter,
then the loop length, L, of a single knit loop was calculated
by dividing the total length by the total number of loops in
the prototype (NC × NW), resulting in a knit loop length of
20.2 mm.

4.3. Experimental method

The experimental set up depicted in figure 8 was utilized
for all the garter experiments. The prototype was mounted
to the experimental setup in its martensite free state to
parallel horizontal smooth rails at the top and bottom of the
prototype which moved orthogonally on linear bearings along
parallel guide rails that spanned the length of the prototype.
Free lateral (wale-wise) contraction during longitudinal
(course-wise) prototype extension was permitted by a series of
steel rings attaching the knit actuator to the smooth rails. Free
lateral motion is critical to maintain free boundary conditions
and uniform deformations of all the loops within the prototype
as assumed by the model.

The prototype was run through a thermo-mechanical
cycle (figure 2) in an Envirotronics EnviroFLX300 envi-
ronmental chamber matching the same set of operational
states and transitions upon which the model was based.
The prototype was initially heated under no load to 100 ◦C
at which time the length of the prototype in the austenite
free state LA0 (figure 2(a)) was measured between the
steel ring attachments using a US digital linear encoder
strip with 250 divisions per inch. The width of the entire
prototype WtotalA0 was measured using digital calipers. A
weight was attached to the prototype around a pulley, resulting
in extension of the austenitic prototype into the austenite
extended state (figure 2(b)) and the length LAext was recorded.
The environmental chamber and the prototype were cooled to
20 ◦C, the prototype continued to extend into the martensite
extended state (figure 2(c)), and length LMext was recorded.
Heating the environmental chamber and prototype to 100 ◦C
caused the prototype to contract under load into the austenite
contracted state (figure 2(d)), with a measured length of
LAcont. The weight was removed and the prototype returned
to the austenite free state at which time a larger load was

Figure 8. Experimental setup (schematic on left, experimental on right) used to determine the load–extension behavior of the garter stitch
states and the resulting actuation behavior.
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Figure 9. Austenite extended state. Theoretical and experimental
results agree with an average relative displacement error of 6.1%
with coefficient of friction µ = 0.13.

applied to the prototype and the testing process was repeated.
This sequence ensures that the friction is acting against the
elongation of the knit during extension and against contraction
during actuation.

4.4. Austenite and martensite extended states

The experimental and theoretical results are shown in figure 9
for austenite extended states and figure 10 for the martensite
extended states. Both the theory and experimental results of
the austenite and martensite extended states displayed ‘J’
shaped load–extension curves similar to the load–extension
curves of passive knits [74, 75]. For each experimentally
applied load (Fapp) the knit prototype underwent a deflection
from the austenite free state, 1Aext = LAext − LA0 for the
austenite extended state deflection and 1Mext = LMext − LA0
for the martensite extended state deflection. During lower
relative force loadings the knit underwent extreme stretching,
up to approximately 200% strain for a 6 N applied load for
the austenite extended state and 250% strain for a 3 N applied
load for the martensite extended state. As the applied load
was further increased the knit stiffened, the loops continued
to stretch (up to 300% strain for the austenite extended state
and 330% strain for the martensite extended state under an
applied load of 15 N), but at a decreased rate because the loops
experienced less change in curvature and more longitudinal
alignment of the legs of the loop.

Using a friction value of µ = 0.13, both the austenite
and martensite theoretical load–extension curves provided

excellent correlation with the experimental data with an
average relative displacement error of 6.1% and an average
absolute displacement error of 1.9 mm over the experimental
range of applied loads (0–20 N) for the austenite extended
state and 4.1% average relative displacement error and 1.8 mm
average absolute displacement error over the experimental
range of applied loads (0–12 N) for the martensite extended
state. The coefficient of friction (µ = 0.13) was found
independently for both the austenite extended state and the
martensite extended state using a least squares analysis best

Figure 10. Martensite extended state. Theoretical and experimental
results agree with an average relative displacement error of 4.1%
with coefficient of friction µ = 0.13.

fit over a range of coefficients between µ = 0.1 and 0.15.
The bounding coefficients of friction were chosen based on
published values for the friction of smooth stainless steel
materials [85, 86]. A range of friction values were investigated
because it is difficult to accurately measure the coefficient of
friction between two wires. A coefficient of friction of µ =
0.13 was independently found to be the best representation
of the friction in each of the austenite and martensite
extended states, supporting the physical correctness of this
parameter as opposed to a pure fit parameter. The theoretical
load–extension results for the two friction cases bounded the
majority of the experimental data points in both the austenite
and martensite extended states. The smaller friction value,
µ = 0.1, resulted in an average relative displacement errors
of 10.4% for austenite and 8.6% for martensite over the range
of applied loads for each state, while the larger friction value,
µ = 0.15, resulted in average relative displacement errors of
18.6% for austenite and 7.5% for martensite. All theoretical
calculations involving friction provided vast improvements
over the frictionless theory which was considerably less stiff
than the experiments with an average relative displacement
error of 22.3% for the austenite extended state and 22.5%
for the martensite extended state over the range of applied
loads for each state. While previous research has shown strong
correlations between experimental and theoretical frictionless
results (within 10% average displacement error [74, 75]), the
inclusion of friction in the modeling of the load–deflection of
active knits vastly improved the average displacement error,
reducing the error by 3.7 times for the austenite extended
state and 5.5 times for the martensite extended case. Slippage
between loops was observed during the operational transitions
into the austenite and martensite extended states, validating
the friction assumptions used in the model.

4.5. Austenite contracted state

The operational transition into the austenite contracted state
from the martensite extended state included sticking of the
interlacing contact point. The sticking of adjacent loops
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Figure 11. Austenite contracted state. Theoretical and experimental
results agree with an average relative displacement error of 2.8%.

prohibited loops from sliding past one another, thus the
actuation motion was solely a result of the loops straightening.
The theoretical austenite contracted states were assembled
to produce a load–extension relationship where the load is
the applied force the knit actuates against (Fapp) and the
deflection (1Acont = LAcont − LA0) is the difference between
the recovered length and the length of the austenite free state.
This theoretical load–extension relationship produces another
‘J’ shaped curve which matches the experimental results in
form and magnitude (figure 11). Both the theoretical and
experimental austenite contracted results are stiffer than that
of the martensite extended load–extension curve, but less stiff
than the austenite extended curve: the austenite contracted
knit stretched under low force loadings to 220% strain for a
3 N applied load before becoming stiffer as the knit stretched
to 320% strain under a 15 N applied load. The loops were
observed to stick during the operational transition into the
austenite contracted state, validating the friction assumptions
used in the model for this state. The theoretical austenite
contracted curve quantitatively matches the experimental
extremely closely with an average relative displacement error
of 2.8% with an average absolute displacement error of
1.8 mm over the range of applied forces actuated against,
0–12 N.

4.6. Net actuation

The net actuation performance (1act = 1Mext − 1Acont) is
obtained by subtracting the displacement of the austenite
contracted state from the martensite extended state at each
applied load, as this is the motion obtained when actuating
under a constant load. The theoretical and experimental
actuation curves show the same distinctive qualitative
performance (figure 12). As the load increased the net
actuation strain increased to a maximum peak actuator
strain then decreased under increased applied loads as the
prototype was not able to recover as much of the martensite
strain. The shape of the actuation curves is unique: for
small deflections, where the loops do not change shape
much, net displacement increases as load increases since

Figure 12. Garter knit actuation results. Knit prototype transitions
between martensite extended and austenite contracted states to
create theoretical actuation curve with same form as experimental
results with an average absolute displacement error of 2.0 mm.

the performance is dominated primarily by the difference
in stiffness between the two material phases. Whereas for
larger deflections, where the loops are narrow and elongated,
larger loads produce smaller net deflections since the austenite
phase loses its ability to recover motion through the reduced
leverage of the elongated loops. This implies that there is
an optimal deflection point for designing such actuators to
provide the maximum possible deflection (and a similar,
but differently located configuration for maximum work) for
which the predictive model can aid in designing the ideal
architecture for a given application.

The theoretical and experimental actuation curves are
also an excellent quantitative match given the complex
behavioral form and assumptions made during the devel-
opment of the analytical model. The peak actuator strain,
51.2%, was observed under a 1.22 N applied load while,
theoretically, a 46.2% peak actuator strain was predicted
under a 2 N applied load. The model accurately predicts the
peak actuator motion within 5% strain at a higher applied
force than experimentally witnessed. The experimental and
theoretical actuation curves correlate with an average absolute
displacement error of 2.0 mm over the 12 N range of
applied actuation forces which is slightly larger compared to
1.8 mm over each of the martensite extended and austenite
contracted states. The differences between the theoretical and
experimental actuation results stem from compounding the
displacement errors for both the martensite extended and
austenite contracted states through subtraction during the
calculation of the actuation behavior and also result from
the assumptions made during modeling, particularly, state
dependent stick–slip friction, full material transition into
each state, and linear elastic material behavior. The friction
assumption of constant sliding during extension gives larger
strains than experimentally witnessed while the constant
sticking assumption allows more force to be transferred
under restricted motions consistent with the validation shown
in figure 12. The validity of the small strain assumption
(and therefore the homogeneous phase and linear elastic
assumptions) can be estimated from the loop curvature by
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examining the ratio of the wire diameter, d, to the loop
diameter as approximated by the knitting needle diameter, D.
For the validation prototype, this ratio is 0.037, indicating
that the largest strains, along the outer surface of the bent
wire, violate the small strain assumption. However, in the
austenite extended state the loops straighten significantly,
reducing the maximum strain, and most of the material, even
in the martensite extended state, will experience lower strains.
Even with these assumptions the prediction was quite good,
capturing the kinematic loop shape change and the kinetic
performance of the contractile active knit.

Large actuation motions with unprecedented strains were
observed during all the experiments. The knit architecture
significantly amplified the strain of a bulk individual fiber
(in the case of SMA 8% recoverable and 3–4% actuation),
to as much as 250% recoverable strain allowed for moderate
forces of tens of Newtons and 51% actuation strain (figure 12)
under a 1.2 N applied load. The knitted actuator also provides
enhanced force performance, axially contracting SMA wires
8 mil in diameter operate at a maximum strain of 4% under a
5.8 N applied load while the active knit prototype generated
4.1% strain under a large applied load of 12.2 N. The active
knit actuator enhanced the strain by an order of magnitude and
the force by two times that of the same diameter straight SMA
wires, affording enhanced actuation capabilities to a variety of
application domains and enabling new technologies.

5. Conclusions

This paper presents a state-based model that can determine
the actuation behavior of garter stitch active knitted actuators
fabricated from variable stiffness smart material wire. The
model determines the states experienced during a typical
actuation cycle: austenite free, austenite extended, martensite
extended, and martensite contracted states while considering
the mechanical and thermal operational transitions the textile
undergoes during deformation. The model assumes different
friction conditions (stick or slip) during the operational
transition depending on the loading and the initial state of
the textile. Elastica theory and Euler–Bernoulli beam bending
are used in addition to the knit geometry, force–equilibrium
and the governing differential equations to determine the
deflection from the austenite free state of the textile and thus
the relative displacement between the martensite extended
and austenite contracted states for actuation. A set of fully
analytical transcendental algebraic equations (as opposed to a
set of coupled differential equations) describe the deflections
experienced within a unit cell for each operational state,
and are scaled to produce the load–extension properties of
the entire textile for each state as well as the net actuation
performance, providing a model that can be used for design
and optimization of active garter stitch knits.

A prototype knit textile was fabricated from 70 ◦C
Flexinol R© wire and used to validate the model in an
experimental study where the textile was cycled through
the modeled sequence of operational states under a variety
of external loads from 0 to 12 N. The model provided
an excellent match to the experimental results particularly

considering the modeling assumptions: dual stiffness, linear
elastic material with prescribed friction states. The martensite
and austenite extended states were predicted with an average
relative displacement error of 4.1% and 6.1% using a
coefficient of friction µ = 0.13 as found independently via a
best fit analysis for each the martensite and austenite extended
states. The theoretical austenite contracted state agreed
with the experimental results with a 2.8% average relative
displacement error. The results validate the observed friction
requirements—sliding for extended states and sticking for
contracted states. The theoretical actuation, the difference
between the martensite extended and austenite contracted
states, was found to match the form and magnitude of the
experimental results with an average absolute displacement
error of 2.0 mm.

The analytical model presented in this paper provides
a tractable tool for the prediction, design, and tailoring of
active garter stitch knitted actuators. The unique shape of
the actuation curve with increasing net displacement versus
force at low load, a maximum displacement peak, and
decreasing displacement at further increasing loads provides
the opportunity for tailoring of architectural parameters such
as loop size, wire diameter, and the number of courses and
wales within the textile to optimally match the specific needs
of a particular application. This highly leveraged architecture
allows for large strains (51%) at moderate forces (1.22 N)
and usable strains (4.1%) at enhanced forces (12 N) over the
material alone (4% strain at 5.8 N) [87]. This new actuation
capability goes beyond what is possible with conventional
actuation technology and the current state of the art in
smart materials actuators, meeting increasing needs for large
contractile actuation surfaces.
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