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We demonstrate broadband, near perfect absorption with a conformal coating of a multi-walled

carbon nanotube (CNT) forest on an arbitrarily shaped surface. The complex refractive index of

such a CNT forest is retrieved from the measured transmission and reflection spectra using

Kramers-Kronig constrained variational analysis, which gives a typical value of neff¼ 1.04þ 0.01i
at visible wavelengths. Therefore, when used as a conformal coating on an object, a thick layer of

the CNT forest can provide an excellent impedance match to air and near perfect absorption,

preventing any detectable light reflection and scattering from the object. VC 2011 American Institute
of Physics. [doi:10.1063/1.3663873]

Perfect optical absorption has attracted increasing

research interest in recent years due to the potential applica-

tions in anti-reflection coatings and photo-detectors.1–3 Using

resonant plasmonic structures, nearly perfect absorption can

be obtained within a limited bandwidth.4,5 On the other hand,

non-resonant structures such as vertically aligned carbon

nanotube (CNT) forests can give considerable broadband

absorption6,7 due to the low volume ratio of the CNTs and the

consequent low effective refractive index.8,9 So far, the real

part of the effective refractive index has been experimentally

determined from the reflection spectrum of the CNT forest

and proved to be close to 1, but the imaginary part has not

been experimentally available.10 Due to its significance in

absorption performance of the CNT forest, we designed an

experiment to determine the imaginary part of the refractive

index, which also confirmed the real index as close to 1.

Moreover, we demonstrated near perfect absorption by con-

formal coating of a CNT forest on an arbitrarily shaped sur-

face. The non-reflecting and non-scattering characteristics of

the CNT coating make the arbitrary shaped object appear as a

flat sheet and indistinguishable from the background.

Generally, both the real and imaginary parts of the refrac-

tive index are equally important in the impedance matching to

get ultra-low reflection and considerable high absorption.

According to Fresnel equations, the specular reflectivity from

an air/material interface can be calculated by
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�
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for TE and TM polarizations, respectively, where

kiz ¼ ðk2
i � k2

xÞ
1=2

, ki ¼
ffiffiffiffi
ei
p

2p=k kx ¼ ð2p=kÞsinh, and per-

mittivity ei is the square of the complex refractive index ni.

Fig. 1(a) shows the calculated reflectivity from the air/material

interface as a function of the complex refractive index

n¼ n0 þ in00. The calculation is for normal incident light and

therefore the reflectivity for TE and TM waves are identical.

The result indicates that the smaller the real and imaginary

part of refractive index, the lower the reflection at the inter-

face due to better impedance matching to air. Ideally, a near

unity refractive index of n¼ 1þ id, with d� 1, can provide

both impedance matching to air to obtain minimum reflection

and total absorption with sufficient material thickness. For

example, the specular reflectivity on a flat material surface

with n¼ 1.02þ i0.04 can be as low as 0.049% at normal inci-

dence. The angle dependent reflection can also be calculated

from Eq. (1), and the results shown in Fig. 1(b) indicate that

such a low refractive index material has a reflectivity smaller

than 0.6% for large incident angles up to 60 degree for both

TE and TM polarized light. In contrast, Fig. 1(b) also presents

the reflectivity from an air/silicon interface at a wavelength of

632.6 nm, and the values are 1000 times larger than that of the

low refractive index material. Considering the low refractive

index property of CNT forests, most of the previous works

theoretically calculated it from effective media theory.8,9

Although the real part of the effective index can be fit from

the measured reflection spectrum, the imaginary part of the re-

fractive index still remains unavailable using such a method.10

By measuring both the transmission and reflection spectra

and using Kramers-Kronig constrained variational analysis,11,12

we experimentally retrieved the complex refractive index of the

CNT forest and unambiguously obtained its imaginary part.

Figs. 2(a) and 2(b) show the scanning electron microscope

(SEM) images of the multi-walled CNT forest on a flat surface

grown by plasma-enhanced chemical vapor deposition

(PECVD) processing.13 Fig. 2(c) shows the measured reflection

and transmission spectra of the CNT forest with different thick-

nesses. For thick CNT forests with a 70 lm thickness, the mag-

nitudes of the reflection and transmission spectra are too low,

around 0.1%, to be detected by our OceanOptics spectrometer

because the signal is at the same level as the stray light. For

thin CNT forests with a thickness of 6.5lm, the transmission is

considerably large due to insufficient absorption, while the

reflection value is less than 1.2% over the entire visible spec-

trum (most of reflection is from the CNT/SiO2 interfacea)Electronic mail: guo@umich.edu.
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because of insufficient absorption by the short CNTs. The com-

plex refractive index is retrieved using a multi-oscillator model

to fit both the experimental reflection and transmission data

simultaneously, where the Kramers-Kronig constrained varia-

tional analysis is used to ensure the consistency of the retrieved

refractive index.12 The obtained complex refractive index is

shown in Fig. 2(d), which shows a highly uniform refractive

index value over the entire visible spectrum. This unambigu-

ously demonstrates its extremely low effective refractive index

for both real and imaginary parts to match with that of air.

Considering the subwavelength, random roughness of

the surface of the CNT forest and the resultant diffused

reflection, any reflected light is redistributed to all directions

and the observer only receives a small portion of the reflec-

tion. This will be several orders of magnitude lower than

specular reflection, making it almost undetectable. Mean-

while, the absorption inside the CNT forest is considerably

effective. Therefore, we point out an interesting application

by exploiting the perfect absorption characteristics of the

low density CNT forest. By making a conformal coating of

such a perfect black material on an arbitrarily shaped object,

the 3D object will optically appear as a 2D black sheet, and

all the geometric information disappears. In this case, the

CNT forest acts as a perfect magic black cloth that can com-

pletely conceal the 3D structure of the object.

As a proof-of-concept, an arbitrarily shaped object was

fabricated on a 500 lm thick silicon substrate by focused ion

beam (FIB) milling. In this case, a “tank” pattern of

65� 22.5 lm in size (SEM image in Fig. 3(a)) was made,

and its reflected image was taken under an optical micro-

scope illuminated by unpolarized white light (Fig. 3(d)). To

conformally cover the object with the perfect absorption

coating, a 60 lm-thick CNT forest was grown on top of the

whole silicon sample and therefore follows the profile of the

original “tank” object (Fig. 3(b)). To fabricate the CNT for-

est, first, a 300 nm-thick SiO2 layer is deposited on the sili-

con sample by PECVD, and then a 1 nm-thick Fe catalyst

layer is deposited by electron beam evaporation. The sample

is loaded in a single-zone tube furnace, which is heated to

775 �C under the gas mixture of C2H4/H2/He. An optical

FIG. 1. (Color online) (a) Calculated spec-

ular reflectivity at air/material interface as a

function of complex refractive index. The

mark corresponds to refractive index of

n¼ 1.02þ i0.04. (b) Calculated angle de-

pendent reflectivity at material interface

with n¼ 1.02 þ i0.04 for TE and TM

polarizations, the wavelength is 632.8 nm

and the reflectivity of an air/silicon inter-

face is also shown for comparison.

FIG. 2. (Color online) CNT forest and

its refractive index retrieved from meas-

ured transmission and reflection spectra.

(a) Cross section SEM image of verti-

cally aligned multi-walled CNT forest.

(b) Top view of the CNT forest with

rough surface. (c) Measured transmis-

sion and reflection spectra for CNT for-

est with thickness of 70 lm and 6.5 lm

grown on a 500 lm SiO2 substrate. (d)

Retrieved complex effective index of

CNT forest over visible spectrum. The

retrieval method is discussed in Ref. 11

in detail. We used three Drude-Lorentz

oscillators to fit the experimental spec-

tra, and the spectra data are from thinner

CNT forest to get high signal noise ratio.
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image of the object covered with the CNT coating was taken

again. Fig. 3(e) shows that the tank completely disappears

and the surface looks exactly the same as a flat CNT sheet.

As a further proof, a control experiment was performed

where a rectangle mark around the “tank” was made by FIB

milling that removed the CNT (Fig. 3(c)). The optical image

now clearly shows the rectangle mark, but the tank pattern

inside the mark remains invisible (Fig. 3(f)). All the optical

reflection images in Figs. 3(d)–3(f) were taken using a

10� objective lens with a numerical aperture of 0.25. The

optical images taken by 4�, 20�, and 40� magnification

objective lens with numerical apertures from 0.10 to 0.55

showed similar performance. One can also appreciate the

scalability of this approach because increasing the object

size will not increase the complexity of the homogeneous

coating due to the impedance matching to air.

In conclusion, by measuring both transmission and reflec-

tion spectra and using Kramers-Kronig constrained variational

analysis, we have retrieved the low effective refractive index of

a CNT forest and unambiguously obtained its imaginary part.

We also demonstrated broadband, near perfect absorption with a

conformal coating of impedance matched CNT forest on arbitra-

rily shaped surface. Moreover, an object covered with this low

density absorbing material will become totally invisible to our

eye if the object is placed on a perfect absorption background.

Such an approach is neither restricted to CNT forest nor to visi-

ble frequency, but can be applied to a broader frequency range

from ultraviolet to THz for arbitrarily large objects. It is interest-

ing to note that the deep space itself is a perfect background

without reflecting any radiations; so it would only take a “magic

veil” consisting of low density and broadband absorbing par-

ticles to render matters and objects totally invisible to our instru-

ments based on the detection of electromagnetic waves.
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FIG. 3. (Color online) Perfect absorption from conformal CNT forest coating. SEM image of a 65� 22.5 lm “tank” pattern fabricated by FIB ((a) taken at a

tilt angle of 45�); with the whole “tank” sample surface covered by a 60 lm thick CNT coating (b); and with a rectangular mark around the “tank” by removing

the rectangular CNT layer using FIB (c). The corresponding optical reflection images taken under broadband visible illumination of the as fabricated “tank”

object (d), CNT forest coated “tank” sample (e), and the rectangular mark surrounding the “tank” (f).

211103-3 Shi et al. Appl. Phys. Lett. 99, 211103 (2011)

Downloaded 28 Jun 2013 to 141.211.173.82. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.100.207402
http://dx.doi.org/10.1103/PhysRevLett.100.207402
http://dx.doi.org/10.1103/PhysRevB.79.033101
http://dx.doi.org/10.1021/nl100582j
http://dx.doi.org/10.1063/1.3442904
http://dx.doi.org/10.1063/1.3442904
http://dx.doi.org/10.1021/nl9041033
http://dx.doi.org/10.1021/nl072369t
http://dx.doi.org/10.1073/pnas.0900155106
http://dx.doi.org/10.1103/PhysRevLett.78.4289
http://dx.doi.org/10.1103/PhysRevB.72.155118
http://dx.doi.org/10.1088/0957-4484/18/26/265706
http://dx.doi.org/10.1063/1.1979470
http://dx.doi.org/10.1002/adfm.201000249

