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In this paper, we present an efficient opinion control strategy for complex networks, in particular, for

social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special

kind of nodes named bridge and requires no knowledge of the node degrees or any other global or

local knowledge, which are necessary for some other immunization strategies including targeted

immunization and acquaintance immunization. We study the efficiency of the proposed ABC

strategy on random networks, small-world networks, scale-free networks, and the random networks

adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is

efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the

edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related

with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A

new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which

does not require the knowledge of the nodes’ degree and other global=local network structure

information, is proposed to control the “bridges” more accurately and further control the opinion

dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical

examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks

with higher clustering coefficient. VC 2011 American Institute of Physics. [doi:10.1063/1.3602220]

The social network refers to the relatively stable relation

system grounded upon the interactions between social

individual members. This realm is concerning with the

interactions and relations among social individuals as

well as its impact exerted upon human social behaviors.

In the actual social network, some insignificant gossip or

thoughts, if not properly controlled, would eventually

erupt on a large scale or even headline the whole net-

work. If some control strategies against the gossip spread

on the internet could be carried out based upon further

understanding of its internal mechanism, its potential

application value would be enormous. In this paper, we

bring forward the adaptive bridge control (ABC) strategy

that could control the opinion evolution without the over-

all or even partial information and perform very well in

the numerical experiment. It is believed that this strategy

is feasible, economic, and highly effective in real-world

applications, especially for the real social networks bear-

ing high clustering coefficient.

I. INTRODUCTION

The use of simple mathematical models to describe social

phenomena in human populations has a long history in social

sciences. At present, the spread of rumors and ideas in net-

works has gradually become one of the most hot topics in the

study of complex networks.1–10 Many models are proposed to

describe this complex process. Recently, Kitsak et al.11 dis-

cussed this topic based on SIR (susceptible-infectious-recov-

ered) and SIS (susceptible-infectious-susceptible) models, and

we have just discussed some evolution rules of opinion

spreading in another way12 based on social influence theory.13

With gradually deepening the study on idea spread,

another question comes out. It is known that in some real

social networks, if some rumors or ideas, which seem non-

significant at first, have not been controlled, they may even-

tually break out in a large scope or even occupy the entire

network. In recent years, in order to overcome this kind of

problem, many researchers have proposed lots of immuniza-

tion strategies,14 including random immunization, targeted

immunization,15,16 and acquaintance immunization.17,18 One

of the authors has also theoretically studied the pinning con-

trol of dynamics in complex networks.19

The methods mentioned above take the degree of nodes

as the main measuring criterion to select the immune nodes.

However, does the size of degree indeed determines the im-

portance of nodes and do some “insignificant” nodes (in the

sense of degree) play very important role in the spread of

rumors and ideas? We notice one kind of nodes, called as

bridge, describing some nodes with small degree, but con-

necting different groups within the network. This kind of

nodes sometimes play a decisive role in the opinion evolu-

tion. For many networks, nodes are joined together in tightly
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knit groups, among which there are only looser connections.

Moreover, the traditional control strategies choose the con-

trolled nodes before evolution. Although some researchers

tried to propose some active-network-based targeted control

strategies, it should be pointed out that in most cases the

change of real network structure is unpredictable and it

would be much harder to obtain global information when the

network is time-varying.

Furthermore, for many real social networks, the commu-

nication between each node and its neighbors is radically dif-

ferent. We assume most of the nodes, called first-order

connections, communicate only once with each other, while

some of the nodes may communicate twice or even more.

Motivated by these network phenomena, we propose a con-

trol strategy to restrain the spread of rumors and ideas. The

opinions of all the neighbors around each node are classified,

and high-order connections20–23 are considered in the evolu-

tion rule, which extends traditional first-order social evolu-

tion to high-order social evolution, and hence make the

simulated networks closer to the real social networks. The

control action is conducted on the nodes (i.e., people, carrier

of opinions, and abstracted as node in the paper) with vacil-

lating opinions (such nodes are usually the nodes with large

connectivity or the nodes called as bridges).

In this paper, we highlight the bridges found in many

realistic networks. Erdös-Rényi (ER) random networks,

Barabási-Albert (BA) scale-free networks, and Watts-Strogatz

(WS) small-world networks are, respectively, studied, and

numerical results are given to present the influence of adapt-

ive bridge control (ABC) strategy on the evolution of the

entire network. We find out that the control strategy detects

this known structure with high efficiency. Our results in

small-world networks are much better than those in other

types of network topologies, and the visualization-based

results show that most of the nodes selected to be controlled

in our ABC strategy are indeed the bridges. We also apply

our ABC strategy to random networks adjusted by the edge

exchanging method, and the results show that there is a sig-

nificant relationship between the efficiency of our ABC strat-

egy and the clustering coefficient of the network. It indicates

that our bridge-based control strategy is more efficient for

networks with a high clustering coefficient.

II. ABC STRATEGY FOR OPINION EVOLUTION

In this section, we first review some existing control

strategies for restraining the spread of rumors and ideas and

discuss the cases in which these approaches may fail. Then,

we propose our new control strategy to avoid some of the

shortcomings of the traditional techniques.

A. Traditional control strategies

In order to restrain the spread of rumors and ideas, some

researchers utilized traditional methods to select the immune

nodes according to the degree of nodes. Random immuniza-

tion is used to immunize a part of the network nodes in a com-

pletely random manner, and obviously, it does not own high

efficiency and economy, especially for the scale-free net-

works. It has been shown that in order to make a successful

use of this method in random networks, almost all of the

nodes have to be immunized. Targeted immunization15,16 is

used to immunize a few nodes with larger connectivity in

turn, and it shows to be high efficiency. However, for the tar-

geted immunization, the global information of the network

structure is required in advance, and this requirement is

indeed difficult to be satisfied in realistic cases. In order to

avoid the requirement of global information in targeted immu-

nization, Cohen et al.17,18 proposed a strategy known as ac-

quaintance immunization: select “pop” neighbors from

randomly selected nodes further, and there is a greater proba-

bility to select the nodes with larger connectivity, so that it

can obtain much better effects than a random immunization

strategy, but with lower cost.

B. Our proposed control strategies

Concerning the control strategy of rumors spread in this

paper, the global information or even local information of

network structure is not required, instead only the opinion

changes of a node itself shall be considered. That is, the

object of controlling the spread of rumors in the entire net-

work is realized by controlling the nodes with vacillating

opinions, and these are usually the nodes with large connec-

tivity or the nodes called as bridges. Here, we highlight the

“bridge”—a property of community structure, found in many

networks, in which nodes are joined together in tightly knit

groups, and between them there are only looser connections.

As shown in Fig. 1, the six star points in the network connect

two tight sub-networks with larger intensity. Although the

average degree of these six points is not large, their opinion

changes in opinion evolution process are more frequent.

Hence, if the six points are controlled with a certain proba-

bility, the evolution of the entire network is expected to be

controlled with high possibility. The two big red nodes in

Fig. 1 denote the nodes with the largest degree, but they may

not as important as the six star points in the opinion evolu-

tion process.

In our ABC strategy, when the opinion of any node ri

changes from –1 to 1, it will be controlled with certain prob-

ability p. Then the nodes with vacillating opinions will be

controlled at a larger probability. By controlling the vacillat-

ing node, the probability of its opinion to be changed will be

strongly reduced. That is, if the opinion of node i changes

from ri(t)¼ –1 to ri(t)¼ 1, then the node will be controlled

with certain probability. The variable riðtþ 2Þ; riðtþ 3Þ;…
will be determined by Eq. (2) until its opinion ri changes

FIG. 1. (Color online) A schematic representation of a network with bridge

structure. Six star points connect two tight networks with larger intensity,

and the two big red nodes denote the nodes with high degree.
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back to –1. It means that the nodes with opposite opinion –1

(our objective opinion is 1) will not be controlled, and our

strategy only control the vacillating nodes currently with

opinion 1. Our strategy is a kind of conservative control

strategy which is motivated by the following reality: in a

social network, it is much easier and also the cost is much

lower to influence the people with same opinion than influ-

encing the people with opposite opinion.

Consider an undirected and un-weighted network with a

total number of N nodes and an average degree K. The

detailed embodiment is given by the following recursion

equations. When node i is not controlled, its opinion dynam-

ics is described as follows:

riðtþ 1Þ ¼ sign
XN

j¼1

aijrjðtÞnjiðtÞ
" #

: (1)

When node i is controlled, its opinion dynamics is described

as follows:

riðtþ 1Þ ¼ sign riðtÞ þ
XN

j¼1

aijrjðtÞnjiðtÞ
" #

: (2)

Following this rule, the evolution of all nodes in the network

is synchronized essentially. In the equations, ri(t) denotes

the opinion of node i at time t, the value of which can be 1 or

–1. Different from some traditional models, the weight aij is

equal to the order of the connection between nodes i and j
(e.g., if the edge i! j belongs to the 2nd order connections,

then aij¼ 2), and aij equals to zero if the nodes i and j are not

connected. Moreover, it is reasonable to assume that each

node has a self-effect, which means that every node’s opin-

ion will influence its own opinion in the next period, i.e.,

aii¼ 1. The parameter nji(t) means the strength of influence

of node j on node i, and it is a random variable of time t sub-

ject to a uniform distribution on [0,1]. The value ri(t)
expresses the control strength of the evolution process of

opinion, and it is a random variable of time t subject to the

uniform distribution of [0,r], where r is the boundary of the

control intensity ri. It follows from Eq. (2) that when r¼ 0,

i.e., the network is not controlled and each node is inclined

to accept most opinions of its neighbors; when r> 0, this

tendency is not obvious. The evolution rules are developed

from a social influence theory.13 The difference is that, in

this paper, we assume that the influence of each node is

time-varying instead of static.

Remark 1: It should be noted that, according to our strat-

egy, the selected (controlled) nodes are bridges with high

probability in our numerical examples. The reason behind

this phenomenon is that, due to the special topological struc-

ture involving bridge, the bridge node typically changes its

opinion frequently during the evolution process.

Remark 2: To the best of our knowledge, it is the first

time that a higher-order network is introduced to model the

opinion dynamics. The proposed social network model

extends traditional first-order social evolution networks to

higher-order social evolution networks and makes the model

much closer to realistic social networks. Moreover, as the

order reflect the cohesion between the neighbors, one can

observe that the number of connections decreases along with

the increasing of the order, i.e., M1 � M2 � M3 �; � � � ;Mn

denotes the number of nth order connections. In many cases,

the number of higher-order connections in the network is so

small that they have little effect on the ultimate simulation of

the entire network. If only the nodes in the first order

description are considered, then the social network model

will become one of the most widely used opinion dynamic

models.

Remark 3: The proposed ABC strategy calls for a small

probability to control an individual when its opinion

changes, and our simulation results show that only probabil-

ity p¼ 0.01 to p¼ 0.1 (depending on the structure of the net-

work) is enough to get a good control result. One of the

important advantages in our control strategy is that our strat-

egy requires only the observation of the opinion of each

node and not the knowledge of the node degrees or any other

global or local information on the network structure, which

is indeed required in targeted immunization or acquaintance

immunization. Furthermore, our strategy is devoted to con-

trolling the nodes during the evolution process, but not

before the evolution. Even when the structure of the network

changes over time, our method can still pick out the bridges

with high probability for efficient opinion control. It means

that our ABC strategy is more robust against a time-varying

network structure.

III. COMPARISON AMONG RANDOM NETWORK,
SCALE-FREE NETWORK AND SMALL-WORLD
NETWORK

ER random network,24 BA scale-free network25 (genera-

tion based on a total connectivity network of Kþ 1 nodes

and the parameter m¼K=2), and WS small-world network26

(with rewiring probability 0.01 and each node has K=2 con-

nections to each side of its neighbors) are three of the most

typical models for complex networks, and they embody the

typical topological characteristics of real networks from

three different perspectives. These three types of networks

are selected to study the opinion evolution in this paper. To

obtain comparability, the same size and the same average

degree are adopted for these kinds of networks. All the simu-

lated networks include 1000 nodes with average degree

K¼ 6 in all the networks and 5% second-order connections

(the order of each connections are determined randomly), no

third or higher connection is considered and the parameter r
is fixed at 5. The proportion of nodes with initial opinion 1 is

only 35% and opinion –1 is 65%. All simulation programs

will run until one of the opinions completely occupies the

network. If the network topology is connected, one of the

two opinions will definitely occupy the whole network. Even

if our control strategy is utilized in the opinion evolution sys-

tem to maintain the opinion of vacillating nodes in 1, there is

still possibility for opinion –1 to occupy the whole network.

Thus, here we define the “ultimate winning rate” to be the

rate that opinion 1 finally occupies the whole network among

the experiments. All results are obtained by averaging 1000

independent repeated simulations. Our results show that our
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ABC control strategy will efficiently make small groups win

eventually.

For these three kinds of topologies, we study what con-

trol strength shall be adopted for the nodes with changing

opinions to achieve better control effects? Can the node

behavior-based control strategy achieve a good control

effect? Fig. 2 displays the ultimate winning rate of opinion 1

for different topologies when the control intensity changes

from 0 (i.e., there is no control) to 0.2. It can be observed

from Fig. 2 that the results obtained for different topologies

are of significant difference. The best result can be obtained

for small-world network, in which control probability 0.01

has already resulted in more than 65% winning rate of opin-

ion 1. It can be observed that when the control probability

exceeds 0.l, the winning rates of opinion 1 in all three kinds

of network topologies are close to 100%.

Furthermore, the cost problem shall be considered. The

control strategy proposed in the paper aims that the ultimate

winning of opinion 1 in the network can be achieved without

the knowledge of the global information or even the local in-

formation of the network structure, and simultaneously effi-

cient control results should be achieved with lower cost.

However, if the number of nodes requiring control is too

large, it is still a large cost control. Fig. 3 depicts how the

proportion of controlled nodes in the network changes when

the control probability p changes. It can be seen from Fig. 3

that the number of nodes to be controlled is at an acceptable

ratio under our ABC strategy.

Fig. 4 presents the visualization based simulation result

of our proposed ABC strategy. In Fig. 4, the opinion 1 has

occupied the whole network after the evolution, and the green

nodes denote the controlled nodes. It can be observed that

almost all of the green nodes possess the characteristic of

bridge as we expect, and the nodes within the community are

seldom controlled. Moreover, the number of the controlled

nodes is quite small comparing to the whole network, which

indicates that our strategy is efficient and economic.

IV. APPLICATION SCOPE OF OUR STRATEGY

In order to further explore the application of our control

strategy, in this section, we study the underlying causes

which may influence the control effect.

Fig. 5 describes the performance-price ratio of ABC

strategy proposed here for different topologies, namely, the

number of nodes to be controlled for achieving the corre-

sponding control effect. Interestingly, we can observe an

interesting phenomenon in Fig. 5 that the corresponding

curve for BA scale-free networks is a straight line. The three

curves can be fitted very well by the equation y¼ axb,

respectively, with b< 1, b¼ 1, and b> 1. It can be observed

from Fig. 5 that the advantage of our control strategy is most

FIG. 2. (Color online) Comparison of the controlling effect. The changes

of average win percentage of opinion 1, as one increases the probability p
that a vacillating node is controlled. The three curves are, respectively, for

ER random networks, BA scale free networks, and WS small world net-

works. The network size is 1000, the average degree of all the networks is 6,

and all the data are the average of 1000 independent experiments.

FIG. 3. (Color online) Comparison of the number of controlled nodes. In x-

axis, p is the control probability, y-axis denotes the controlled proportion of

all nodes. The network size is 1000, the average degree of all the networks

is 6, and all the data are the average of 1000 independent experiments.

FIG. 4. (Color online) Visualization-based simulation results. The network

has already been occupied by opinion 1, and the green nodes are the nodes

which have been controlled during the evolution. We have emphasized them

by blue circles.
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efficient for small-world networks. The total controlling

effect of WS small-world networks is there much stronger

than that of BA scale-free network, and the total controlling

effect of BA scale-free networks is slightly stronger than that

of ER random networks.

Table I shows the clustering coefficients of the three

types of network topologies simulated in this paper. As we

can see, the clustering coefficient of WS small-world net-

works is much larger than that of BA scale-free networks,

and the clustering coefficient of BA scale-free networks is

slightly larger than that of random networks. Considering the

above-mentioned results about the controlling efficiency, we

observe that there is a strong relationship between the

strength of clustering coefficients of the networks and the

controlling efficiency. A further question is: what kind of

relationship is there between the control effects and the clus-

tering coefficient? The following experiment is designed for

a preliminary exploration of their relationship.

We study the control results by applying our control

strategy to the network whose clustering coefficient is

adjusted by using the edge exchanging method.27 Kim has

already successfully used this edge exchanging method to

test the performance of the Hopfield neural network.28 Note

the fact that by using the edge exchanging method, the clus-

tering coefficient of the network can be increased signifi-

cantly without changing the degree of any node. Thus, we

can get a set of networks with the same degree of each node,

but with a different clustering coefficient. Using this method,

the effect of clustering coefficient on control efficiency can

be further studied by simulating this set of networks as

follows.

Here, we would like to give a brief review of the edge

exchanging method.27 As shown in Fig. 6, two edges AB and

CD are randomly chosen from the network. Then, we intro-

duce this method by the following steps: First, judge whether

the two edges have repeated vertex, if not, each node

changes its partner. Second, compare the clustering coeffi-

cient before and after edge exchanging, if the clustering

coefficient increases, keep this change; if not, cancel it.

Repeat these two steps until the clustering coefficient satis-

fies the expectation.

FIG. 5. (Color online) Comparison of cost and effect. The figure reflects the performance price ratio of our ABC strategy in different kinds of networks. The

network size is 1000, the average degree of all networks is 6, and all the data are the average of 1000 independent experiments.

TABLE I. Comparison of clustering coefficient.

Network Clustering coefficient

WS small-world network 0.5645

BA scale-free network 0.0493

ER random network 0.0061

FIG. 6. (Color online) Edge exchanging method: for any network, ran-

domly pick a pair of edge (AB and CD in graph (a), for example) then rewire

to have different end nodes (AC and BD as in (b) and AD and BC is also

ok). This edge exchanging method can keep each nodes unchanged.
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In Fig. 7, the y-axis and x-axis, respectively, stand for

the winning rate of opinion 1 and the corresponding cluster-

ing coefficient of the ER network after using the edge

exchanging method and adding the adaptive control strategy.

The ultimate winning rate of opinion 1 in the ER network is

presented in Fig. 7, in which the initial proportion of nodes

with opinion 1 is selected as 35% and control probability

p¼ 0.05. It can be observed from Fig. 7 that the clustering

coefficient of the network increases obviously after adding

the edge exchanging method, which additionally coincides

with the increasing trend of the ultimate winning rate of

opinion 1 in the network. Moreover, the larger the clustering

coefficient of the network is, the faster the ultimate winning

rate of opinion 1 increases in the network, which verifies our

statement that the larger the clustering coefficient is, the bet-

ter the control acts.

Further analysis shows that the networks with high clus-

tering coefficient are more likely to have many community

structures, which means that there are more bridges in the

network. Our ABC strategy achieves its controlling effect by

fully using the structure of bridge. Thus, our ABC strategy

performs better for networks with more bridges.

V. CONCLUSION

Effective method should be adopted to control the rumor

spread in real networks. For large-scale complex networks, if

the majority of nodes should be controlled, then a high cost

needs to be paid. Hence, this paper is devoted to proposing

an efficient control strategy concerning how to ultimately

control the wide spread of rumor in the entire network by

only controlling a small fraction of nodes. The key idea in

our opinion control strategy is to control the nodes with vac-

illating opinions, which are finally illustrated to be bridges in

great change by numerical examples. We have applied our

ABC strategy in three different network topologies including

WS small-world networks, BA scale-free networks, and ER

random networks, and analyzed and discussed the simulation

results. It has been observed that our ABC control strategy

has achieved good control results for all three types of net-

works, especially for the WS small-world networks. The

number of the nodes which should be controlled in WS

small-world networks is much smaller than that of the other

two kinds of networks.

By analyzing the network characteristics of the three

topologies, we observe that the clustering coefficient is

reduced in the order in WS small-world networks, BA scale-

free networks, and ER random networks, and a preliminary

exploration on the relationship between clustering coefficient

and control results has been given. For the ER random net-

work adjusted by the edge exchanging method, the networks’

control performance becomes better along with the increas-

ing of the network’s clustering coefficient. Therefore,

strengthening the tight junction of a network can improve

the control efficiency of the network.
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