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Purpose: Traditionally, the tongue-and-groove effect due to the multileaf collimator architecture in
intensity-modulated radiation therapy �IMRT� has typically been deferred to the leaf sequencing
stage. The authors propose a new direct aperture optimization method for IMRT treatment planning
that explicitly incorporates dose calculation inaccuracies due to the tongue-and-groove effect into
the treatment plan optimization stage.
Methods: The authors avoid having to accurately estimate the dosimetric effects of the tongue-
and-groove architecture by using lower and upper bounds on the dose distribution delivered to the
patient. They then develop a model that yields a treatment plan that is robust with respect to the
corresponding dose calculation inaccuracies.
Results: Tests on a set of ten clinical head-and-neck cancer cases demonstrate the effectiveness of
the new method in developing robust treatment plans with tight dose distributions in targets and
critical structures. This is contrasted with the very loose bounds on the dose distribution that are
obtained by solving a traditional treatment plan optimization model that ignores tongue-and-groove
effects in the treatment planning stage.
Conclusions: A robust direct aperture optimization approach is proposed to account for the dosi-
metric inaccuracies caused by the tongue-and-groove effect. The experiments validate the ability of
the proposed approach in designing robust treatment plans regardless of the exact consequences of
the tongue-and-groove architecture. © 2011 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3547722�
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I. INTRODUCTION

Intensity-modulated radiation therapy �IMRT� treatment
planning is concerned with the design of a treatment plan for
individual cancer patients. Such a treatment plan consists of
a collection of apertures to be formed by a multileaf colli-
mator �MLC� system along with associated intensities.
Leaves in most commercial MLCs have a tongue-and-groove
design that helps reduce interleaf leakage. However, the ex-
posed leaf stepped sides �tongues� may undesirably block or
scatter part of the radiation, resulting in underdosing of tar-
gets. It has been clinically indicated that the tongue-and-
groove effect may cause underdosing as large as 10%–25%
�see Refs. 1–8�. On the other hand, accurately estimating the
dosimetric effects of the tongue-and-groove architecture is a
difficult task, especially with the commonly used beamlet-
based dose models. The goal of this paper is to develop,
implement, and test a robust method that takes dosimetric
inaccuracies with respect to the MLC architecture into ac-
count explicitly. We will achieve this by employing upper
and lower bounds on the dose distribution delivered to the

patient and tailoring the optimization model to find a treat-
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ment plan that is clinically attractive with respect to these
bounds, i.e., one that is of high-quality regardless of the
exact effect of the MLC tongues. By testing our approach on
ten clinical cases of head-and-neck cancer, we show that our
approach is successful in the sense that tight dose distribu-
tion bounds can be achieved even under coarse and easily
obtainable bounds on the dosimetric effects. In contrast, a
treatment plan optimization approach that does not take the
dosimetric inaccuracies into account yields dose distribution
bounds that are loose, making it hard to accurately assess the
treatment plan quality.

IMRT treatment plan optimization is traditionally per-
formed in two sequential stages: �i� Fluence map optimiza-
tion �FMO� and �ii� leaf sequencing �LS�. In particular, each
orientation of the accelerator head defines a rectangular
beam, each of which is conceptually discretized into a set of
beamlets. The FMO problem then involves determining the
optimal intensities for all beamlets. Given the optimal flu-
ence map, the LS problem decomposes the fluence map for
each beam into a manageable set of deliverable apertures.

Both the FMO and the LS problems have been extensively
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studied in literature; for modeling and solution approaches to
FMO, we refer to the review papers by Shepard et al.9 and
Romeijn and Dempsey.10 More specifically, Lee et al.11,12

studied mixed integer programming approaches; Hamacher
and Küfer13 and Küfer et al.14 proposed a multicriteria ap-
proach to the problem; and Romeijn et al.15,16 developed
convex programming models. Formally, the LS problem is to
determine a set of deliverable apertures for delivering a flu-
ence map that is optimal with respect to, typically, beam-on
time, number of apertures used, or total treatment time. If the
objective is to minimize beam-on time and any row-convex
aperture is deliverable, the LS problem is efficiently solvable
�see, e.g., Refs. 17–20�. In addition, Baatar et al.,21 Boland et
al.,22 Kamath et al.,23 Dai and Hu,24 and Siochi20 studied the
problem under additional MLC hardware constraints. In con-
trast, as Baatar et al.21 showed, the problem of decomposing
a fluence map into the minimum number of apertures is NP-
hard. This has led to the development of a large number of
heuristics for solving this problem, such as in Refs. 20, 21,
25, and 26. Additionally, Engel,27 Kalinowski,28,29 and Lim
and Choi30 developed heuristics to minimize the number of
apertures while constraining the total beam-on time to be
minimal. Finally, Taşkın et al.31 proposed an integer pro-
gramming approach to minimize the total treatment time.
The tongue-and-groove effect has been widely addressed in
literature in the LS stage. In particular, LS algorithms are
divided into two categories: Dynamic and static delivery; in
dynamic delivery, the radiation is on when the MLC leaves
are in motion, whereas in static delivery, also called the step-
and-shoot, radiation is off when the leaves are in motion and
it is turned on once the leaves are repositioned. Van Santfoort
and Heijmen32 and Webb et al.33 proposed LS algorithms
that reduce the tongue-and-groove effect for dynamic deliv-
ery, and Que et al.34 and Kamath et al.35 incorporated the
tongue-and-groove effect in the LS problem for the static
delivery. Finally, Kamath et al.36 compared different LS al-
gorithms for static delivery with respect to the tongue-and-
groove effect as well as the total treatment time.

A major issue with the traditional two-stage method is
that the dose delivered to a patient depends not only on the
fluence maps but also on the actual shape of the apertures
used. To address this issue, an integrated approach to the
FMO and LS problems, usually referred to as aperture modu-
lation or direct aperture optimization �DAO�, has been pro-
posed. DAO explicitly solves for aperture shapes and inten-
sities rather than beamlet intensities �see, e.g., Refs. 37–41�.
In contrast to the traditional method, DAO explicitly incor-
porates the shape of the apertures while optimizing for the
aperture intensities. In general, treatment plans obtained with
DAO use much fewer apertures �in fact, this is considered to
be one of the attractive side effects of DAO since it reduces
treatment times and beam-on times�. Therefore, one could
argue that the tongue-and-groove error is more significant
when using DAO since much fewer apertures are used. How-
ever, the smaller number of apertures also implies that DAO
fluence maps tend to be much smoother than the ones ob-
tained with traditional two-stage approaches, and smoother

fluence maps can be expected to suffer less from the most
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severe inaccuracies caused by the tongue-and-groove effect,
namely, those close to the isocenter �rather than the bound-
ary�. In general, it is difficult to assess a priori which of
these effects is larger. As Earl et al.42 say, “If the tongue-and-
groove effect is not accounted for in the planning, an under-
estimation of the absolute dose is observed for DAO IMRT
plans. The magnitude of the underestimation is dependent
upon the aperture shapes.” This suggests that the treatment
plan optimization model should make the corresponding de-
termination and find a fluence map and a corresponding col-
lection of apertures that yield a high-quality treatment plan
despite the tongue-and-groove architecture of the MLC. In
this paper, we address this by developing, implementing, and
testing a robust DAO model that explicitly takes into account
the tongue-and-groove effect and the corresponding inaccu-
racies of the dose calculation.

II. METHODS

II.A. A robust DAO model

We are assuming that a patient is irradiated from several
predetermined beam directions. Each of these beams is dis-
cretized into a grid of beamlets, and the collection of all
beamlets is denoted by N. Furthermore, K represents the set
of all deliverable apertures. Each aperture consists of a num-
ber of exposed beamlets, so we denote the set of beamlets in
aperture k�K by Ak�N. In order to evaluate the dose dis-
tribution delivered to the patient, the patient geometry is dis-
cretized into a set V of the so-called voxels. The dose deliv-
ered to voxel j�V by aperture k�K at unit intensity is the
so-called aperture dose deposition coefficient denoted by
Dkj. We associate a decision variable zj with each voxel j
�V representing the dose received by voxel j�V. More-
over, we let decision variable yk represent the intensity of
aperture k�K. Voxel doses can then be expressed as a linear
function of the aperture intensities through the dose deposi-
tion coefficients as follows:

zj = �
k�K

Dkjyk, j � V .

II.A.1. Bounds on the aperture dose deposition
coefficients

Typically, the aperture dose deposition coefficients are ex-
pressed implicitly in terms of the beamlet dose deposition
coefficients Dij, the dose delivered to voxel j�V by beamlet
i�N at unit intensity,

Dkj = �
i�Ak

Dij, k � K, j � V . �1�

This expression only provides an approximation to the aper-
ture dose deposition coefficients �see, e.g., Refs. 41 and 43–
45�. In this paper, we will focus on the fact that Eq. �1�
ignores the presence of the tongue-and-groove architecture
of the leaves. In particular, beamlets on the boundary of ap-
erture k�K that expose a tongue are partially blocked; Fig. 1

illustrates this issue. This will cause inaccuracies in evaluat-
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ing the dose distribution zj , j�V when using the aperture
dose deposition coefficients in Eq. �1�. In fact, the right-hand
side of Eq. �1� is an upper bound on Dkj since it effectively
assumes that no leaf tongue is present; in the remainder, we
will denote this upper bound by

D̄kj = �
i�Ak

Dij .

Thus, the realized dose distribution will be smaller than the
one that is planned based on the approximation in Eq. �1�,
potentially causing underdosing of the target voxels.

To be able to measure the effect of the leaf tongue, let Dij
�

denote the dose delivered to voxel j�V by beamlet i�N at
unit intensity from which a strip of width � is removed.

�Clearly, Dij
0 =Dij and Dij

� �Dij
�� if ����.� We then define

Dkj
� � �

i�Ak\�k

Dij + �
i��k

Dij
� , j � V, k � K ,

where �k�Ak is the set of beamlets in aperture k that expose
a tongue. Now if the leaf tongue has width �, then

Dkj = Dkj,
� k � K, j � V .

However, since the width of the leaf tongue is typically on
the order of 0.5 mm �see, e.g., Ref. 46 or Ref. 47�, it is
difficult for commonly used approximate dose models to ac-
curately account for its effect on the beamlet dose deposition
coefficients. Our approach will therefore be to obtain a lower
bound for these coefficients by overestimating the width of
the tongue to allow for an accurate estimation of Dij

� . Clearly,
when � is chosen to be larger than the width of the tongue,
Dkj

� provides a lower bound on Dkj since it effectively as-
sumes that the leaf tongue is larger �and therefore blocks
more dose� than the physical leaf tongue. For convenience,
we will, in the remainder, denote the matrices of aperture
dose deposition coefficients as well as their lower and upper

bounds by D, D�, and D̄.

II.A.2. Treatment plan evaluation criteria

Now suppose a collection of treatment plan evaluation
criteria, say L, has been identified to measure the treatment
plan quality and are expressed as functions of the dose dis-
tribution: G� :R�V�→R for ��L. Without loss of generality,
we assume that smaller values are preferred to larger values.
For convenience, we also assume that all criteria are convex.

FIG. 1. Shaded beamlets on the boundary of the aperture are partially
blocked by the exposed leaf tongues.
This is the case for many criteria proposed in literature, such
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as voxel-based penalties, equivalent uniform dose, tail
means, or conditional value-at-risk, etc. In addition, it has
been shown that in a multicriteria framework where the rela-
tive weights of the different criteria are varied, many others
can equivalently be replaced by convex ones; e.g., tumor
control probability �TCP� and normal tissue complication
probability �NTCP� �see Ref. 48�. Moreover, we assume that

the set L can be partitioned into two subsets L=L� � L̄; the
criteria that deal with the effects of underdosing correspond
to ��L� , while the criteria that deal with overdosing corre-

spond to �� L̄. This is usually easy to do, especially if each
of the criteria is a function of the dose distribution in a spe-
cific structure only. Finally, we make the mild assumption
that each of the criteria is monotone in each voxel dose. In
particular, if z ,z� are two dose distributions such that z�z�,
then G��z��G��z�� for all ��L� and G��z��G��z�� for all

�� L̄. In other words, uniformly increasing the dose distri-
bution cannot deteriorate an underdosing criterion or im-
prove an overdosing criterion.

II.A.3. Robust DAO

We next propose to use a robust DAO approach to treat-
ment planning, i.e., an approach that identifies a treatment
plan that is of high-quality for all values of the aperture dose
deposition coefficients within the bounds derived in Sec.
II A 1 �see, e.g., Refs. 49 and 50�. This is an optimization
problem formulated in terms of all deliverable apertures and
their associated intensities,

minimize max
D��D�D̄

�
��L

��G���
k�K

Dk·yk	 ,

subject to �R�

yk � 0, k � K ,

where the values �� ���L� are the �non-negative� weights
associated with the criteria and Dk·= �Dkj ; j�V� is the vec-
tor of aperture dose deposition coefficients for aperture k
�K. The objective function therefore measures the worst-
case weighted sum of all criteria over all aperture dose depo-
sition coefficients within the specified bounds. �In principle,
upper bounds on any or all of the convex criteria functions
G� ���L� could be accommodated as well; however, for
ease of exposition, we will not explicitly incorporate this
model extension.�

The objective function of �R� has a mathematically incon-
venient and cumbersome form. In the remainder of this sec-
tion, we will therefore propose two reformulations of this
model as tractable convex optimization problems. The first is
a reformulation that uses the mathematical properties of the
treatment plan evaluation criteria to derive a conservative
bound on the objective function. The second one is equiva-
lent to �R�, but applies only if the treatment plan evaluation
criteria are convex voxel-based penalty functions. Both re-
formulations rely on new decision variables z� j and z̄ j that
represent a lower and an upper bound on the dose received

by voxel j�V, respectively,
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z� j = �
k�K

Dkj
� yk, j � V , �2�

z̄ j = �
k�K

D̄kjyk, j � V . �3�

In other words, Eqs. �2� and �3� provide lower and upper
bounds on the dose distribution.

II.A.3.a. Reformulation 1. The first reformulation is based
on the following intuitive and appealing argument. First, re-
call that z� and z̄ are the lower and upper bounds on the
delivered dose distribution, respectively. Then suppose we
let the objective function measure the treatment plan quality
conservatively: Any treatment plan evaluation criterion con-
cerned with underdosing is evaluated at the lower bound of
the delivered dose distribution, while any treatment plan
evaluation criterion concerned with overdosing is evaluated
at the upper bound of the delivered dose distribution. This
then leads to the following DAO model:

minimize�
��L�

��G��z�� + �
��L̄

��G��z̄� ,

subject to �Pc�

z� j = �
k�K

Dkj
� yk, j � V , �4�

z̄ j = �
k�K

D̄kjyk, j � V , �5�

yk � 0, k � K . �6�

In Appendix A 1, we show that this reformulation is indeed,
if anything, more conservative than �R�, i.e., it is robust
against larger deviations in the dose deposition coefficients.
Moreover, this optimization problem is only marginally
larger than a traditional DAO model that does not account
for the tongue-and-groove effect.

II.A.3.b. Reformulation 2. Now suppose that the treatment
plan evaluation criteria are all voxel-based penalty functions.
This means that the objective function of �R�, for fixed D,
can be written as

�
j�V

Fj��
k�K

Dkjyk	 ,

where the functions Fj :R→R are convex �j�V�. Note that
we have implicitly incorporated the criterion weights �� into
the voxel-based penalty functions. Typically, but not neces-
sarily, the function Fj will depend only on the structure con-
taining the voxel j�V.

Now let us evaluate, for each voxel, the penalty function
at both the upper and the lower bounds of the voxel dose and
associate the maximum of these two penalties with this
voxel. This yields the following DAO model:

minimize�
j�V

max
Fj�z� j�,Fj�z̄ j�� ,
subject to �P�
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z� j = �
k�K

Dkj
� yk, j � V ,

z̄ j = �
k�K

D̄kjyk, j � V ,

yk � 0, k � K .

In Appendix A 2, we show that �P� is equivalent to �R� for
voxel-based penalty objectives. Moreover, this optimization
problem is of comparable size to �Pc�.

II.B. Column generation algorithm

The total number of potential apertures that needs to be
included in �P� �i.e., the cardinality of the set K� is very
large. For example, for an MLC in which all possible leaf
settings are allowable, a beamlet grid of 20�20 for each of
five beams yields a total of about 2�1046 deliverable aper-
tures. Since this means that it is intractable to solve problems
�P� �and �Pc�� directly, we employ a column generation ap-
proach; in this iterative approach, we start by choosing a

limited set of apertures, denoted by K̂. We then, at each
iteration, solve a restricted version of �P� using only the ap-

ertures in K̂. Given the corresponding solution, we solve an
optimization subproblem that either �i� identifies one or more
promising apertures that improve the current solution when

added to K̂ or �ii� concludes that no such aperture exists and
therefore the current solution is optimal. �This problem is
often referred to as the pricing problem.� In case �i�, we add

the identified apertures to K̂ and repeat the procedure. Intu-
itively, the pricing problem identifies those apertures for
which the improvement in the objective function per unit
intensity is largest, and therefore, once added to the current
set of apertures, will significantly improve the treatment plan
quality.

In Appendix B, we derive the mathematical form of the
pricing subproblem and develop an efficient algorithm for
solving this problem to optimality in case the only deliver-
ability constraints of the MLC are the so-called row-
convexity constraints. Depending on the manufacturer of the
MLC, apertures can be subject to other deliverability con-
straints as well, and the algorithm described in Appendix B 2
can easily be extended to account for �i� interdigitation con-
straints and �ii� connectedness constraints.

III. RESULTS

III.A. Patient cases

We used a set of ten head-and-neck cases to study our
model. For all cases, we designed plans using five equis-
paced 60Co beams around the patient. The nominal size of
each beam is 40�40 cm2. The beams are discretized into
beamlets with size of 1�1 cm2, yielding on the order of
1600 beamlets. However, we reduced the number of beam-
lets considered in the model by defining a mask for each
beam eliminating any beamlets that only have a negligible

contribution to target coverage. We generated data for a
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voxel grid with size of 4�4�4 mm3 for all targets and
critical structures. These data were used for the evaluation of
all treatment plans; however, in the optimization model, we
used a coarser resolution of 8�8�8 mm3 for unspecified
tissue �full resolution was used for all targets and other criti-
cal structures�. Table I shows the problem dimensions for the
ten cases.

Each case contains two planning target volumes, PTV1
and PTV2, with prescription doses of 73.8 and 54 Gy, re-
spectively. To determine the clinical quality of the treatment
plans obtained by our method, we employ the following
clinical dose-volume histogram �DVH� criteria �from the
treatment planning protocol used in the Department of Ra-
diation Oncology at the University of Florida�:

• PTV1

– At least 99% should receive at least 93% of the pre-
scribed dose �0.93�73.8=68.6 Gy�.

– At least 95% should receive at least the prescribed dose
�73.8 Gy�.

– No more than 10% should receive more than 110% of
the prescribed dose �1.1�73.8=81.2 Gy�.

– No more than 1% should receive more than 120% of
the prescribed dose �1.2�73.8=88.6 Gy�.

• PTV2

– At least 99% should receive at least 93% of the pre-
scribed dose �0.93�54=50.2 Gy�.

– At least 95% should receive at least the prescribed dose
�54 Gy�.

• Salivary glands �left and right parotid glands—LPG/
RPG, left and right submandibular glands—LSG/RSG�

– No more than 50% of each gland should receive more
than 30 Gy.

• Other structures

– Spinal cord �SC� should receive no more than 45 Gy.
– Brainstem �BS� should receive no more than 54 Gy.
– Unspecified tissue �UT� should receive no more than 60

TABLE I. Problem dimensions.

Case No. of structures No. of beamlets

No. of voxels

Model Full

1 14 813 17 108 85 017
2 13 1282 23 998 104 298
3 8 1320 36 288 189 234
4 11 1471 38 609 195 113
5 12 935 15 916 86 255
6 13 692 13 783 58 636
7 10 1044 21 241 102 262
8 10 1005 18 609 84 369
9 10 822 14 520 71 873

10 12 1721 40 198 148 294
Gy.
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DVH constraints on additional critical structures, such as,
for example, optic nerves and chiasm, were always easily
satisfied in our experiments, so we have omitted them from
our results and analysis.

III.B. Treatment plan evaluation criteria

For our proof of concept, we used treatment plan evalua-
tion criteria that consist of one-sided quadratic voxel-based
penalty functions. In particular, let T denote the set of targets
and S the set of all structures �including targets�. Moreover,
let Vs�V denote the set of voxels in the structure s�S. �For
convenience, we will, in the optimization model, assume that
each voxel is assigned to a single structure only; the discus-
sion below can, without any problems, be generalized to situ-
ations where this is not the case.� We then associate a func-
tion penalizing overdosing with the voxels in all structures
and a function penalizing underdosing with the voxels in all
targets. More specifically, we let �with a slight abuse of no-

tation� L� =T� 
−� and L̄=S� 
+� and define

G�s,−��z�� = �
j�Vs

F� s�z� j�, s � T ,

G�s,+��z̄� = �
j�Vs

F̄s�z̄ j�, s � S ,

where

F� s�zj� =
1

�Vs�
�max
0,T� s − zj��2, j � Vs, s � T , �7�

F̄s�zj� =
1

�Vs�
�max
0,zj − T̄s��2, j � Vs, s � S , �8�

where Eq. �7� quadratically penalizes underdosing below the
underdosing threshold T� s in target s�T, while Eq. �8� qua-
dratically penalizes overdosing above the overdosing thresh-

old T̄s in the structure s�S. In terms of the notation of Sec.
II A 3 b, we have the following voxel-based penalty func-
tions:

Fj�zj� = ��s,−�F� s�zj� + ��s,+�F̄s�zj�, j � Vs; s � T ,

Fj�zj� = ��s,+�F̄s�zj�, j � Vs; s � S \ T .

We can then write this using a smaller number of treatment
plan evaluation criteria by defining

Gs�z�, z̄� = �
j�Vs

max
Fj�z� j�,Fj�z̄ j��, s � S .

III.C. Tongue-and-groove effect bounds

To account for the inaccuracies caused by the tongue-and-
groove effect, we provide a lower and an upper bound on the
realized dose distribution according to Eqs. �2� and �3�. For
that purpose, we calculated the dose deposition coefficients
for the actual beamlets as well as for the reduced beamlets

from which a strip of width � was removed. In commercial
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MLCs, the tongue-and-groove offset of the leaf can be as
small as 0.5 mm �see Ref. 47�. We therefore generated values
of Dij

� for �� 
0,0.5,1 ,3 ,5� �where � is measured in mm�
and solved the DAO model for each of these values. Since it
is hard to accurately quantify the effect of a very small value
of �, we do not advocate using �=0.5 in a clinical setting.
However, we used this value to assess the importance of
even small deviations from the “ideal” �i.e., without leaf
tongue� dose deposition coefficients. Next, we compared the
quality of the treatment plans for the coarser bounds obtained
using the larger values �� 
1,3 ,5� to the treatment plan ob-
tained with the traditional model ��=0�.

III.D. Implementation and results

The optimization problems of the form �P� were solved
from our UFORT treatment planning system using our cus-
tom primal-dual interior point algorithm �see Ref. 51�. We
manually tuned the model parameters �i.e., the underdosing
and overdosing thresholds as well as the weights associated
with the evaluation criteria� based on the two cases. We then
used this set of parameters to solve �different variants of� the
problem for all ten patient cases. All experiments were per-

(a) (b)

FIG. 2. Isodose curves �dashed lines� for 73.8, 54, and 30 Gy on a typical CT
traditional and robust models with �=0.5. �a� and �b� correspond to the upp

TABLE II. Lower and upper bounds for target DVH criteria obtained by the

Case

New model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 5

1 �100,100� �95,98� �0,2� �0,0� �99,99� �9
5 �100,100� �100,100� �0,0� �0,0� �98,99� �9
6 �100,100� �96,99� �0,0� �0,0� �99,99� �9
the lower bound obtained using the robust model.
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formed in MATLAB 2009B on a 2.33 GHz Intel Core 2 Duo
computer with 2 GB of RAM using Windows operating sys-
tem.

As mentioned earlier in this section, we use our column
generation algorithm to solve the instances of �P�, and at
each iteration of the algorithm, we solve the pricing problem
to determine if there exists any promising aperture that can
improve the treatment plan. As the algorithm progresses and
the number of apertures explicitly incorporated in the model
increases, the marginal benefit of additional apertures be-
comes clinically insignificant. Therefore, we terminate the
algorithm by monitoring the clinical DVH criteria described
above. More specifically, we stop the algorithm if, in the last
five iterations, the range of observed DVH criterion value
spans less than �, where �=0.2% for targets and �=2% for
critical structures. On the average, it takes around 3–5 min
for the traditional DAO method and 7–9 min for the robust
DAO method per clinical case to converge.

Table II compares the DVH criteria associated with target
coverage obtained by the robust and traditional DAO meth-
ods using �=0.5 for three clinical cases. For all cases and
DVH criteria, we show both the lower and the upper bounds

(c)

e corresponding to the optimal treatment plans obtained for case 1 using the
lower bounds obtained using the traditional model, and �c� corresponds to

and traditional models for �=0.5 mm �in % volume�.

Traditional model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 54 Gy

�100,100� �79,96� �0,1� �0,0� �98,99� �92,95�
�100,100� �92,100� �0,0� �0,0� �98,99� �94,96�
�100,100� �84,97� �0,0� �0,0� �99,99� �93,96�
slic
er and
new

4 Gy

5,96�
6,97�
5,97�
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on the percent volume of a structure that receives at least the
specified dose. However, due to the realistic size of the
tongue width, the lower bounds are most representative of
the realized delivered dose to the patient. The results there-
fore clearly show that treatment plans obtained by the tradi-
tional DAO model exhibit significant underdosing of PTV1
and also, to a somewhat lesser extent, of PTV2. In particular,
the actual percent volume of PTV1 receiving at least the
prescribed dose �73.8 Gy� in the traditional DAO model �that
ignores the tongue-and-groove effect� varies from 79% to
92%, while the corresponding values in the robust DAO
model are 95%–100%. This highlights the potential risk of
underdosing the target when ignoring the tongue-and-groove
effect during the treatment planning phase. In particular, Fig.
2 illustrates the isodose curves on a typical CT slice for
clinical case 1. More specifically, isodose lines correspond-
ing to the lower and upper bounds on the dose distribution
obtained by the traditional and robust models are separately
shown in the figure. For the traditional model, the lower
bound on the dose distribution yields several cold spots in
PTV1. However, the lower bound obtained by the robust
model has significantly fewer cold spots and yields a better
target coverage.

TABLE III. Lower and upper bounds for target DVH criteria obtained by the

Case

New model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 5

1 �100,100� �91,98� �0,7� �0,0� �97,100� �
2 �100,100� �93,100� �0,11� �0,0� �100,100� �1
3 �100,100� �96,99� �0,1� �0,0� �99,100� �
4 �100,100� �100,100� �0,0� �0,0� �98,99� �
5 �100,100� �97,100� �0,0� �0,0� �98,99� �
6 �100,100� �93,97� �0,0� �0,0� �99,99� �
7 �100,100� �97,99� �0,0� �0,0� �99,99� �
8 �100,100� �98,100� �0,0� �0,0� �98,99� �
9 �100,100� �94,100� �0,2� �0,0� �98,99� �
10 �100,100� �100,100� �0,0� �0,0� �100,100� �1

TABLE IV. Lower and upper bounds for critical-structure DVH criteria obta

Case

New model

LPG RPG LSG RSG BS SC
30 Gy 30 Gy 30 Gy 30 Gy 45 Gy 54 Gy 60

1 �25,28� �21,21� �48,59� �72,78� �0,0� �0,0� �
2 �76,77� �94,94� �100,100� �100,100� �0,2� �0,0� �
3 �21,21� �18,18� N/A N/A N/A �0,0� �
4 �10,10� �2,2� �60,61� �19,22� �0,0� �0,0� �
5 �39,45� �0,0� �47,56� �48,54� �0,0� �0,0� �
6 �28,30� �41,43� N/A N/A �6,6� �0,0� �
7 �0,0� �49,49� �32,38� �100,100� �0,0� �0,0� �
8 �29,30� �7,8� �100,100� �61,69� �0,0� �0,0� �
9 �2,2� �45,47� �43,48� �100,100� �0,0� �0,0� �
10 �7,7� �47,48� �27,32� �100,100� �0,0� �0,1� �
Medical Physics, Vol. 38, No. 3, March 2011
In the remainder of this section, we will focus on the
robust DAO model with more conservative bounds on the
dose distribution obtained with larger � values. Tables
III–VIII compare the results of our robust DAO method that
accounts for the tongue-and-groove effect with results of the
traditional DAO model on ten clinical cases for �=1, 3, and
5.

With respect to target coverage, the robust DAO model
provides tight DVH bounds compared to the traditional DAO
model. In contrast to the traditional DAO model, the robust
DAO model is capable of maintaining acceptable DVH
lower bounds on target coverage in the majority of the pa-
tient cases even for large values of �. It is important to note
that the width of the MLC leaf tongues is �much� smaller
than the values of � that we used in our experiments. This
means that the lower bounds calculated for both models can
be expected to be quite loose, especially for �=3 or 5. This
means that even in the few cases where the target coverage
lower bounds fall slightly short of what is desired, the actual
coverage should be clinically acceptable. This argument, of
course, also applies to the traditional DAO model. However,
for this model, the lower bounds are so far away from what
is clinically acceptable that we cannot conclude that the

and traditional models for �=5 mm �in % volume�.

Traditional model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 54 Gy

� �0,100� �0,96� �0,1� �0,0� �39,99� �22,95�
0� �1,100� �0,97� �0,3� �0,0� �95,100� �85,100�
� �2,100� �0,99� �0,0� �0,0� �50,100� �36,97�
� �0,100� �0,100� �0,0� �0,0� �31,99� �15,96�
� �0,100� �0,100� �0,0� �0,0� �39,99� �21,96�
� �0,100� �0,97� �0,0� �0,0� �41,99� �23,96�
� �0,100� �0,99� �0,0� �0,0� �53,99� �32,97�
� �0,100� �0,100� �0,0� �0,0� �46,99� �30,96�
� �0,100� �0,99� �0,0� �0,0� �48,98� �28,95�
0� �25,100� �0,100� �0,0� �0,0� �92,100� �30,100�

y the new and traditional models for �=5 mm �in % volume�.

Traditional model

LPG RPG LSG RSG BS SC UT
30 Gy 30 Gy 30 Gy 30 Gy 45 Gy 54 Gy 60 Gy

�9,21� �10,18� �14,37� �49,66� �0,0� �0,0� �0,0�
�67,75� �88,91� �100,100� �100,100� �1,3� �0,1� �0,1�
�17,21� �15,19� N/A N/A N/A �0,0� �0,0�
�5,9� �0,2� �49,57� �9,19� �0,0� �0,0� �0,0�

�28,43� �0,0� �26,47� �22,43� �0,0� �0,0� �0,0�
�19,27� �22,37� N/A N/A �0,5� �0,0� �0,0�

�0,1� �38,48� �4,25� �100,100� �0,0� �0,0� �0,0�
�18,32� �0,4� �96,100� �41,59� �0,0� �0,0� �0,0�

�0,3� �26,41� �19,41� �83,95� �0,0� �0,0� �0,0�
�25,27� �44,50� �27,36� �97,100� �0,0� �0,0� �0,0�
new

4 Gy

92,98
00,10
96,98
95,97
94,97
94,97
96,98
94,98
94,97
00,10
ined b

UT
Gy

0,0�
1,1�
0,0�
0,0�
0,0�
0,0�
0,0�
0,0�
0,0�
0,0�
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treatment plans obtained without taking tongue-and-groove
effects into account are clinically acceptable. In particular,
employing the robust DAO model can significantly improve
the uncertainties in PTV1 and PTV2 coverage due to the
tongue-and-groove effect. For example, with the robust DAO
model and �=3, the lower bound on PTV1 target coverage at
the prescription dose of 73.8 Gy is at least 95% in eight out

TABLE V. Lower and upper bounds for target DVH criteria obtained by the

Case

New model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 54

1 �100,100� �92,98� �0,4� �0,0� �98,100� �9
2 �100,100� �95,100� �0,8� �0,0� �100,100� �10
3 �100,100� �97,100� �0,0� �0,0� �100,100� �9
4 �100,100� �100,100� �0,0� �0,0� �98,99� �9
5 �100,100� �99,100� �0,0� �0,0� �98,99� �9
6 �100,100� �94,99� �0,0� �0,0� �99,100� �9
7 �100,100� �96,100� �0,0� �0,0� �99,99� �9
8 �100,100� �97,100� �0,0� �0,0� �98,99� �9
9 �100,100� �95,100� �0,2� �0,0� �98,99� �9
10 �100,100� �100,100� �0,0� �0,0� �100,100� �10

TABLE VI. Lower and upper bounds for critical-structure DVH criteria obta

Case

New model

LPG RPG LSG RSG BS SC
30 Gy 30 Gy 30 Gy 30 Gy 45 Gy 54 Gy 60

1 �24,25� �19,20� �40,51� �68,73� �0,0� �0,0� �
2 �75,75� �92,93� �100,100� �100,100� �1,3� �1,1� �
3 �21,21� �18,18� N/A N/A N/A �0,0� �
4 �10,11� �1,2� �59,60� �19,20� �0,0� �0,0� �
5 �42,45� �0,0� �48,56� �44,48� �0,0� �0,0� �
6 �32,33� �41,44� N/A N/A �4,5� �0,0� �
7 �0,1� �48,49� �33,38� �100,100� �0,0� �0,0� �
8 �29,30� �7,8� �100,100� �63,69� �0,0� �0,0� �
9 �2,2� �42,45� �40,44� �100,100� �0,0� �0,0� �
10 �9,11� �47,49� �30,33� �99,100� �0,0� �0,0� �

TABLE VII. Lower and upper bounds for target DVH criteria obtained by th

Case

New model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 54

1 �100,100� �94,98� �0,3� �0,0� �99,99� �94
2 �100,100� �96,99� �0,6� �0,0� �100,100� �100
3 �100,100� �97,100� �0,0� �0,0� �100,100� �97
4 �100,100� �100,100� �0,0� �0,0� �98,98� �95
5 �100,100� �99,100� �0,0� �0,0� �98,99� �95
6 �100,100� �95,99� �0,0� �0,0� �99,100� �95
7 �100,100� �98,100� �0,0� �0,0� �99,99� �96
8 �100,100� �99,100� �0,0� �0,0� �99,99� �96
9 �100,100� �98,100� �0,0� �0,0� �98,99� �95
10 �100,100� �100,100� �0,0� �0,0� �100,100� �100
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of ten cases, and 92% and 94% in the other two cases, re-
spectively. For the traditional model, the corresponding
lower bounds are below 10% in all cases.

With respect to structure sparing, for larger values of � the
traditional DAO model provides smaller upper bounds on the
corresponding DVH criteria than the robust DAO model.
This can be explained by the fact that to ensure a desirable

and traditional models for �=3 mm �in % volume�.

Traditional model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 54 Gy

�1,100� �0,96� �0,1� �0,0� �76,99� �57,95�
� �27,100� �1,97� �0,3� �0,0� �100,100� �98,100�

�56,100� �1,99� �0,0� �0,0� �84,100� �56,97�
�17,100� �0,100� �0,0� �0,0� �80,99� �41,96�
�24,100� �0,100� �0,0� �0,0� �78,99� �51,96�
�3,100� �0,97� �0,0� �0,0� �79,99� �54,96�
�10,100� �0,99� �0,0� �0,0� �84,99� �64,97�
�13,100� �0,100� �0,0� �0,0� �79,99� �57,96�
�5,100� �0,99� �0,0� �0,0� �79,98� �61,95�

� �95,100� �9,100� �0,0� �0,0� �100,100� �100,100�

by the new and traditional models for �=3 mm �in % volume�.

Traditional model

LPG RPG LSG RSG BS SC UT
30 Gy 30 Gy 30 Gy 30 Gy 45 Gy 54 Gy 60 Gy

�15,21� �14,18� �24,37� �58,66� �0,0� �0,0� �0,0�
�70,75� �90,91� �100,100� �100,100� �0,3� �0,1� �0,1�
�19,21� �17,19� N/A N/A N/A �0,0� �0,0�
�8,9� �0,2� �53,57� �11,19� �0,0� �0,0� �0,0�

�35,43� �0,0� �34,47� �30,43� �0,0� �0,0� �0,0�
�21,27� �28,37� N/A N/A �1,5� �0,0� �0,0�

�0,1� �43,48� �11,25� �100,100� �0,0� �0,0� �0,0�
�23,32� �2,4� �98,100� �49,59� �0,0� �0,0� �0,0�

�0,3� �33,41� �28,41� �90,95� �0,0� �0,0� �0,0�
�25,27� �46,50� �30,36� �98,100� �0,0� �0,0� �0,0�

and traditional models for �=1 mm �in % volume�.

Traditional model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 54 Gy

�99,100� �30,96� �0,1� �0,0� �96,99� �88,95�
�100,100� �56,97� �0,3� �0,0� �100,100� �100,100�
�100,100� �67,99� �0,0� �0,0� �99,100� �91,97�
�100,100� �50,100� �0,0� �0,0� �98,99� �90,96�
�100,100� �50,100� �0,0� �0,0� �97,99� �89,96�
�100,100� �35,97� �0,0� �0,0� �98,99� �89,96�
�100,100� �36,99� �0,0� �0,0� �98,99� �91,97�
�100,100� �44,100� �0,0� �0,0� �98,99� �89,96�
�100,100� �37,99� �0,0� �0,0� �96,98� �89,95�
�100,100� �91,100� �0,0� �0,0� �100,100� �100,100�
new

Gy

3,97�
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7,99�
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4,97�
5,97�
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4,98�
4,97�
0,100
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target coverage for all aperture dose deposition coefficients

in the range D��D�D̄ �i.e., a desirable lower bound on
target coverage�, the robust DAO model is forced to select
apertures that provide more dose to critical structures. How-
ever, please note that in the majority of the cases, the robust
DAO model satisfies the DVH criterion for a given structure
whenever the traditional DAO model satisfies this criterion.
Not surprisingly, the difference between the bounds obtained
by the robust and traditional models decreases with the value
of �.

Figures 3 and 4 illustrate the DVHs of the optimal treat-
ment plans obtained by the robust and traditional DAO mod-
els for case 5 with �=3 mm. For a given structure, the solid
and dashed lines represent the upper and lower bounds on
DVH values, respectively. The upper bounds correspond to
an idealized dose distribution that ignores the presence of the

TABLE VIII. Lower and upper bounds for critical-structure DVH criteria ob

Case

New model

LPG RPG LSG RSG BS SC
30 Gy 30 Gy 30 Gy 30 Gy 45 Gy 54 Gy 60

1 �22,23� �19,20� �38,41� �66,66� �0,0� �0,0� �
2 �74,74� �91,91� �100,100� �100,100� �2,2� �1,5� �
3 �21,21� �19,19� N/A N/A N/A �0,0� �
4 �9,10� �1,1� �58,58� �18,18� �0,0� �0,0� �
5 �42,43� �0,0� �46,49� �39,41� �0,0� �0,0� �
6 �28,29� �38,41� N/A N/A �5,7� �0,0� �
7 �0,0� �48,48� �24,26� �100,100� �0,0� �0,0� �
8 �29,30� �3,4� �100,100� �59,60� �0,0� �0,0� �
9 �3,5� �41,43� �38,41� �97,97� �0,0� �0,0� �
10 �13,13� �48,48� �30,30� �97,97� �0,0� �0,0� �
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FIG. 3. Lower �dashed� and upper �solid� bounds on the DVHs of the optimal
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leaf tongues, while the lower bounds indicate how much the
actual delivered dose distribution may deviate from the op-
timized one.

Finally, we also evaluated the ability of the more conser-
vative model �Pc� in providing high-quality robust treatment
plans that account for the tongue-and-groove effect. As noted
before, when using treatment plan evaluation criteria that are
voxel-based penalty functions �as described in Sec. III B�,
we do not need to use the more conservative model, but can
derive an exact robust model. However, it is still interesting
to compare the two approaches since the more conservative
one should be used if other criteria are desired. These experi-
ments showed that the differences between the conservative
and the exact robust models in terms of DVH bounds are
negligible. We illustrate the results of the two models for �
=3 in Tables IX and X.

by the new and traditional models for �=1 mm �in % volume�.

Traditional model

LPG RPG LSG RSG BS SC UT
30 Gy 30 Gy 30 Gy 30 Gy 45 Gy 54 Gy 60 Gy

�19,21� �16,18� �31,37� �65,66� �0,0� �0,0� �0,0�
�74,75� �91,91� �100,100� �100,100� �1,3� �0,1� �0,1�
�20,21� �18,19� N/A N/A N/A �0,0� �0,0�
�9,9� �1,2� �56,57� �17,19� �0,0� �0,0� �0,0�

�40,43� �0,0� �41,47� �38,43� �0,0� �0,0� �0,0�
�24,27� �34,37� N/A N/A �1,5� �0,0� �0,0�

�0,1� �47,48� �21,25� �100,100� �0,0� �0,0� �0,0�
�29,32� �3,4� �100,100� �56,59� �0,0� �0,0� �0,0�

�2,3� �39,41� �39,41� �95,95� �0,0� �0,0� �0,0�
�26,27� �49,50� �35,36� �100,100� �0,0� �0,0� �0,0�
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treatment plan obtained by the robust model for case 5 using �=3 mm.
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IV. CONCLUSION

In this paper, we developed a robust direct aperture opti-
mization method for IMRT treatment planning that explicitly

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

F
ra

ct
io

na
lV

ol
um

e

Dose Volume H

RSG

LSG

LPG

RPG

FIG. 4. Lower �dashed� and upper �solid� bounds on the DVHs of the optim

TABLE IX. Lower and upper bounds for target DVH criteria obtained by the

Case

Conservative model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 54

1 �100,100� �92,98� �0,4� �0,0� �98,99� �93,
2 �100,100� �95,99� �0,7� �0,0� �100,100� �100,
3 �100,100� �97,100� �0,0� �0,0� �100,100� �97,
4 �100,100� �100,100� �0,0� �0,0� �98,99� �95,
5 �100,100� �95,100� �0,0� �0,0� �98,99� �94,
6 �100,100� �95,98� �0,0� �0,0� �99,99� �95,
7 �100,100� �96,100� �0,0� �0,0� �99,99� �96,
8 �100,100� �97,100� �0,0� �0,0� �98,99� �97,
9 �100,100� �95,100� �0,2� �0,0� �98,99� �94,
10 �100,100� �100,100� �0,0� �0,0� �100,100� �100,

TABLE X. Lower and upper bounds for critical-structure DVH criteria obtai

Case

Conservative model

LPG RPG LSG RSG BS SC
30 Gy 30 Gy 30 Gy 30 Gy 45 Gy 54 Gy 60

1 �23,25� �20,21� �40,51� �68,70� �0,0� �0,0� �
2 �73,74� �92,93� �100,100� �100,100� �2,4� �1,1� �
3 �21,21� �18,19� N/A N/A N/A �0,0� �
4 �9,10� �2,2� �60,60� �18,18� �0,0� �0,0� �
5 �43,46� �0,0� �48,53� �46,50� �0,0� �0,0� �
6 �28,31� �43,45� N/A N/A �4,4� �0,0� �
7 �0,1� �48,49� �28,35� �100,100� �0,0� �0,0� �
8 �29,30� �8,9� �100,100� �60,66� �0,0� �0,0� �
9 �3,5� �43,45� �40,45� �100,100� �0,0� �0,0� �
10 �10,11� �47,48� �37,37� �98,100� �0,0� �0,0� �
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accounts for the dosimetric inaccuracies caused by the
tongue-and-groove architecture of the MLC leaves. Our ap-
proach does not rely on being able to accurately compute
these dosimetric effects. Instead, we employ dose calcula-

70 80 90 100 110 120
[Gy]

m (Traditional Model)

PTV1

PTV2

eatment plan obtained by the traditional model for case 5 using �=3 mm.

servative and exact robust models for �=3 mm �in % volume�.

Robust model

PTV1 PTV2
68.6 Gy 73.8 Gy 81.2 Gy 88.6 Gy 50.2 Gy 54 Gy

�100,100� �92,98� �0,4� �0,0� �98,100� �93,97�
�100,100� �95,100� �0,8� �0,0� �100,100� �100,100�
�100,100� �97,100� �0,0� �0,0� �100,100� �97,99�
�100,100� �100,100� �0,0� �0,0� �98,99� �95,97�
�100,100� �99,100� �0,0� �0,0� �98,99� �94,97�
�100,100� �94,99� �0,0� �0,0� �99,100� �95,97�
�100,100� �96,100� �0,0� �0,0� �99,99� �96,98�
�100,100� �97,100� �0,0� �0,0� �98,99� �94,98�
�100,100� �95,100� �0,2� �0,0� �98,99� �94,97�
�100,100� �100,100� �0,0� �0,0� �100,100� �100,100�

y the conservative and exact robust models for �=3 mm �in % volume�.

Robust model

LPG RPG LSG RSG BS SC UT
30 Gy 30 Gy 30 Gy 30 Gy 45 Gy 54 Gy 60 Gy

�24,25� �19,20� �40,51� �68,73� �0,0� �0,0� �0,0�
�75,75� �92,93� �100,100� �100,100� �1,3� �1,1� �1,1�
�21,21� �18,18� N/A N/A N/A �0,0� �0,0�
�10,11� �1,2� �59,60� �19,20� �0,0� �0,0� �0,0�
�42,45� �0,0� �48,56� �44,48� �0,0� �0,0� �0,0�
�32,33� �41,44� N/A N/A �4,5� �0,0� �0,0�

�0,1� �48,49� �33,38� �100,100� �0,0� �0,0� �0,0�
�29,30� �7,8� �100,100� �63,69� �0,0� �0,0� �0,0�

�2,2� �42,45� �40,44� �100,100� �0,0� �0,0� �0,0�
�9,11� �47,49� �30,33� �99,100� �0,0� �0,0� �0,0�
60
Dose

istogra
con

Gy

97�
100�
99�
97�
97�
98�
98�
98�
97�
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ned b
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0,0�
1,1�
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0,0�
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tions that overestimate the dimensions of the leaf tongues so
that commonly used dose models can be applied. Our model
then aims to find a robust treatment plan that can obtain
treatment plans of high clinical quality regardless of the ex-
act consequences of the tongue-and-groove architecture. Due
to the computational difficulty of the resulting robust optimi-
zation model, we propose a reformulation that provides a
conservative bound on the robust model as well as an exact
and tractable reformulation for the case of voxel-based pen-
alty criteria. We investigated the performance of the robust
and traditional DAO models in the presence of the tongue-
and-groove effect on ten clinical head-and-neck cancer cases.
The experiments validate the ability of the proposed ap-
proach in designing robust treatment plans. Although the
suggested robust optimization approach is presented to ac-
count for the tongue-and-groove effect, in principle, it could
be applied to any source of dosimetric inaccuracies for which
a lower and an upper bound on the beamlet dose deposition
coefficients can be provided. Future research can extend the
research in this paper by generalizing this approach to ac-
count for dosimetric inaccuracies caused by employing ap-
proximate dose calculation methods.
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APPENDIX A: REFORMULATIONS

1. Reformulation 1

It is easy to see that the objective function satisfies

max
D� ��D�D̄

�
��L

��G���
k�K

Dk·yk	
� �

��L

�� max
D� ��D�D̄

G���
k�K

Dk·yk	 . �A1�

Since for each ��L� the function G� is nonincreasing, we
have

max
D��D�D̄

G���
k�K

Dk·yk	 = G���
k�K

Dk·
� yk	 ,

while for each �� L̄ the function G� is nondecreasing, we
have

max
D��D�D̄

G���
k�K

Dk·yk	 = G���
k�K

D̄k·yk	 .

This implies that the objective function of �Pc� is an upper
bound on that of �R�.

2. Reformulation 2

In contrast to Eq. �A1�, we can now exactly reformulate

the objective function as follows:
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max
D��D�D̄

�
j�V

Fj��
k�K

Dkjyk	
= �

j�V

max
D·j

� �D·j�D̄·j

Fj��
k�K

Dkjyk	 ,

where D·j = �Dkj ;k�K� is the vector of aperture dose depo-
sition coefficients corresponding to voxel j�V �and simi-

larly for D·j
� and D̄·j�. Then for each j�V, we have, due to

the convexity of Fj and the non-negativity of yk �k�K�,

max
D·j

� �D·j�D̄·j

Fj��
k�K

Dkjyk	
= max�Fj��

k�K

Dkj
� yk	,Fj��

k�K

D̄kjyk	 .

This implies that the objective function of �P� is equal to that
of �R�.

APPENDIX B: PRICING PROBLEM

1. Formulating the pricing problem

In this section, we formulate the pricing problem of the
column generation algorithm described in Sec. II B and de-
velop a solution approach to solve it. Let 	� j and 	̄ j �j�V�
and 
k �k�K� be the dual multipliers associated with con-
straints �4�–�6�. In order to be able to accommodate both the
two reformulations in Sec. II A 3, we will actually study a
slightly more general model, which, with a slight abuse of
notation, allows for the treatment plan evaluation criteria to
be a function of both z� and z̄: G��z� , z̄�. Since the objective
function is convex and the constraints are linear, the Karush–
Kuhn–Tucker �KKT� conditions �see, e.g., Ref. 52� are nec-
essary and sufficient conditions for optimality of �P�. Assum-
ing, for convenience, that the objective function is
differentiable, they can be written as follows:

z� j = �
k�K

Dkj
� yk, j � V ,

z̄ j = �
k�K

D̄kjyk, j � V ,

	� j = �
��L

��

dG��z�, z̄�
dzj

, j � V ,

	̄ j = �
��L

��

dG��z�, z̄�
dz̄j

, j � V ,


k = �
j�V

Dkj
� 	� j + �

j�V

D̄kj	̄ j, k � K ,

yk
k = 0, k � K ,

yk,
k � 0, k � K .

�If the treatment plan evaluation criteria are convex but not

everywhere differentiable, we can use the generalized KKT
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conditions derived by Hiriart-Urruty.53 The analysis in the
remainder of this section remains essentially unchanged.�
Any solution of the system above can be characterized by a
vector of aperture intensities y�0; this vector then deter-
mines z�, z̄, 	� , 	̄, and 
. Now let �ŷ ; 	̂� , 	̂̄ , 
̂� be an optimal
pair of primal and dual solutions to a restricted version of �P�
in which only apertures in the set K̂�K are considered. In

other words, ŷk=0 for k�K \ K̂. This solution is optimal to
�P� if and only if 
̂k�0 for all k�K since in this case the set
of KKT conditions for �P� will be fully satisfied. In order to
check whether or not these constraints are satisfied, we for-
mulate the so-called pricing problem as follows:

minimizek�K 
̂k = �
j�V

Dkj
� 	̂� j + �

j�V

D̄kj	̂̄ j .

Furthermore, we have

�
j�V

Dkj
� 	̂� j + �

j�V

D̄kj	̂̄ j = �
j�V

� �
i�Ak\�k

Dij + �
i��k

Dij
�		̂� j

+ �
j�V

� �
i�Ak

Dij		̂̄ j

= �
i�Ak\�k

��
j�V

Dij	̂� j + �
j�V

Dij	̂̄ j	
+ �

i��k
��

j�V

Dij
� 	̂� j + �

j�V

Dij	̂̄ j	 .

We can interpret the objective function of the pricing prob-
lem as follows: As we increase the intensity of a beamlet i
��k, � j�VDij

� 	̂� j represents the per unit change to the objec-
tive function value due to underdosing effects, while
� j�VDij	̂̄ j represents the per unit change in the objective
function value due to overdosing effects. Similarly, for a
beamlet i�Ak \�k, � j�VDij	̂� j and � j�VDij	̂̄ j represent the
analogous per unit changes to the objective function value,
respectively.

2. Solving the pricing problem

In our pricing problem, the cost of aperture k�K, 
̂k,
clearly depends on the beamlets that are exposed in the ap-
erture �i.e., the set Ak�. First, note that the pricing problem
decomposes by beam direction; i.e., we can solve the pricing
problem for each individual beam direction. Without incor-
porating the tongue-and-groove effect, Romeijn et al.40

showed that the pricing problem decomposes by beamlet
row, i.e., we can find the optimal solution to the pricing
problem by independently finding an optimal pair of leaf
settings for each beamlet row. However, when the tongue-
and-groove effect is taken into account, the leaf settings in
adjacent beamlet rows are important since these determine
the set �k. We therefore formulate and solve the pricing prob-
lem for a given beam using a modification of the network
flow model that was developed in Ref. 40 for solving the
pricing problem under interdigitation constraints. In particu-
lar, consider a fixed beam with a beamlet grid of dimensions

m�n �i.e., m rows and n columns�. We then create a network
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where each node corresponds to a potential leaf setting in a
particular beamlet row; i.e., a typical node is characterized as
�r ,c1 ,c2�, where r indicates the beamlet row and �c1 ,c2� rep-
resent the rightmost beamlet blocked by the left leaf and the
leftmost beamlet blocked by the right leaf in row r �r
=1, . . . ,m; c1=0 , . . . ,n; and c2=1 , . . . ,n+1 with c1�c2�. �If
c1=0, the left leaf blocks no beamlets, and if c2=n+1, the
right leaf blocks no beamlets.� In addition, we define source
node, say 0, and sink node, say �m+1,0 ,1�, representing the
top �“beamlet row 0”� and bottom �“beamlet row m+1”� of
the aperture. We then define arcs from all nodes in beamlet
row r to all nodes in a beamlet row r+1 �r=0, . . . ,m�. Figure
5 illustrates the structure of this network for a small case of
m=2 rows and n=2 columns.

Now note that there is a one-to-one correspondence be-
tween paths from the source node 0 to the sink node �m
+1,0 ,1� and deliverable apertures. Without loss of general-
ity, assume that the tongue between rows r and r+1 are part
of the latter and hence partially block the former, i.e., row r.
Next, we assign a cost to each arc, which is defined as the
cost of the exposed beamlets corresponding to the origin
node of the arc. In particular, consider nodes �r ,c1 ,c2� and
�r+1,c1� ,c2��. Then c1+1 , . . . ,c2−1 are the exposed beamlets
at row r and 
c1+1 , . . . ,c1��� 
c2� , . . . ,c2−1� are the ones
among those that expose a tongue due to the leaf setting in
row r+1. �Note that if c1�c1�, the former set is empty �i.e.,
the left leaf of row r+1 does not expose a tongue�, and
similarly, if c2�c2�, the latter set is empty �i.e., the right leaf
of row r+1 does not expose a tongue� �see Fig. 6�.� Repre-
senting the beamlet in row r and column c by �r ,c�, the cost
associated with the arc from node �r ,c1 ,c2� to node �r

FIG. 5. The network model for the pricing problem under row-convexity
constraints.
+1,c1� ,c2�� is equal to
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�
c=c1+1

c1� ��
j�V

D�r,c�j
� 	̂� j + �

j�V

D�r,c�j	̂̄ j	
+ �

c=c2�

c2−1

��
j�V

D�r,c�j
� 	̂� j + �

j�V

D�r,c�j	̂̄ j	
+ �

c=max
c1,c1��+1

min
c2,c2��−1

��
j�V

D�r,c�j	̂� j + �
j�V

D�r,c�j	̂̄ j	
�for r=1, . . . ,m�. Finally, we assign a cost of zero to the arcs
from the source node 0 to the nodes corresponding to beam-
let row 1. The length of any path from the source node to the
sink node is then equal to the objective function value in the
pricing problem of the corresponding aperture. Therefore,
the optimal solution to the pricing problem can be found by
solving a shortest path problem in the network described
above. Since the network is acyclic, this problem can be
solved in an amount of time that is proportional to the num-
ber of arcs in the network. Since it is easy to see that the total
number of nodes in the network is O�mn2� and the total
number of arcs in this network is O�mn4�, the problem can
be solved in O�mn4� time �see, e.g., Ref. 54�.

Finally, we note that under interdigitation constraints �i.e.,
the left leaf of a row cannot overlap with the right leaf of an
adjacent row� and connectedness constraints �i.e., the rows in
which at least one beamlet is exposed are consecutive, rel-
evant if the left and right leaves cannot entirely block a
beamlet row and backup jaws are required�, the pricing prob-
lem can be solved in a very similar way �and with the same
running time� using slight modifications of the algorithms for
these cases presented in Ref. 40.
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