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A theory of shocks dominated by radiation energy flux in optically mixed thin-upstream

thick-downstream systems, in which the temperature immediately ahead and some short distance

behind the shock front are equilibrated by radiation transport, is presented. This theory is applied to

determine properties of the normal and oblique radiative shock, followed by applications to

interactions when radiative and polytropic shocks are present in the same system. Comparison with

experimental data is presented. VC 2011 American Institute of Physics. [doi:10.1063/1.3574386]

I. INTRODUCTION

For very strong shock waves, the increase in temperature

across the shock can be great enough that the transfer of heat

by blackbody radiation from the hot shocked regions to the

cooler upstream material can become the dominant energy

flux in the system, resulting in substantial changes to the

shock structure and dynamics. This situation has been stud-

ied in several contexts, with most analytical and numerical

work to date focusing on either the cases where the gas mate-

rial is optically thick,1,2 in which line emission occurs under

optically thin conditions,3 or in the even more extreme case

in which, in addition to finding that the radiation fluxes dom-

inate over kinetic energy fluxes, radiation pressure also dom-

inates over material pressures in the system.4

The radiative shocks of interest in this paper refer to a

strongly radiating shock in the optically mixed thin-upstream

thick-downstream case. Steady shocks in this regime have

been the subject of analytical work by Drake5 and McClarren

et al.6 Similar to the case of completely optically thin radiat-

ing shocks, the postshock density is predicted to rise to very

high values. This occurs through the loss of energy from

the postshock system to the upstream radiation field. The

upstream radiation transport forms a radiative precursor

which heats the gas upstream of the shock. The gas is heated

at the shock front, but then decreases in temperature due to

the radiative cooling until it reaches approximately the pre-

cursor temperature. This behavior has led to the perhaps mis-

leading term “isothermal shocks” sometimes being applied

to radiative shocks with at least one optically thin direction.

However, a truly “isothermal” shock lacking the immedi-

ately postshock hot region would have a lower net upstream

radiation flux than the radiative shocks in the optically mixed

case, and a correspondingly lower net compression.

Experiments to produce radiative shocks have been suc-

cessfully performed on modern laser facilities in gases,7,8

foams,9 and clusters,10 and on pinch facilities.11 At the

OMEGA Laser Facility at the Laboratory for Laser Ener-

getics,12 experiments have used laser-driven shock tubes to

produce optically mixed shocks in xenon at initially atmos-

pheric pressure with shock speeds above 100 km/s at the

time of observation.13,14 These experiments are diagnosed

by x-ray transmission radiography, and the postshock density

obtained is found to be over 20 times the initial density.

A complication discovered in the radiative shock experi-

ments involves radiation emitted from the shock interacting

with the walls of the shock tube upstream of the shock. For

sufficiently fast (and therefore hot) shocks, this heat flow

will vaporize the shock tube wall material. The tube wall ma-

terial then acts as a cylindrically converging piston driving a

new, radially converging shock into the system.15 This

shock, called a wall shock, interacts with the primary shock

near the tube walls, causing a deflection of postshock flow

which is clearly visible in the x-ray radiographic data of the

experiment. This shock is not itself strongly radiative and

will be modeled as a shock in a polytropic gas with constant

ratio of specific heats. While previous work focused on iden-

tifying the wall shock and proposed utilizing its appearance

as a diagnostic of overall shock parameters, an analytic

theory describing the interaction did not yet exist. The pres-

ent work provides such a theory which predicts the output of

the radiative shock/polytropic shock interaction.

Section II of this paper introduces a modification of the

usual derivation for radiative shocks to accommodate correc-

tions in postshock pressure due to changes in ionization with

density. Because calculating shock interactions is dependent

on equating pressures in different regions, these corrections

to ionization are significant for the results. Sections III A and

III B develop the analytic model for oblique radiative

shocks, which is applied in Secs. III C and III D to situations

in which the fluid flow is and is not everywhere supersonic.

Sections III E and III F contain work relevant to the laser-

driven experiments described above, including a comparison

of experimental data to the radiative interaction model.

II. NORMAL RADIATIVE SHOCKS

In this section, we derive the effects of radiative transfer

on the shock structure when no radiation escapes down-

stream of the shock but radiation upstream is sufficient to

a)Paper UI2 5, Bull. Am. Phys. Soc. 55, 331 (2010).
b)Invited speaker.
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heat upstream flow to the temperature of the downstream

flow. Of particular interest to us is the final density achieved

by the material. The derivation here parallels those found in

Zeldovich and Razier1 (Chapter 7) and Drake5 (Chapter 7).

Calculations will be made in the moving frame of a

steady shock. We begin with preshock flow parameters of

density q0, velocity Vs, pressure P0, and enthalpy h0. The

jump conditions ensuring conservation of mass, momentum,

and energy can be written as

q0Vs ¼ qU (1)

q0V2
s þ P0 ¼ qU2 þ P (2)

q0V3
s

2
þ q0Vsh0 ¼

qU3

2
þ qUhþ S; (3)

where the term S in Eq. (3) describes all energy flux across

the shock not convecting with the fluid, such as by radiation

or heat-conduction, and q, U, h, and P are local density, flow

speed, enthalpy, and pressure. These are supplemented by

our equation of state, P ¼ qRð1þ ZÞT, where Z is the aver-

age particle ionization, R ¼ kBNA=l, kB is the Boltzmann

constant, NA is the Avogadro number, and l is the molar

mass of the gas species. For such an equation of state,

h ¼ cP=ðqðc� 1ÞÞ, where c is the ratio of specific heats. We

may solve these equations to achieve

S ¼ 1

2
q0V3

s 1þ 2P0c
q0V2

s ðc� 1Þ 1� q0

q

� �
� 2cq0

ðc� 1Þq

�

þ ðcþ 1Þ
ðc� 1Þ

q0

q

� �2
!
; (4)

which is a general expression for the evolution of flow pa-

rameters beyond the initial state in terms of the nonhydrody-

namic flux S, at any later point where the flow has achieved

density q. Progress is made by assigning S ¼ 2rT4
f (an

approximation for the optically mixed thick-thin case due to

Drake5), where r is the Stefan–Boltzmann constant, Tf will

be the final downstream temperature achieved by radiation

transport, and S is the net radiation from the optically thick

postshock region escaping to infinity on the optically thin

side. Details of determining the value of S to higher accuracy

by solving transport equations can be found in McClarren

et al.6 Other models or regimes of radiative shocks may have

different expressions for S, in particular the “isothermal”

shock with no hot region immediately postshock with

T > Tf would have S ¼ rT4
f without the factor of 2.

With reference to the final state achieved by the fluid,

with density qf , temperature Tf, and ionization Zf, we write

the momentum jump condition in Eq. (2) as

g V2
s þ Rð1þ Z0ÞT0

� �
¼ g2V2

s þ Rð1þ Zf ÞTf ; (5)

where g ¼ q0=qf and Z is a function of both T and q on each

side of the jump. We assume that strong radiation transport

will equilibrate the final temperature of the downstream fluid

with that of the upstream fluid, Tf¼T0 (this is approximately

correct through the effect of the total radiation flux on heat-

ing of an optically thin precursor; see Drake5). Equation (5)

now can be solved for the final temperature in terms of shock

velocity,

Tf ¼
V2

s

R

gð1� gÞ
1þ Zf � gð1þ Z0Þ

: (6a)

Making these substitutions and letting q ¼ qf in Eq. (4), we

can then write

2Qg4 1� g
1� �g

� �4

þ g2 � 1 ¼ 2c
c� 1

�� 1

1� �g

� �
ð1� gÞg

where Q ¼ 2rV5
s

q0R4ð1þ Zf Þ4
; � ¼ 1þ Z0

1þ Zf
: (6b)

Equation (6b) reduces to a biquadratic equation in g when

Z0¼ Zf¼Z, and its solutions do not generally deviate far

from g � ð2QÞ�1=4
.

We also require an equation of state yielding ionizations

ahead and behind the shock,

Z0 ¼ TFðTf ; q0Þ (6c)

Zf ¼ TFðTf ; q0=gÞ; (6d)

TF( ) represents a suitable ionization model, such as Thomas–

Fermi,5,16 evaluated as a function of plasma temperature, den-

sity, and (implicitly) ion species. We use here the semianalyt-

ical model developed by More and Salzmann.17,18 Armed

with such an ionization model, Eq. (6) forms a complete sys-

tem of nonlinear algebraic equations which may be solved

numerically to obtain self-consistent solutions for given q0,

Vs, and ion species. For example, with upstream xenon gas

with density q ¼ 0:006 g/cm3, c ¼ 5=3, and shock speed

Vs¼ 110 km/s, we obtain Q ¼ 2:0 � 106; Z0 ¼ 13; Zf ¼ 9;
� ¼ 1:4; Tf ¼ 38 eV, and g ¼ 1=44.

A counterintuitive consequence of the lowering of ioni-

zation in crossing the shock front is that the sound speed

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRð1þ ZÞT

p
will actually decrease across the radiative

shock by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Zf Þ=ð1þ Z0Þ

p
: This is not a typi-

cal behavior across a shock. Another result to note is that,

given that the temperature remains constant at Tf¼ T0, the

pressure P ¼ qRð1þ ZÞT will increase across the shock by a

factor of 1=g � ð1þ Zf Þ=ð1þ Z0Þ. In the xenon system dis-

cussed above, this ratio is lower than the uncorrected value

1=g by, at high velocities, approximately 30%. Incorporating

this effect is essential in the following to generating proper

shock polars in pressure-deflection space.

III. OBLIQUE RADIATIVE SHOCKS

A. Oblique shock relations

In the theory of oblique shocks in polytropic media

without radiation, the passing of flow through the shock is

completely described by the flow’s incoming Mach number

and the angle b at which the flow meets the shock. For a

flow passing from state 1 to state 2, deflected through an

angle h, the relations by which one finds the postshock

deflection angle, Mach number M, pressure, density, and

speed of sound are well-known to be19,20

056901-2 Doss, Drake, and Myra Phys. Plasmas 18, 056901 (2011)
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h ¼ tan�1 cotðbÞ M2
1sin2b

1þ 1
2
ðcþ 1Þ � sin2b

� �
M2

1

 !
(7a)

M2 ¼ cscðb� hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1ðc� 1Þsin2ðbÞ þ 2

2M2
1csin2ðbÞ � cþ 1

s
(7b)

P2

P1

¼ 2M2
1csin2ðbÞ � cþ 1

cþ 1
(7c)

q2

q1

¼
1
2
ðcþ 1ÞM2

1sin2ðbÞ
1
2
ðc� 1ÞM2

1sin2ðbÞ þ 1
� � (7d)

c2

c1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 1ÞM2

1sin2ðbÞ þ 2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cM2

1sin2ðbÞ � cþ 1

q
ðcþ 1ÞM1 sin b

;

(7e)

where c is the polytropic index.

For the radiative shock, the relations for polytropes in

Eq. (7) do not apply. Instead, Eq. (6) give a complete

account of jump conditions provided that one parameter nor-

mal to the shock front is known. Because these conditions

define the speed of sound upstream of the shock, the

upstream Mach number does not vary simply as a flow

approaches a radiative shock at different angles. The mate-

rial flow velocity V1 does behave straightforwardly and will

be used in place of the Mach number as the governing pa-

rameter for the radiative oblique shock relations. The angular

deflection of flow through the oblique radiative shock h is

h ¼ tan�1 ð1� gÞ tanðbÞ
gtan2ðbÞ þ 1

� �
; (8a)

where g is now found by solving Eq. (6) for an incoming ve-

locity Vs ¼ V1 sin b. Because the temperature ahead and

behind the shock is equilibrated by radiative conduction, the

pressure jump is found by

P2

P1

¼ 1

g
1þ Z2

1þ Z1

(8b)

and the total postshock velocity is

V2 ¼ V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2sin2ðbÞ þ cos2ðbÞ

q
(8c)

under the same conditions for g; Z1; Z2.

Figure 1 shows the deflection angle h as a function of

incident shock angle b for both the radiative and polytropic

shocks passing through the same incident flow. The radiative

shock, due to its high compression ratio, obtains far higher

maximum flow deflections than the polytropic shock. We

also note that while the polytropic shock is defined only for

b > sin�1ð1=M1Þ, the radiative shock polar is defined over

all b. In actuality, however, we expect that at some low b the

normal component of the flow becomes sufficiently slow that

the assumptions of strong radiation transport and thermal

equilibrium ahead and behind the shock front are no longer

justified. The radiative shock solution should therefore be

expected in actuality to approach the polytropic solution for

low b. However, for b near normal to the flow, the radiative

solutions given here should be accurate.

B. Shock polars

A common method of investigating oblique shock

effects is to construct shock polars20 in the space of pressure

jump vs. flow deflection, plotting the locus of flow states

which can be reached by solving Eq. (7) for all b for which

the incoming normal flow is supersonic. We can similarly

construct the radiative shock polar by solving Eq. (8).

In systems containing both a radiative shock and a poly-

tropic shock, certain additional rules must be established to

obtain a unique solution. We define those rules as follows:

(1) Polytropic shock polars are parameterized by their flow’s

upstream Mach number, and radiative shock polars are

parameterized by their flow’s upstream speed.

(2) The speed of sound upstream of a radiative shock is a

function of the flow speed normal to the radiative shock.

If a region flows into both a radiative shock and a poly-

tropic shock, then the Mach number upstream of the

polytropic shock is a function of the angle at which the

flow meets the radiative shock.

(3) Flow which passes through a polytropic shock has an im-

mediate postshock sound speed inferred from Eq. (7).

This speed may then be used as the incoming speed for a

subsequent radiative shock. The density jump must also

be calculated and used as the initial condition for the

subsequent radiative shock.

(4) Flow which passes through a radiative shock has a post-

shock Mach number implied by Eqs. (6) and (8), which

may then be used as the Mach number for a subsequent

polytropic shock.

(5) Each region bound by shocks and discontinuities is

bound by at most one radiative shock.

The process of solving systems with these rules is illus-

trated below in two examples detailing the collision of a

radiative and a polytropic shock.

Fig. 1. Flow deflection h as a function of incident flow b for (solid curve)

radiative flow from Eq. (8a) for xenon with V1¼ 110 km/s and q1¼ 0.006 g/

cm3, and polytropic flow from Eq. (7a) with (dashed) c ¼ 5=3 at M¼ 4.4

and (dot-dashed) c ¼ 1:2 at M¼ 5.2, where the Mach numbers are consistent

with 110 km/s in the radiatively preheated case for each c.

056901-3 Oblique radiative shocks, including their interactions with nonradiative polytropic shocks Phys. Plasmas 18, 056901 (2011)
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C. Four wave interaction

We consider the four wave interaction shown in

Fig. 2(a). In this figure, drawn in the frame of the incident

radiating shock, a polytropic shock is advancing orthogonally

downward, moving the shock interaction point with it. Figure

2(b) shows the (steady) flow schematic in the frame of the

moving interaction point. Because the flow in region 3 is in

this frame everywhere supersonic and, therefore, has no infor-

mation about the incoming polytropic shock, the incident

shock does not become curved and the four waves will meet

at the interaction point. When the interaction point is steady

or subsonic with respect to the upstream system, the topology

changes to that with three waves discussed in Sec. III D.

Here and in Section III D, we consider the upstream gas

to be xenon at q1 ¼ 0:006 g/cm3 with c ¼ 5=3. We consider

the initial conditions of, in the frame of the upstream gas in

region 1, an incident radiating shock at Vr¼ 75 km/s, and an

incident orthogonal polytropic shock advancing at Vs¼ 40

km/s. In the frame of the moving interaction point, this is a

flow with velocity V1¼ 85 km/s at an angle of 28.1� to the

horizontal. The shock polar construction for this flow is

shown in Fig. 3.

The flow through from region 1 to region 3 is first solved

in order to obtain the sound speed in region 1. We obtain for

region 3 flow moving with h3 ¼ �86:6
�
, V3¼ 40.1 km/s, and

M3¼ 2.67. As a check, we verify that V3 sin h3 ¼ �Vs

¼ �40 km/s, which means that the only velocity in the verti-

cal direction is of the moving frame of the polytropic shock.

In the frame of the radiative shock, this is flow entering and

exiting the radiative shock normally.

By computing the jump from region 1 to region 3, we

also obtain the Mach number of the flow in region 1,

M1¼ 4.24. It is important in interpreting the Mach number in

region 1 to be aware that it refers to the Mach number locally

defined in the radiatively heated region immediately

upstream of the shock. The Mach number relative to the

unheated gas far upstream of the shock would be substan-

tially higher (�480).

Using the solution for M1, we then pass the flow through

the oblique polytropic shock to obtain state 2, in which the

flow obtains the values V2¼ 77.0 km/s and q2=q1 ¼ 2:28.

The angles of the deflected shocks are now both unknown pa-

rameters, which will be set by the conditions h4 ¼ h 04 and

P4 ¼ P 04. We construct in the polar diagram a radiative shock

polar with state 2 as the origin and a polytropic shock polar

with state 3 as the origin. Their point of intersection (for the

weaker of the two solutions) is h4 ¼ �71:2
�
, P4/P1¼ 61.8.

We may also obtain from this analysis such values as the

angle of the deflected wall shock with respect to the horizon-

tal (i.e., the incoming flow in the frame of the incident radiat-

ing shock). The shock is found to have b ¼ 47:8
�

to move

from state 3 to state 4, where b ¼ 90
�

is normal incidence.

Taking this angle from state 3, we find that the deflected

shock is inclined 38.8� above the horizontal.

We note that performing this calculation correctly in the

pressure-deflection space has required the use of the radia-

tive shock polars, particularly in the case of working with

state 3, which requires the additional maximum turning

angle of the radiative shock. The calculations involving state

3 take place in regions completely inaccessible to the nonra-

diative shock polars.

D. Three wave interaction

We next consider the case where an oblique polytropic

shock intersects a strong radiative shock, shown in Fig. 4. A

deflected radiative shock and a slipstream (shear flow bound-

ary) exit the point of interaction, and the system is one of

steady flow. Because the flow behind the radiative shock is

subsonic to all other interactions in the system, the shock can

become slightly curved in the vicinity of the triple-point,

eliminating an additional wave from the system.22 The situa-

tion where this was not the case appeared in Sec. III C. Our

consideration of this case is heavily influenced by compari-

son with experiments,15 in which the nonradiative wall shock

intersects the primary radiative shock at an oblique angle.

Because the triple-point is steady in these experiments, the

flow behind the radiative shock will be subsonic, implying

that the observed interaction will be of the three-wave type.

We will specify the upstream flow and angle at which

the oblique polytropic shock meets the radiative shock and

attempt to predict the downstream flow properties including

the flow angle in regions 3 and 30. The angle of the deflected

radiative shock is an unknown parameter in this exercise,

and will be calculated from the condition that flow angles

and flow pressures must be equal across the slipstream sepa-

rating regions 3 and 30.

Fig. 2. Schematic for analyzing the four wave intersection (a) in the frame

of the upstream gas and (b) in the frame of the point of intersection. Angles

are exaggerated. Solid lines indicate shocks: RS, incident radiative shock; S,

incident polytropic shock; DRS, deflected radiative shock; DS, deflected

polytropic shock. The dashed line indicates a slipstream.

Fig. 3. Shock polars for the four wave interaction.

056901-4 Doss, Drake, and Myra Phys. Plasmas 18, 056901 (2011)
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For initial conditions, we consider the incoming flow to

have speed V1¼ 110 km/s and to be normal to the lower

areas of region 1. We take the angle of the polytropic shock

in the system to be 20� with respect to the flow. This number

is chosen to produce an angle h2 which matches a flow

observed behind a nonradiative wall shock in experimental

radiography of Omega Shot 52670, discussed further in Sec.

III F.

By solving Eq. (6), we obtain a speed of sound in region

1 of 25.1 km/s and an incoming Mach number of 4.38. This

calculation also gives us the outgoing speed in region 30 near

the bottom of the figure, which is V30 ¼ 2:47 km/s, or

M03 ¼ 0:115. This will be nearly true throughout region 30.
The flow throughout region 30 is subsonic.

We return to region 1 and solve the flow through the

oblique polytropic shock, using the speed of sound in region

1 found above. Because the angle of the polytropic shock is

set, we may find the flow in state 2 directly by evaluating Eq.

(8) with b ¼ 20:0
�
. We find that h2¼ 8.0�, P2/P1¼ 2.56,

q2=q1 ¼ 1:71, and that the flow exits with speed V2¼ 106

km/s.

Because the angle of the deflected radiative shock and

the curvature of the incident radiative shock are unknown,

we must find them through the conditions P3 ¼ P30 and

h3 ¼ h30 . This can be done intuitively through the use of

shock polars, shown in Fig. 5. To represent passage through

the deflected radiative shock, a radiative shock polar is

placed with its origin at flow state 2, using the speed and

material properties (i.e., density) and speed of state 2. The

initial radiative shock polar intersects this deflected polar

at h3 ¼ �14:7
�
, P3/P1¼ 32.6. The flow in region 3 is

supersonic.

Once one has obtained the state of region 3 in this

method, one may calculate the required curvature of the radi-

ative shock to produce this flow. One finds that the curvature

of the radiative shock need only be 0.3
�
.

In the work by Doss et al.15 which first considered the

interaction of radiative shocks with wall shocks, it was

assumed that the flow in region 3 was subsonic, based on the

observation that the flow avoids impacting into the wall. The

calculations in Sec. III D show, however, that there is no

subsonic solution for flow in that region. The redirection of

flow away from the wall therefore requires additional waves

to exist in the system, which motivates the construction

described in in Sec. III E.

E. Interaction in the presence of a wall–six wave
interaction

This section presents the steady radiative shock–poly-

tropic shock interaction in the presence of a wall. The exper-

imental system to be modeled is a radiative shock with

speed Vr launched in xenon gas contained in a polyimide

tube with inner diameter 575lm. Introducing the wall into

the radiative shock system, we add the following rule to our

previous list:

(6) Behind a radiative shock, a wall is a perfect reflecting

boundary through which fluid does not pass. Ahead of a

radiative shock, a wall is a material source of fluid prop-

agating (in the frame of the wall) perpendicularly away

from the wall.

The strong radiative transport upstream of a radiative

shock drives an ablation event of wall material, which then

flows into the fluid volume, driving the nonradiative, poly-

tropic wall shock into the system.15 In the frame of the radia-

tive shock, as shown in Fig. 6, the wall shock is formed such

that flow passing from region 1 to region 2 travels at the

same angle as the flow emitted from the wall (with horizon-

tal component Vr to the left and vertical component Vw

downward).

We will in this section neglect the difference in materi-

als emitted from the wall and the gas found in region 1. Fur-

thermore, in regions 1 through 5 we will neglect to consider

Fig. 4. (Color online) (a) Schematic for analyzing

the three wave intersection in the frame of the

shocks. Solid lines indicate shocks: RS, radiative

shock; S, polytropic shock; DRS, deflected radiative

shock. The dashed line indicates a slipstream. (b) A

three wave interaction observed in simulations anal-

ogous to the experiments referenced in Sec. III F,

simulated in the radiation hydrodynamics code

CRASH.21 The shock in the simulation was initiated

by a 170 eV x-ray source driving a beryllium abla-

tor to launch a shock into xenon gas at 0.006 g/cm3.

The time shown is 12.0 ns after the x-ray source has

been turned off, and beryllium, xenon, and polyi-

mide plastic material interfaces are also present in

the region shown.

Fig. 5. Shock polars for the three wave interaction.
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the shock tube, an axisymmetric system, treating the area of

interest instead as a plane two-dimensional system bounded

on the top by a wall and on the bottom by a reflecting bound-

ary condition (not a wall). This simplification is justified

while the flow remains at large distances from the tube axis.

In the transition from region 5 to region 6, this simplification

will be discarded.

The upstream material in region 1 is taken to be xenon

at 0.006 g/cm3 with c ¼ 5=3 throughout. The speed of the

radiative shock Vr is 110 km/s and the speed of the wall

shock Vw is 40 km/s (chosen to match h2 ¼ 8:0 as measured

in Omega Shot 52670). By solving Eq. (6), the Mach number

of the fluid in region 1 is 4.38.

The flow begins as in the three wave interaction, passing

from region 2 to region 3 through a deflected shock and from

region 1 to subsonic region 30 through the curved portion of

the primary shock. As before, the curvature is found to be

0.26�, producing the outward flow at h3 ¼ h30 ¼ �14:7
�
.

Region 4 is bounded by the wall, behind a radiative

shock and therefore not ablating. In order to produce flow

parallel to the wall, h4 ¼ 0, a shock reflection occurs produc-

ing a reflected shock. The system meets the requirement for

regular reflection of the shock from the wall, so only one

additional shock is required by this interaction.23 On the po-

lar diagram in Fig. 7, the reflected shock is seen emitting

from state 3, containing a state 4 constrained to h4 ¼ 0. We

find from the intersection of the reflected shock with the

ordinate axis P4¼ 100 P1, with flow locally at Mach 1.9.

Following Fig. 6 we then see that the reflected shock inter-

sects with the slipstream separating the region of supersonic

flow near the wall with the region of subsonic flow near the

center of the tube. Such interactions can in principle be quite

complex, but we simplify the analysis to the following condi-

tions. In the supersonic region, some form of wave, separating

regions 4 and 5, will be reflected back into the supersonic

region. No such standing wave can propagate into the subsonic

region, and therefore the pressure there is unaffected by the

interaction. The reflected wave then cannot be another shock,

which would increase pressure in passing from region 4 to

region 5, but must instead be an expansion fan, decreasing the

pressure to that in regions 3 and 30.24 The direction of stream-

lines in the subsonic region, however, can change in the vicin-

ity of the interaction, and a kink in the subsonic–supersonic

streamline will develop. To visualize this process, we may

construct in Fig. 7 a polar representing isentropic expansion of

the flow originating in state 4.20 The Prandtl–Meyer expansion

flow which obtains the final pressure P5¼P3 obtains an

inward flow h5 ¼ �14:7 (in general close but not exactly

equal to the negative of the outward flow angle h3).

Finally, our flow’s boundary conditions require that its

final state (region 6) must be parallel to the wall (h6 ¼ 0).

This is obtained by realizing that throughout region 5, where

the characteristics of the expansion fan meet the wall they

must reflect inward.25 The reflected expansion curves the

flow to again be parallel to the wall. While in general more

reflections may result between the slipstream and the wall,

the characteristics can terminate on the slipstream if the

streamline is suitably curved. It will be assumed that the

streamline obtains such a shape that no further reflections

occur without any attempt to calculate this shape. Treating

the passage through the second expansion region as a single

isentropic expansion, we see in Fig. 7 that the final pressure

is quite low relative to the immediate postshock pressure,

P6¼ (1/4.6) P3¼ 7 P1.

We will also approximate the effects in the subsonic

region of lowering the pressure to P60. Modeling the flow in

the subsonic region from region 30 to 60 as isentropic flow,

we can obtain the final diameter of the initial flow. The

xenon flow in region 30 has a Mach number of 0.1. For addi-

tional accuracy, we should regard the xenon as a piston push-

ing on rarefied beryllium expanded from the laser-absorbing

ablator which launched the system, with speed and pressure

equal across the material discontinuity. Under these condi-

tions, the beryllium in state 30 has a Mach number of 0.05.

Given the inner diameter of the tube is 575 lm, with 60 lm

around the outside of the tube given to the wall shock and

the supersonic region, one finds that to reduce the beryllium

pressure from P 03 to P 06 requires contraction of the subsonic

region to a diameter of 140 lm, and that the “subsonic”

region has actually reaccelerated to a Mach number of 1.4 in

obtaining region 6.

F. Comparison with data

Experimentally, the interface between shocked xenon

and ablated wall material may be used as an optical tracer to

image the various angles predicted by this analysis. Regions

Fig. 6. Schematic of the wave interactions and flow regions in the radiative

shock tube experiment. Solid lines represent shocks, the dashed line repre-

sents a slipstream, and the dot-dashed lines represent expansion characteris-

tics. PS, primary (radiative) shock; WS, wall shock; DRS, deflected

radiative shock; RS, reflected shock; E, expansion region.

Fig. 7. Polars for the radiative shock tube model.
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1 through 5 are reliably visible in the experimental radio-

graphs as regions of approximately unbent flows directed

outward, parallel to the wall, and then inward. We consider

data from the experimental campaign described in Doss et
al.13 Figure 8 shows a partial image obtained in this series of

experiments. Although this campaign was launched with

nominally identical targets, variations in the target construc-

tion and initial conditions create some variations in output.

In shock data with good signal-to-noise, the boundary

between ablated tube wall material and upstream xenon is

detectable, which can be used as a measurement of h2, the

angle of flow in region 2. The flow in region 3, h3, is measur-

able as the interface between dense postshock xenon and

transmissive upstream material. The theory in Sec. III D can

then be used to predict the flow in region 3 as a function of

the flow in region 2, shock speed, and ratio of specific heats,

h3ðh2;Vr; cÞ. In the experiment, the ratio of specific heats c
for the xenon will be lower than 5/3, due to the effects of ion-

ization.26 Using the upstream Mach number calculated for a

given Vr using the relations in Sec. II, the calculations can be

repeated with an entirely nonradiative model using poly-

tropic shocks. Figure 9 plots radiative and nonradiative pre-

dictions for h2 vs. h3 along the measured data. Five of the six

images with unambiguous measurable wall shocks support

the radiative model. Where the data do not agree with the

prediction, it is likely that the assumption of either approxi-

mately steady or approximately axisymmetric flow has been

violated, either locally in the area of measurement or globally

across the shock. This could be a consequence of instabilities

which have been associated with radiative shocks.27–29

Measurement beyond region 3 is in general complicated,

as in the experiment the shock tube wall begins to explode

outward after the deflected shock reaches the tube. Meas-

uring region 6 suffers additional difficulties, including that at

early times the supersonic xenon may not have reached the

end of region 5 (the assumption of a steady system has not

been achieved). All measurements are subject to difficulties

such as three-dimensional effects in the initial condition (i.e.,

nonplanar primary shocks). Nevertheless, the qualitative

visible signature of the data is that of the system presented in

Sec. III E, Fig. 8.

IV. CONCLUSIONS

We can construct, in analogy to the theory of oblique

polytropic shocks, a theory of oblique radiative shocks. The

radiative shock relations are constructed in media considered

optically thin-upstream and optically thick-downstream of

the shock, with realistic semianalytical equations of state

providing ionization. The resulting oblique radiative shock

relations are used to extend the graphical technique of shock

polars in ðP=P1; hÞ space, frequently used in the shock reflec-

tion literature, to include radiative systems. The resulting

theory can address radiative shocks in a variety of interac-

tions with both nonradiative polytropic shocks and walls.

Analysis of the latter includes the effect of wall shocks

launched by radiative vaporization of upstream wall mate-

rial. These constructions are then used to describe multidi-

mensional experiments including radiative shocks.
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