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Summary. We propose semiparametric methods for estimating the effect of a time-dependent covariate on treatment-free
survival. The data structure of interest consists of a longitudinal sequence of measurements and a potentially censored sur-
vival time. The factor of interest is time-dependent. Treatment-free survival is of interest and is dependently censored by
the receipt of treatment. Patients may be removed from consideration for treatment, temporarily or permanently. The pro-
posed methods combine landmark analysis and partly conditional hazard regression. A set of calendar time cross-sections is
specified, and survival time (from cross-section date) is modeled through weighted Cox regression. The assumed model for
death is marginal in the sense that time-varying covariates are taken as fixed at each landmark, with the mortality hazard
function implicitly averaging across future covariate trajectories. Dependent censoring is overcome by a variant of inverse
probability of censoring weighting (IPCW). The proposed estimators are shown to be consistent and asymptotically normal,
with consistent covariance estimators provided. Simulation studies reveal that the proposed estimation procedures are appro-
priate for practical use. We apply the proposed methods to pre-transplant mortality among end-stage liver disease (ESLD)
patients.
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1. Introduction

Longitudinal and survival data are often observed simulta-
neously in biomedical studies. For instance, measurements
related to patient health may be collected over time as a longi-
tudinal process during the course of a patient’s disease, while
time to a failure event (e.g., death) is of chief interest. In-
formation on time-varying covariates is usually collected at
multiple follow-up times through the time to the event. For
example, the number of CD4-lymphocyte counts is frequently
employed as a surrogate marker for HIV; the glomerular fil-
tration rate has been utilized as an indicator of kidney failure;
the model for end-stage liver disease (MELD) score (Wiesner
et al., 2001) is a very sensitive indicator of liver dysfunction
among end-stage liver disease (ESLD) patients. In particular,
the liver failure setting is the motivation for the methods we
propose in this report.

It is often of interest to estimate the effect on survival time
of a time-dependent factor hypothesized to be an important
indicator for disease progression. In many practical applica-
tions, there are actually two important time axes; follow-up
time (e.g., time since diagnosis) and calendar time. The latter
is important in settings wherein clinical decisions are made in
calendar time. For example, in the organ transplant setting,
a deceased-donor liver becomes available for allocation on a
particular calendar date, and current allocation policy implies
that the liver should be offered to the patient predicted to die
soonest in the absence of a liver transplant. It makes sense to

structure the survival model in accordance with the research
question. Hence, the most relevant time scale is time from
that calendar date forward, and the cross-section of patients
of interest (i.e., those transplant-eligible on that date) have
various lengths of prior follow-up time. Covariate information
to be used in the model would then include that observed up
until the calendar date. Since future covariate information is
not known, it is desirable for the model to implicitly average
over future covariate paths. Models which condition on only
part of the covariate history have been termed “partly condi-
tional”; for example, Pepe and Couper (1997) and Zheng and
Heagerty (2005).

To jointly model survival and longitudinal data, a re-
gression model for the time dependent covariate process is
usually adopted; for example, Tsiatis, Degruttola, and Wulf-
sohn (1995); Henderson, Diggle, and Dobson (1997); Xu and
Zeger (2001); Song, Davidian, and Tsiatis (2002); and Taylor
(2011). In joint modeling of longitudinal/survival data, valid
inference on the time-to-event component generally requires
that the longitudinal process be modeled accurately, which is
difficult to accomplish and may be cumbersome to carry out
in many cases (including our motivating example). Moreo-
ver, joint modeling approaches typically involve a (“fully”)
conditional model of the death hazard as a function of the
covariate at time t. In practice, such an approach may be in-
consistent with the investigator’s objectives. For example, in
the liver failure setting, it is of interest to determine which
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of several patients awaiting liver transplantation will die soo-
nest in the absence of a transplant; that is, based on each
patient’s history up until that date, and averaging over the
possible scenarios that could subsequently occur without a
transplant.

Zheng and Heagerty (2005) proposed a partly conditional
model applicable to some settings like that described in the
preceding paragraph. Typically in modeling survival data, the
event time, Di, is from study entry (marking the beginning
of follow-up) to the occurrence of the failure event. Zheng
and Heagerty (2005) modeled survival time from measure-
ment; that is, (Di − Si), with Si denoting measurement time.
The method of Zheng and Heagerty (2005) is referred as
partly conditional since the hazard function being modeled
(i.e., that of Di − Si) only conditions on the covariate his-
tory through time Si, rather than the full covariate history.
The time-varying covariate is “frozen” at each measurement
time, as opposed to using information on {t : t > Si}. There
would typically be multiple event times for the same sub-
ject, each corresponding to a different measurement time.
The authors approach this element of the data structure
through a multivariate survival analysis framework analogous
to Wei, Lin, and Weissfeld (1989). The method does not re-
quire modeling the longitudinal covariate process and there
is no imposed dependence structure between different survi-
val times from the same individual. With respect to related
work, Van Houwelingen (2007) proposed a landmark model
based on the partly conditional method. In this case, the
time clock is not reset to zero every time a measurement is
taken.

Existing partly conditional methods require that censoring
be independent of death time. However, dependent censoring
frequently occurs in observational studies. A particular case
is when survival in the absence of treatment (hereafter re-
ferred to as treatment-free survival) is of interest and both
death and treatment assignment depend on the same time-
varying covariates. If the model being fitted had conditioned
on the entire history of the time-dependent covariates, then
independent censoring could be assumed. However, since land-
mark methods freeze the time-varying measurement at the
landmark time, hence only using part of the covariate history,
dependent censoring can result due to the mutual correla-
tion between future treatment assignment date, treatment-
free death hazard, and the portion of the covariate process
occurring after the landmark time. Naturally, dependent cen-
soring can result in biased estimation.

As stated previously, the data which motivated our cur-
rent research arise from the liver failure setting. The preferred
method of treatment for liver failure is deceased-donor liver
transplantation. There are thousands more patients awaiting
liver transplantation than there are deceased-donor livers. As
a result, patients requiring liver transplantation who are dee-
med medically suitable are placed on a liver transplant wai-
ting list. Currently in the United States, the guiding prin-
ciple in prioritizing patients for liver transplantation is that
patients who are predicted to die the soonest without a trans-
plant should be given the highest priority for transplantation.
Patients with acute liver disease (known as Status 1 patients)
have the highest priority for liver transplantation and, hence,
are placed at the top of the wait list. They are followed by

chronic liver failure patients, who are sequenced in decreasing
order of MELD score. Note that MELD scores are updated
over time, such that MELD is a time dependent process. In
addition, if a patient becomes too sick, then he/she is remo-
ved from the transplant waiting list. Or, inactive status can
be issued but possibly canceled afterward. During an inac-
tive period, the patient is not eligible for transplantation and
will not receive offers of deceased-donor livers. In practice, it
is required that an available donor liver be allocated based
on information up until (and not beyond) the calendar date
of procurement; analogous to the covariate information being
frozen. In reality, subsequent liver allocation will be based on
updated MELD scores observed after that calendar date. The-
refore, although it is clear that liver transplantation censors
pre-transplant death, such censoring amounts to dependent
censoring in the context of a partly conditional model using
landmark methods.

In this report, we propose landmark methods featuring a
partly conditional model to estimate the effect of a time-
dependent covariate, in the presence of dependent censoring.
Inverse probability of censoring weighting (IPCW; Robins and
Rotnitzky, 1992; Robins and Finkelstein, 2000) is used to
obtain consistent estimators in the presence of dependent
censoring. To increase precision, we propose two weight stabi-
lizers that are different than those in the existing IPCW lite-
rature. Each landmark is based on a common calendar date,
not follow-up time, consistent with the motivating example.
At each cross-section (landmark) date, patients who are under
observation (alive, uncensored), untreated, and treatment-
eligible are included in the cross-section. Survival time, with
respect to a cross-section, is measured from the landmark date
forward; such that the time clock is essentially reset to zero at
each cross-section date. We assume that the baseline hazards
may differ by cross-section, such that a stratified Cox model
(1972) is appropriate.

The remainder of this article is organized as follows. In
Section 2, we formulate the previously described characte-
ristics of the motivating data structure, then describe the
proposed methods. Asymptotic properties of the proposed es-
timators are given in Section 3. A simulation study is pro-
vided in Section 4. Results of applying the proposed me-
thod to the afore-described liver failure data are presented in
Section 5. In Section 6, we provide some concluding remarks
and discussion. Asymptotic derivations are provided in the
Web Appendix.

2. Proposed Methods

We begin by setting up the required notation. Let Di be the
treatment-free time to failure for subject i, with i = 1, . . . , n.
We assume that Di may be censored at treatment time, Ti,
or independent censoring time, Ci, and therefore we define
the treatment-free observation time as Xi = min(Di, Ti, Ci).
We also define the associated indicators, �i = I(Xi = Di) and
�T

i = I(Xi = Ti), where I(B) = 1 when condition B is true and
0 otherwise. We define Yi(t) = I(Xi � t). Each patient is cha-
racterized by a covariate vector, Zi(t), of which at least some
elements are time-varying. We let Ai(t) take value 1 if pa-
tient i is eligible to receive treatment as of follow-up time t,
and 0 otherwise. Further, we define the covariate history as
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Z̃i(t) = {Zi(s); s ∈ [0, t]} and the treatment-eligibility history

as Ãi(t) = {Ai(s); s ∈ [0, t]}.
We choose K cross-section dates (CSk, for k = 1, . . . , K),

where the cross-section times represent calendar dates. The
{CS1, . . . , CSK} will typically be equally spaced, and the ap-
propriate number of cross-sections, K, will generally depend
on the length of the observation period; issues to which we
return in Section 6. Let Sik denote the follow-up time of the
ith subject on the calendar date of the kth cross-section, CSk.
As we describe shortly, we will be modeling survival times
from the cross-section dates, which essentially amounts to re-
setting the time clock to 0 on each cross-section date. Cor-
respondingly, since Di, Ti, and Ci are measured in study time
(i.e., time since subject i started follow-up), we then define
time since cross-section for death (Dik = Di − Sik), treatment
(Tik = Ti − Sik), and censoring (Cik = Ci − Sik). Thus, Dik, Tik,
and Cik are each measured from the kth cross-section date
forward.

With respect to cross-section k, one observes a vector
for subject i, (Xik, �ik, �

T
ik), where Xik = min(Dik, Tik, Cik),

�ik = I(Xik = Dik), and �T
ik = I(Xik = Tik). Note that, for a

censored subject, �ik = �T
ik = 0. For ease of presentation, de-

fine Aik = Ai(Sik), an indicator for subject i being treatment-
eligible at the time of the kth cross-section. We now set up
a modified version of counting process notation. In particu-
lar, we let Nik(t) = I(Xik � t, �ik = 1)Aik, and write dNik(t) =
Nik(t

− + dt) − Nik(t
−) for the increment. The at risk process

is defined as Yik(t) = I(Xik � t)Aik; that is, in addition to
subject i being alive and not treated as of time Sik (i.e.,
that Xi > Sik), to be included in the kth cross-section, it is
also required that the subject is treatment-eligible at time
Sik (i.e., that Aik = 1). However, if Aik = 1, subject i is not
censored if he/she later becomes inactive at time t > Sik.
Thus, being treatment-eligible at time Sik is a cross-section
inclusion criterion, but subsequently becoming ineligible for
treatment is not a censoring criterion. With respect to the
treatment process, we define NT

i (t) = I(Xi � t, �T
i = 1). Note

that dNT
i (t) = Ai(t)dNT

i (t), since treatment assignment can
only occur at time t for subject i if subject i is treatment-
eligible at time t.

Figure 1 provides a graphical depiction of how each sub-
ject’s treatment-free observation time is transformed into a
set of time-since-cross-section dates. Five subjects are shown
(i = 1, . . . , 5) and two cross-sections (k = 1, 2). The five sub-
jects begin follow-up at times which are staggered in calendar
time. Subject 1 has failure times D11 corresponding to cross-
section k = 1 and D12 with respect to cross-section k = 2. Note
that, even though subject i = 1 is deemed treatment-ineligible
after cross-section k = 2, the subsequent death is not censored.
Subject i = 2 is treated (and therefore censored) at time T22

with respect to cross-section k = 2. Subject i = 3 is not inclu-
ded in either cross-section since i = 3 starts and then finishes
follow-up in between cross-sections. Subject i = 4 is included
in cross-section k = 1, then becomes treatment-ineligible until
after cross-section k = 2. Therefore, i = 4 is included only in
cross-section k = 1. With respect to cross-section k = 1, sub-
ject i = 4 is censored at treatment time, T41, as opposed to
the time of treatment-ineligibility. Similarly, subject i = 5 is
censored at time C52, with respect to cross-section k = 2, not

Figure 1. Examples of the relationship between cross-
section time and follow-up time. Vertical dashed lines de-
note cross-section dates (k = 1, 2), while horizontal dashed
lines denote treatment-ineligible periods. Subject i = 1 is in-
cluded in both cross-sections k = 1 and k = 2 and contributes
death times D11 and D12 to the analysis. Subject i = 2 is trea-
ted at time T22 and, hence, censored (perhaps dependently)
at that time. Subject i = 3 is not included in either cross-
section. Subject i = 4 is included in cross-section k = 1, but
not cross-section k = 2 due to treatment-ineligibility. Subject
i = 5 is censored at time C52 from cross-section k = 2. Note
that subjects i = 1 and i = 5 are not censored after becoming
treatment-ineligible.

at the beginning of the treatment-ineligible period.
The hazard function of interest can be expressed as

λik(t) = lim
δ↓0

1

δ
P
[
t � Dik < t + δ

|Dik � t, Aik = 1, Z̃i(Sik), Ãi(Sik), Sik

]
. (1)

We let Zik denote the pertinent covariate with respect to the
hazard function defined in (1). Essentially, we assume that
the derived covariate, Zik captures all death hazard predic-
tors from the observed covariate and treatment-eligibility his-
tories; specifically, that

λik(t|Zik, Aik = 1, Z̃i(Sik), Ãi(Sik), Sik) = λik(t|Zik, Aik = 1).

Note that the t argument pertains to time after the kth cross-
section date, with the covariate “frozen” at its cross-section
date value. The objective is to determine the relationship bet-
ween the covariate (as known on the kth cross-section date)
and future treatment-free survival time. Since the underlying
goal is to determine what factors are associated with treat-
ment urgency, only subjects who are treatment-eligible at the
kth cross-section date are of interest; hence the conditioning
on [Aik = 1].
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Death times are modeled using stratified Cox regression,

λik(t) = λ0k(t) exp{β′
0Zik}, (2)

where the baseline hazards are allowed to be cross-section-
specific, although covariate effects are assumed to be equal
across all cross-sections. We make the standard independent
censoring assumption which, in the context of the observed
data, is given by:

λik(t|Z̃i(Sik + t), Ãi(Sik + t), Aik = 1, Tik > t, Cik > t)

= λik(t|Z̃i(Sik + t), Ãi(Sik + t), Aik = 1). (3)

However, a model for Dik conditioning on only Zik does not
incorporate {Zi(r); r ∈ (Sik, Sik + t)} or {Ai(r); r ∈ (Sik, Sik + t)}.
Generally, λik(t|Zik, Aik = 1) �= λik(t|Zik, Aik = 1, Tik > t) due
to the correlation between Tik and Dik resulting from mutual
dependence on {Zi(r); r > Sik} and/or {Ai(r); r > Sik}. In this
sense, the assumption listed in (3) does not lead to parameter
estimation for model (2) through unweighted methods.

We use a variant of IPCW to overcome the dependent cen-
soring of Dik by Tik. The following treatment hazard model is
assumed,

λT
i (t) = Ai(t)λ

T
0(t) exp

{
θ′
0Zi(t)

}
, (4)

where t is the time from study entry. As indicated in equa-
tion (1), the treatment hazard is zero at times during which
the patient is treatment-ineligible. Therefore, treatment
hazards among eligible patients are assumed to be pro-
portional. Similar to the presentation for model (2), the
covariate in model (4) is written as Zi(t) for notational
convenience and, more generally, could depend on the co-
variate and treatment-eligibility histories, Z̃i(t) and Ãi(t),
respectively. We make a no-unmeasured-confounders type as-
sumption with respect to treatment; that is, we assume that
λT

i (t|Zi(t), Ai(t), Z̃i(Di), Ãi(Di), Di) = λT
i (t|Zi(t), Ai(t)).

The regression coefficient, θ0, is estimated by θ̂, as the root
of the score function,

UT (θ) =
n∑

i=1

τ∫
0

{
Zi(t) − Z(t; θ)

}
dNT

i (t),

where τ is the largest observation time, Z(t; θ) =
R

(1)
T (t; θ)/R

(0)
T (t; θ), and R

(p)
T (t; θ) = n−1

∑n

i=1
Ai(t)Yi(t)Zi(t)

⊗p

exp{θ′Zi(t)} for p = 0, 1, 2, with a, a⊗0 = 1, a⊗1 = a, a⊗2 = aaT

for a vector, a. The Breslow estimator of �T
0(t) is given by

�̂T
0(t) = n−1

∑n

i=1

∫ t

0
R

(0)
T (u; θ̂)−1dNT

i (u).
The IPCW method allows us to obtain consistent estima-

tors by weighting each subject’s experience by the inverse of
(what can be thought of heuristically as) the probability of
remaining untreated. In particular, the covariate effect, β0,
can be estimated as the root of the stratified inverse-weighted

score function,

U(β, W) =
K∑

k=1

n∑
i=1

τk∫
0

Aik

{
Zik − Zk(t;β, W)

}
WA

ik (t)dNik(t),

(5)

where the weight function is given by WA
ik (t) = Yik(t) exp

{�T
i (Sik + t) − �T

i (Sik)} and Zk(t;β, W) = R
(1)
k (t;β, W)/

R
(0)
k (t;β, W), with R

(p)
k (t;β, W) = n−1

∑n

i=1
AikW

A
ik (t)Yik(t)Z

⊗p

ik

exp(β′Zik) for p = 0, 1, 2. The upper limit, τk, satisfies
P(Xik � τk) > 0 and in practice would usually be set to
max{Xik}. We refer to WA

ik (t) as the Type A weight. The
quantity does not constitute a stabilized weight (Robins
and Finkelstein, 2000). However, the quantity can be
thought of heuristically as a ratio of two probabilities,
P(Ti > Sik + t|Ti > Sik)

−1. From this angle, large values
of �T

i (Sik + t) should, to at least some extent, coincide
with large values of �T

i (Sik), such that the Type A weight
is less subject to wide variation, unlike the unstabilized
weight in more traditional dependent censoring settings.
We demonstrate in the Web Appendix that U(β0, W)
from (5) has mean 0. Essentially, the zero mean pro-
perty arises from E[WA

ik (t)dMik(t)|Zik, Aik = 1] = 0, where
dMik(t) = dNik(t) − Yik(t)d�ik(t).

Additionally, it can be argued that E[WA
ik (t)dMik(t)g(Zik)|

Zik, Aik = 1] = 0, where g(·) ∈ R is a deterministic function of
the covariate, Zik, used in model (2). Often, g(Zik) is chosen to
be a probability, since the unstabilized version of the weight
is the reciprocal of a probability. Along this train of thought,
we define the Type B weight,

WB
ik(t) = Yik(t)

exp{�T
i (Sik + t)}

exp{�T
i (Sik)} exp{�T

ik(t)}
,

where �T
ik(t) = ∫ t

0
λT

ik(u)du, with

λT
ik(t) = lim

δ↓0

1

δ
P
[
t � Tik < t + δ|Tik � t, Zik, Aik = 1

]
. (6)

which we represent through the model,

λT
ik(t) = Aikλ

T
0k(t) exp{θ′

1Zik}. (7)

Consistent with the death hazard, λD
ik(t), given in (1), the

double subscripting in (6) corresponds to the time scale being
time from cross-section, and conditionality on [Zik, Aik = 1].
One can interpret λT

ik(t) as the hazard function for treat-
ment, with time measured from Sik onward, among patients
alive, untreated, and treatment-eligible at time Sik. We can
re-express the Type B weight as WB

ik(t) = WA
ik (t) exp{−�T

ik(t)},
with exp{−�T

ik(t)} reflecting the conditional probability of re-
maining untreated t time units after Sik, given untreated and
treatment-eligible at time Sik. From this perspective, the Type
B weight can be viewed as stabilized, since its numerator and
denominator are both akin to conditional probabilities. Note
that we do not expect (7) to be a correct model; its purpose
is to provide a reasonable version of g(Zik) to be incorporated
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into the weight function as a stabilizer. In contrast, consistent
estimation of β0 does require that model (4) be correct.

Another weight which can be used is the Type C weight,

WC
ik(t) = Yik(t) exp

{
�T

i (Sik + t)
}
, (8)

which is reminiscent of the unstabilized weight in more tra-
ditional dependent censoring settings. In particular, inverse
weighting the data (without a view to the model of inter-
est) would lead to WC

ik(t). However, in our set-up, the Type
A weight is actually the “raw” version of the weight; in the
sense that the WA

ik (t) function is defined specifically such that
E[WA

ik (t)dMik(t)|Zik, Aik = 1] = 0, resulting on (5) having mean
zero (see the Web Appendix for associated details). Therefore,
we could only expect that E[WC

ik(t)dMik(t)|Zik, Aik = 1] = 0 if
we can express WC

ik(t) as the product of WA
ik (t) and some sui-

tably defined g(Zik). From this perspective, setting g(Zik) =
exp{�T

i (Sik)}, and hence WC
ik(t) = WA

ik (t) exp{�T
i (Sik)}, reveals

that the Type C weight actually amounts to dividing the
“raw” weight function by a probability. Viewed this way,
WC

ik(t) should lead, if anything, to increased variance. Our
thoughts regarding the Type A, B, and C weights are asses-
sed numerically in Section 4.

3. Asymptotic Properties

We assume that the random vectors {Xi, �i, �
T
i , Z̃i(Xi),

Ãi(Xi)}, for i = 1 . . . n, are independent and identically
distributed, with Zi(t) bounded for t ∈ (0, τ], where τ satisfies
P(Xi � τ) > 0. We summarize the asymptotic properties
of the proposed methods in the following theorem. The
regularity conditions are listed in the Web Appendix.

THEOREM 1: Under certain regularity conditions,
n1/2(β̂ − β0) converges asymptotically to a zero-mean
Gaussian process with covariance function E[ϕiϕ

′
i], where

{ϕ1, . . . , ϕn} are i.i.d. with mean 0 asymptotically, with

ϕi = �(β0)
−1

[ K∑
k=1

Aik

τk∫
0

{Zik − zk(t;β0, W)}WA
ik (t)dMik(t)

+ H ′(t;β0, W)�T (θ0)
−1UT

i (θ0)

+
τk∫

Sik

G(t, τ;β0)r
(0)
T (t; θ0)

−1dMT
i (t)

]
,

where

dMT
i (t) = dNT

i (t) − Ai(t)Yi(t) exp{θ′Zi(t)}�T
0(t),

zk(t;β, W) = r
(1)
k (t;β, W)/r

(0)
k (t;β, W),

z(t; θ) = r
(1)
T (t; θ)/r

(0)
T (t; θ),

r
(p)
k (t;β, W) = E[AikW

A
ik (t)Yik(t)Z

⊗p

ik exp(β′Zik)], p = 0, 1, 2,

r
(p)
T (t; θ) = E[Ai(t)Yi(t)Zi(t)

⊗p exp{θ′Zi(t)}], p = 0, 1, 2,

with �(β), H(t;β, W), �T (θ), UT
i (θ), and G(t1, t2;β) defined

in the Web Appendix.

The covariance can be estimated consistently by
n−1

∑n

i=1
ϕ̂iϕ̂

′
i, where ϕ̂i is obtained by replacing all li-

miting values in ϕi by their empirical counterparts. A
proof of Theorem 1 is provided in the Web Appendix.
The proof proceeds by demonstrating that, asymptotically,
n1/2(β̂ − β0) = n−1/2

∑n

i=1
ϕi + op(1) through a sequence of

Taylor series expansions.
Note that subjects (i = 1, . . . , n) are assumed to be in-

dependent. However, no independence assumption is made
regarding the cross-section-specific contributions of a given
subject; the dependence structure for the within-subject score
function contributions being left unspecified. Since we do not
model the within-subject correlation explicitly, our approach
is analogous to generalized estimating equations (GEE) with
a working independence assumption (Liang and Zeger, 1986).
It is well-established in the GEE literature that, so long as the
model for the marginal mean is correct, one need not model
the within-subject correlation structure accurately in order to
obtain a consistent estimator of the regression coefficient for
the mean model.

The proof of Theorem 1 is developed in the context of the
Type A weight, WA

ik (t) = Yik(t) exp{�T
i (Sik + t) − �T

i (Sik)}. In
practice, a stabilized version would usually be preferred. As
implied by Theorem 1, the computation of the variance is
quite complicated, and is more complicated with the Type B
weight. Such considerations motivate a computationally sim-
pler form for the variance estimator. One such simplification
involves treating the weight (be it WA

ik (t), WB
ik(t), or WC

ik(t))
as fixed; in which case the variance estimator simplifies to
n−1

∑n

i=1
ϕ̂∗

i ϕ̂
∗′
i , where

ϕ̂∗
i = �̂(β̂)−1

K∑
k=1

Aik

τk∫
0

{
Zik − Zk(t; β̂, Ŵ)

}
Ŵik(t)dM̂ik(t). (9)

This simplified variance estimator can be calculated using Cox
regression software that allows weights and a robust variance
estimator; for example, proc phreg in SAS, coxph in R. Perti-
nent SAS code is available from the first author upon request.

4. Simulations

We modify the algorithm developed by Zheng and Heagerty
(2005) to generate data which follow a partly conditio-
nal proportional hazards model. We first generate a binary
treatment group indicator, Zia, taking values 0 and 1 with
probability 0.5. A longitudinal marker, Zi(Sik), measured
at a common set of cross-section dates (CS1, CS2, . . . , CSK)
is then constructed. To generate data [Di, Zia, Zib] where

Zib = vec{Zi(Sik)}, we first create Zib0 = bi + ∑K

k=1
log(Vik)/γ2,

where bi ∼ N(μ, σ2) and the Vik are independent positive
stable variates with index ρ (Samorodnitsky and Taqqu,
1994). A pre-treatment death time Di, is then generated with
hazard λi(t) = V

1/ρ

i0 λ0(t) exp{γ1Zia + γ2Zib0}, where Vi0 ∼ P(ρ)
and is independent of Vik, with �0(t) = (t/a)1/ρ2 and a is a
constant. Let Zi(Sik) = Zib0 − log(Vik)/γ2. The death hazard
is then written as

λi(t) = V
1/ρ

i0 λ0(t) exp
{
γ1Zia + γ2Zi(Sik) + log(Vik)

}
. (10)
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Subject i enters the study on calendar date Li, where Li is
a Uniform(0,b) variate. Treatment time, Ti, is generated from
the proportional hazards model,

λT
i (t) = λT

0(t) exp
{
θ01Zia + θ02I(t > Ri)

}
, (11)

where λT
0(t) = d3, θ0 = (θ01, θ02)

′, and Ri is time of
treatment-ineligibility which is generated with hazard λR

i (t) =
λR
0(t) exp{d1Vi0}, with λR

0(t) = 1/d2. Thus, Ri and Di are posi-
tively correlated, which is a reflection of the data which mo-
tivated the proposed methods. Note that treatment time and
pre-treatment death time, Ti, and Di, are dependent since
both depend on time of treatment ineligibility, Ri.

To see that the prescribed set-up yields proportional ha-
zards, integrating both sides of model (4), gives

�i(t) = V
1/ρ

i0 �0(t) exp
{
γ1Zia + γ2Zi(Sik)

}
Vik,

such that the pre-treatment survival function is given by

exp{−�i(t)} = exp
{ − �0(t) exp{γ1Zia + γ2Zi(Sik)}VikV

1/ρ

i0

}
.

Transforming the time scale to reflect time since cross-section,
define tk = t − Sik. Then, take the expectation with respect to
Vik first and using the properties of the positive stable distri-
bution, we have

exp
{ − �i(tk|Zia, Zi(Sik), Di > Sik, Vi0)

}
= exp

{
[�0(t) exp{γ1Zia + γ2Zi(Sik)}V 1/ρ

i0 ]ρ

cos(πρ/2)

}
.

Then, taking the expectation with respect to Vi0, we have

exp
{ − �i(tk|Zia, Zi(Sik), Di > Sik)

}
= exp

{−�0(t)
ρ2 exp{ρ2γ1Zia + ρ2γ2Zi(Sik)}

cos(πρ/2)(ρ+1)

}
,

which implies the following equation after taking logarithm
and negative of both sides

�i(tk|Zia, Zi(Sik), Di > Sik)

= �0(t)
ρ2 exp

{
ρ2γ1Zia + ρ2γ2Zi(Sik)

}
cos(πρ/2)(ρ+1)

.

Differentiating with respect to tk,

λi(tk|Zia, Zi(Sik), Di > Sik) = λ0(tk + Sik)ρ
2{�0(tk + Sik)}(ρ2−1)

cos(πρ/2)(ρ+1)

exp
{
ρ2γ1Zia + ρ2γ2Zi(Sik)

}
.

Using this construction, the hazard for Dik = Di − Sik

will generally depend on Sik and therefore stratified mo-
dels similar to those considered by Wei et al. (1989) would
be appropriate. With �0(t) = (t/a)1/ρ2 , λ0(tk + Sik)ρ

2{�0(tk +

Sik)}(ρ2−1) = 1/a, we obtain

λi(tk|Zia, Zi(Sik), Di > Sik)

= exp
{
ρ2γ1Zia + ρ2γ2Zi(Sik)

}
[a cos(πρ/2)(ρ+1)]

.

If we define λik(t; Sik) = λi(tk|Zia, Zi(Sik), Di > Sik), λ0k(t) =
[a cos(πρ/2)(ρ+1)]−1 and β0 = (β01, β02)

′ = (ρ2γ1, ρ
2γ2)

′, then
the proportional hazard model on treatment-free survival is
achieved,

λik(t; Sik) = λ0k(t) exp
{
β01Zia + β02Zi(Sik)

}
. (12)

After generating the data, we only include for analysis those
Zi(Sik) with Li < Sik < min(Xi, Ri). Data pertaining to survi-
val time since cross-section {Xik, �ik, Zia, Zi(Sik)} is used to fit

model (6), with time-to-treatment data {Xi, �
T
i , Zia, Z̃i(Xi)}

used to fit model (5).
We evaluate samples with n = 1000 subjects and obtain

10%, 20%, and 40% censoring by varying a from 104 to
4 × 107. The value of d2 varies from 300 to 3000, resul-
ting in ineligibility rates from 10% to 30%. There are K =
10 cross-section dates. We set b = 500, [θ01, θ02] = [−1, −1],
μ = 18, σ = 1, [γ1, γ2] = [−1, −0.5], [−0.5, −0.25], [0, 0], d1 =
d3 = 0.001, with CSk = 100 × k. For all our simulated situa-
tions, 1000 Monte Carlo data sets are used. We present
results using ρ = 0.8, thus [β01, β02] = [−0.64, −0.32] when
[γ1, γ2] = [−1, −0.5]. With the number of cross-sections set to
K = 10, the average number of cross-sections per subject is
0.7–2.4, depending on the censoring level. We apply the sim-
plified variance estimate which treats the estimated weights
as fixed; that is, as given in (9).

Table 1 presents simulation results based on the Type A
weight, while Tables 2 and 3 present results for Type B and
Type C, respectively. Estimates of β0 appear to be consistent
based on all weights. The variance of the Type B estimator is
smaller than that of Type A, which is likely the result of the
added stabilizer. Coverage probabilities using the proposed
(simplified) variance estimator are close to the nominal 95%
level, with those of the Type B estimator being slightly higher
than those of Type A. The variance of the Type C estimator
appears to be greater than that of Type A, consistent with
our comments in Section 2 that the Type C weight can be
viewed as the result of dividing a ratio of probabilities (i.e.,
WA

ik (t), which should be fairly stable) by another probability.

5. Data Analysis

We applied the proposed methods in order to compare pre-
transplant mortality between acute and chronic ESLD pa-
tients. Data were obtained from the Scientific Registry of
Transplant Recipients (SRTR), a national population-based
organ transplant registry. The study population included pa-
tients initially wait listed for deceased-donor liver transplan-
tation between March 1, 2002 and December 31, 2009 in Uni-
ted States. Only patients age ≥ 18 at listing and not pre-
viously transplanted (i.e., not repeat transplant candidates)
were included in the study population. Cross-section dates
were chosen every 7 days from March 1, 2002 to December 31,
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Table 1
Simulation results for β̂ computed using Type A Weight WA

ik (t); n = 1000

β̂01 β̂02

Censored (%) β∗
01 Bias ESE ASE CP β∗

02 Bias ESE ASE CP

10 −0.64 −0.009 0.132 0.125 0.93 −0.32 −0.001 0.020 0.020 0.95
20 −0.004 0.143 0.128 0.92 −0.002 0.020 0.019 0.94
40 −0.008 0.145 0.129 0.93 0.001 0.018 0.018 0.94
10 −0.32 0.002 0.146 0.132 0.93 −0.16 0.001 0.013 0.012 0.93
20 −0.004 0.140 0.129 0.92 −0.001 0.010 0.010 0.94
40 −0.001 0.144 0.130 0.92 −0.001 0.010 0.009 0.94
10 0 0.001 0.140 0.130 0.93 −10−4∗∗ −0.003 0.048 0.044 0.94
20 −0.002 0.136 0.127 0.94 −0.001 0.042 0.041 0.95
40 −0.007 0.143 0.128 0.93 −0.002 0.038 0.036 0.94

∗ β0 = (β01, β02) = (ρ2γ1, ρ
2γ2), where ρ = 0.8.

∗∗ The Bias, ESE, and ASE shown in this block are in 10−4 scale.

Table 2
Simulation results for β̂ computed using Type B Weight given in (4); n = 1000

β̂01 β̂02

Censored (%) β∗
01 Bias ESE ASE CP β∗

02 Bias ESE ASE CP

10 −0.64 0.004 0.130 0.121 0.94 −0.32 −0.001 0.021 0.020 0.94
20 −0.008 0.121 0.116 0.94 −0.001 0.018 0.018 0.95
40 −0.008 0.113 0.112 0.94 −0.001 0.016 0.016 0.95
10 −0.32 −0.005 0.136 0.130 0.94 −0.16 −0.001 0.012 0.011 0.94
20 −0.005 0.122 0.117 0.94 −0.001 0.010 0.009 0.94
40 0.003 0.112 0.109 0.93 −0.001 0.008 0.008 0.94
10 0 0.005 0.135 0.126 0.93 −10−4∗∗ −0.001 0.044 0.043 0.94
20 −0.005 0.123 0.118 0.94 −0.002 0.041 0.038 0.94
40 0.004 0.109 0.109 0.95 −0.002 0.031 0.031 0.95

∗ β0 = (β01, β02) = (ρ2γ1, ρ
2γ2), where ρ = 0.8.

∗∗ The Bias, ESE, and ASE shown in this block are in 10−4 scale.

Table 3
Simulation results for β̂ computed using Type C Weight given in (5); n = 1000

β̂01 β̂02

Censored (%) β∗
01 Bias ESE ASE CP β∗

02 Bias ESE ASE CP

10 −0.64 0.002 0.142 0.129 0.93 −0.32 −0.002 0.022 0.021 0.94
20 −0.005 0.144 0.136 0.93 −0.001 0.022 0.020 0.92
40 −0.010 0.159 0.136 0.90 −0.002 0.020 0.019 0.94
10 −0.32 −0.003 0.146 0.135 0.94 −0.16 −0.001 0.012 0.012 0.94
20 −0.012 0.154 0.138 0.91 −0.001 0.012 0.011 0.92
40 −0.003 0.157 0.138 0.91 −0.001 0.011 0.010 0.94
10 0 −0.008 0.153 0.136 0.92 −10−4∗∗ −0.002 0.047 0.046 0.94
20 −0.001 0.146 0.134 0.92 −0.002 0.045 0.043 0.94
40 0.007 0.155 0.137 0.92 −0.002 0.042 0.040 0.93

∗ β0 = (β01, β02) = (ρ2γ1, ρ
2γ2), where ρ = 0.8.

∗∗ The Bias, ESE, and ASE shown in this block are in 10−4 scale.
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2009, such that there were K = 409 cross-sections in all. At
any given cross-section date, any subject who was still on the
wait-list (not inactive and not removed) was included in the
cross-section since, in practice, patients who got removed or
were made inactive were no longer eligible to receive offers for
deceased-donor livers. Given the objectives of our analysis, it
is appropriate to compare only patients who, in a given cross-
section date, are in fact eligible to receive a liver transplant.
However, after being included into a given cross-section, such
patients are not censored if they are subsequently deactivated
or removed from the wait-list. Deactivation and removal (and
the associated death that may follow) are potential conse-
quences of not receiving a liver transplant. For the death mo-
del, the failure time was defined from the date of cross-section
to the date of the earliest of death, transplant, or censoring.

In order to construct the IPCW weight, �T
i (t) was estima-

ted based on a time-dependent Cox model in which transplant
was the event. For the time-to-transplant model, time t starts
from the beginning of the follow-up (the date of wait listing),
as opposed to cross-section time. The model was stratified,
such that

λT
ir(t) = Ai(t)λ

T
0r(t) exp

{
θ′
0Zi(t)

}
,

where the subscript r = 1, . . . , 11 stands for region. The pre-
sence of the indicator, Ai(t), reflects the fact that a patient’s
time while inactive or removed does not contribute to the es-
timation of θ0 or �T

0r(t). The patient level covariate, Zi(t),
included MELD score, Status 1, albumin, age, gender, race,
diagnosis of Hepatitis C, body mass index, diabetes, hospi-
talization, blood type, dialysis within prior week, encephalo-
pathy, ascites, and serum creatinine. Among the covariates
in this list, MELD score, albumin, dialysis, encephalopathy,
ascites, and serum creatinine were time-dependent.

We evaluated several different versions of weight, including
Wikr(t) = Yikr(t) (unweighted), WA

ikr(t) = Yikr(t) exp
{
�T

ikr(t +
Sik) − �T

ikr(Sik)
}
, WB

ikr(t), and WC
ikr(t). Some very large values of

the weight function occurred, even for WB
ikr(t). Since we found

that 99% of weights were <10, weights were then capped
at 10.

The model of primary interest, the pre-transplant death
model, was also stratified

λikr(t) = λ0kr(t) exp
{
β′

0Zik

}
,

where the subscript r = 1, . . . , 11 stands for region and k =
1, . . . , 409 stands for cross-section. The cross-section-specific
covariates, Zik, included albumin, age, gender, race, diagnosis,
body mass index, diabetes, hospitalization status at listing,
previous malignancy; as well as the covariate of chief inter-
est, MELD score (21–23, 24–26, 27–29, 30–32, 33–35, 36–40),
with each MELD category being compared to Status 1, the
reference. Also included in Zik were average change in MELD
score (pertaining to the time interval between the date of
listing and cross-section k date, and estimated using ordi-
nary least squares) and average change in albumin (estimated
analogously). Other elements included the percentage of time
spent in inactive status, and percent of time receiving dialysis.
Since 99% of MELD and albumin slope values before cross-

Table 4
Analysis of liver wait-list mortality (using Type B Weight)

Group β̂ ŜE(β̂) êβ p-value

Status 1 0 — 1 —
MELD 21–23 0.05 0.267 1.05 0.87
MELD 24–26 0.18 0.272 1.20 0.50
MELD 27–29 0.52 0.276 1.68 0.06
MELD 30–32 0.25 0.334 1.29 0.45
MELD 33–35 0.96 0.301 2.62 0.001
MELD 36–40 0.95 0.306 2.58 0.002

sections fell in the [−1, 1] interval, the slopes were bounded by
−1 and 1. Our final sample consisted of n = 23, 657 patients.

Results based on the death model using the Type B weight
are listed in Table 4. Relative to Status 1, pre-transplant mor-
tality is 2.62 times as great for MELD 33–35 (p = 0.001) and
2.58 times as great for MELD 36–40 (p = 0.002).

Both unweighted and weighted results are listed in Table 5.
After weighting the model, the parameter estimates of MELD
group became larger, in each case. Similar to the findings from
simulation studies, the standard errors in Table 5 were the
lowest for the Type B weight, while those for Type C were
the largest.

Supplementary analysis revealed that acute patients died
very fast in the early stage. The Status 1 Kaplan–Meier curve
initially dropped much more quickly than the survival curves
for the MELD groups. However, the Status 1 survival curve
leveled off eventually, while the survival curves for the MELD
groups kept dropping.

6. Discussion

We propose semiparametric methods to estimate the effect of
a time dependent covariate on treatment-free survival. Pre-
treatment death may be dependently censored by the re-
ceipt of treatment, and subjects may experience periods of
treatment-ineligibility. The proposed methods estimate the
regression parameter of a partly conditional hazard model
through landmark analysis and IPCW. The proposed estima-
tors are demonstrated to be consistent and asymptotically
normal, with consistent covariance estimators provided.

Zheng and Heagerty (2005) proposed partly conditional
Cox regression methods. Van Houwelingen (2007) proposed
landmark models based on partly conditional methods. In
Zheng and Heagerty (2005), the time clock is re-set at co-
variate measurement times, unlike our methods, wherein the
clock is re-set at cross-section dates. Neither the Zheng and
Heagerty (2005) or Van Houwelingen (2007) methods deal
with dependent censoring or accommodate treatment ineligi-
bility.

Comparisons of pre-transplant death rates between Status
1 and MELD patients have rarely been conducted; in part,
since the assumption that Status 1 patients have the highest
death rate is widely accepted by the liver transplant commu-
nity. However, in a recent study (Sharma et al., 2012) using
a traditional time-dependent model, death rates for patients
with MELD ≥ 40 were shown to be significantly higher than
those of Status 1. Analysis shown in Section 5 based on the
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Table 5
Analysis of liver wait-list mortality; comparison of results using different weights

Unweighted Type C Weight Type A Weight Type B Weight

Group β̂ ŜE(β̂) β̂ ŜE(β̂) β̂ ŜE(β̂) β̂ ŜE(β̂)

Status 1 0 . 0 . 0 . 0 .
MELD 21-23 −0.81 0.210 0.01 0.271 0.07 0.270 0.05 0.267
MELD 24-26 −0.75 0.215 −0.002 0.286 0.11 0.281 0.18 0.272
MELD 27-29 −0.29 0.220 0.31 0.287 0.42 0.283 0.52 0.276
MELD 30-32 −0.32 0.256 0.10 0.348 0.11 0.339 0.25 0.334
MELD 33-35 0.26 0.246 0.91 0.345 0.92 0.321 0.96 0.301
MELD 36-40 0.33 0.272 0.79 0.335 0.73 0.324 0.95 0.306

proposed methods show that MELD � 33 is associated with
significantly higher pre-transplant mortality than Status 1.

Some discussion regarding the appropriate number of cross-
sections, K, is in order. Greater K generally results in a greater
amount of information, although returns diminish since infor-
mation overlaps among different cross-sections. Some guiding
principles are as follows. First, it seems reasonable to make
the cross-sections equally spaced. Second, it is preferable to
select a “start” date (i.e., for cross-section k = 1) that is easy
to identify with (e.g., January 1, 2000) then fix the time in-
terval between cross-sections thereafter (e.g., every 30 days).
Third, the disincentive to choosing a larger number of cross-
sections is largely computational burden. Choosing K cross-
sections amounts to essentially stacking K data sets together
prior to analysis. For a given cross-section k, the covariate
used in the death model, Zik is defined once per subject. Ho-
wever, each subject will typically contribute multiple records
per cross-section since changes in the covariate and eligibi-
lity status affect the subject’s inverse weight. In summary,
we suggest picking an intuitive cross-section start date for
k = 1; making the cross-sections equally spaced; spacing the
cross-section dates such that as many cross-sections as com-
putationally feasible are used. One could argue that if an ap-
propriate number of cross-sections is employed, then adding
cross-sections will not alter the results for the death model
meaningfully.

The proposed methods assume that the death hazards for
the subgroups of interest are proportional. It would be use-
ful to develop extensions of the proposed methods to target
measures which do not require the proportional hazards as-
sumption.

7. Supplementary Materials

Web Appendix A, referenced in Section 2, is available with
this article at the Biometrics website on Wiley Online
Library.
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