
Reductions for One-Way Functions

by

Mark Liu

A thesis submitted in partial fulfillment
of the requirements for degree of

Bachelor of Science
(Honors Computer Science)

from The University of Michigan
2013

Thesis Committee
Professor Kevin Compton, Advisor
Professor Martin Strauss, Second Reader

1 Introduction

In computer science, reductions are transformations from one problem to another.

The concept of reduction has proved fruitful in many areas, such as the theory of

NP-completeness [1]. There, Karp reductions, or polynomial-time many-one reduc-

tions [2], allowed us to define the set of NP-complete problems within NP, which are

problems that can be reduced to by all problems in NP. This has stimulated much

research in the field. The idea of reduction has also been extended to other types of

problems as well. Valiant gave a definition of reduction for enumeration problems [6],

while Papadimitriou and Yannakakis similarly determined the appropriate definition

for optimization problems [4]. Both of these discoveries were the start of many fruitful

lines of research. Much of the difficulty lies in first defining the appropriate reduction.

One-way functions (OWF’s) are functions that are easy to compute but “diffi-

cult” to invert. A variant, weak one-way functions, are also easy to compute and

difficult to invert, but “less difficult”. We believe it will be fruitful to rigorously

define a notion of reduction for the set of one-way functions or any of its variants. In

this thesis we present a notion of reductions for the class of weak one-way functions

and show it behaves as intended. Our definition is transitive and preserves the

hardness condition; if we can reduce f to g and f is ”difficult” to invert, g is as well.

We also show that a complete function already exists in Levin’s Universal Function

[3] by adapting his original proof to fit our definition.

2 Worst-case One-way functions

Before discussing weak one-way functions, which are probablistic in nature, we begin

with a deterministic version, worst-case one-way functions, and a notion of reducibility

1

for them.

Definition 2.1. A function g is a left (right) inverse of f if and only if g ◦ f (f ◦ g)

is the identity function on the domain (codomain) of f.

Definition 2.2. The range of F , or ran(F) is the set of elements that is mapped to

by F . In other words, if F : Σ∗ → Σ∗ then ran(F) = {y ∈ Σ∗|∃xF (x) = y}

Definition 2.3. Honest Function: A function F : Σ∗ → Σ∗ is honest if: (∃c > 0)

(∀w) (|F (w)| ≥ |w|c). We require that functions be honest so that a right inverse

would even have a chance to be polynomial time computable.

Definition 2.4. Worst-case One-way: A function F is worst-case one-way if:

1. F is polynomial-time computable

2. F is honest

3. F has no polynomial-time computable right inverse

Theorem 2.1. (Selman)[5] Worst-case one-way functions exist if and only if P 6=

NP

Proof. “ ⇐ ” Assume P 6= NP . Let A ∈ NP − P . Since A ∈ NP , there is a non-

deterministic Turing Machine (NDTM) M that recognizes A in polynomial time, with

time bound q(n). One characterization of non-determinism is that M, when able to

take multiple paths, will “branch” into multiple copies, each of which tries a different

path. Then M accepts if at least one branch accepts. Then let

f(w, b) =

 〈1, w〉 : if M following branch b accepts in time q(n)

〈0, w〉 : otherwise

Then f can be computed in polynomial time, since we only need to run one branch

of M for time q(n).

2

f is also honest, because we include w in the output, and while f takes (w, b) as

input, b’s length is proportional to the running time of M , which is polynomial in |w|.

Finally, if f had a polynomial time computable right inverse f ′, we would

have an efficient algorithm that would, given 〈1, w〉, return (w, b) such that M

would accept 〈1, w〉 on branch b. From this, we could construct deterministic Turing

Machine M ′ to recognize A. For any string w, M ′ would run f ′ on input 〈1, w〉. The

output may or may not make sense, but if it is of the form (w, b), we can run w on

M , taking branch b. If we end on an accept state then we know w is in the language

A. Thus A ∈ P and we have a contradiction, so f does not have a polynomial time

computable right inverse and f is a worst-case one-way function.

“⇒ ” Now assume worst-case one-way function f exists.

Define

A = {〈x, z〉 : ∃y such that f(xy) = z}

Then A ∈ NP because there is non-deterministic polynomial-time verifier for A.

Recall that honest functions require that output z must be greater than |w|c for

some c, so we only need to try strings of length up to L = |z|c − |x|. For each string

a s.t |a| ≤ L non-deterministically try f(xa). This should take time polynomial in

length of xa, since f is weak one-way. Then if any branch accepts, return true. If

not, return false.

Show A 6∈ P by assuming A ∈ P . We get a contradiction by finding polyno-

mial time right inverse for f . Given z, test 〈ε, z〉 ∈ A. If it is, then z has inverse

image under f , otherwise it does not, so terminate. Now test 〈0, z〉 ∈ A. If it is, then

we have found an element in preimage of z whose first bit is 0, otherwise we know

there is element in preimage of z whose first bit is 1. Either way we are guaranteed an

element in preimage whose first bit is b0. Then we test 〈b00, z〉 ∈ A and 〈b01, z〉 ∈ A.

3

If neither accept then we know b0 was in the preimage of z. If one of them accepts

then set b1 equal to it. We continue this process, learning one bit at a time. Each

check for inclusion in A takes polynomial time by assumption, and we know this

algorithm will terminate in a polynomial number of steps, since f is honest. Thus

we have a polynomial time inverse for f , which gives us a contradiction. So A 6∈ P

and P 6= NP .

Definition 2.5. We say a
F−→ b or “F takes a to b” if F maps a to b. This is equivalent

to writing F (a) = b. We prefer this notation because it will generalize better to the

case when F is not a function but a PPT .

Definition 2.6. A reduction from F : Σ∗ → Σ∗ to G : Σ∗ → Σ∗ consists of two

functions A,B s.t

1. B,A are polynomial time computable.

2. (x
G−→ B(y)) =⇒ (A(x)

F−→ y).

3. (x
F−→ y) =⇒ (∃x′ such that x′

G−→ B(y)), or equivalently,

y ∈ ran(F) =⇒ B(y) ∈ ran(G).

Σ∗ <
A

Σ∗

Σ∗

F

∨
B
> Σ∗

G

∨
G′
∧

Figure 1: Necessary functions for reduction from F to G

Proposition 2.2. If F reduces to G and F has no polynomial time right inverse,

then G has no polynomial time right inverse. Equivalently, if F,G are polynomial

time computable and honest, then F worst-case one-way implies G worst-case one-

way.

4

Proof. Let F have no polynomial time right inverse, and suppose a reduction from

F to G exists. Assume towards a contradiction that G has some polynomial partial

right inverse G′. Let

F ′ = A ◦G′ ◦B

F ′ is polynomial time computable because it is the composition of polynomial time

computable functions. We claim that F ′ is a right inverse of F. Let y ∈ ran(F) be

arbitrary. Then by condition (3), we have that B(y) ∈ ran(G). So then, since G′ is

a right inverse of G,

G′ ◦B(y)
G−→ B(y)

Then by condition (2),

A ◦G′ ◦B(y)
F−→ y

and by our earlier choice of F ′, we see that F ◦ F ′(y) = y so we have contradiction,

so F worst-case one-way implies G worst-case one-way.

3 Weak one-way functions

Definition 3.1. P : X → [0, 1] is a discrete probability measure on a space X if:

1. P(X) = 1,P(∅) = 0

2. For every countable collection {Ei} of pairwise disjoint sets, P(
⋃

iEi) =
∑
i

P(Ei)

Then in particular, we have: ∀S ⊂ X,P(S) =
∑
x∈S

P({x})

Definition 3.2. We use Pn to denote the uniform probability measure on strings of

length n. Let F : Σn → Y and Pn be a probability measure on Σn. Then define Pn
F :

Y → [0, 1] to be the probability measure on Y such that ∀S ⊂ Y,Pn
F (S) = Pn(F−1[S])

where F−1[S] is the preimage of S, or {x ∈ Σn|F (x) ∈ S}.

Definition 3.3. Another convenient notation we use is P{F = G}, where F,G are

functions. By this notation, we actually mean the set P[{x|F (x) = G(x)}]

5

Definition 3.4. A probabilistic polynomial time (PPT) algorithm is one that runs in

polynomial time, and also has the capability to “toss coins”, meaning it has access to

a source of unbiased random bits. Alternatively, we can think of a PPT algorithm as

a deterministic algorithm that is given as input a random string of length p(n) where

p is some polynomial and n is the size of the input. This is the characterization we

use throughout the rest of the paper.

Definition 3.5. A function ε : N → R is negligible if ∀c > 0,∃n0 such that ε(n) <

1/nc for all n ≥ n0.

We can now move to weak one-way functions. The main difference between weak

one-way functions and worst-case one-way functions is that we move to a probablistic

setting. Firstly, we allow adversaries to use PPT algorithms. Secondly, instead of

requiring that any such adversary must always fail, we require that the adversary

should fail, with non-negligible probability, to invert the function. Formally,

Definition 3.6. We will use the notion of “augmenting” F and G to “carry”

information about the length of the input, so that for any F : Σ∗ → Σ∗, define

F : Σ∗ → 1∗×Σ∗ such that F (x) = (1|x|, F (x)). This is neccessary for our reductions

so that we do not “lose” information about the length of the string when reducing

one string to another.

Definition 3.7. We say φ holds almost everywhere (a.e.) if ∃M such that φ(n) holds

for n > M . Similarly, we say φ holds infinitely often (i.o.) if ∀M ∃n such that φ(n)

holds.

Definition 3.8. A polynomial-time computable function F : Σ∗ → Σ∗ is weak-one

way if: ∃k > 0 ∀PPT F
′
:

Pm
F

[F ◦ F ′ = I] ≤ 1− 1/mk a.e.

6

or equivalently,

Pm
F

[F ◦ F ′ 6= I] ≥ 1/mk a.e.

where I(1m, y, r) = 〈1m, y〉 and r is the random string used by PPT. Note that

Pm
F

[F ◦ F ′ = I] is a convenient abuse of notation, as {F ◦ F ′ = I} ⊂ 1m × Σ∗ × Σ∗,

while Pm
F

is defined on 1m × Σ∗.

By {F ◦F ′ = I} we mean the set of 3-tuples 〈1m, y, r〉 correctly inverted by F
′
, where

Pm
F

[1m, y, r] = Pm
F

[1m, y]P(r)

where P(r) = 1/2|r| since r is selected randomly from strings of a fixed length.

Definition 3.9. Now with the goal of preserving the weak one-way hardness con-

dition, we will define a new reduction from a polynomial-time computable function

F : Σ∗ → Σ∗ to another polynomial-time computable function G : Σ∗ → Σ∗. Our

reduction consists of:

α : N → N such that ∃c, d > 0 s.t nc ≤ α(n) ≤ nd. α should be computable in time

O(ng) for some g.

A : Σ∗ → Σ∗ such that |A(x)| = α(|x|), and a sequence of functions

Bn : 〈1∗,Σ∗〉 → 〈1n,Σ∗〉 such that Bn(1m, x) = B(1n, 1m, x) for some function B.

and the following conditions must hold:

1. A,B are polynomial-time computable.

2. Whenever m = α(n),

(∀x ∈ Σn), (∀y ∈ Σ∗),

[(x
G−→ Bn(〈1m, y〉)) =⇒ (A(x)

F−→ 〈1m, y〉)]

3. Whenever m = α(n),

(∃j > 0) (∀S ⊂ ran(F)),

Pn
G

(Bn[S]) ≥ Pm
F

(S)/nj

7

Conditions 2) and 3) are analagous to conditions 2) and 3) for worst-case one way

reductions, except more care is needed to handle this probablistic setting.

Σm,P < A
Σn,Pn

{1m} × Σ∗

F

∨
Bn
> {1n} × Σ∗

G

∨
G′
∧

Figure 2: Necessary functions for reduction from F to G

4 Goals

We will show that our definition meets the following goals:

• If a reduction can be constructed from poly-time computable F to poly-time

computable G, and F is weak OWF, then G must be as well.

• If we have a reduction from F to G, and a reduction from G to H, we should

be able to construct a reduction from F to H. (Transitivity)

• Every weak OWF is reducible to Levin’s Complete Function.

4.1 Weak OWF Hardness Property Preserved

Theorem 4.1. If F,G poly-time computable and such a reduction exists from F :

Σ∗ → Σ∗ to G : Σ∗ → Σ∗, and F is a weak OWF, then G is as well.

Proof. Let F : Σ∗ → Σ∗, G : Σ∗ → Σ∗ be polynomial-time computable functions, and

let F be a weak OWF and assume a reduction exists from F to G. Then ∃k > 0 such

that for any PPT algorithm F
′

P{F ◦ F ′ 6= I} ≥ 1/mk a.e.

8

Now let G
′

be an arbitrary PPT function that attempts to invert G. We want to

show the probability that G
′

fails to invert is high.

To do this, we construct a PPT F
′

with the goal of inverting F , using G
′

as

a subfunction. F
′

behaves as follows: On input 〈1m, y, r〉, where y ∈ Σ∗ and r is the

random string used by the inverter, for each Bn such that α(n) = m, first compute

(1n, y′) = Bn(1m, y)

and then compute

x′ = G
′
(1n, y′, r)

In other words, we are using the random string that F
′

receives and using it as the

random string for G
′
. Finally let

x = A(x′)

Then F
′

checks if F (x) = 〈1m, y〉. If it is, then F
′

outputs x. If not, it continues to

loop through each Bn such that α(n) = m. Since there are only polynomially many n

such that this holds, and each iteration computes a composition of polynomial-time

computable functions, F
′

runs in polynomial time.

Recall that

Pm
F
{F ◦ F ′ 6= I} ≥ 1/mk a.e.

Let S = {F ◦ F ′ 6= I}. In other words, for each 〈1m, y, r〉 ∈ S,

F ◦ F ′(〈1m, y, r〉) 6= 〈1m, y〉

Then

Pm
F

[S] = Pm
F
{F ◦ F ′ 6= I} ≥ 1/mk

9

Now for an arbitrary 3-tuple 〈1m, y, r〉 ∈ S, consider 〈Bn(1m, y), r〉.

Pn
G

[Bn(1m, y), r] = Pn
G

[Bn(1m, y)]P(r) since r is independently chosen

≥ 1

mj
(Pm

F
[1m, y]P(r)) for some j, by condition 3)

=
1

mj
Pm
F

[1m, y, r]

Then let T = {〈Bn(1m, y), r〉|〈1m, y, r〉 ∈ S}

Pn
G

[T] =
∑

〈1m,y,r〉∈S

Pn
G

[〈Bn(1m, y), r〉]

≥ 1

mj

∑
〈1m,y,r〉∈S

Pm
F

[〈1m, y, r〉]

=
1

mj
Pm
F

[S]

≥ 1

mk+j

So our set T is “large”. We would like to show T is not inverted by G
′
. Now, for an

arbitrary 3-tuple 〈1n, y′, r〉 ∈ T (where (1n, y′) = Bn(1m, y) and (1m, y, r) ∈ S), we

show that the inverter G′ will fail. Assume not. Then

G ◦G′(1n, y′, r) = (1n, y′)⇒ G
′
(1n, y′, r)

G−→ Bn(1m, y)

⇒ A ◦G′(1n, y′, r)
F−→ 〈1m, y〉

⇒ A ◦G′(Bn(1m, y), r)
F−→ 〈1m, y〉

by condition 2). But the last statement would imply that

F ◦ F ′(1m, y, r) = 〈1m, y〉

10

since it is one step of the inverter F
′
. Then we have that

G ◦G′(1n, y′, r) = (1n, y′)⇒ F ◦ F ′(1m, y, r) = 〈1m, y〉

But (1m, y, r) ∈ S, so

G ◦G′(1n, y′, r) 6= (1n, y′)

for all (1n, y′, r) ∈ T and so we have

Pn
G
{G ◦G′ 6= I} ≥ 1/mk+j a.e.

But m = α(n) < nd, so

Pn
G
{G ◦G′ 6= I} ≥ 1/nd(k+j) a.e.

So G
′
fails to invert on a “large” set, and since G

′
was arbitrary, this shows that G is

weak one-way.

4.2 Transitivity

Theorem 4.2. If we have a reduction from F to G and from G to H, there is a

reduction from F to H.

Figure 3: Transitivity diagram

Σ` <
A′

Σm <
A′′

Σn

1` × Σ∗

F
∨

B′
m> 1m × Σ∗

G

∨
B′′

n> 1n × Σ∗

H

∨

Proof. Let F : Σ∗ → Σ∗, G : Σ∗ → Σ∗, H : Σ∗ → Σ∗, and assume we have reductions

from F to G, and from G to H. So then for the first reduction, we have the functions

β : N → N, A′ : Σ∗ → Σ∗ where |A′(x)| = β(|x|) , and the sequence of functions

11

B′m : 1∗ × Σ∗ → 1m × Σ∗ where B′m(1`, x) = B′(1m, 1`, x) for some function B′.

For the second reduction, we have the functions α : N → N, A′′ : Σ∗ → Σ∗ where

|A′′(x)| = α(|x|), and the sequence of functions B′′n : 1∗ × Σ∗ → 1n × Σ∗ where

B′′n(1m, x) = B′(1n, 1m, x) for some functionB′′ and they satisfy all the aforementioned

conditions.

Then, claim we have a reduction from F to H, consisting of:

γ where γ = β ◦ α

A : Σ∗ → Σ∗ = A′ ◦ A′′ and the sequence of functions

Bn : 1∗ × Σ∗ → 1n × Σ∗ where Bn(1`, x) = B′′n ◦ B′m(1`, x)) whenever m = α(n) and

` = β(m).

Now we check that all the conditions are satisfied, and this is a reduction.

Claim. ∃e, f ∈ N s.t ne ≤ γ(n) ≤ nf and |A(x)| = γ(|x|).

Proof. γ(n) = β ◦ α(n) and by conditions we placed on β,

α(n)g ≤ β ◦ α(n) ≤ α(n)h

for some g, h > 0. Then, by the conditions we placed on α

α(n)ig ≤ β ◦ α(n) ≤ α(n)jh

for some i, j > 0. So we have

α(n)ig ≤ γ(n) ≤ α(n)jh

Now to see |A(x)| = γ(|x|), remember that A = A′ ◦A′′. Then since |A′′(x)| = α(|x|)

and |A′(x)| = β(|x|), we have that |A(x)| = β ◦ α(|x|) = γ(|x|).

Claim. Condition (1) holds: A,B are polynomial time computable.

12

Proof. As compositions of polynomial time functions, A,B are clearly also polynomial

time computable

Claim. Condition (2) holds: Whenever ` = γ(n),

(∀x ∈ Σn), (∀y ∈ Σ∗)

(x
H−→ Bn(〈1`, y〉)) =⇒ (A(x)

F−→ 〈1`, y〉)

Proof. Let `, n be such that ` = γ(n). Let x ∈ Σn, y ∈ Σ∗ be such that x
H−→

Bn(〈1`, y〉) = B′′n ◦ B′m(〈1`, y〉) since we know each Bn can be rewritten as B′′n ◦ B′m
for some B′′n, B

′
m. Now let T = B′m(〈1`, y〉), so Bn(〈1`, y〉) = B′′n(T), so x

H−→ B′′n(T).

Since we have a reduction from G to H, condition (2) implies that A′′(x)
G−→ T or

A′′(x)
G−→ B′m(〈1`, y〉) But then, since we have a reduction from F to G, we again use

condition (2) to see that A′ ◦ A′′(x)
F−→ 〈1`, y〉, or A(x)

F−→ 〈1`, y〉 so condition (2) is

preserved.

Claim. Condition (3) holds: Whenever ` = γ(n),

(∃j ∈ N) s.t (∀S ⊂ ran(F))

Pn
H

(Bn[S]) ≥ P`
F

(S)/nj

Proof. Let T ⊂ ran(F). Then Bn[T] ⊂ 〈1n,Σ∗〉 and we would like to know what

Pn
H

(Bn[T]) is. We know each Bn can be rewritten as B′′n ◦B′m for some B′′n, B
′
m.Then

it is clear that B′′n[T ′] = Bn[T]. Let T ′ = B′m[T]. Since we have a reduction from G

to H, by condition (3), Pn
H

(Bn[T]) = Pn
H

(B′′n[T ′]) ≥ Pm
G

(T ′)/nc for some c ∈ N. Also,

since we have a reduction from F to G, Pm
G

(T ′) = Pm
G

(B′m[T]) ≥ P`
F

(T)/nd for some

d ∈ N. Putting it all together, we have

Pn
H

(B[T]) = Pn
H

(B′′[T ′]) ≥ Pm
G

(T ′)/nk = Pm
G

(B′[T])/nk ≥ P`
F

(T)/nc+d

so condition (3) is preserved.

Thus the reduction is transitive.

13

4.3 Levin’s Universal Function

Our initial motivation for this definition was to capture to essence of Levin’s Universal

Function and show that every weak one-way function is reducible to Levin’s Universal

Function under this new notion of reduction. Note that the existence of OWF’s would

imply Levin’s Function is a OWF as well. Levin’s Universal Function, G : Σ∗ → Σ∗

is the function that, on input string of length n, will interpret first log(n) bits as TM

description 〈M〉, and give the remaining bits as input to M , letting it run for |x|3

time, where x is the input to M . If M has finished and outputs y, then G outputs

(〈M〉, y) (Otherwise G outputs something nonsensical which could not be confused

for valid output.) Since |x| = log(n) ≤ n, G is clearly computable in polynomial

time.

Analagously to the original proof, we first show that every weak one-way function

can be reduced to a weak one-way function that runs in quadratic time. Then we

show that arbitrary quadratic time weak one-way functions can be reduced to Levin’s

OWF. Then, since our reductions are transitive, that shows that every weak OWF is

reducible to Levin’s OWF, so that Levin’s OWF is complete.

Theorem 4.3. Every weak OWF is reducible to a weak OWF that runs in quadratic

time.

Proof. In the original proof, Levin’s idea is to “pad” the input so that the running

time will be quadratic in the size of the new input size. This is enough to show that

the existence of a weak OWF implies the existence of a quadratic time OWF, but the

idea needs to be subtly modified for our purposes. Let F : Σ∗ → Σ∗ be an arbitrary

weak OWF, and computable in time mk for some k ∈ N where m is the input size.

If k ≤ 2 then F is already quadratic time, so assume that k > 2. Then I claim the

function F is reducible to G : Σ∗ → Σ∗, which drops all but the last bn2/kc bits (where

n is the input size), runs the remaining bits as input to F , then outputs the output

14

of F . Furthermore, I claim that G runs in quadratic time. To prove this, we will

construct functions α,A,Bn and show that the necessary conditions of the reduction

are satisfied.

Let α(n) = bn2/kc,

A : Σ∗ → Σ∗ be the function that peels off all but the last bn2/kc bits, and

Bn : 〈1∗,Σ∗〉 → 〈1n,Σ∗〉 be the sequence of trivial functions such that Bn(1m, y) =

〈1n, y〉. Now we check that the conditions for a reduction are satisfied.

Claim. ∃c, d > 0 s.t nc ≤ α(n) ≤ nd and |A(x) = α(|x|)

Proof. α(n) = bn2/kc. Since k > 2, n2/k < α(n) < n1

Claim. A,B, are polynomial time computable.

Proof. Since A,B are both trivial functions, they are clearly polynomial time com-

putable

Claim. Whenever m = α(n),

(∀x ∈ Σn), (∀y ∈ Σ∗),

[(x
G−→ Bn(〈1m, y〉)) =⇒ (A(x)

F−→ 〈1m, y〉)]

Proof. Let m,n be such that m = α(n) and assume x
G−→ Bn(〈1m, y〉). Then, since

Bn is only changing the number of 1’s, x
G−→ 〈1n, y〉. But by definition, G works

by removing the padding, or applying A and running F on what remains. So then

A(x)
F−→ 〈1m, y〉.

Claim. Whenever m = α(n),

(∃j > 0) (∀S ⊂ ran(F)),

Pn
G

(Bn[S]) ≥ Pm
F

(S)/nj

Proof. Let S ⊂ 〈1m,Σ∗〉 and let 〈1m, x〉 ∈ S. Then Bn[1m, x] = 〈1n, x〉. Then since

G consists of dropping the padding and running F , Pn
G

(Bn[S]) = Pm
F

15

So a reduction exists. Now,we have that G, on input of size n, runs in time α(n)k

(since G runs by dropping all but α(n) bits and computing F) . But we also have

that bn2/kc = α(n) and so n ≥ α(n)k/2 or α(n)k ≤ n2. So G runs in quadratic time,

and therefore every weak OWF is reducible to a weak OWF that runs in quadratic

time.

Theorem 4.4. Every quadratic-time weak OWF is reducible to Levin’s OWF.

Proof. Let F : Σ∗ → Σ∗ be an arbitrary quadratic-time weak OWF and G be Levin’s

Universal Function (as described earlier). Then let α(n) = n − log(n), A : Σ∗ → Σ∗

be the function that, on an input of size n, simply removes the first log(n) bits from

its input (so clearly |A(x)| = α(|x|)), and Bn : 〈1∗,Σ∗〉 → 〈1n,Σ∗〉 be the sequence of

functions that, on input 〈1m, w〉, strips off the first m ones, puts back on n 1’s, and

then appends the TM description that computes F , 〈F 〉, to w. As before, we need

to verify the conditions necessary for a reduction hold.

Claim. ∃c, d > 0 s.t nc ≤ α(n) ≤ nd

Proof. n/2 ≤ n− log(n) ≤ n.

Claim. Condition (1) holds. A,B are polynomial time computable.

Proof. A is only removing bits and so runs in linear time. B removes bits, then

appends at most polynomially many 1’s, and then a TM description of F , which will

be of fixed length. So B is computable in polynomial time as well.

Claim. Condition (2) holds. Whenever m = α(n),

(∀x ∈ Σn), (∀y ∈ Σ∗),

[(x
G−→ Bn(〈1m, y〉)) =⇒ (A(x)

F−→ 〈1m, y〉)]

Proof. Let m,n be such that α(n) = m. Assume x
G−→ Bn(〈1m, y〉). Note that this

implies that the TM described by the first log(n) bits of x halts when run on the

remaining bits. Then, since Bn is only changing the number of 1’s and appending

16

a TM description, x
G−→ 〈1n, 〈F 〉, y〉. But since the output of G indicates the TM

description used, we know the first log(n) bits, 〈M〉, are exactly the bits of 〈F 〉. Then,

since G works by applying A and running F on what remains, A(x)
F−→ 〈1m, y〉.

Claim. Condition (3) holds. Whenever m = α(n),

(∃j > 0) (∀S ⊂ ran(F)),

Pn
G

(Bn[S]) ≥ Pm
F

(S)/nj

Proof. Let m,n be such that α(n) = m and let S = 〈1m, y〉 ⊂ 〈1m,Σ∗〉. Consider

Bn[S] = 〈1n, 〈F 〉, y〉. By the definition of G, this set will be mapped to only by

strings whose first log(n) bits correspond to the machine description of F and whose

remaining bits are mapped by TMx to y. The probabililty that the first log(n) bits,

〈M〉, corresponds to the correct TM description is 2−log(n) = 1/n. So Pm
G

(Bn[S]) =

Pn
F

(S)/n

This shows that every quadratic-time computable weak OWF can be reduced to

Levin’s Universal Function.

Theorem 4.5. Every weak OWF is reducible to Levin’s OWF

Proof. This is clear from the previous two theorems, and the transitivity of reductions.

5 Open Questions

We hope this formalization of reductions for one-way functions will stimulate new

interest in looking for other complete one-way functions, much as searching for NP-

complete problems has been a huge part of complexity theory. In particular, it would

be nice to have a more ”natural” complete one-way function, such as SAT is for

decision problems. We would also like to see if this definition could be extended

17

(perhaps with slight modifications) to similar types of problems, perhaps including

the class of collision resistant functions.

18

References

[1] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of computing, STOC ’71, pages

151–158, New York, NY, USA, 1971. ACM.

[2] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.

Miller and James W. Thatcher, editors, Complexity of Computer Computations,

pages 85–103. Plenum Press, New York, 1972.

[3] L. A. Levin. The tale of one-way functions. Probl. Inf. Transm., 39(1):92–103,

January 2003.

[4] C. Papadimitriou and Mihalis Yannakakis. Optimization, approximization and

complexity classes. Journal of Computer and System Sciences, 43:425–440, 1991.

[5] Alan L. Selman. A survey of one-way functions in complexity theory. Mathematical

systems theory, 25(3):203–221, 1992.

[6] L.G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8(2):189 – 201, 1979.

19

