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Abstract

Aim: Following toll-like receptor (TLR) engagement, lipopolysaccharide (LPS)
can stimulate the expression of pro-inflammatory cytokines thus activating the
innate immune response. The production of inflammatory cytokines results, in
part, from the activation of kinase-induced signalling cascades and transcriptional
factors. Of the four distinct classes of mitogen-activated protein kinases (MAPK)
described in mammals, p38, c-Jun N-terminal activated kinases (JNK1-3) and
extracellular activated kinases (ERK1,2) are the best studied. Previous data have
established that p38 MAPK signalling is required for inflammation and bone loss
in periodontal disease pre-clinical animal models.

Materials & Methods: In this study, we obtained healthy and diseased periodon-
tal tissues along with clinical parameters and microbiological parameters. Excised
fixed tissues were immunostained with total and phospho-specific antibodies
against p38, JNK and ERK kinases.

Results: Intensity scoring from immunostained tissues was correlated with clinical
periodontal parameters. Rank correlations with clinical indices were statistically
significantly positive (p-value < 0.05) for total p38 (correlations ranging 0.49—
0.68), phospho-p38 (range 0.44-0.56), and total ERK (range 0.52-0.59) levels,
and correlations with JNK levels also supported association (range 0.42-0.59).
Phospho-JNK and phospho-ERK showed no significant positive correlation with
clinical parameters of disease.

Conclusion: These data strongly implicate p38 MAPK as a major MAPK
involved in human periodontal inflammation and severity.
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In the periodontal microenvironment,
bacterial constituents including gram-
negative derived lipopolysaccharide
(LPS) can initiate inflammatory bone
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loss as appreciated in periodontal dis-
eases. LPS can stimulate the expres-
sion of IL-1f, TNF-a, IL-6 and
receptor activator of NF«xB Ligand
(RANKL) by activating the innate
immune response as well as non-
immune cells such as gingival
fibroblasts (Nakashima et al. 2000,
Jiang et al. 2002, Kikuchi et al.
2003). The production of inflamma-
tory cytokines results from the
activation of kinase-induced signal-
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ling cascades and transcriptional fac-
tors. Within periodontal diseased
tissues monocytes, macrophages and
fibroblasts, all produce cytokines
such as TNF-«, IL-15, PGE, and
IL-6 (Lee et al. 1995, Reddi et al.
1996) and have all been found to be
significantly elevated in diseased peri-
odontal sites compared to healthy or
inactive sites (Stashenko et al. 1991,
Geivelis et al. 1993, Gamonal et al.
2000, Ejeil et al. 2003, Gorska et al.
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2003). These cytokines orchestrate
the cascade of destructive events that
occur in the periodontal tissues, and
trigger the production of an array of
inflammatory enzymes and mediators
including MMPs and prostaglandins.
Moreover, pro-inflammatory cyto-
kines directly or indirectly recruit and
activate osteoclasts through
RANKL-dependent and independent
pathways, resulting in irreversible
periodontal bone destruction (Assu-
ma et al. 1998, Graves 1999). There-
fore, knowledge regarding the
molecular pathways that govern
expression of many inflammatory
mediators may have therapeutic sig-
nificance in the management of
inflammatory  diseases  including
chronic periodontitis.

Bacterial LPS initiates the innate
immune signalling cascade through
interaction with cell surface protein
expressed CD14 as well as toll-like
receptors (TLRs), mainly TLR-2 and
TLR-4 (Kirschning et al. 1998, Yang
et al. 2000, Kirschning & Bauer
2001). Expression of both TLR-2
and TLR-4 is increased in periodon-
tal disease tissues, suggesting that
these receptors have an increased
capacity to signal and influence
downstream  cytokine  expression
(Mori et al. 2003, Beklen et al.
2008). TLR-4 signalling activates
MyDS88-dependent  pathways  to
subsequent activation of interleukin-
1R-associated kinase (IRAK),
tumour necrosis factor receptor-
associated factor-6 (TRAF6) and
ultimately nuclear factor kappa B
(NF-kB) required for cytokine
induction. Also, TRAF6-dependent
pathways are required for recruit-
ment of different adaptor proteins
and activation of various mitogen
activating protein kinases (MAPK)
and activation of nuclear factor
kappa B (NF-xB). The transcription
factors NF-kB and activator protein-
1 (AP-1) control expression of some
of the most common inflammatory
mediators present in periodontal
inflammation, including IL-1, IL-6,
TNF-2 and MMPs [reviewed in
(Kirkwood & Rossa 2009)].

Although both MAPK pathways
and NF-xB signalling pathways are
well established in regulation of
inflammatory cytokines and MMP
genes in  periodontal  diseases,
considerable less information is
known about MAPK than NF-xB

signalling in human disease. MAPKs
phosphorylate a number of intra-
cellular targets, including transcrip-
tion factors (e.g. AP-1 and CHOP)
and RNA-binding proteins (e.g.
tristetraprolin  and HuR), which
tightly regulate expression of inflam-
matory genes including at transcrip-
tional and posttranscriptional levels.
Target genes downstream of MAPK
signalling include many common
inflammatory mediators such as
IL-1, IL-6, TNF-o, COX-2 and
MMPs  [recently  reviewed in
(Palanisamy et al. 2012)].

Understanding the cell signalling
processes involved in periodontal
disease progression and destruction
is key in the development of new
therapeutic approaches to prevent or
attenuate periodontal destruction.
Pre-clinical periodontal disease mod-
els indicate that there is a strong
positive correlation between activa-
tion of MAPKSs, inflammation and
bone loss (Kirkwood et al. 2007a,
Rogers et al. 2007, Kirkwood &
Rossa 2009, Li et al. 2011, 2012).
However, no data regarding the
significance of MAPK activation in
periodontal disease in humans have
been evaluated. In the study, clinical
periodontal parameters were corre-
lated with the level of activation of
MAPKs in subjects with chronic
periodontal disease compared to
healthy controls. Data obtained
strongly indicate that total p38 and
ERK have a significant positive cor-
relation with periodontal disease
severity while only phosphorylated
p38 only correlates with clinical
parameters of periodontal disease
progression.

Materials and Methods

This study was approved by the
Institutional Review Board for the
Health Sciences at the University of
Michigan, Ann Arbor, MI, USA. A
total of twenty-one tissue samples
from human subjects were included
in the study (13 females and 8
males). The subjects were divided
into two groups: healthy (10 sub-
jects) and diseased (11 subjects).
Informed consent was obtained with
all patients prior to initiating study.

Prior to surgery, clinical parame-
ters were measured at the same
sites where tissues were harvested
including: Plaque index (PI) on a

scale of 0-3 (0-no plaque, 1-w/probe,
2-visible, 3-abundant) (Loe 1967),
Gingival Index (GI) on a scale of
0-3 (0-no inflammation, 1-mild,
2-moderate w/BOP, 3-severe, sponta-
neous) bleeding on probing (BOP),
pocket depth (PD), BOP, gingival
recession (REC) and clinical attach-
ment level (CAL). Based on these
parameters the inclusion criteria for
the diseased group consisted of: at
least 1 site with PD >4 mm, GI
1-3 and PI 1-3. For the healthy con-
trols acceptable parameters were
PD <4 mm, GI <1 and PI <2. The
exclusion criteria for both groups
included: smokers, unstable systemic
diseases or chronic disorders (diabe-
tes, rheumatoid arthritis), patients
using steroids, antibiotics, NSAIDS
and/or other host modulators. The
procured samples were from tissues
that would have been otherwise dis-
carded after periodontal surgery and
or extraction sites. When clinically
indicated, procured tissues included
connective tissue near the sulcular
epithelium.

Microbial assessments: BANA test

The benzoyl-pL-arginine-naphthyla-
mide test was used to determine the
presence of “red-complex” periodon-
tal pathogens (Porphyromonas gingi-
valis, Treponema  denticola and
Tannerella forsythia) (Loesche et al.
1990) due to the unique ability of
these pathogens to hydrolyse a syn-
thetic trypsin substrate, BANA. Pla-
que was collected for BANA
analysis from the surgical site prior
to surgery. A curette was used for
plaque collection from the site. After
incubation for 5 min. at 35°C with
Evan’s black dye solution, naphthyl-
amine was released as a result of the
presence of any one of the “red-
complex” pathogens and formed a
permanent blue-black colour. The
test was read as positive or negative
based on the relative intensity of the
blue colour.

Tissue processing and
immunohistochemistry

Immediately following procurement,
the tissue samples were stored in vials
containing 4% vol formaldehyde and
phosphatase inhibitor cocktail (Phos-
STOP, Roche Diagnostic, Germany).
After 24-36 h they were transferred
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into 70% ethanol, embedded in par-
affin and then sections were pre-
pared. An attempt was made to cut
the sections in such a manner so that
every sample would have both the
epithelium and underlying connective
tissue whenever possible. Immunohis-
tochemical staining for p38, phos-
pho-p38, ERK, phospho-ERK, JNK
and phospho-JNK was performed.
Deparaffinized  ethanol-dehydrated
tissue sections were placed in a pres-
sure chamber (Biocare Medical, Con-
cord, CA, USA) for 15 min. in an
antigen retrieval buffer (DAKO,
Glostrup, Denmark) and allowed to
cool to room temperature. Primary
antibodies for p38, phospho-p38,
ERK, phospho-ERK, JNK and
phospho-JNK (Cell Signaling, Bev-
erly, MA, USA; R&D Systems, Min-
neapolis, MN, USA and Abcam,
Cambridge, MA, USA) were used to
evaluate the extent of expression,
detected using Vectastain Elite ABC
reagent and Nova Red (Vector Labo-
ratories, Burlingame, CA, USA) per
manufacturer’s instructions. Control
sections were incubated as well with
pre-immune serum or control IgG.
An independent oral pathologist
(NJD), blinded to the periodontal
status of the subjects, completed the
immunohistochemical staining scor-
ing analysis of the inflammatory infil-
trate in the connective tissue as
previously  described  (Kirkwood
et al. 2007b, Mitra et al. 2008). Due
to high background staining, the
epithelium was not scored. The
examiner first went through all the
slides for a particular stain and
selected slides that represented each
of the four levels of intensity. All
slides were scored using reference
slides as the standard. All slides were
assigned a score of 0, 1, 2 or 3, where
“0 = none”, “1 = low”, “2 = medium/
moderate” and “3 = high/severe” posi-
tive stain.

Inflammation intensity scoring

Serial sections from periodontal tis-
sue samples were sectioned for stan-
dard haematoxylin and eosin (H&E)
staining to correlate with immuno-
histochemical (IHC) staining. Speci-
mens were assessed and read for the
degree of inflammatory infiltrate by
a blinded oral pathologist (NJD).
Infiltrate intensity was scored as

MAPK expression in periodontitis

follows: none (less than mild), mild,
moderate or severe.

Statistical analysis

All statistical analyses were per-
formed using R version 2.12.1 (avail-
able at: http://cran.r-project.org/bin/
windows/base/old/2.12.1/). The raw
immunohistochemical staining scores
and periodontal outcomes of GI and
plaque index (PI) are presented in
table format. PD measurements
associated with the tooth from which
the tissue sample was taken were
summarized using the periodontal
inflammatory burden index, PIBI,
defined as the number of PD mea-
surements of 4 or 5 mm plus twice
the number of PD measurements
>6 mm (Lindy et al. 2008, Leppilahti
et al. 2011). We defined a summary
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clinical attachment level index,
CALI, in an analogous fashion as
the number of CAL measurements
of 4 or 5 mm plus twice the number
of CAL measurements >6 mm. The
clinical summaries PIBI and CALI
of the disease status of the area
where tissue was taken range from 0
to 12, with higher values indicating
more severe disease. Associations
between the ordinal immunohisto-
chemical staining outcomes for p38,
phospho-p38, ERK, phospho-ERK,
JNK and phospho-JNK and clinical
periodontal outcomes were quanti-
fied using the Spearman rank corre-
lation (computed using the function
rcorr from the R package Hmisc (R
package version 3.8-3, available at:
http://cran.r-project.org/web/packages/
Hmisc/index.html). Confidence inter-
vals for the correlations were
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Fig. 1. Total (a—d) and Phospho (e-h) p38 mitogen activating protein kinases immuno-
histochemistry scoring. The left column (a, b, e and f) illustrates a “0” score (no stain-
ing) of immunostained tissue samples. The right column (c, d, g and h) illustrates a
high/severe level of “3” immunostained tissue samples. “E” refers to epithelium and
“CT” refers to connective tissue. Arrows indicate representative areas of the inflamma-

tory infiltrate scored.
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obtained by back transforming nor-
mality-based confidence intervals for
the Fisher transformation (Fisher
1915) of the estimated correlation.
Because Fisher’s transformation is
non-linear, this back transformation of
the symmetrical normality-based confi-
dence interval results in an asymmetric
confidence interval for the raw
(untransformed) correlation.

Results

Subsets of MAPK expression correlates
with inflammation and microbiological
assessments

Twenty-one samples of periodontal
tissues were collected from healthy
subjects and chronic periodontitis
patients. In the healthy group, nine
samples of ten (90%) were graded as
“none — no inflammatory infiltrate
observed” with scattered focally
present lymphocytes and occasion-
ally plasma cells. One sample was
graded as mild and in that case
focally present lymphocytes, plasma
cells and  macrophages  were
observed. The diseased group con-
sisted of no samples in the “none”
category, four (36%) in the “mild”,
six (55%) in the “moderate” and one
(9%) in the “severe”. The diseased
group exhibited significantly more
inflammatory infiltrate, and lympho-
cytes, plasma cells and macrophages
were present in almost all the sam-
ples. Occasionally, bacterial colonies
were observed and interpreted as
dental calculus as well as extrava-
sated erythrocytes. IHC staining was
performed on tissues following
extensive optimization for each of
the following antibodies: total p38,
JNK and ERK along with phos-
phorylated (active) p38, JNK and
ERK. Representative examples of
total and phospho-p38 (Fig. 1), total
and phospho-JNK (Fig. 2) and total
and phospho-ERK (Fig. 3) are
presented.

The intensity of the IHC scoring
and the intensity of the inflamma-
tory infiltrate are both positively cor-
related with the clinical parameters
(Tables 1, 2). BANA scores showed
a striking correlation with clinical
disease parameters and THC scoring
(p-values < 0.02 for p38, phospho-
p38, ERK and JNK; BANA scores
were not significantly correlated with
phospho-ERK and phospho-JNK).

Total JNK
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Fig. 2. Total (a—d) and Phospho (e-h) c-Jun N-terminal activated kinases mitogen acti-
vating protein kinases immunohistochemistry scoring. The left column (a, b, ¢ and f)
illustrates a “0” score (no staining) of immunostained tissue samples. The right column
(c, d, g and h) illustrates a high/severe level of “3” immunostained tissue samples. “E”
refers to epithelium and “CT” refers to connective tissue. Arrows indicate representative

areas of the inflammatory infiltrate scored.

Figure 4 depicts the estimated
correlations between the clinical
parameters and IHC  scoring
together with 95% confidence inter-
vals computed as described in the
Methods section. The confidence
intervals reinforce the pattern of
association between the clinical
parameters and MAPK expression.
Specifically, the clinical parameters
are consistently, significantly, and
positively associated with the THC
scoring for p38, phospho-p38, ERK
and JNK (with the sole exception
that the confidence interval for the
association between JNK and the
summary index PIBI just covers
zero; p-value = 0.06 from Table 2),
and lack statistically significant cor-
relation with phospho-ERK and
phospho-JNK. Thus, MAPK expres-
sion, inflammatory infiltrate and

BANA exhibit similar patterns of
association with the clinical parame-
ters.

Discussion

Pro-inflammatory cytokines have
long been identified as major patho-
genic mediators involved in the
pathobiology of both rheumatoid
arthritis periodontitis, inducing and
propagating a chronic inflammatory
process leading towards tissue and
bone destruction (Kirkwood et al.
2007b). In humans, MAPK activa-
tion has been evaluated in tissues
from rheumatoid arthritis patients
which has been well characterized as
a chronic inflammatory disease
where inflammatory, immunological
and physical stimuli ultimately lead-
ing to tissue destruction (Zvaifler

© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
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Fig. 3. Total (a—d) and Phospho (e-h) extracellular activated kinases mitogen activat-
ing protein kinases immunohistochemistry scoring. The left column (a, b, e and f)
illustrates a “0” score (no staining) of immunostained tissue samples. The right column
(c, d, g and h) illustrates a high/severe level of “3” immunostained tissue samples. “E”
refers to epithelium and “CT” refers to connective tissue. Arrows indicate representa-
tive areas of the inflammatory infiltrate scored.

1995a, Zvaifler 1995b, Firestein
1999). MAPK signalling is vital for
synthesis and amplification of pro-
inflammatory mediators and MMPs
by synovial cells, chemoattraction of
mononuclear cells, and angiogenesis
of endothelial cells, as well as in
synovial cell apoptosis (Schett et al.
2000), and p38a and p38f seemed to
be predominantly activated in the
inflamed tissue (Korb et al. 2006).
Given the similarities in cytokine
networks between RA and periodon-
titis, we sought to understand if
some of the major MAPK signalling
pathways are operative during peri-
odontal disease progression.

This study evaluated and com-
pared the expression and activation
of p38, ERK and JNK MAPKs in
gingival tissues from normal healthy
subjects and subjects with chronic

periodontitis.  Activation of total
p38, ERK and JNK in diseased
tissues was evident but an even
more significant finding was the
observation of more intense immu-
noreactivity for phosphorylated p38
in diseased tissues compared to
controls (Tables 1, 2 and Fig. 4)
suggesting increased phosphorylation
of p38 in human chronic periodonti-
tis. These findings are in agreement
with results from studies that dem-
onstrated activation of p38, ERK
and JNK in samples from patients
with rheumatoid arthritis, and that
p38, specifically isoforms o and f
dominate in chronic inflammation
(Schett et al. 2000, Korb et al.
2006). Although initial aetiology is
different between periodontitis and
rheumatoid arthritis, the signalling
pathways used in response to bacte-

© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

761

Table 1. Rank correlations for the inflam-
matory infiltrate scores and BANA test
with MAPK intensities and clinical indices

MAPK

Infiltrate BANA

Rank p-value Rank p-value

COTT. COrT.
p38 0.60  0.004 0.65 0.001
p.p38 0.53 0.012 0.50 0.020
ERK 0.62  0.003 0.62 0.003
p.ERK 0.43 0.051 0.39 0.084
JNK 0.58 0.006 0.56 0.008
p.JNK 0.29  0.196 0.19 0.411
Clinical indices
PI 0.96 le-11 0.88 2e-07
GI 091 8e-09 0.96 Te-12
PIBI 0.87  4e-07 0.90 4e-08
CALI 0.84  2e-06 0.89 5e-08

BANA, benzoyl-DL-arginine-naphthylamide;
CALL clinical attachment level index; ERK,
extracellular activated kinases; GI, Gingival
Index; JNK, c-Jun N-terminal activated kinas-
es; MAPK, mitogen activating protein kinases;
PIBI, periodontal inflammatory burden index.

rial challenge or proinflammatory
cytokines are comparable. In fact,
many of the same cytokines (includ-
ing TNF-¢, IL-1f and IL-6) are
associated with progression in both
diseases. Data from periodontal dis-
ease pre-clinical models using a p38a
specific inhibitor suggest that at least
p38x may be a major p38 isoform
involved in inflammatory signalling
in chronic periodontitis (Kirkwood
et al. 2007b).

Although this study is the first to
address MAPK activation in human
periodontitis, previous studies
addressed NF-xB (p50/p65) and
inhibitor of kappa B (IxB) expres-
sion in chronic periodontitis patients
where activation of NF-xB (p50/p65)
was more significantly expressed in
diseased periodontal tissues (Ambili
et al. 2005). NF-kB and MAPK acti-
vation have also been shown to be
instrumental in  progression of
inflammatory  diseases  including
rheumatoid arthritis, cardiovascular
disease (Cook et al. 1999, Schett
et al. 2000), Alzheimer’s disease
(Culbert et al. 2006) and cancer pro-
gression (Hanahan & Weinberg
2000).

Clinical data and histological
grading of periodontal lesions pre-
sented agrees with the historical liter-
ature in clinical periodontics (Page &
Schroeder 1976) providing assurance
that correlative data presented here
relative to MAPK expression and
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Table 2. Rank correlations between MAPK scoring and clinical indices

PI GI PIBI CALI

Rank  p-value Rank  p-value Rank  p-value Rank  p-value

COIT. COIT. COIT. COIT.
p38 0.57 0.007 0.68 0.001 0.49 0.023 0.62 0.003
p.p38 0.44 0.047 0.47 0.034 0.45 0.039 0.56 0.009
ERK 0.52 0.015 0.58 0.005 0.56 0.008 0.58 0.006
p.ERK 0.35 0.116 0.40 0.071 0.25 0.269 0.34 0.135
INK 0.45 0.042 0.55 0.009 0.42 0.060 0.59 0.005
p.JNK 0.31 0.165 0.15 0.530 0.17 0.450 0.20 0.386

CALI, clinical attachment level index; ERK, extracellular activated kinases; GI, Gingival
Index; JNK, c-Jun N-terminal activated kinases; MAPK, mitogen activating protein kinases;

o~ PIEI p38
=n= ALl !
=& Py :
— Gl i
: p.p38
| ——— |ERK
R p.ERK
—— |
e p.JNK
T ; T
=-1.0 =05 0o 0.5 1.0

Rank Correlation

Fig 4. Association between the clinical
periodontal indices and expression of
mitogen activating protein kinases. The
Spearman rank correlation and 95%
confidence interval are shown. PI, plaque
index; GI, gingival index; PIBI, peri-
odontal inflammatory burden index;
CALI, clinical attachment level index.

activation is compelling. Intensity
scoring from immunostained tissues
presented in Tables 1, 2 along with
graphical representation of these
data in Fig. 4 was correlated with
clinical  periodontal  parameters.
Rank correlations with clinical indi-
ces were significantly positive for
total p38, phospho-p38 and total
ERK expression levels, along with
total JNK levels. Phospho-JNK and
phospho-ERK showed no significant
positive correlation with clinical
parameters of disease or BANA pos-
itivity. Since there was an increase in
the inflammatory infiltrate in the
diseased versus healthy sites, there
was an increase in the number of

PIBI, periodontal inflammatory burden index.

nuclei within these sites. Thus, the
total amount of p38, JNK and
ERK expression maybe positively
correlated with clinical indices since
there were more cells within the peri-
odontal lesions. The lack of correla-
tive data with p-JNK and p-ERK
suggests that although there is more
total JNK and ERK, these MAPKs
are not significantly active during
periodontal disease progression in
humans. One of the potential short-
comings of these data resides in the
inability to express the phosphory-
lated to non-phosphorylated MAPKs
ratios due to lack of sufficient amount
of quality serial samples. However, it
should be noted again, that the con-
nective tissue was only scored and
reported here since there was high

background immunostaining with
the epithelium.
It is important to note that

diseased samples evaluated for
inflammation, BANA and MAPK
expression in this study all had ini-
tial periodontal therapy including
scaling and root planing prior to
tissue procurement. Thus, the levels
of inflammation observed are most
likely lower then what would be
expected in an untreated periodontal
lesion, suggesting that the signifi-
cance of the data presented here is
highly significant. However,
although BANA data correlated
with periodontal disease status, these
studies cannot conclude that all
periodontal pathogens affect MAPK
signalling pathways to the same
extent or manner.

With emerging treatment modali-
ties used to manage periodontitis that
have been designed to modulate the
host response as it has been recog-
nized that the host response, not the
bacterial infection, is primarily

responsible for the connective tissue
destruction in chronic periodontitis.
This study confirms the findings from
studies in small animal models dem-
onstrating increased activation of
MAPKSs in periodontal disease pro-
gression (Kirkwood et al. 2007b),
indicating that both increased MAPK
expression and activation occurs with
increased severity of periodontal dis-
ease in human tissues. Moreover, this
is the first time that the levels of acti-
vation of MAPKs have been corre-
lated with clinical parameters as well
as BANA microbiological test results.
These findings suggest that MAPK
signalling plays a significant part of
the ontogeny of inflammation in peri-
odontal disease ultimately resulting in
alveolar bone loss.
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Clinical Relevance

Scientific rationale for the study:
This study provides basic biochemi-
cal data regarding the expression of
mitogen activating protein kinase
(MAPK) in diseased and healthy
human periodontal tissues. MAPKs
are activated via phosphorylation in
response to bacterial exposure and

are critical mediators of chronic
inflammation through the production
of pro-inflammatory cytokines. Previ-
ous data from the project laboratory
have shown that blocking specific
MAPK reduced experimental peri-
odontitis.

Principal findings: This study shows
that certain MAPK are more highly

activated in clinically diseased ver-
sus healthy tissue counterparts.
Practical implications: These data
may have clinically important
information since MAPK can be
targeted for therapeutic benefit.
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