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Deletion of the distal segment of 9p causes a syndrome compris-

ing trigonocephaly, minor anomalies, and intellectual disability.

Patients with this condition also frequently present with genito-

urinary abnormalities including cryptorchidism, hypospadias,

ambiguous genitalia, or 46,XY testicular dysgenesis. The region

responsible for the gonadal dysgenesis has been localized to

9p24.3 with the likely responsible gene identified as DMRT1.

Similar to patients with othermolecular causes of 46,XY gonadal

dysgenesis, patients with partial del 9p have an increased risk of

gonadoblastoma. We present two patients with 46,XY gonadal

dysgenesis due to partial 9p monosomy. Both patients were also

diagnosed with gonadoblastoma following gonadectomy at an

early age. Chromosomal microarray analyses refined the cyto-

genetic abnormalities and allowed potential genotype–pheno-

type relationships tobedetermined.Wealso review the literature

as it pertains to partial 9pmonosomy, genital abnormalities and

gonadoblastoma and note that a large percentage of affected

patients present with two copy number variations. We propose

that a two-hit mechanism may be involved in the incomplete

penetrance andvariable expressivity ofpartial 9pmonosomyand

an abnormal genital phenotype. The significant percentage of

gonadoblastoma in patients with 46,XY complete gonadal dys-

genesis due topartial 9pmonosomyalso continues to support the

necessity of gonadectomy in this patient population. � 2013Wiley

Periodicals, Inc.
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INTRODUCTION

In humans and othermammals, sex determination is initially made

in the bipotential gonad with subsequently produced gonadal

hormones responsible for the differentiation of male- and fe-

male-specific characteristics. Expression of the SRY (sex-determin-

ing region of Y) gene, located on the Y chromosome inmammals, is
2013 Wiley Periodicals, Inc.
responsible for the initial determination step that yields a male

gonad [Sekido and Lovell-Badge, 2009]. SRY, largely through its

upregulation of Sox9 expression, leads to the differentiation of

Sertoli cells and an eventual male phenotype. In the absence of SRY

and the failed upregulation of SOX9, the activation of beta-catenin

signaling, through Wnt4 and Rspo1 activity, drives the bipotential

precursor cells toward granulosa cell differentiation [Sekido and

Lovell-Badge, 2009]. Abnormalities in the components of sex

development, and in their downstream targets, clearly have impli-

cations on the functioning of this pathway and the resulting

phenotype.

Disorders of sex development (DSD) are defined as any congen-

ital condition in which the development of chromosomal, gonadal,

or anatomical sex is atypical [Hughes, 2008]. These disorders are

further divided into three categories: (1) sex chromosomeDSD; (2)

46,XY DSD; and (3) 46,XX DSD [Hughes, 2008]. 46,XY gonadal

dysgenesis occurs in the range of 1 in 3,000 births [Camerino
1882
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et al., 2006]. Of these patients, 10–15% have amutation in SRY and

10–15% have a mutation in NR5A1 (SF1) [Hawkins et al., 1992;

Philibert et al., 2010]. Other single gene causes have been identified

in a fewcases, and includemutations inWT1,SOX9, duplications of

NROB1 (DAX1), and 1p duplications containing WNT4. Cytoge-

netically visible aberrations have been known to cause gonadal

dysgenesis in a number of instances as well, with the areas 2q, 9p,

and 10q identified [Ostrer, 2004].

Partial monosomy for the distal segment of 9p (OMIM

#158170), initially described by Alfi et al. [1973], results in a

phenotype of trigonocephaly, minor anomalies, and intellectual

disability. Ambiguous genitalia are estimated to be present in up to

70% of patients with partial 9p monosomy [De Grouchy and

Turleau, 1982; Schinzel, 2001]. The critical interval for 46,XY

complete gonadal dysgenesis has been localized between 9p24.3

and 9pter [Flejter et al., 1998; Guioli et al., 1998]. Further work has

identifiedDMRT1 to be the likely causative gene responsible for 46,

XY complete gonadal dysgenesis in affected patients. Small intra-

genic DMRT1 deletions have also been associated with 46,XY

complete gonadal dysgenesis although point mutations were not

identified in DMRT1 when 46,XY female patients were evaluated

[Raymond et al., 1999; Calvari et al., 2000;Vialard et al., 2002; Ledig

et al., 2010, 2012].

Here, we present two patients with complete 46,XY gonadal

dysgenesis found to have deletions of the distal segment of 9p.

Gonadectomy documented gonadoblastoma in both patients. We

present their clinical description as well as their molecular workup

that includes detailed characterization of copy number breakpoints

by array CGH. We review the literature regarding previously

reported 46,XY patients with partial 9p monosomy and genital

abnormalities, with special emphasis to 46,XY complete gonadal

dysgenesis and the incidence of gonadoblastoma. We note that a

large number of partial 9p monosomy DSD patients have a sec-

ondary copy number variation (CNV) and suggest a possible two-

hit mechanism by which some 46,XY patients with partial 9p

monosomy present with DSD and others present with no sex-

related phenotype.
CLINICAL REPORT

Patient 1
Patient 1 has previously been reported elsewhere when she was

3 years old [McDonald et al., 1997; Flejter et al., 1998]. She was the

first childofhealthy, non-consanguineousparents, bornat 42weeks

of gestation following a normal pregnancy. She had Apgar scores of

9 and 9 at 1 and 5 min, respectively, with a birth weight of 4.48 kg

(1–2 SD above the mean). No concerns were noted neonatally.

She was referred at 10 months for a family history of recurrent

miscarriages and a known balanced translocation in a paternal

uncle. At 10 months she was developmentally normal but around

17 months was noted to have delays in speech and gross motor

development. At 3 years her expressive language was at approxi-

mately an 18-month level. She sat independently at age 12 months

and walked at age 18 months. In all grades, she qualified for special

education and physical therapy. At 15 years she was reading at

approximately a second grade level (age 7 years). She graduated
from high school with the assistance of special education. Current-

ly, at age 20 years, she is attending classes through a transitional

school, focusing on life-skills.

Cardiac evaluation as a neonate was performed for unknown

reason and showed abicuspid aortic valve andpatent foramenovale

(PFO); electrocardiogram showed a complete right bundle branch

block. Renal ultrasound and a pelvic ultrasound study at 3 years

showed a normal uterus and vagina without identifiable gonads.

At age 3 her weight and height were between the 50th and 75th

centiles with a head circumference greater than the 95th centile. The

patient was noted to have a single right palmar crease, bilateral 5th

finger clinodactyly, mild metatarsus varus, and external female

genitaliawith no palpable gonads. Repeat evaluation at 19 years and

11 months of age revealed the patient’s weight to be 100 kg (95–

97th centile) with a height of 173.5 cm (90–97th centile) and a BMI

of 33.4. She required corrective lenses.

Patient 2
Patient 2 is a phenotypic female born at 33 weeks of gestation

following a pregnancy complicated by preeclampsia and oligohy-

dramnios. The patient’smother received noprenatal care until after

20 weeks gestation. She also reported use of marijuana and the

prescription medications ondansetron, sertraline, bupropion, and

fluconazole during the pregnancy. The patient’s mother was

28 years old and had a history of developmental delay, cognitive

impairment and depression with a known deletion of 9p24.1 and

22q11.21. Following delivery Apgar scores were 8 and 9 at 1 and

5 min, respectively. Birth weight was 2.05 kg (58th centile), length

43.5 cm (38th centile), andhead circumference 28 cm (50th centile

for a 29.5-week gestation infant). An echocardiogram showed a

PFO and small-to-moderate restrictive apical muscular ventricular

septal defect (VSD).Hearingwas normal. Congenital hypothyroid-

ism is being managed with levothyroxine.

Results of cranial ultrasonography were normal. A pelvic ultra-

sound study showed a normal uterus; gonads were not visualized.

On renal ultrasonography kidneys were normal butwith significant

left hydronephrosis suggestive of ureteropelvic junction (UPJ)

obstruction, confirmed on diuretic renal scan. This was corrected

at age 1 year.

The patient was developmentally delayed early on and required

developmental services. At age 4 months, she was meeting all

developmental milestones. She began walking independently at

age 15–16 months. At 17 months, her expressive language devel-

opment was equivalent to that of a 14-month-old but with ad-

vanced receptive language.

At 4 months the patient weighed 5.14 kg (5th centile) was

56.1 cm long (1st centile) and had a head circumference of

36.8 cm (50th centile for 1 month). At that time we noted a small

nose, mild micrognathia and right occipital plagiocephaly. She had

an easily reducible umbilical hernia, female external genitalia,

transitional palmar crease on the right hand, mild head lag but

had an otherwise normal neurologic status. At age 17 months

weight was 8.92 kg (3rd centile), height 75.2 cm (8th centile),

and head circumference 42 cm (50th centile for a 5-month old).

Results of eye examination and hearing test at age 1 year were

normal.



FIG. 1. Deleted region of chromosome 9 in Patients 1 and 2 shown in UCSC genome browser. The 9p haploinsufficient regions affecting

Patients 1 and 2 are depicted in blue and red, respectively. OMIM and UCSC genes within the affected region are listed below deleted

intervals.
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RESULTS

Patient 1

At 10months of age a karyotype obtained at the University of Utah

showed a 46,XY,der(9)t(8;9)(p21;p24) unbalanced chromosome

constitution with monosomy 9p24 and trisomy 8p21. At age

19 years, the boundaries of the deleted and duplicated regions

were refined by microarray methods which identified a 25.3-Mb

single copyduplicationof 8p23.3p21.2 (176,818–25,510,851; hg19)

and a 2.0-Mb single copy deletion of 9p24.3 (46,587–1,994,144; hg

19) (Fig. 1). Father had a balanced translocation 46,XY,t(8,9)(p21;

p24).

Given the increased incidence of gonadal malignancy in patients

with gonadal dysgenesis, thepatientunderwent gonadectomyat age

3 years. Laparoscopic evaluationat that time showed thepresence of

a uterus and Fallopian tubes. Gonads were ovoid, white, firm and

measured 2.5 � 0.6 � 0.8 cm. Both gonads had nearly identical

histologic structure: Theywere dysgenicwithout ovarian follicles or

seminiferous tubules. Cellular nests contained two cell types, large

and round cells with clear cytoplasm and a large round nucleus and

smaller comma-shaped cells. The histologic diagnosis was:

gonadoblastoma.
Patient 2

The patient’s mother had a known history of 9p24.1 deletion and

22q11.21 deletion. A maternal chromosomal microarray study

refined the boundaries of the 9p24.1 (194,104–8,256,492; hg 18)

and 22q11.21 (18,989,547–19,835,417; hg 18) deletions measuring

8.3 Mb and 846 kb in size, respectively (Fig. 1). Amniocentesis of

Patient 2’s mother showed 45,X/46,XY mosaicism and the 9p

deletion. Following delivery, metaphase FISH analysis of 15 cells

identified the 22q11.21 deletion as well in Patient 2. Postnatal

karyotype also confirmed thematernally inheriteddeletionof 9p24.

Her karyotype was denoted as 46,XY,del(9)(p24.1)mat.ishdel(22)

(q11.21q11.21)(b135h6-). Given the prenatal mosaicism, 30 meta-

phase cells were analyzed postnatally and showed low level mosai-

cism for a 45,X cell population.Of 500 interphase cells, FISHprobes

specific to X and Y centromeres showed 5.6% of the cells had a 45,X

constitution and 94.4% of the cells had a 46,XY constitution.

Given the increased risk of gonadal malignancy, the patient

underwent gonadectomy at 1 year of age. Laparoscopic evaluation

showed a normal uterus and Fallopian tubes. Both gonads were

“streak,” measuring 1.4 � 0.5 � 0.3 cm and 0.9 � 0.3 � 0.3 cm

(Fig. 2A). Grossly no tumor nodules were recognized. Microscopi-



FIG. 2. Intraoperative and pathology images of Patient 2. A: Intraoperative photograph showing streak gonad. B: Gonadoblastoma focus

containing large germ cells (star), small dark stromal cells (dark arrow), and eosinophilic hyaline bodies (open arrow).
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cally, both gonads showed ovarian stroma with small foci of

gonadoblastoma with microcalcifications (Fig. 2B). These foci

contained nests of large germ cells with clear cytoplasm surrounded

by smaller cells with dark hyperchromatic nuclei consistent with

stromal sex cord type cells. Eosinophilic hyaline bodies composed

of basement membrane material were also noted in the nests. No

follicle formation or testicular differentiation was noted. No inva-

sive tumor was seen. Cytogenetic analysis of the gonadal tissue

showed mosaicism for 45,X and 46,XY cell lines and the previously

identified deletion of 9p24.1. Following metaphase and interphase

FISH analysis, shown in Figure 3, it was determined that one gonad

contained 46%45,X cells and 54%46,XY cells with the other having

67% 45,X cells and 33% 46,XY cells.
DISCUSSION

DSD are a clinically and causally heterogeneous group of disorders.

In patients with 46,XY complete gonadal dysgenesis, a cause is

identified in less than half of the cases. Up to 20–30% of these are

attributed to SRY and SF1mutations with other single gene causes

contributing only a small proportion of the remainder [Hawkins

et al., 1992; Philibert et al., 2010]. Array-comparative genomic

hybridization has allowed clinicians to detect CNVs not visible

cytogenetically and also allowed refinement of those previously

detected karyotype aberrations. Ledig et al. [2010] estimated that

the cause of 25%of syndromic and5.6%of non-syndromic gonadal

dysgenesis could be identified by array CGH. Hemizygosity of the

distal segment of 9p is known to cause 46,XY gonadal dysgenesis

and other milder genital phenotypes including ambiguous genita-

lia, hypospadias and cryptorchidism. Here we present two patients
with a diagnosis of 46,XY complete gonadal dysgenesis found to

have partialmonosomy for 9p and other cytogenetic abnormalities.

The two patients reported here presented with classic findings

consistent with complete 46,XY gonadal dysgenesis. Patient 1 was

reported previously, with further molecular studies performed

following the initial report [McDonald et al., 1997; Flejter

et al., 1998]. As recommended by Flejter et al. [1998] the data

reported here further characterize the deletion and duplication

boundaries of this patient [Huret et al., 1988; Flejter et al., 1998;

Muroya et al., 2000; Swinkels et al., 2008]. The patient is also

trisomic for approximately 25 Mbof the short armof chromosome

8. The phenotypic consequences of this aberration are unknown at

this time. Of note,GATA4 is within the duplicated region. Loss-of-

function mutations and haploinsufficiency of GATA4 has impli-

cations in sexual and cardiac development, withmutations causing

46,XY gonadal dysgenesis and heart septation defects, respectively

[Reamon-Buettner and Borlak, 2005; Lourenço et al., 2011]. There

has been debate as to whetherGATA4 duplication results in cardiac

defects, but it remains an important consideration given the

patient’s bicuspid aortic valve [Yu et al., 2011].Nogain-of-function

mutations or duplications of GATA4 have been reported to cause

gonadal dysgenesis or genital abnormalities, but patients with 8p

duplications that includeGATA4 have presented with hypospadias

[Yu et al., 2010, 2011].The largenumberof genes involvedmakes an

exact genotype–phenotype correlation difficult to establish.

Patient 2 also presented with findings of complete gonadal

dysgenesis. Her mosaic karyotype contained both 45,X and 46,

XY cell lines. The external phenotype in patients with 45,X/46,XY

mosaicism can include normal male or female genitalia or ambig-

uous genitalia with gonadal pathology also variable, ranging from



FIG. 3. Cytogenetic results of Patient 2’s mosaic gonadal tissue using X chromosome centromeric (green), SRY (red), and Yq12 (green)

probes of gonadal tissue. A: 45,X,del(9)(p24.1) karyotype. B: 46,XY,del(9)(p24.1) karyotype of gonadal tissue 2. C: FISH analysis showing

only one X chromosome signal and absent hybridization of Y chromosome probes. D: FISH analysis confirming mosaicism with hybridization of

both X and Y probes.
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apparently normal testes to dysgenetic gonads [Farrugia et al., 2013;

Tosson et al., 2012]. Similar to Patient 2, individuals with 45,X/46,

XY mosaicism can have significant differences in the percentage of

45,X and 46,XY cell lines present in different tissues [Tosson

et al., 2012]. This has clear implications in gonadal development,

with the elevated percentage of 45,X cells (67%) present in Patient

2’s gonadal tissue likely contributing to their dysgenetic develop-

ment. Determining the exact contribution that each cytogenetic

aberration (partial 9p monosomy and the 45,X cell line) has on

Patient 2’s phenotype is difficult to establish. The patient will

require management for Turner syndrome as she grows.

Patient 2 also inherited an 846 kb deletion of 22q11.21 from her

mother. This deletion lies within the distal half of the common

3 Mb deletion associated with DiGeorge syndrome (OMIM

#18440) and velocardiofacial syndrome (VCFS; OMIM

#192430). The proximal region of the long arm of chromosome

22 has a large number of low copy repeats that increase the risk of

rearrangements caused by non-allelic homologous recombination.

The most common rearrangement, seen in DiGeorge syndrome/
VCFS, occurs as a result of non-allelic homologous recombination

between low copy repeats 2 and 4, as defined by Edelmann et al.

[1999] and McDermid and Morrow [2002]. Patients have been

described with deletions of the surrounding genomic area [Garcia-

Miñaur et al., 2002; Rauch et al., 2005; Ogilvie et al., 2009; Breckpot

et al., 2012]. Our patient’s deletion contains 19 genes including

three OMIM disease genes (ZNF74, HCF2, and SNAP29) but does

not include TBX1. It is nearly identical to the deletions reported by

Garcia-Miñaur et al. [2002] and Rauch et al. [2005], and lies

between low copy repeat 3 and low copy repeat 4. The patient

reported by Garcia-Miñaur et al. [2002], a male who inherited his

deletion from an asymptomatic father, had Tetralogy of Fallot,

microcephaly andminor anomalies.Rauch et al. [2005] reportedon

a patient with a similar deletionwho also presented with congenital

heart disease (CHD),mild hypotonia, frequent infections and facial

features consistent with mild DiGeorge syndrome. This deletion

may provide a partial explanation of the VSD in Patient 2 with

haploinsufficiency for CRKL (within the deleted segment) sug-

gested as a candidate gene responsible for the CHD in these patients
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[Breckpot et al., 2012]. 46,XY gonadal dysgenesis has not been

reported in these patients, but two patients have been reportedwith

46,XX testicular DSD who were found to have the DiGeorge

deletion [Phelan et al., 2002; Erickson et al., 2003]. Similar to

the presence of the 45,X cell line, this deletion makes assigning

responsibility to any one causative cytogenetic aberration difficult.

Both patients presented with 9p monsomy as well as other

significant chromosomal abnormalities that make establishing

an exact genotype–phenotype relationship difficult. To gain addi-

tional insights, we reviewed the literature and identified previous

reports of partial 9p monosomy causing haploinsufficiency of

DMRT1, the leading candidate gene for 46,XY complete gonadal

dysgenesis in these patients (see below). Specific emphasis was paid

to patients with 46,XY karyotypes and any genital-related pheno-

typic abnormalities (Table I). The reported genital phenotypes

ranged from complete gonadal dysgenesis to cryptorchidism, hy-

pospadias, and micropenis. Though Table I is limited to those

patientswith genital abnormalities,multiple 46,XYpatientswithno

abnormal genital phenotype or complete gonadal dysgenesis have

been described with monosomy for near-identical segments of 9p

(Table II). This is in contrast to a number of patients with complete

or partial 46,XY gonadal dysgenesis found to have small intragenic

deletions in DMRT1 [Ledig et al., 2010, 2012].

Review of Table I shows that 60% (43/72) of those patients with

genital abnormalities and/or complete gonadal dysgenesis have at

least one additional CNV/karyotype abnormality besides monoso-

my for a portion of 9p. Most of these are trisomies caused by an

unbalanced translocation. Given the variable penetrance and ex-

pressivity of the genital phenotype, this may suggest a second hit is

needed for the 46,XY complete gonadal dysgenesis and/or genital

abnormalities to develop. Huret et al. [1988] evaluated 80 cases of

partial 9p monosomy and compared those with other unbalanced

segments (41 cases) with those containing only partial 9p monoso-

my (39 cases). They found 42% of both groups presented with

external genitalia abnormalities. It should be noted though that

both groups included both 46,XY and 46,XX patients. Given that

partial 9pmonosomy, especiallyDMRT1haploinsufficiency, affects

46,XX individuals much less significantly (no testicular DSD/

gonadal dysgenesis or genitalia ambiguity) than those with 46,

XY karyotypes, the data in Table I should prove more useful when

considering the genotype–phenotype relationships of partial 9p

monosomy. Comparing the patients in Table I to those patients

without external genital abnormalities (Table II) reveals statistically

significant support for a two-hit hypothesis as 81% (13/16) of those

patients with no genital phenotypes have only one noted CNV/

cytogenetic abnormality (Fisher’s exact test, P ¼ 0.0047). Further

comparisonof both groups ofpatients reveals that the three patients

with no genital abnormalities and a second hit have similar addi-

tional CNVs to three patients listed in Table I (trisomy for portions

of 6p, 10q, and 20p). This suggests further variable expressivity or

incomplete penetrance of these duplicated regions versus an un-

known alternative locus contributing to the genital phenotype in

the affected patients. It should also be mentioned that a significant

percentage of the patients evaluated have only had karyotype

analysis. Chromosomal microarray would likely identify the pres-

ence of additional copy number abnormalities undetectable by

cytogenetic techniques. A potential reporting bias should also be
considered as patients with a more severe phenotype and/or

multiple copy number abnormalities aremore likely to be reported.

Regardless though, given the significant differences between both

groups, further evaluation of a two-hit mechanism is warranted.

This two-hit hypothesis is similar to the previously suggested

second-hit models involving other developmental abnormalities

including a cardiac phenotype in GATA4 duplications [Girirajan

et al., 2010; Yu et al., 2011; Lupski, 2012]. Though chromosomal

duplications, which represent most of the second-hits in our

patients, are better tolerated when compared to deletions, duplica-

tion of DAX1 can lead to 46,XY complete gonadal dysgenesis

[Barbaro et al., 2007], and dosage sensitivity is well described in

mouse sex reversal [Bouma et al., 2007; Buaas et al., 2009; Correa

et al., 2012]. Overall, this may suggest a role for other duplicated

regions and dosage-sensitive genes in providing the second-hit

responsible for the gonadal dysgenesis phenotype in these patients.

Review of the genomic regions reported as second hits in Table I

failed to identify any strong candidate genes that could be impli-

cated in the abnormal genital phenotype. Although there are genes

that have been implicated in abnormal sex development within

duplicated regions of the 9p monosomy patients, including

CYP11A and SRD5A2, the genital abnormalities are associated

with loss of function rather than gain of function.

As previously mentioned, DMRT1 is the gene likely responsible

for gonadal dysgenesis in a subset of 9p monosomy patients.

Localized to the 9p24.3 region are three DMRT (Doublesex-

Mab3-Related Transcription factor 1–3) genes. These genes were

initially identified as strong candidate genes for 46,XY complete

gonadal dysgenesis based on their Caenorhabditis elegans and

Drosophila melanogaster homologues’ role in sexual development

[Raymond et al., 1998, 1999].DMRT genes contain aDNA-binding

motif domain, a zinc containing DNA-binding module [Zhu

et al., 2000]. In mammals, DMRT1 is expressed only in the gonad

and following sex determination, only in the testis [Raymond

et al., 1998; Matson and Zarkower, 2012]. DMRT1-null male

mice have normal external genitalia with functional Sertoli cells,

but have hypoplastic testes, disorganized seminiferous tubules and

lack germ cells [Raymond et al., 2000]. Heterozygous males are

phenotypically normal with normal testes and retained fertility

[Raymondet al., 2000].However, inhomozygousnullmalemice, at

2 weeks following birth, the Sertoli cell expression pattern changes;

there is decreased expression of SOX9, increased expression of

FOXL2, andoverall reprogrammingof Sertoli cells into agranulosa-

like cell type [Matson et al., 2011]. This, and data regarding the

function of granulosa cells, suggests that following determination

and differentiation, both Sertoli and granulosa cells require the

presence of certain proteins tomaintain their identity and function

[Matson and Zarkower, 2012]. This principle, termed sex mainte-

nance, is achieved inmales through the function ofDMRT1, and in

females through FOXL2 [Uhlenhaut et al., 2009; Matson

et al., 2011].

Review of Patient 2’s history reveals the presence of congenital

hypothyroidism diagnosed on newborn screening. Though there

are multiple genetic causes of congenital hypothyroidism, it is

interesting to note that Patient 2 is haploinsufficient for GLIS3,

which lies within the deleted 9p interval. GLIS3 loss-of-function

mutations cause an autosomal recessive syndrome termed Neona-
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TABLE II. Chromosomal Imbalances in 46,XY Patients With 9p Deletions and No Genital Abnormalities

Case Karyotype or chromosomal regiona CNV size Refs.

1 del9pter-p22 dup10q26-qter — Akbas et al. [2011]
2 del9pter-p23 11.1 Mb Shimojima and Yamamoto [2009]
3 46,XY,del(9)(p24.3) 1.17–1.23 Mbb Hauge et al. [2008] (Case 3)
4 del9pter-p23 del9p: 10 Mb Hauge et al. [2008] (Case9)

dup20pter-p12.1 dup20p: 14 Mb
5 del9pter-p22.3 �15 Mb Swinkels et al. [2008] (Case 8)
6 46,XY,del(9)(pter-p22) — Huret et al. [1988] (Case 2)
7 46,XY,del(9)(qter-p220 — Boby et al. [1994]
8 46,XY,del(9)(qter-p2304) — Taylor et al. [1991]
9 46,XY,der(9)t(6:9)(p211;p24) — Eden et al. [1985]
10 46,XY,del(9)(pter-p22) — Ioan et al. [1985]
11 46,XY,del(9)(pter-p12) — Young et al. [1983]
12 46,XY,del(9)(pter-p22) — Bricarelli et al. [1981]
13 46,XY,del(9)(pter-p12) — Hernandez et al. [1979]
14 46,XY,del(9)(pter-p22) — Nielsen et al. [1977]
15 46,XY,del(9)(pter-p22) — Alfi et al. [1976]
16 46,XY,del(9)(pter-p21) — Serville et al. [1976]
aAll karyotypes of 46,XY constitution.
bp: pter-1,167,143–1,233,178 (build NR).
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tal diabetes mellitus with congenital hypothyroidism (OMIM

#610199) [Senée et al., 2006]. This condition has been seen in

consanguineous Saudia Arabian families and can include hepatic

fibrosis, congenital glaucoma and polycystic kidneys. Though

Patient 2 has loss of only one copy of the gene, it is possible that

haploinsufficiency results in the congenital hypothyroidism but

none of the other features that are part of the condition. Multiple

other patients have been reported with partial 9p monosomy and

hypothyroidism [Ioan et al., 1985; Kozma et al., 2000; Velagaleti

et al., 2008]. Review of Patient 1’s deleted 9p interval shows GLIS3

not to be deleted. It is also possible that the deletion of GLIS3 in

Patient 2 uncovered an autosomal recessive mechanism leading to

her congenital hypothyroidism, leading to speculation that shemay

carry a deleterious mutation of her other GLIS3 allele. Further

testing would be required to prove this hypothesis. Regardless, we

recommend evaluation for hypothyroidism in patients with partial

9p monosomy, especially if GLIS3 is within the deleted interval.

Patients with DSD, specifically those with dysgenetic gonads

and/or hypovirilization, have an increased risk of type II germ cell

tumors [Looijenga et al., 2010]. Gonadoblastomas are estimated to

occur in up to 30% of 46,XY patients with dysgenetic gonads

[Sultana et al., 1995]. The presence of Y chromosome material

has been implicated in the oncogenesis in these patients, with the

locus mapped to the Y centromeric region [Page, 1987]. TSPY has

arisen as the leading candidate for the responsible gene [Lau, 1999].

Given this increased risk, both of the patients reported here

underwent gonadectomy with pathology showing the presence

of dysgenetic gonads and gonadoblastoma. Additional immuno-

histochemical stains were not performed on our two patients’

samples because both lacked identifiable seminiferous tubules,
making specific staining to differentiate delayed germ cell matura-

tion from intratubular germ cell neoplasia unnecessary. Review of

Table I shows that multiple patients reported in the past developed

gonadoblastoma as well. Livadas et al. [2003] previously reviewed

the literature as it pertained to gonadoblastoma in patients with 9p

deletions andother 46,XYcomplete gonadal dysgenesis loci. Review

of Table I shows that of those patients with 46,XY karyotypes,

complete gonadal dysgenesis andpartial 9pmonosomy, 11%(8/72)

developed a gonadal malignancy. If only those patients with

pathology data are considered, this percentage increases to 30%

(8/27). It is also important to note that most gonadal malignancies

occurred in patients with complete gonadal dysgenesis (with the

exception of Cases 3 and 8who presented with ambiguous genitalia

and clitoral hypertrophy, respectively). This supports the recom-

mendation that gonadectomy be performed in patients with go-

nadal dysgenesis, especially those with partial 9p monosomy.

Specific recommendations regarding gonadectomy and surveil-

lance of 9p monosomic individuals with less severe genital pheno-

types are difficult tomake at this time given that the natural history

of this cohort is currently unknown. Empirically, for these patients

we recommend annual testicular examinations and consideration

of scrotal ultrasound until adult age. Clinicians should have a low

threshold for biopsy if suspicious findings are identified.

While the presence of TSPY can contribute to the increased risk

of malignancy in these patients, loss of DMRT1 activity has also

been linked to an increased risk of cancer given its proposed tumor

suppressor properties [Krentz et al., 2009]. Krentz et al. [2009]

reported an increased incidence of testicular teratoma (Type I germ

cell tumor)with loss ofDMRT1 in themalemice of the 129Sv strain.

This incidence was noted to be around 90% in homozygous null



QUINONEZ ET AL. 1893
mutants and 4% in heterozygous mice with no noted increased

tumor incidence in female mice. This increased teratoma risk was

shown to result from a disruption of cell cycle pluripotency and cell

cycle control [Krentz et al., 2009]. Genomewide association studies

have also shown an increased susceptibility to testicular germ cell

cancer in or around DMRT1 [Turnbull et al., 2010; Kanetsky

et al., 2011; Kratz et al., 2011]. It remains difficult to determine

the exact oncogenic contribution that haploinsufficiency for

DMRT1 has, but further evaluation of this evolutionarily conserved

pathway is clearly needed.

In conclusion, we report two patients with 46,XY complete

gonadal dysgenesis caused by partial 9p monosomy. Both patients

underwent gonadectomy, which revealed the presence of gonado-

blastoma.The deletionbreakpoints of Patient 1, whohas previously

been reported, were further characterized. Both patients’ deletions

resulted inDMRT1 haploinsufficiency, which is likely contributing

to their gonadal dysgenesis. Review of the literature shows that

haploinsufficiency for DMRT1 results in gonadal dysgenesis and

abnormal sex development with variable penetrance and expres-

sivity. We suggest this variability may be due to the presence of a

second-hit (CNV or other molecular mechanism), which may be

needed for subsequent abnormal sex development. Gonadoblas-

toma was also present in a significant percentage of patients with

partial 9p monosomy, specifically those with gonadal dysgenesis,

further supporting the recommendation that gonadectomy be

performed in these patients. Further investigation will hopefully

elucidate the relationship between DMRT1 loss-of-function/hap-

loinsufficiency and oncogenesis.
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Hjerpe A, Lindgren F, Mayerová A, Ringertz H, Ritzén EM, Rovetta DC,
Sicchero C, Wolf U. 1981. Sex-reversed XY females with campomelic
dysplasia are H-Y negative. Hum Genet 57:15–22.

Buaas FW, Val P, Swain A. 2009. The transcription co-factor CITED2
functions during sex determination and early gonad development. Hum
Mol Genet 18:2989–3001.

Calvari V, Bertini V, De Grandi A, Peverali G, Zuffardi O, Ferguson-Smith
M, Knudtzon J, Camerino G, Borsani G, Guioli S. 2000. A new submi-
croscopic deletion that refines the 9p region for sex reversal. Genomics
65:203–212.

CamerinoG,ParmaP,RadiO,Valentini S. 2006. Sexdetermination and sex
reversal. Curr Opin Genet Dev 16:289–292.

Chen CP, Lin SP, ChenMR, Su JW, Chern SR, Chen YJ, Lee MS,WangW.
2012. Phenotypic features of pure 9p deletion in a male infant include
cryptorchidism, congenital heart defects and postaxial polydactyly.
Genet Couns 23:195–200.

Correa SM,Washburn LL, KahlonRS,MussonMC, BoumaGJ, Eicher EM,
AlbrechtKH. 2012. Sex reversal inC57BL/6JXYmice causedby increased
expression of ovarian genes and insufficient activation of the testis
determining pathway. PLoS Genet 8:e100259.

Crocker M, Coghill SB, Cortinho R. 1988. An unbalanced autosomal
translocation (7;9) associated with feminization. Clin Genet 34:70–73.

De Grouchy J, Turleau C. 1982. Monosomie 9p2. Atlas des maladies
chromosomiques. Paris: Expansion Scientific Français. pp 162–167.
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