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Deletion of the distal segment of 9p causes a syndrome compris-
ing trigonocephaly, minor anomalies, and intellectual disability.
Patients with this condition also frequently present with genito-
urinary abnormalities including cryptorchidism, hypospadias,
ambiguous genitalia, or 46,XY testicular dysgenesis. The region
responsible for the gonadal dysgenesis has been localized to
9p24.3 with the likely responsible gene identified as DMRTI.
Similar to patients with other molecular causes of 46,XY gonadal
dysgenesis, patients with partial del 9p have an increased risk of
gonadoblastoma. We present two patients with 46,XY gonadal
dysgenesis due to partial 9p monosomy. Both patients were also
diagnosed with gonadoblastoma following gonadectomy at an
early age. Chromosomal microarray analyses refined the cyto-
genetic abnormalities and allowed potential genotype—pheno-
typerelationships to be determined. We also review the literature
as it pertains to partial 9p monosomy, genital abnormalities and
gonadoblastoma and note that a large percentage of affected
patients present with two copy number variations. We propose
that a two-hit mechanism may be involved in the incomplete
penetrance and variable expressivity of partial 9p monosomy and
an abnormal genital phenotype. The significant percentage of
gonadoblastoma in patients with 46,XY complete gonadal dys-
genesis due to partial 9p monosomy also continues to support the
necessity of gonadectomy in this patient population. © 2013 Wiley

Periodicals, Inc.
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INTRODUCTION

In humans and other mammals, sex determination is initially made
in the bipotential gonad with subsequently produced gonadal
hormones responsible for the differentiation of male- and fe-
male-specific characteristics. Expression of the SRY (sex-determin-
ing region of Y) gene, located on the Y chromosome in mammals, is
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responsible for the initial determination step that yields a male
gonad [Sekido and Lovell-Badge, 2009]. SRY, largely through its
upregulation of Sox9 expression, leads to the differentiation of
Sertoli cells and an eventual male phenotype. In the absence of SRY
and the failed upregulation of SOX9, the activation of beta-catenin
signaling, through Wnt4 and Rspol activity, drives the bipotential
precursor cells toward granulosa cell differentiation [Sekido and
Lovell-Badge, 2009]. Abnormalities in the components of sex
development, and in their downstream targets, clearly have impli-
cations on the functioning of this pathway and the resulting
phenotype.

Disorders of sex development (DSD) are defined as any congen-
ital condition in which the development of chromosomal, gonadal,
or anatomical sex is atypical [Hughes, 2008]. These disorders are
further divided into three categories: (1) sex chromosome DSD; (2)
46,XY DSD; and (3) 46,XX DSD [Hughes, 2008]. 46,XY gonadal
dysgenesis occurs in the range of 1 in 3,000 births [Camerino
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etal., 2006]. Of these patients, 10-15% have a mutation in SRY and
10-15% have a mutation in NR5A1 (SF1) [Hawkins et al., 1992;
Philibert et al., 2010]. Other single gene causes have been identified
in a few cases, and include mutationsin WT'1, SOX9, duplications of
NROBI (DAXT1), and 1p duplications containing WNT4. Cytoge-
netically visible aberrations have been known to cause gonadal
dysgenesis in a number of instances as well, with the areas 2q, 9p,
and 10q identified [Ostrer, 2004].

Partial monosomy for the distal segment of 9p (OMIM
#158170), initially described by Alfi et al. [1973], results in a
phenotype of trigonocephaly, minor anomalies, and intellectual
disability. Ambiguous genitalia are estimated to be present in up to
70% of patients with partial 9p monosomy [De Grouchy and
Turleau, 1982; Schinzel, 2001]. The critical interval for 46,XY
complete gonadal dysgenesis has been localized between 9p24.3
and 9pter [Flejter et al., 1998; Guioli et al., 1998]. Further work has
identified DMRT1 to be the likely causative gene responsible for 46,
XY complete gonadal dysgenesis in affected patients. Small intra-
genic DMRT] deletions have also been associated with 46,XY
complete gonadal dysgenesis although point mutations were not
identified in DMRTI when 46,XY female patients were evaluated
[Raymond etal., 1999; Calvari et al., 2000; Vialard et al., 2002; Ledig
et al., 2010, 2012].

Here, we present two patients with complete 46,XY gonadal
dysgenesis found to have deletions of the distal segment of 9p.
Gonadectomy documented gonadoblastoma in both patients. We
present their clinical description as well as their molecular workup
that includes detailed characterization of copy number breakpoints
by array CGH. We review the literature regarding previously
reported 46,XY patients with partial 9p monosomy and genital
abnormalities, with special emphasis to 46,XY complete gonadal
dysgenesis and the incidence of gonadoblastoma. We note that a
large number of partial 9p monosomy DSD patients have a sec-
ondary copy number variation (CNV) and suggest a possible two-
hit mechanism by which some 46,XY patients with partial 9p
monosomy present with DSD and others present with no sex-
related phenotype.

Patient 1 has previously been reported elsewhere when she was
3 years old [McDonald et al., 1997; Flejter et al., 1998]. She was the
first child of healthy, non-consanguineous parents, born at 42 weeks
of gestation following a normal pregnancy. She had Apgar scores of
9and 9 at 1 and 5 min, respectively, with a birth weight of 4.48 kg
(1-2 SD above the mean). No concerns were noted neonatally.
She was referred at 10 months for a family history of recurrent
miscarriages and a known balanced translocation in a paternal
uncle. At 10 months she was developmentally normal but around
17 months was noted to have delays in speech and gross motor
development. At 3 years her expressive language was at approxi-
mately an 18-month level. She sat independently at age 12 months
and walked at age 18 months. In all grades, she qualified for special
education and physical therapy. At 15 years she was reading at
approximately a second grade level (age 7 years). She graduated
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from high school with the assistance of special education. Current-
ly, at age 20 years, she is attending classes through a transitional
school, focusing on life-skills.

Cardiac evaluation as a neonate was performed for unknown
reason and showed a bicuspid aortic valve and patent foramen ovale
(PFO); electrocardiogram showed a complete right bundle branch
block. Renal ultrasound and a pelvic ultrasound study at 3 years
showed a normal uterus and vagina without identifiable gonads.

At age 3 her weight and height were between the 50th and 75th
centiles with a head circumference greater than the 95th centile. The
patient was noted to have a single right palmar crease, bilateral 5th
finger clinodactyly, mild metatarsus varus, and external female
genitalia with no palpable gonads. Repeat evaluation at 19 years and
11 months of age revealed the patient’s weight to be 100 kg (95—
97th centile) with a height of 173.5 cm (90-97th centile) and a BMI
of 33.4. She required corrective lenses.

Patient 2 is a phenotypic female born at 33 weeks of gestation
following a pregnancy complicated by preeclampsia and oligohy-
dramnios. The patient’s mother received no prenatal care until after
20 weeks gestation. She also reported use of marijuana and the
prescription medications ondansetron, sertraline, bupropion, and
fluconazole during the pregnancy. The patient’s mother was
28 years old and had a history of developmental delay, cognitive
impairment and depression with a known deletion of 9p24.1 and
22q11.21. Following delivery Apgar scores were 8 and 9 at 1 and
5 min, respectively. Birth weight was 2.05 kg (58th centile), length
43.5 cm (38th centile), and head circumference 28 cm (50th centile
for a 29.5-week gestation infant). An echocardiogram showed a
PFO and small-to-moderate restrictive apical muscular ventricular
septal defect (VSD). Hearing was normal. Congenital hypothyroid-
ism is being managed with levothyroxine.

Results of cranial ultrasonography were normal. A pelvic ultra-
sound study showed a normal uterus; gonads were not visualized.
On renal ultrasonography kidneys were normal but with significant
left hydronephrosis suggestive of ureteropelvic junction (UPJ)
obstruction, confirmed on diuretic renal scan. This was corrected
at age 1 year.

The patient was developmentally delayed early on and required
developmental services. At age 4 months, she was meeting all
developmental milestones. She began walking independently at
age 15-16 months. At 17 months, her expressive language devel-
opment was equivalent to that of a 14-month-old but with ad-
vanced receptive language.

At 4 months the patient weighed 5.14 kg (5th centile) was
56.1 cm long (1st centile) and had a head circumference of
36.8 cm (50th centile for 1 month). At that time we noted a small
nose, mild micrognathia and right occipital plagiocephaly. She had
an easily reducible umbilical hernia, female external genitalia,
transitional palmar crease on the right hand, mild head lag but
had an otherwise normal neurologic status. At age 17 months
weight was 8.92 kg (3rd centile), height 75.2 cm (8th centile),
and head circumference 42 cm (50th centile for a 5-month old).
Results of eye examination and hearing test at age 1 year were
normal.
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FIG. 1. Deleted region of chromosome 9 in Patients 1 and 2 shown in UCSC genome browser. The 9p haploinsufficient regions affecting
Patients 1 and 2 are depicted in blue and red, respectively. OMIM and UCSC genes within the affected region are listed below deleted

intervals.

RESULTS
Patient 1

At 10 months of age a karyotype obtained at the University of Utah
showed a 46,XY,der(9)t(8;9)(p21;p24) unbalanced chromosome
constitution with monosomy 9p24 and trisomy 8p2l. At age
19 years, the boundaries of the deleted and duplicated regions
were refined by microarray methods which identified a 25.3-Mb
single copy duplication of 8p23.3p21.2 (176,818-25,510,851; hg 19)
and a 2.0-Mb single copy deletion of 9p24.3 (46,587—1,994,144; hg
19) (Fig. 1). Father had a balanced translocation 46,XY,t(8,9)(p21;
p24).

Given the increased incidence of gonadal malignancy in patients
with gonadal dysgenesis, the patient underwent gonadectomy at age
3 years. Laparoscopic evaluation at that time showed the presence of
a uterus and Fallopian tubes. Gonads were ovoid, white, firm and
measured 2.5 x 0.6 x 0.8 cm. Both gonads had nearly identical
histologic structure: They were dysgenic without ovarian follicles or
seminiferous tubules. Cellular nests contained two cell types, large
and round cells with clear cytoplasm and a large round nucleus and
smaller comma-shaped cells. The histologic diagnosis was:
gonadoblastoma.

Patient 2

The patient’s mother had a known history of 9p24.1 deletion and
22q11.21 deletion. A maternal chromosomal microarray study
refined the boundaries of the 9p24.1 (194,104-8,256,492; hg 18)
and 22q11.21 (18,989,547-19,835,417; hg 18) deletions measuring
8.3 Mb and 846 kb in size, respectively (Fig. 1). Amniocentesis of
Patient 2’s mother showed 45,X/46,XY mosaicism and the 9p
deletion. Following delivery, metaphase FISH analysis of 15 cells
identified the 22q11.21 deletion as well in Patient 2. Postnatal
karyotype also confirmed the maternally inherited deletion of 9p24.
Her karyotype was denoted as 46,XY,del(9)(p24.1)mat.ishdel(22)
(q11.21q11.21)(b135h6-). Given the prenatal mosaicism, 30 meta-
phase cells were analyzed postnatally and showed low level mosai-
cism for a 45,X cell population. Of 500 interphase cells, FISH probes
specific to X and Y centromeres showed 5.6% of the cells had a 45,X
constitution and 94.4% of the cells had a 46,XY constitution.
Given the increased risk of gonadal malignancy, the patient
underwent gonadectomy at 1 year of age. Laparoscopic evaluation
showed a normal uterus and Fallopian tubes. Both gonads were
“streak,” measuring 1.4 x 0.5 x 0.3 cm and 0.9 x 0.3 x 0.3 cm
(Fig. 2A). Grossly no tumor nodules were recognized. Microscopi-
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FIG. 2. Intraoperative and pathology images of Patient 2. A: Intraoperative photograph showing streak gonad. B: Gonadoblastoma focus
containing large germ cells (star), small dark stromal cells (dark arrow), and eosinophilic hyaline bodies (open arrow).

cally, both gonads showed ovarian stroma with small foci of
gonadoblastoma with microcalcifications (Fig. 2B). These foci
contained nests of large germ cells with clear cytoplasm surrounded
by smaller cells with dark hyperchromatic nuclei consistent with
stromal sex cord type cells. Eosinophilic hyaline bodies composed
of basement membrane material were also noted in the nests. No
follicle formation or testicular differentiation was noted. No inva-
sive tumor was seen. Cytogenetic analysis of the gonadal tissue
showed mosaicism for 45,X and 46,XY cell lines and the previously
identified deletion of 9p24.1. Following metaphase and interphase
FISH analysis, shown in Figure 3, it was determined that one gonad
contained 46% 45,X cells and 54% 46,XY cells with the other having
67% 45,X cells and 33% 46,XY cells.

DISCUSSION

DSD are a clinically and causally heterogeneous group of disorders.
In patients with 46,XY complete gonadal dysgenesis, a cause is
identified in less than half of the cases. Up to 20-30% of these are
attributed to SRY and SFI mutations with other single gene causes
contributing only a small proportion of the remainder [Hawkins
et al., 1992; Philibert et al., 2010]. Array-comparative genomic
hybridization has allowed clinicians to detect CNVs not visible
cytogenetically and also allowed refinement of those previously
detected karyotype aberrations. Ledig et al. [2010] estimated that
the cause 0f 25% of syndromic and 5.6% of non-syndromic gonadal
dysgenesis could be identified by array CGH. Hemizygosity of the
distal segment of 9p is known to cause 46,XY gonadal dysgenesis
and other milder genital phenotypes including ambiguous genita-
lia, hypospadias and cryptorchidism. Here we present two patients

with a diagnosis of 46,XY complete gonadal dysgenesis found to
have partial monosomy for 9p and other cytogenetic abnormalities.
The two patients reported here presented with classic findings
consistent with complete 46,XY gonadal dysgenesis. Patient 1 was
reported previously, with further molecular studies performed
following the initial report [McDonald et al., 1997; Flejter
et al., 1998]. As recommended by Flejter et al. [1998] the data
reported here further characterize the deletion and duplication
boundaries of this patient [Huret et al., 1988; Flejter et al., 1998;
Muroya et al., 2000; Swinkels et al., 2008]. The patient is also
trisomic for approximately 25 Mb of the short arm of chromosome
8. The phenotypic consequences of this aberration are unknown at
this time. Of note, GATA4 is within the duplicated region. Loss-of-
function mutations and haploinsufficiency of GATA4 has impli-
cations in sexual and cardiac development, with mutations causing
46,XY gonadal dysgenesis and heart septation defects, respectively
[Reamon-Buettner and Borlak, 2005; Lourenco et al., 2011]. There
has been debate as to whether GATA4 duplication results in cardiac
defects, but it remains an important consideration given the
patient’s bicuspid aortic valve [Yu etal., 2011]. No gain-of-function
mutations or duplications of GATA4 have been reported to cause
gonadal dysgenesis or genital abnormalities, but patients with 8p
duplications that include GATA4 have presented with hypospadias
[Yuetal,,2010,2011]. Thelarge number of genes involved makes an
exact genotype—phenotype correlation difficult to establish.
Patient 2 also presented with findings of complete gonadal
dysgenesis. Her mosaic karyotype contained both 45X and 46,
XY cell lines. The external phenotype in patients with 45,X/46,XY
mosaicism can include normal male or female genitalia or ambig-
uous genitalia with gonadal pathology also variable, ranging from
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FIG. 3. Cytogenetic results of Patient 2’s mosaic gonadal tissue using X chromosome centromeric (green), SRY (red), and Yq12 (green)
probes of gonadal tissue. A: 45,X,del(9) (p24.1) karyotype. B: 46,XY,del(9) (p24.1) karyotype of gonadal tissue 2. C: FISH analysis showing
only one X chromosome signal and absent hybridization of Y chromosome probes. D: FISH analysis confirming mosaicism with hybridization of

both X and Y probes.

apparently normal testes to dysgenetic gonads [Farrugia et al., 2013;
Tosson et al., 2012]. Similar to Patient 2, individuals with 45,X/46,
XY mosaicism can have significant differences in the percentage of
45X and 46,XY cell lines present in different tissues [Tosson
et al., 2012]. This has clear implications in gonadal development,
with the elevated percentage of 45,X cells (67%) present in Patient
2’s gonadal tissue likely contributing to their dysgenetic develop-
ment. Determining the exact contribution that each cytogenetic
aberration (partial 9p monosomy and the 45,X cell line) has on
Patient 2’s phenotype is difficult to establish. The patient will
require management for Turner syndrome as she grows.

Patient 2 also inherited an 846 kb deletion 0f 22q11.21 from her
mother. This deletion lies within the distal half of the common
3 Mb deletion associated with DiGeorge syndrome (OMIM
#18440) and velocardiofacial syndrome (VCFS; OMIM
#192430). The proximal region of the long arm of chromosome
22 has a large number of low copy repeats that increase the risk of
rearrangements caused by non-allelic homologous recombination.
The most common rearrangement, seen in DiGeorge syndrome/

VCEFS, occurs as a result of non-allelic homologous recombination
between low copy repeats 2 and 4, as defined by Edelmann et al.
[1999] and McDermid and Morrow [2002]. Patients have been
described with deletions of the surrounding genomic area [Garcia-
Minaur et al., 2002; Rauch et al., 2005; Ogilvie et al., 2009; Breckpot
et al., 2012]. Our patient’s deletion contains 19 genes including
three OMIM disease genes (ZNF74, HCF2, and SNAP29) but does
not include TBX1. It is nearly identical to the deletions reported by
Garcia-Minaur et al. [2002] and Rauch et al. [2005], and lies
between low copy repeat 3 and low copy repeat 4. The patient
reported by Garcia-Minaur et al. [2002], a male who inherited his
deletion from an asymptomatic father, had Tetralogy of Fallot,
microcephaly and minor anomalies. Rauch etal. [2005] reported on
a patient with a similar deletion who also presented with congenital
heart disease (CHD), mild hypotonia, frequent infections and facial
features consistent with mild DiGeorge syndrome. This deletion
may provide a partial explanation of the VSD in Patient 2 with
haploinsufficiency for CRKL (within the deleted segment) sug-
gested as a candidate gene responsible for the CHD in these patients
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[Breckpot et al., 2012]. 46,XY gonadal dysgenesis has not been
reported in these patients, but two patients have been reported with
46,XX testicular DSD who were found to have the DiGeorge
deletion [Phelan et al., 2002; Erickson et al., 2003]. Similar to
the presence of the 45,X cell line, this deletion makes assigning
responsibility to any one causative cytogenetic aberration difficult.

Both patients presented with 9p monsomy as well as other
significant chromosomal abnormalities that make establishing
an exact genotype—phenotype relationship difficult. To gain addi-
tional insights, we reviewed the literature and identified previous
reports of partial 9p monosomy causing haploinsufficiency of
DMRT]I, the leading candidate gene for 46,XY complete gonadal
dysgenesis in these patients (see below). Specific emphasis was paid
to patients with 46,XY karyotypes and any genital-related pheno-
typic abnormalities (Table I). The reported genital phenotypes
ranged from complete gonadal dysgenesis to cryptorchidism, hy-
pospadias, and micropenis. Though Table I is limited to those
patients with genital abnormalities, multiple 46,XY patients with no
abnormal genital phenotype or complete gonadal dysgenesis have
been described with monosomy for near-identical segments of 9p
(Table IT). This is in contrast to a number of patients with complete
or partial 46,XY gonadal dysgenesis found to have small intragenic
deletions in DMRT1 [Ledig et al., 2010, 2012].

Review of Table I shows that 60% (43/72) of those patients with
genital abnormalities and/or complete gonadal dysgenesis have at
least one additional CN'V/karyotype abnormality besides monoso-
my for a portion of 9p. Most of these are trisomies caused by an
unbalanced translocation. Given the variable penetrance and ex-
pressivity of the genital phenotype, this may suggest a second hit is
needed for the 46,XY complete gonadal dysgenesis and/or genital
abnormalities to develop. Huret et al. [1988] evaluated 80 cases of
partial 9p monosomy and compared those with other unbalanced
segments (41 cases) with those containing only partial 9p monoso-
my (39 cases). They found 42% of both groups presented with
external genitalia abnormalities. It should be noted though that
both groups included both 46,XY and 46,XX patients. Given that
partial 9p monosomy, especially DMRT1 haploinsufficiency, affects
46,XX individuals much less significantly (no testicular DSD/
gonadal dysgenesis or genitalia ambiguity) than those with 46,
XY karyotypes, the data in Table I should prove more useful when
considering the genotype—phenotype relationships of partial 9p
monosomy. Comparing the patients in Table I to those patients
without external genital abnormalities (Table II) reveals statistically
significant support for a two-hit hypothesis as 81% (13/16) of those
patients with no genital phenotypes have only one noted CNV/
cytogenetic abnormality (Fisher’s exact test, P = 0.0047). Further
comparison of both groups of patients reveals that the three patients
with no genital abnormalities and a second hit have similar addi-
tional CNVs to three patients listed in Table I (trisomy for portions
of 6p, 10q, and 20p). This suggests further variable expressivity or
incomplete penetrance of these duplicated regions versus an un-
known alternative locus contributing to the genital phenotype in
the affected patients. It should also be mentioned that a significant
percentage of the patients evaluated have only had karyotype
analysis. Chromosomal microarray would likely identify the pres-
ence of additional copy number abnormalities undetectable by
cytogenetic techniques. A potential reporting bias should also be
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considered as patients with a more severe phenotype and/or
multiple copy number abnormalities are more likely to be reported.
Regardless though, given the significant differences between both
groups, further evaluation of a two-hit mechanism is warranted.

This two-hit hypothesis is similar to the previously suggested
second-hit models involving other developmental abnormalities
including a cardiac phenotype in GATA4 duplications [Girirajan
et al., 2010; Yu et al., 2011; Lupski, 2012]. Though chromosomal
duplications, which represent most of the second-hits in our
patients, are better tolerated when compared to deletions, duplica-
tion of DAXI can lead to 46,XY complete gonadal dysgenesis
[Barbaro et al., 2007], and dosage sensitivity is well described in
mouse sex reversal [Bouma et al., 2007; Buaas et al., 2009; Correa
et al,, 2012]. Overall, this may suggest a role for other duplicated
regions and dosage-sensitive genes in providing the second-hit
responsible for the gonadal dysgenesis phenotype in these patients.
Review of the genomic regions reported as second hits in Table I
failed to identify any strong candidate genes that could be impli-
cated in the abnormal genital phenotype. Although there are genes
that have been implicated in abnormal sex development within
duplicated regions of the 9p monosomy patients, including
CYPIIA and SRD5A2, the genital abnormalities are associated
with loss of function rather than gain of function.

As previously mentioned, DMRT1 is the gene likely responsible
for gonadal dysgenesis in a subset of 9p monosomy patients.
Localized to the 9p24.3 region are three DMRT (Doublesex-
Mab3-Related Transcription factor 1-3) genes. These genes were
initially identified as strong candidate genes for 46,XY complete
gonadal dysgenesis based on their Caenorhabditis elegans and
Drosophila melanogaster homologues’ role in sexual development
[Raymond etal., 1998, 1999]. DMRT genes contain a DNA-binding
motif domain, a zinc containing DNA-binding module [Zhu
et al., 2000]. In mammals, DMRT1 is expressed only in the gonad
and following sex determination, only in the testis [Raymond
et al., 1998; Matson and Zarkower, 2012]. DMRTI-null male
mice have normal external genitalia with functional Sertoli cells,
but have hypoplastic testes, disorganized seminiferous tubules and
lack germ cells [Raymond et al., 2000]. Heterozygous males are
phenotypically normal with normal testes and retained fertility
[Raymond et al., 2000]. However, in homozygous null male mice, at
2 weeks following birth, the Sertoli cell expression pattern changes;
there is decreased expression of SOX9, increased expression of
FOXL2,and overall reprogramming of Sertoli cells into a granulosa-
like cell type [Matson et al., 2011]. This, and data regarding the
function of granulosa cells, suggests that following determination
and differentiation, both Sertoli and granulosa cells require the
presence of certain proteins to maintain their identity and function
[Matson and Zarkower, 2012]. This principle, termed sex mainte-
nance, is achieved in males through the function of DMRT1, and in
females through FOXL2 [Uhlenhaut et al, 2009; Matson
et al., 2011].

Review of Patient 2’s history reveals the presence of congenital
hypothyroidism diagnosed on newborn screening. Though there
are multiple genetic causes of congenital hypothyroidism, it is
interesting to note that Patient 2 is haploinsufficient for GLIS3,
which lies within the deleted 9p interval. GLIS3 loss-of-function
mutations cause an autosomal recessive syndrome termed Neona-
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Case Karyotype or chromosomal region® CNV size Refs.

1 del9pter-p22 dup10q26-qter — Akbas et al. [2011]

2 del9pter-p23 11.1 Mb Shimojima and Yamamoto [2009]

3 46,XY,del(9) (p24.3) 1.17-1.23 Mb® Hauge et al. [2008] (Case 3)

4 del9pter-p23 del9p: 10 Mb Hauge et al. [2008] (Case9)
dup20pter-p12.1 dup20p: 14 Mb

5 del9pter-p22.3 ~15 Mb Swinkels et al. [2008] (Case 8]

6 46,XY,del(9) (pter-p22) — Huret et al. [1988] (Case 2)

? 46,XY,del(9) (gter-p220 — Boby et al. [1994]

8 46,XY,del (9) (qter-p2304) - Taylor et al. [1991]

9 46,XY,der(9)t(6:9) (p211;p24) — Eden et al. [1985]

10 46,XY,del(9] (pter-p22) — loan et al. [1985]

11 46,XY,del (9] (pter-p12] — Young et al. [1983]

12 46,XY,del(9) (pter-p22) — Bricarelli et al. [1981]

13 46,XY,del(9) (pter-p12) — Hernandez et al. [1979]

14 46,XY,del (9] (pter-p22] — Nielsen et al. [1977]

15 46,XY,del(9) (pter-p22) — Alfi et al. [1976]

16 46,XY,del(9) (pter-p21) — Serville et al. [1976]

2All karyotypes of 46,XY constitution.
®p: pter-1,167,143-1,233,178 (build NR).

tal diabetes mellitus with congenital hypothyroidism (OMIM
#610199) [Senée et al., 2006]. This condition has been seen in
consanguineous Saudia Arabian families and can include hepatic
fibrosis, congenital glaucoma and polycystic kidneys. Though
Patient 2 has loss of only one copy of the gene, it is possible that
haploinsufficiency results in the congenital hypothyroidism but
none of the other features that are part of the condition. Multiple
other patients have been reported with partial 9p monosomy and
hypothyroidism [Ioan et al., 1985; Kozma et al., 2000; Velagaleti
et al., 2008]. Review of Patient 1’s deleted 9p interval shows GLIS3
not to be deleted. It is also possible that the deletion of GLIS3 in
Patient 2 uncovered an autosomal recessive mechanism leading to
her congenital hypothyroidism, leading to speculation that she may
carry a deleterious mutation of her other GLIS3 allele. Further
testing would be required to prove this hypothesis. Regardless, we
recommend evaluation for hypothyroidism in patients with partial
9p monosomy, especially if GLIS3 is within the deleted interval.
Patients with DSD, specifically those with dysgenetic gonads
and/or hypovirilization, have an increased risk of type II germ cell
tumors [Looijenga et al., 2010]. Gonadoblastomas are estimated to
occur in up to 30% of 46,XY patients with dysgenetic gonads
[Sultana et al., 1995]. The presence of Y chromosome material
has been implicated in the oncogenesis in these patients, with the
locus mapped to the Y centromeric region [Page, 1987]. TSPY has
arisen as the leading candidate for the responsible gene [Lau, 1999].
Given this increased risk, both of the patients reported here
underwent gonadectomy with pathology showing the presence
of dysgenetic gonads and gonadoblastoma. Additional immuno-
histochemical stains were not performed on our two patients’
samples because both lacked identifiable seminiferous tubules,

making specific staining to differentiate delayed germ cell matura-
tion from intratubular germ cell neoplasia unnecessary. Review of
Table I shows that multiple patients reported in the past developed
gonadoblastoma as well. Livadas et al. [2003] previously reviewed
the literature as it pertained to gonadoblastoma in patients with 9p
deletions and other 46,XY complete gonadal dysgenesis loci. Review
of Table I shows that of those patients with 46,XY karyotypes,
complete gonadal dysgenesis and partial 9p monosomy, 11% (8/72)
developed a gonadal malignancy. If only those patients with
pathology data are considered, this percentage increases to 30%
(8/27). It is also important to note that most gonadal malignancies
occurred in patients with complete gonadal dysgenesis (with the
exception of Cases 3 and 8 who presented with ambiguous genitalia
and clitoral hypertrophy, respectively). This supports the recom-
mendation that gonadectomy be performed in patients with go-
nadal dysgenesis, especially those with partial 9p monosomy.
Specific recommendations regarding gonadectomy and surveil-
lance of 9p monosomic individuals with less severe genital pheno-
types are difficult to make at this time given that the natural history
of this cohort is currently unknown. Empirically, for these patients
we recommend annual testicular examinations and consideration
of scrotal ultrasound until adult age. Clinicians should have a low
threshold for biopsy if suspicious findings are identified.

While the presence of TSPY can contribute to the increased risk
of malignancy in these patients, loss of DMRT1 activity has also
been linked to an increased risk of cancer given its proposed tumor
suppressor properties [Krentz et al., 2009]. Krentz et al. [2009]
reported an increased incidence of testicular teratoma (Type I germ
cell tumor) with loss of DMRT1 in the male mice of the 129Sv strain.
This incidence was noted to be around 90% in homozygous null
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mutants and 4% in heterozygous mice with no noted increased
tumor incidence in female mice. This increased teratoma risk was
shown to result from a disruption of cell cycle pluripotency and cell
cycle control [Krentz et al., 2009]. Genome wide association studies
have also shown an increased susceptibility to testicular germ cell
cancer in or around DMRTI [Turnbull et al., 2010; Kanetsky
et al., 2011; Kratz et al., 2011]. It remains difficult to determine
the exact oncogenic contribution that haploinsufficiency for
DMRTT has, but further evaluation of this evolutionarily conserved
pathway is clearly needed.

In conclusion, we report two patients with 46,XY complete
gonadal dysgenesis caused by partial 9p monosomy. Both patients
underwent gonadectomy, which revealed the presence of gonado-
blastoma. The deletion breakpoints of Patient 1, who has previously
been reported, were further characterized. Both patients’ deletions
resulted in DMRTT haploinsufficiency, which is likely contributing
to their gonadal dysgenesis. Review of the literature shows that
haploinsufficiency for DMRT1I results in gonadal dysgenesis and
abnormal sex development with variable penetrance and expres-
sivity. We suggest this variability may be due to the presence of a
second-hit (CNV or other molecular mechanism), which may be
needed for subsequent abnormal sex development. Gonadoblas-
toma was also present in a significant percentage of patients with
partial 9p monosomy, specifically those with gonadal dysgenesis,
further supporting the recommendation that gonadectomy be
performed in these patients. Further investigation will hopefully
elucidate the relationship between DMRT1 loss-of-function/hap-
loinsufficiency and oncogenesis.
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