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Abstract 

 

 Creating consistent supervised vegetation classifications in different countries 

where training data are of different levels of quality and detail is challenging but 

important. For example, mapping steppe types and degradation of Mongolia and Inner 

Mongolia Autonomous Region (IMAR), China,using the same classification scheme 

would be helpful for doing comparative studies between the two regions and 

acquiringa better understanding of how country level differences affect vegetation on 

theMongolian Plateau.  

Steppe and degradation maps, created through on-screen digitizing that combined 

image and ground information as input,were available inIMAR but not in 

Mongolia.We exploredsupervised classificationusing Random Forests (RF) to 

identifya reasonable sampling and training strategy and applied identical methods 

toclassify remotely sensed images (Landsat Thematic Mapper 5) in IMAR and 

Mongolia using the same classification systems for the two countries in three 

ecological regions (meadow steppe, typical steppe and desert steppe). A number of 

challenges limit our ability to extend classifications trained in IMAR to Mongolia for 

creating consistent vegetation maps.  
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1. INTRODUCTION 

 

Comprehensive comparative analyses of vegetation types and conditions are 

necessary across ecological gradients and across administrative boundaries to better 

understand entire ecosystemsand human impacts under different socio-economic 

contexts. For example, although grasslands in Mongolia and Inner Mongolia, China, 

have similar basic landscape, structure and plant composition, comparative studies 

have shown that different grazing stylesand policies in the two countries have led to 

differential impacts of grazing activity (Bao et al., 2008). As in other cross-national 

situations, availability of data with which to build comparable vegetation 

classifications varies quite dramatically between these two countries. Compared to a 

large number of studies about steppe vegetation, degradation and grazing in IMAR 

(e.g. Jiang et al., 2010; Liang et al., 2009; Lin et al., 2010; Xie and Sha, 2012; Pei et 

al., 2008), data and knowledge are only sparsely available to represent the regional 

patterns in Mongolia (Retzer et al., 2006). Steppe vegetation and degradation 

mapsacrossthe Mongolian plateau at relatively fine spatial resolution (<50 meters), or 

at least using commonclassification schemesfor selected images from both IMAR and 

Mongolia, can make contributions to the study of this region by providingconsistent 

base maps for comparative study. The use of remote sensing makes it possible to map 

land cover over a large area, but classification and mappingof steppe vegetation is still 

very challenging because the same vegetation types may have different spectral 

responseunder somewhat different ecological conditions, while at the same time 

different vegetation types may have similar spectral characteristics (Sha et al. 2008).  

Provided with reliable andlarge-scale IMAR steppe-type and degradation maps, 

digitized from Landsat Thematic Mapper 5 (TM5) imagery, and given the high 

similarity between Mongolia and IMAR along the ecological gradients, we address 

the following research questions inthis study: 

 (1) At what level of accuracy canwereproduce the IMAR map of steppe types and 

degradation through automatic classification? 

 (2) Can we classify steppe types and degradation levels of Mongolian Landsat 

TM5 imagesbased on algorithms developed and trained using IMAR data? 

 (3) What accuracy rate canwe attain in such a predictive mapping experiment? 

 Methodsfor classifyinglandcover using remotely sensed data includesupervised 

and unsupervised approaches, and parametric and non-parametric techniques. 

Frequently used approaches include Iterative Self-Organizing Data Analysis 

(ISODATA) unsupervised method (Tou and Gonzalez, 1974), supervised 

classification using maximum likelihood decision rules (Jensen, 2005), support vector 

machines (SVM) (Cortes and Vapnik, 1995), artificial neural networks (Mas and 

Flores, 2008), and classification and regression trees(CART) (Breiman, 1984). To 

meet thegoals of this study, the classifier should be able to classify external 

imagesafter being trained and to produce comparable classifications on images 

without training samples. Unsupervised methods, such as ISODATA, cannot be 

expected to produce comparable classifications. Other methods, like maximum 



2 
 

likelihood technique, cannot meet our requirement because thevery limited 

information ofsteppe types of Mongolia and little ground truth dataare insufficient for 

training. Furthermore, we were not able to collect training samples directly from the 

image, nor label classes for supervised classification. For these reasons, we evaluated 

the random forests (RF)classifier as a technique that might fulfill our requirements. 

 RF is a tree-based ensemble classifier, suggested by Breiman (Breiman, 2001). A 

RF is generated by using bootstrap samples with replacement to grow a large amount 

of unpruned classification trees and each of these trees in the "forest" provides a 

single vote, thus the input data will be assigned with the class that gets the most votes. 

Instead of using the best variables, a RF randomly draws subsets of input predictive 

features at every splitting node to grow trees that can minimize correlation between 

trees in the ensemble (Breiman, 2001; Liaw and Wiener, 2002). The RF also provides 

estimation of the error rate based on the training data, called out-of-bag (OOB) error. 

During each bootstrap iteration, around one third of samples are left out and not used 

for training that certain tree, but being passed down that tree and classified instead 

under the assumption that the class of samples are unknown. At the end of the run, the 

error rate is calculated by averaging OOB predictions from all trees in the "forest," 

which provides an unbiased estimation of the generalization error so a separate testing 

dataset is not necessary (Breiman, 2001). RF can also measure the importance of 

variables during the run by permuting a variable in OOB elements while holding 

others unchanged and calculate how much accuracy decreased (Breiman, 2001) which 

provides users with better understanding of the "black box" than method such as 

neural networks (Prasad et al., 2006). In addition to characteristics introduced above, 

the RF algorithm seems to be suitable for our study because of its many other 

appealing features. For instance, it allows a large amount of predictive factors as input 

without variable deletion; the computational load is small even with a large dataset; 

and once the model is created, it can be saved and used to classify other datasets. 

(Breiman, 2001).Many studies have shown that RF classification attains about the 

same or better overall accuracy, as many other image classification algorithms. For 

example, using Landsat TM5 data for land-cover classification in the south of Spain, 

RF gave a significantly better overall performance than a single decision tree, and the 

RF is also shown to be robust to training data reduction and noise (Rodriguez-Galiano 

et al., 2012). Using Landsat Multispectral Scanner (MSS) data to classify forests,RF 

was shown to outperform the single CART classifier andproduce results comparable 

to bagging and boosting in terms of accuracy, but faster in training (Gislason et al., 

2006). Chan and Paelinckx (2008) used airborne hyperspectral imagery to compare 

RF and Adaboost (which is another tree-based ensemble classification algorithm). 

They ended up with less than 1% difference in overall accuracy and both methods 

outperformed a neural network classifier. Pal (2005) showed that, compared with the 

support vector machines, the RF classifier had equal performance in terms of 

classification accuracy and training time but required fewer user-defined 

parameters.RF has also been integrated with image segmentation to conduct 

object-based classification in some recent studies (Stumpf and Kerle, 2011;Immitzer 

et al., 2012; Duro et al., 2012; Guan et al., 2013). However, to date RF has not been 
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used specifically for classification of steppe vegetation and degradation of a large area, 

or for predictive mapping of steppe vegetation and degradation. 

 The overall goal of this study was to assess approaches to training a RF classifier 

to consistently classify similar vegetation types and degradation in both the IMAR 

and in Mongolia.Our approach includes systematic exploration of commonchoices 

faced when RF is used for image classification and prediction (such as classification 

unit, unit size and sampling strategies of training dataset). We compared pixel- and 

patch-based spatial units for classification, combining RF with image segmentation 

(REF)for the latter. We also wanted to quantitatively examine how RF's prediction 

power would change under all these different experimental scenarios. 

 

2. STUDY AREA 

 

The country of Mongolia and the Inner-Mongolia Autonomous Region (IMAR) of 

China form the Mongolia Plateau. The grasslands within these two countries are part 

of the Eurasian steppe region, which is the largest contiguous grassland area in the 

world (Bai et al., 2004). Mongolian steppe is not only important habitat for wildlife 

but is also important for local herders whose livelihoods depend on grazing. However, 

steppe degradation has become a serious problem in the IMAR of China due to 

overgrazing, land-use change and variation in climate and other reasons (Tong et al., 

2004).  

 Our study areas are located in both IMAR and Mongolia. The Mongolian steppe 

vegetation consists of three types of ecological regions distributing from northeast to 

southwest:meadow steppe, typical steppe and desert steppe(Yu et al. 2003).The annual 

precipitation of meadow steppe and typical steppe are around 450 mm and 350 mm 

respectively, while the desert steppe has annual precipitation between 150 and 250 

mm and is also influenced by continental climatic conditions (Kang et al., 2007). 

Biomass production decreasesalong the climate gradient frommeadow steppe 

andtypical steppe todesert steppe (Yu et al. 2003).  

 To thoroughly examine the performance of the RF classification method over 

areas representative of the broader Mongolia plateau, we selected a pair of study sites 

in each ecological region, one each in IMAR,China and Mongolia (Figure 1). For 

meadow steppe, we selected an area focused on the Ewenk Autonomous Region 

(county level) of Hulunbuir City (prefecture level) in IMAR and Khalkhgol sum 

(district level) Dornodaimag (province level) in Mongolia. For typical steppe, we 

chose the area around Xilinhot City of Xilingol League in IMAR and the central part 

of Sükhbaataraimag (including Khalzan, Asgat, Dariganga and Ongon sums) in 

Mongolia. For desert steppe, we selected Urat Middle Banner of Bayannur City of 

IMAR and an area around the border between Ömnögoviaimag and Dornogoviaimag 

of Mongolia (including Khanbogd sum and Khatanbulag sum). 
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Figure 1. Distribution of study sites on Mongolian Plateau 

 

3. METHODS 

 

3.1 DATA 

 

3.1.1 2009 vegetation and degradation classification maps of IMAR steppe 

 

The IMAR vegetation and degradation maps were provided by the Inner 

MongolianInstitute ofGrassland Survey and Design (IMIGSD). Scholars of 

IMIGSDcreated classified vegetation maps by on-screen digitizing based on 2009 

Landsat TM5 images while using field survey data, historical data and other ancillary 

data for reference and validation. Although they mapped the entire autonomous region, 

we acquired vegetation maps for three counties in IMAR (Ewenk Autonomous 

Region, XilinhotCity and Urat Middle Banner). Steppes are classified into a two-level 

classification system (Table 3). This classification scheme integrates landform, soil 

and vegetation information in steppe classification.To simplify class names, we 

re-coded each class with a lettercode (Table 3). The digitized polygons in these 2009 

vegetation maps were also assigned a degradation level according to a national 
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standard for classifying grassland degradation in China called Parameters for 

Degradation, Desertification, and Salinization of Rangelands (GB 19377 - 2003) 

(MOA, 2003). By comparing a target area with conserved grassland nearby, 

grasslands were classified into three degradation categories, each with three levels 

(Table 4). This degradation classification system was also recoded in this study. The 

national standard document states that slight salinization or desertification can be 

regarded as moderate degradation, and moderate or severe salinization or 

desertification can be regarded as severe degradation. Thus in our study, we merged 

those classes in order to just simply show degradation information. 

 

Table 3. Vegetation classification system and class codes 

* Absent in study sites 

** Excluded from classification 

 

Steppe type - Level 1 Steppe type - Level 2 Letter code 

Temperate meadow steppe  Plain/hill meadow steppe A 

Mountain meadow steppe B 

Sand land meadow steppe C 

Temperate typical steppe Plain/hill typical steppe D 

Mountain typical steppe K 

Sand land typical steppe E 

Temperate desert steppe Plain/hill desert steppe L 

Mountain desert steppe M 

Sand land desert steppe N 

Temperate steppe desert Steppe desert O 

Temperate desert Gravelly desert P 

Sandy desert Q 

Saline desert * 

Lowland meadow Lowland and wetland meadow F 

Salinized lowland meadow G 

Swampy lowland meadow H 

Mountain meadow Low/middle mountain meadow I 

subalpine meadow * 

Swamp/marsh Swamp/marsh J 

Improved grassland Cultivated pasture ** 

Non-steppe Agriculture/urban/etc. ** 

Water Water ** 

 

Table 4. Degradation classification system and class codes 

 

Degradation type - 

Level 1 

Degradation type - 

Level 2 

Letter 

code 

Letter code (merged 

classes) 

No degradation No degradation a a (No degradation) 
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Degradation  Slight degradation b b (Slight degradation) 

Moderate 

degradation 

c c (Moderate 

degradation) 

Severe degradation d d (Severe 

degradation) 

Desertification Slight desertification e c (Moderate 

degradation) 

Moderate 

desertification 

f d (Severe 

degradation) 

Severe desertification g d (Severe 

degradation) 

Salinization Slight salinization h c (Moderate 

degradation) 

Moderate salinization i d (Severe 

degradation) 

Severe salinization j d (Severe 

degradation) 

 

3.1.2 Landsat TM5 imagery and pre-processing 

 

The existing vegetation and degradation maps were used as reference data for training 

image classifications. We were also provided with field survey data of Mongolia 

collected by scientists in Mongolia (see Sec. 3.1.4). Therefore we selected our 

imagery to be congruent in time with those data. In order to have both IMAR and 

Mongolia images of growing season with as little time difference to each other and to 

reference map and field survey data as possible, and also with 10 percent cloud cover 

or less, seven Landsat TM5 images from 2009to 2011 were selected to cover all study 

sites. Image dates are listed in Table 1. 

 With the exception of the thermal band, all Landsat bands were imported and 

stacked together, and images were then re-projected to the Albers equal-area conic 

projection. Clouds and their shadows were removed from each image using 

eCognition software (Trimble
®
)supplemented by on-screen digitizing for minor edits. 

All images were then atmospherically corrected using the COST method (Chavez, 

1996) within ERDAS Imagine® software (Intergraph Corp., Huntsville, AL). The 

Xilinhotsite in IMAR is covered by two images (path 124 row 29 and path 124 row 30) 

that were taken on the same day. Thus these two images, as well as thescenes for 

desert steppe,were mosaicked and a histogram match was applied to each band within 

ERDAS Imagine. To address the two-year differences between image pairs and make 

images more comparable, images of path 123 and row 26 and of path 124 and row 27 

were connected by introducing image of path 123 and row 27 (also taken at Aug. 11th, 

2011) and all three of them were mosaicked together using histogram matching band 

by band after atmospheric correction. Lastly, all the IMAR images were clipped to the 

boundaries of counties in the reference vegetation and degradation maps. To reduce 

the size of data, Mongolian images were also clipped to the boundaries of counties or 
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districts located within the Landsat scenes where the field survey data were 

distributed. 

 

Table 1. Selected Landsat TM5 images and acquisition date 

Country Dominant Vegetation 

Community 

Site Name Path Row Date of 

acquisition 

IMAR of 

China 

Meadow Steppe Ewenk 123 26 08-11-2011 

Typical Steppe Xilinhot 124 29 08-02-2011 

Xilinhot 124 30 08-02-2011 

Desert Steppe Urat 129 31 07-01-2010 

Mongolia Meadow Steppe Khalkhgol 124 27 08-12-2009 

Typical Steppe Asgat etc. 126 28 06-26-2010 

Desert Steppe Khatanbulag 

etc. 

129 30 07-01-2010 

 

 

3.1.3 DEM data 

 

In the classification scheme for the vegetation types, steppes were classified according 

to both vegetation communities and landforms, so elevation information should be an 

important input in the process of classification. The 30-meter spatial resolution 

ASTER global digital elevation model data of study area were downloaded and 

projected into the same projection coordinates as our processed Landsat images. 

Terrain features, including slope, aspect, and topographic wetness index, were later 

derived from this DEM data. 

 

3.1.4 Field survey data of Mongolia 

 

Ground truth data are necessary during the validation of classification result. The 

Mongolian collaborators on our team from the Institute of Botany, Mongolian 

Academy of Sciences provided us with field survey data collected in the summer of 

2011 (July 11 to July 29). There are 137 ground truth records with coordinates that 

can be plotted as points, and 119 out of them were located within our image subsets. 

Each point in this dataset represents a 1 meter by 1 meter plot, and information such 

as general vegetation community and dominant species in that particular plot was 

documented. The name of the vegetation community of each plot was actually a 

combination of species, with the most representative species of that kind of vegetation 

community ranked the first. Though this field survey dataset cannotform an entire 

training dataset because the number not enough, it can be used for validation of 

classification results. However, since these points were not labeled with exactly the 

same classes as those defined in IMAR steppe vegetation and degradation 

classification system, they required some modification for use in validation. Scholars 

from Chinese Academy of Sciences who have been working on Mongolian steppes 

and very familiar with grassland species provided us with a match table (appendix B) 
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that allowed us to classify the field survey points into our required classes based only 

on vegetation community and species. Thus we used these data for validation of 

vegetation type (steppe type specifically). However, these field survey points cannot 

be used to validate degradation classification results because we did not have 

additional information that allowed us to label these field survey points with 

degradation levels. 

 

3.2 Predictor variables 

 

To build and train RF, we calculated a number of predictor variables to help 

distinguish vegetation classes and degradation levels. These predictor variables 

included spectral features, terrain features and texture features. 

 For spectral features, in addition to digital numbers (DNs) of each processed 

Landsat TM5 band, several indices and other features derived from the Landsat TM5 

image were used for classification. The first one is the ratio vegetation index (RVI) 

which is defined as formula (1) below (Jackson and Huete, 1991). The second one is 

the normalized difference vegetation index (NDVI), which is probably the most 

widely used vegetation index and its mathematical transformation is given in formula 

(2) below. Third is the soil adjusted vegetation index (SAVI), which includes a 

correctionforthe influence of soil brightness, and we used 0.5 for the value of the soil 

brightness correction factor L in formula (3).The formulas of RVI, NDVI and SAVI 

were based on Richardson and Everitt (1992). The tasseled Cap transformation was 

also applied to all images and, unlike the other three indices, the Tasseled Cap 

transformation incorporates more information by using different combinations of all 

six Landsat bands (Crist &Cicone, 1984). Weused the first three components of the 

transformation (brightness, greenness and wetness) in our study. 

RVI =  
 Band  4

Band  3
   (1) 

NDVI =  
 Band  4−Band  3

Band  4+Band  3
   (2) 

SAVI =  
 1+L ∗(Band  4−Band  3)

Band  4+Band  3+L
(3) 

 The second group of features consists of those representing terrain attributes such 

as elevation, slope and slope aspect. All these features were extracted or derived from 

the DEM data. These variables describe the local landform that is also a critical 

constituent of the steppe type classification system. Moreover, terrain may also affect 

grassland degradation (Xie and Sha, 2012). For instance, in Xilinhot, increase in 

altitude and slope tended to be negatively correlated with increase in level of 

degradation from 1991 to 2005 (Li et al., 2012). 

Because we needed to calculate the zonal mean of aspect of every patch, we 

converted the angular value of aspect to a measure ranging from 1 (south-facing) to 

-1(north facing) by using the formula cos(aspect - 180). Water availability also greatly 

affects vegetation health in Mongolia (Kogan et al., 2004) thus we introduced the 

topographic wetness index (TWI) into our analysis which is also derived from the 
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DEM data. The TWI is defined asln(α/tanβ) where α stands for the area drained per 

unit contour length at a point while tanβis the percent slope (Beven and Kirkby, 1979). 

The TWI was calculated by using Model Builderin ArcMap v10.0(ESRI, Redlands, 

CA) with 30-meter resolution and the method of deriving accumulated flow is 

described in Jenson and Domingue (1988).  

 Texture features wereincluded only in patch-based classifications, using 

second-order measures based on thegrey level co-occurrence matrix (GLCM) (Shaban 

and Dikshit, 2001; Rodriguez-Galiano et al., 2012). GLCM-based texture measures 

have been shown to improve land-cover classification accuracy in some studies (Lu et 

al., 2007, Shaban and Dikshit, 2001, Franklin and Peddle, 1990). We selected six 

GLCM-based measures from among the many possible options (GLCM mean, 

entropy, contrast, correlation, homogeneity and dissimilarity). Each of them 

wascalculated using all six Landsat spectral bands and from all directions. To avoid 

concerns about sensitivity to window size for pixel-based classification and to ensure 

these two datasets are comparable, we limited our application ofGLCM texture 

features to thepatch-based classifications. 

 

3.3 Decision-making process 

 

In order to evaluate alternative approaches toclassifying Mongolia images using RF, 

aseries ofexperiments wasconductedusing the 2009 IMAR data and IMAR Landsat 

images. This allowed us to test for the most effective way to apply RF in our study. 

The results of some experimental steps influenced the decision of following 

steps(Figure 2). 

 

3.3.1 Classification unit 

 

The firstwas whether we would conduct pixel-based or object-based (or patch-based) 

classification. Pixel-based classification provides finer resolution while patch-based 

classification can help the fine-scale noise that can accompany pixel-based 

classifications. Moreover, pixel-based classification involves very large data sets and 

requires extremely large memory usagein R, making it more difficultto implement 

than patch-based classification.  

To test patch-based (or object-based) classification, images were segmented using 

eCognition software. Values of parameters were investigated and selected (Table 2). 

Bands 4, 3, 2 were given higher weight because, during the digitizing of 2009 

vegetation and degradation maps, the false color infrared combination was selected 

for visual interpretation. Values of other parameters weredetermined through a series 

of trials and visualexamination by comparing boundaries of segments with boundaries 

of classes in the 2009 China vegetation type and steppe degradation maps. The 

"color" parameter played a dominant role among the homogeneity criteria,probably 

because spectral information contributed more during the digitizing process when the 

vegetation and degradation maps were created. The "scale" parameter determines the 

size of patches by limiting the maximum allowed heterogeneity of each patch 



10 
 

(Definiens Professional 5 Reference Book).We selected values of 20 and 40 for later 

comparison by taking both resolution and computational efficiency into consideration. 

The same parameters within eCognition were used for all of the IMAR and Mongolia 

Landsat images not only because this set of parameters works well for all sites, but it 

can also keep the consistency that is helpful in the comparison experiments that 

involve multiple sites. 

 

Table 2. Parameters used during segmentation 

Parameter Value 

Layer Weights Layers 1, 5, 6 (Band 7): 0.5 

Layers 2, 3, 4: 1.0 

Scale 20 (and 40) 

Color : Shape 0.9 : 0.1 

Compactness : Smoothness 0.5 : 0.5 

 

 To test which method producedclassifications withhigher accuracy, we collected 

pixel and patch samples for a comparative experiment. For each study site in IMAR, 

we created 50,000 random points with 50-meter minimum separation (to make sure 

no points fall in the same pixel) and extracted all values of predictor variables (except 

for texture features which is not available for pixels),as well as the steppe class and 

degradation level codes. All non-steppe points were deleted from the dataset. For each 

polygon created during image segmentation, we calculated the zonal-mean forevery 

spectral and terrain feature (texture features were collected during segmentation by 

not used for this comparison experiment) and then labeled each polygon with steppe 

class and degradation class represented by the pluralityof pixels within that polygon. 

Non-steppe patches were deleted from this dataset as well. When we created the RF 

model, usingthe RandomForest Package (Liaw and Wiener, 2002) in R v2.15.1, we 

made the model to randomly draw a balanced 200 samples per class from the input 

dataset to avoid askewed distribution of steppe types that could bias the effect of RF 

classifier when building the model. However, in Urat Middle Banner, classes have 

very skewed distribution and some classes have only a few samples in the datasets, 

which limited the number of samples can be drew to build trees. Thus we assigned 

smaller sample sizes to these classes. For each RF model, input features and other 

model parameters were the same. However, we also added texture features to 

patch-based classification to test for improvements in accuracy and the kept four most 

important texture variables for later experiments. 

 

3.3.2 Patch size 

 

Based on the result of the comparison ofpixel-based andpatch-based classifications 

(presented in section 4), we proceeded with patch-based classifications for future 

experiments. Next, we were interested how the size of those patches as determined by 

the 'scale' factor during segmentation affects the classification accuracy. For the 

second experiment, we compared patch-based classifications at "scales" of 20and 40. 
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Increasing the scale value to 40 resulted in the total number of patches decreasing to 

around one fourth the number created with a scale of 20.To compare the classification 

outcomes at these two scales, we used the same predictor variables in RF models but, 

due to fewer patches using the larger scale value, we sampled 50 patches per class 

instead of 200 when creating these models. We adjusted the sample numbers of Urat 

Middle Banner according to values we used in patch and pixel-based comparison 

experiments due to very skewed distribution steppe classes and to make datasets of 

two scales comparable. 

 

3.3.3 Local Prediction 

 

Both comparison experiments introduced above used the Out-of-Bag (OOB) error and 

error matrix (introduced in section 4.4) to assess the classifiers' performance instead 

of using a separate testing dataset. We then tested if we could maintain a similar 

accuracy rate if we used justa part of the set of patches to build the RF and classify all 

patches in the entire IMAR county. We refer to this experiment as "local prediction." 

To avoid biased classification caused by an unbalanced sample, we used the Hawth's 

tools for ArcGIS (Beyer, 2004) to do balanced random sampling of the training 

dataset for input tothe patch-based RF model. Then we used that model to classify the 

study site in IMAR and compared that with the 2009 classification reference map for 

accuracy assessment. Since training samples were randomly collected, these patches 

were distributed all over the image. We sampled 200 patches class in Ewenkimage, 

and these 200-per-class sampled patchesrepresented7.40% and 2.96% of total 

patchesrepresenting vegetation type and degradation level, respectively, within the 

image subset of Ewenk. We did the same for the Xilinhot image, and the percentages 

of total patches were 5.18% and 2.58%, respectively. However, the sampling ratio 

varies from class to class due to this balanced sampling design. In Urat Middle Banner, 

because only a few patches of class N (Sand land desert steppe), Q (Sandy desert) and 

H (Swampy lowland meadow) were available, these classes were merged with class 

M (Mountain desert steppe), P (Gravelly desert) and G (Salinized lowland meadow) 

respectively before the 200-patch-per-class sampling (ratios are 4.60% and 2.63% of 

total patches). Sampled patches used for training were retained in the dataset of 

eachcounty when we did prediction. 

 

3.3.4 Prediction within an ecological region 

 

Forclassifying images inMongolia, we have no local samples in training datasets; thus 

we have to test if RF can help us classify an "unknown" area. Thus in our next 

experiment, we applied our methodology for use in out-of-sample prediction in our 

IMAR sites. We split images of our IMAR sites into two halves with both halves 

having relatively the same area and steppe types. We used one half to build a RF 

model and the other to test the accuracy of predictions. Then we trained the model and 

did classification the other way round (switching the training and testing halves). This 

is what we called"prediction within a certain ecological region (eco-region)." 
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3.3.5 Prediction across ecological regions 

 

The eco-region boundariesarecoarse and gradients exit where steppes change 

gradually. Urat Middle Banner in desert steppe is a quite arid area, so it is very 

different from the other two IMAR sites. However, Ewenk Autonomous Region and 

Xilinhot City hadsimilar landscape characteristics. Though Ewenk Autonomous 

Region was in the meadow steppe eco-region, there is still typical steppe within the 

region. Similarly, although Xilinhot City is mostly covered by typical steppe, meadow 

steppe also exists in the area. Sites of the Mongolia located in meadow steppe region 

and typical stepperegion probably also contain both steppe types. We were not sure 

which IMAR site is most similar to each of sites in Mongolia. To be prudent in 

training dataset selection, we were interested in looking at what accuracy we could 

reach if we use Ewenk Autonomous Region data to build the RF model and classify 

the Xilinhot City and vice versa.We refer to this experiment as "prediction across 

eco-regions." Since elevation was a very important variable during earlier 

classification tests, and because there the average elevations weredifferentbetween 

Ewenk and Xilinhot(770 and 590 respectively), we subtracted the mean elevation 

within each area from the actual elevation value for both sites to calculate a relative 

measure of elevation within each county. All the other input variables of RF model 

remained the same. 

 

3.3.6 Pooling and filtering 

 

After experimentingwithmutual prediction between Ewenk and Xilinhot, both in 

IMAR, we pooled the training datasetsfor Ewenk and Xilinhot and used the combined 

datato classify all patches in each region. Unlike local-prediction, external 

information was added when the RF was built, and this may help the classifier cover 

greater variety of certain types of steppe and degradation levels. To do this, we 

combined the 200-per-class randomly sampled datasets used in "local prediction" 

experiments from Ewenk and Xilinhot into a single training dataset. Those classes 

that only existed in one site had 50% fewer observations in the combined dataset. 

However, when we built the model, we still sampled 200 patches per run. We created 

these pooled datasets for both steppe types and steppe degradation classes. Also, just 

as what we did in the "prediction across ecological region" experiment, we used the 

relativeelevation value during both training and prediction.  

During our experiments, we noticed that by using a random sampling strategy for 

collecting training samples, some inappropriate patches were selected into the training 

dataset. For example, in the 2009 digitized steppe vegetation and degradation maps, 

road pixels were not well delineated and they were labeled as steppe. Also, becausewe 

labeled patches using the zonal majority statistics, there were some patches not 

completely within the digitized steppe boundary but they were labeled with a single 

steppe type and selected into the training dataset. These mixed patches may not be 

representative enough for their labeled classes. Thus we manually filtered out those 
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non-steppe and/or significantly mixed patches from the 200-per-class sample sets of 

Ewenk and Xilinhot based on visual examination and pooled these filtered patches 

from Ewenk and Xilinhotto see if this "purified" training dataset couldimprove the 

classification accuracy. We did not do this for degradation classification because there 

were only four classes in the degradation classification andit was hard to visually 

interpret degradation levels of different steppe types and tell if a patch is a typical 

representative of a certain degradation level. 

 

3.3.7 Classify images of Mongolia 

 

With all these experiments above done with IMAR data, we were able to gain a better 

understanding of the effects of choices about inputs to the RF classifier on steppe 

classification. Next, we developed a strategy forclassifying image subsets within the 

country of Mongolia based on our experiments in IMAR and in ways that would 

ensure that these Mongolian classificationsare congruent with those in IMAR. 

Because the Mongolian sites in meadow steppe and typical steppe eco-regions were 

between Ewenk Autonomous Region and Xilinhot City of IMAR in terms of latitudes, 

we decided to use pooled, non-filtered patchesfrom Ewenk and Xilinhot to train the 

model and classify those two Mongolian images. For the desert steppe site, we used 

the samples from Urat Middle Banner as training dataset to classify corresponding 

Mongolian image subsets. We used the same predictor variables as used in the above 

experiments on the IMAR sites. These included DNs from Landsat TM5 band 1 to 

band 5 and band 7; brightness greenness and wetness layers from tasseled cap 

transformation; the RVI, NDVI and SAVI indices; terrain variables including slope 

aspect and elevation; and lastly four selected texture features (GLCM entropy, 

homogeneity, dissimilarity and contrast). For the desert steppe sites, we used the 

steppe type classification scheme after merging some of classes as we did in earlier 

experiments of Urat site.  
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Figure 2. Workflow of exploring Random Forests 

 

3.4 Random Forests 

 

 When we created eachRF model, besides predictor variables, there were two key 

parameters of the model itself that needed to be defined. The firstis the number of 

trees and the other is the number of variables randomly sampled as candidates at each 

split of a classification tree. RF does not over fit data and our experiments showed 

that, for our dataset, error rates became steady after about 500 trees were built. We 

decided to build 2000 trees for all our models and regarded it as a conservative choice. 

As for number of variables sampled during split, we simply used the default value 

built into the software package, which is the closest integer to the square root of total 

number of features. Studies have shown that the number of random split variables can 

only slightly alter the classifier's accuracy and the RF,so setting this parameter hardly 

requires much guidance (Rodriguez-Galiano et al., 2012). 

 The inherent randomness of this RF method leads to small difference in the final 

result every time the model is run, but those differences are small enoughto be 

ignored. Thus we only present one result for each experiment in this paper. To make 

pixel-based and patch-based classification approaches more comparable, some sample 

points were deleted from the dataset of pixel samples to make the number of sample 

Flow Chart of Exploration Process of RF Predictive Mapping 

Unit：Decide on classification unit by comparing pixel-based classification and patch-based classification 

Scale：Decide on size of patches by comparing scale value of 20 and value of 40 

Local prediction：sampling data from the entire site to train RF model and classify all patches in the site 

Prediction within eco-region：diving IMAR counties into two halves and doing mutual prediction 

Prediction across eco-region：training on Ewenk and predicting Xilinhot and the other way round 

Pooling: merging samples from both Ewenk and Xilinhot and classify all patches in each county 

Filtering：pooling of purified sample data and compared with classifier trained by non-filtered dataset  

Predictive mapping：training RF with IMAR data and classifying image of Mongolian sites 
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in each class be roughly proportional to that of the dataset of patches. The number of 

deleted points is the difference between total sample number of each class in the 

reference dataset and total sample number of each class in the reduced dataset (Table 

5a and Table 5b, Table 6a and Table 6b, Table 7a and Table 7b). After the deletion, 

sizes of patch and pixel sample datasets of Ewenk, Xilinhot and Urat were 27027 and 

20087, 32305 and 25837, and 27410 and 27410 respectively. 

 

3.5 Accuracy assessment 

 

The OOB error that the RF method provides, which is estimated internally during the 

run and is also viewed as a unbiased estimation (Breiman, 2001),was used in our 

study as one measure of classification accuracy after all trees had been built in each 

model. We also used the traditional error matrix (Congalton et al., 1983) as another 

accuracy assessment method for each comparative experimentsinIMAR after models 

had run. The Kappa value was calculated based on traditional error matrices as a 

reasonable way to estimate overall accuracy when comparing results of different 

experiments (Congalton and Green, 2009). 

 For the Mongolian classifications, we used the Mongolia field survey points 

labeled by using the match table, a total of 119 of which were located within the 

boundary of image subsets. We extract predicted steppe type of the patches where 

these field survey points were locatedto those points and compared the class with the 

class we labeled these field survey points using the match table. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Pixel-based vs. patch-based classification 

 

Comparison of pixel- and patch-based classification shows that, for all three study 

sites of IMAR, patch-based classification hadhigher accuracy in both steppe 

vegetation and degradation classification based on both the results of the confusion 

matrix and the OOB error (Tables 5-10). This may be because the averaging effect of 

zonal analysis reducedthe influence of extreme values, which could otherwise mislead 

a classifier during training process. It has been shown in other studies that image 

segmentation filters out excessive heterogeneity in images and leads to higher 

accuracy than pixel-based classification (Karl and Maurer, 2010). In addition to a 

higher accuracy rate, the patch-based classificationsinvolvedmuch smaller datasets so 

that the classification process can be more efficient.  

To keep predictorvariables constant in this comparison experiment, texture 

variableswereexcluded from theseRFs. Inclusion of the texture variables resulted in 

no distinct improvement in overall accuracy for both steppe type and degradation 

classification (Tables 11 and 12). However, a little bit larger difference can be 

observed in some classes. For example, sand land meadow steppe (code C) was 

classified with ahigher producer's accuracy (0.51 to 0.6) in Ewenk Autonomous 

Region and sand land typical steppe (code E) inXilinhot City was classified with 
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slightly higher user's accuracy and producer's accuracy (0.63 to 0.65 and 0.80 to 0.84 

respectively). On the other hand, some other classes, such as class D (plain/hill typical 

steppe), experienced a very small decrease in accuracy when texture features were 

included. This may be because sandy lands have more texture than other steppe types 

so that texture features tend to be more useful for distinguishing sand land steppes 

while they introduce some noise for other classes. The segmentation process has to 

ensure homogeneity within a patch to a certain degree, thus texture features did not 

improve classification accuracy dramatically. However, this does not necessarily 

mean that texture features would be useful or not useful when we classify sites of the 

Mongolian images. We decided to keep the four most influential texture features 

(GLCM entropy, contrast, homogeneity and dissimilarity) for future experiments 

based on variable importance plots (Appendix A). 

 We also noticed that by altering pixel datasets to make the number of samples in 

each class proportional to that of patch datasets, the results did not change much 

(results not shown). This means that the RF classifier is not sensitive to small 

differences in class distribution. However, for very skewed distribution, classes with 

much smaller samples will be greatly influenced by dominant classes, especially in 

terms of user's accuracy. This occurred for all three study sites of IMAR and in both 

steppe type and degradation classification. 

 

Table 5. Comparison of (a) the error matrix of patch-based steppe vegetation 

classification, (b) the error matrix of pixel-based steppe vegetation classification and 

(c) the error matrix of the pixel-based steppe vegetation classification with the pixel 

dataset reduced to be proportional to the patch dataset of Ewenk autonomous region. 

UA is user's accuracy, PA is producer's accuracy and OA is overall accuracy. For 

steppe type, please refer to Table 3. 

 

a. Error matrix of patch-based steppe vegetation classification (Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  A B C D E F G H I J total UA 

A 

202

7 461 98 568 11 260 31 14 296 0 3766 0.54 

B 67 

215

5 6 8 0 306 1 2 468 0 3013 0.72 

C 390 76 299 179 55 49 67 6 147 0 1268 0.24 

D 500 70 25 3987 40 218 195 84 6 10 5135 0.78 

E 209 7 108 409 459 24 77 11 1 0 1305 0.35 

F 186 284 16 128 0 

206

0 14 23 360 4 3075 0.67 

G 24 8 14 238 19 68 

126

4 131 0 101 1867 0.68 

H 21 3 1 136 3 122 167 484 2 121 1060 0.46 

I 209 719 19 20 0 378 0 2 

416

0 0 5507 0.76 
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J 16 4 0 48 1 122 95 174 0 571 1031 0.55 

total 

364

9 

378

7 586 5721 588 

360

7 

191

1 931 

544

0 807 

2702

7 OA 

PA 0.56 0.57 0.51 0.70 0.78 0.57 0.66 0.52 0.76 0.71   

64.6

% 

Kappa = 0.59, OOB = 35.38% 

b. Error matrix of pixel-based steppe vegetation classification (Ewenk Autonomous Region) 

  Reference 

    A B C D E F G H I J total UA 

C
la

ss
if

ie
d

 

A 

221

1 465 129 1518 49 258 35 15 349 1 5030 0.44 

B 167 

195

0 9 119 0 466 1 2 714 0 3428 0.57 

C 520 162 166 291 43 97 54 6 217 0 1556 0.11 

D 859 153 31 7323 50 215 192 93 37 15 8968 0.82 

E 582 38 121 1429 250 26 77 1 16 2 2542 0.10 

F 321 486 31 170 1 

192

1 11 35 652 6 3634 0.53 

G 66 11 19 716 40 71 837 129 0 79 1968 0.43 

H 38 16 3 362 2 195 157 443 3 127 1346 0.33 

I 342 

106

6 17 77 0 774 0 6 

398

0 0 6262 0.64 

J 30 7 0 85 2 162 93 249 0 551 1179 0.47 

total 

513

6 

435

4 526 

1209

0 437 

418

5 

145

7 979 

596

8 781 

3591

3 OA 

PA 0.43 0.45 0.32 0.61 0.57 0.46 0.57 0.45 0.67 0.71   

54.7

% 

Kappa = 0.46, OOB = 45.33% 

c. Error matrix of pixel-based steppe vegetation classification from reduced dataset of pixel samples 

(Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  A B C D E F G H I J total UA 

A 

116

9 278 107 517 43 159 34 11 223 0 2541 0.46 

B 89 

131

7 12 44 0 304 2 1 500 1 2270 0.58 

C 294 101 136 100 46 70 49 5 143 0 944 0.14 

D 425 93 26 2570 47 142 181 66 35 11 3596 0.71 

E 320 28 100 511 256 18 75 2 12 2 1324 0.19 

F 164 305 21 80 2 

123

7 13 33 431 9 2295 0.54 

G 41 7 17 266 40 47 835 92 0 64 1409 0.59 

H 21 12 3 119 2 127 143 315 2 111 855 0.37 
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I 174 671 13 19 0 475 0 3 

269

7 0 4052 0.67 

J 15 2 1 26 1 102 88 164 0 402 801 0.50 

total 

271

2 

281

4 436 4252 437 

268

1 

142

0 692 

404

3 600 

2008

7 OA 

PA 0.43 0.47 0.31 0.60 0.59 0.46 0.59 0.46 0.67 0.67   

54.4

% 

Kappa = 0.47, OOB = 45.57% 

 

Table 6. Comparison of (a) the error matrix of patch-based steppe vegetation 

classification, (b) the error matrix of pixel-based steppe vegetation classification and 

(c) the error matrix of the pixel-based steppe vegetation classification with the pixel 

dataset reduced to be proportional to the patch dataset of Xilinhot city. UA is user's 

accuracy, PA is producer's accuracy and OA is overall accuracy. For steppe type, 

please refer to Table 3. 

 

a. Error matrix of patch-based steppe vegetation classification (Xilinhot City) 

  Reference 

    A B D E F G H K Total UA 

cl
as

si
fi

ed
 

A 1209 20 2008 165 51 2 1 22 3478 0.35  

B 134 181 193 17 4 0 1 90 620 0.29  

D 34 1 14023 299 115 180 13 34 14699 0.95  

E 64 4 1463 2781 22 42 1 4 4381 0.63  

F 41 0 1337 82 581 185 38 6 2270 0.26  

G 0 0 1277 94 104 1938 72 1 3486 0.56  

H 4 0 336 23 137 301 199 0 1000 0.20  

K 43 27 1765 13 18 11 8 486 2371 0.20  

Total 1529 233 22402 3474 1032 2659 333 643 32305 OA 

PA 0.79  0.78  0.63  0.80  0.56  0.73  0.60  0.76  
 

66.24% 

Kappa=0.48, OOB=33.76% 

b. Error matrix of pixel-based steppe vegetation classification (Xilinhot City) 

  Reference 

    A B D E F G H K Total UA 

cl
as

si
fi

ed
 

A 2290 54 2626 190 55 2 2 71 5290 0.43  

B 270 189 557 78 9 0 1 126 1230 0.15  

D 50 1 23268 343 202 214 16 68 24162 0.96  

E 80 13 2903 1996 35 54 1 36 5118 0.39  

F 37 1 2796 94 605 187 29 42 3791 0.16  

G 0 0 2042 87 94 1457 78 4 3762 0.39  

H 3 1 469 73 129 426 234 4 1339 0.17  

K 161 26 3162 141 86 18 7 446 4047 0.11  

Total 2891 285 37823 3002 1215 2358 368 797 48739 OA 

PA 0.79  0.66  0.62  0.66  0.50  0.62  0.64  0.56  
 

62.5% 
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Kappa=0.37, OOB=37.45% 

c. Error matrix of pixel-based steppe vegetation classification from reduced dataset of pixel samples 

(Xilinhot City) 

  Reference 

    A B D E F G H K Total UA 

cl
as

si
fi

ed
 

A 1137 43 1191 184 33 1 2 48 2639 0.43  

B 151 138 252 85 6 0 1 85 718 0.19  

D 23 3 10793 344 146 187 12 60 11568 0.93  

E 34 11 1366 1987 27 43 1 25 3494 0.57  

F 16 2 1200 92 424 158 24 27 1943 0.22  

G 0 0 988 85 78 1252 70 2 2475 0.51  

H 4 1 257 79 74 328 163 3 909 0.18  

K 77 26 1408 146 64 13 6 351 2091 0.17  

Total 1442 224 17455 3002 852 1982 279 601 25837 OA 

PA 0.79  0.62  0.62  0.66  0.50  0.63  0.58  0.58  
 

62.9% 

Kappa=0.44, OOB=37.13% 

 

Table 7. Comparison of (a) the error matrix of patch-based steppe vegetation 

classification and (b) the error matrix of pixel-based steppe vegetation classification 

of Urat middle banner. UA is user's accuracy, PA is producer's accuracy and OA is 

overall accuracy. For steppe type, please refer to Table 3. 

 

a. Error matrix of patch-based steppe vegetation classification (Urat Middle Banner) 

  Reference 

    F G H J L M N O P Q Total UA 

C
la

ss
if

ie
d

 

F 160 147 0 2 136 7 0 98 57 0 607 0.26  

G 22 594 11 12 726 52 1 131 80 0 1629 0.36  

H 1 71 25 6 35 0 0 2 1 0 141 0.18  

J 9 90 4 47 577 3 0 14 0 0 744 0.06  

L 4 45 0 3 7410 368 0 279 7 0 8116 0.91  

M 0 7 0 0 933 
573

2 
0 911 1 0 7584 0.76  

N 0 2 0 0 19 24 11 71 1 0 128 0.09  

O 1 21 0 0 152 813 7 
447

6 
173 0 5643 0.79  

P 2 21 0 0 12 1 1 518 
189

2 
14 2461 0.77  

Q 1 2 0 0 0 0 0 0 288 66 357 0.18  

Tota

l 
200 

100

0 
40 70 

1000

0 

700

0 
20 

650

0 

250

0 
80 

2741

0 
OA 

PA 
0.8

0  
0.59  

0.6

7  

0.6

7  
0.74  0.82  

0.5

5  
0.69  0.76  

0.8

3  
  

74.47

% 

Kappa = 0.66, OOB =25.53% 
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b. Error matrix of pixel-based steppe vegetation classification (Urat Middle Banner) 

  Reference 

    F G H J L M N O P Q Total UA 

C
la

ss
if

ie
d

 

F 99 114 17 0 701 202 1 96 6 0 1236 0.08  

G 13 580 2 3 378 20 3 419 81 0 1499 0.39  

H 11 13 5 0 73 17 0 8 0 0 127 0.04  

J 3 8 1 67 0 20 0 0 2 0 101 0.66  

L 35 59 9 0 5086 631 0 977 9 0 6806 0.75  

M 16 13 4 0 1098 
578

0 
0 234 33 0 7178 0.81  

N 0 7 0 0 50 3 11 5 19 0 95 0.12  

O 15 137 1 0 2082 138 0 
407

8 
146 1 6598 0.62  

P 8 53 1 0 466 188 5 378 
216

1 
4 3264 0.66  

Q 0 16 0 0 66 1 0 305 43 75 506 0.15  

Tota

l 
200 

100

0 
40 70 

1000

0 

700

0 
20 

650

0 

250

0 
80 

2741

0 
OA 

PA 
0.5

0  
0.58  

0.1

3 

0.9

6  
0.51  0.83  

0.5

5  
0.63  0.86  

0.9

4  
  65.46% 

Kappa = 0.55, OOB = 34.54% 

 

Table 8. Comparison of (a) the error matrix of patch-based steppe degradation 

classification, (b) the error matrix of pixel-based steppe degradation classification of 

Ewenk autonomous region and (c) the error matrix of the pixel-based steppe 

degradation classification with the pixel dataset reduced to be proportional to the 

patch dataset. UA is user's accuracy, PA is producer's accuracy and OA is overall 

accuracy. For degradation level, please refer to merged class codes in Table 4. 

 

a. Error matrix of patch-based steppe degradation classification (Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d total UA 

a 13463 557 226 41 14287 0.94 

b 2143 3315 758 253 6469 0.51 

c 992 884 1290 253 3419 0.38 

d 403 409 659 1381 2852 0.48 

total 17001 5165 2933 1928 27027 OA 

PA 0.79 0.64 0.44 0.72   72.0% 

Kappa = 0.53, OOB = 28.04% 

b. Error matrix of pixel-based steppe degradation classification (Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

i

er
 

 

a b c d total UA 

a 9841 452 212 51 10556 0.93 
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b 2000 2247 669 180 5096 0.44 

c 798 793 989 156 2736 0.36 

d 285 254 443 717 1699 0.42 

total 12924 3746 2313 1104 20087 OA 

PA 0.76 0.60 0.43 0.65   68.7% 

Kappa = 0.47, OOB = 31.33% 

c. Error matrix of pixel-based steppe degradation classification from reduced dataset of pixel samples 

(Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
r 

 

a b c d total UA 

a 7429 344 143 45 7961 0.93 

b 1532 1809 481 171 3993 0.45 

c 563 605 705 177 2050 0.34 

d 211 199 349 711 1470 0.48 

total 9735 2957 1678 1104 15474 OA 

PA 0.76 0.61 0.42 0.64   68.9% 

Kappa = 0.49, OOB = 31.15% 

 

Table 9. Comparison of (a) the error matrix of patch-based steppe degradation 

classification, (b) the error matrix of pixel-based steppe degradation classification and 

(c) the error matrix of the pixel-based steppe degradation classification with the pixel 

dataset reduced to be proportional to the patch dataset of Xilinhot city. UA is user's 

accuracy, PA is producer's accuracy and OA is overall accuracy. For degradation level, 

please refer to merged class codes in Table 4. 

 

a. Error matrix of patch-based steppe degradation classification (Xilinhot City) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 4760 2329 1097 144 8330 0.57  

b 1087 4814 1991 582 8474 0.57  

c 380 2170 4456 1362 8368 0.53  

d 119 881 1789 4344 7133 0.61  

Total 6346 10194 9333 6432 32305 OA 

PA 0.75  0.47  0.48  0.68    56.88% 

  Kappa = 0.42, OOB = 43.12% 

b. Error matrix of pixel-based steppe degradation classification (Xilinhot City) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 8088 3756 1470 312 13626 0.59  

b 2356 8150 3557 748 14811 0.55  

c 541 3124 5894 1348 10907 0.54  

d 198 1644 3426 4127 9395 0.44  

Total 11183 16674 14347 6535 48739 OA 
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PA 0.72  0.49  0.41  0.63    53.88% 

  Kappa = 0.38, OOB = 46.12% 

c. Error matrix of pixel-based steppe degradation classification from reduced dataset of pixel samples  

(Xilinhot City) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 5141 2418 997 306 8862 0.58  

b 1481 5099 2291 764 9635 0.53  

c 343 1937 3776 1340 7396 0.51  

d 116 1050 2238 4125 7529 0.55  

Total 7081 10504 9302 6535 33422 OA 

PA 0.73  0.49  0.41  0.63    54.28% 

  Kappa = 0.39, OOB = 45.72% 

 

Table 10. Comparison of (a) the error matrix of patch-based steppe degradation 

classification, (b) the error matrix of pixel-based steppe degradation classification and 

(c) the error matrix of the pixel-based steppe degradation classification with the pixel 

dataset reduced to be proportional to the patch dataset of Urat middle banner. UA is 

user's accuracy, PA is producer's accuracy and OA is overall accuracy. For degradation 

level, please refer to merged class codes in Table 4. 

 

a. Error matrix of patch-based steppe degradation classification (Urat Middle Banner) 

  Reference 

    a b c d Total UA 

C
la

ss
if

ie
d

 

a 6945 1670 361 77 9053 0.77  

b 739 7021 1516 138 9414 0.75  

c 283 2622 5506 213 8624 0.64  

d 401 1164 641 1133 3339 0.34  

Total 8368 12477 8024 1561 30430 OA 

PA 0.83  0.56  0.69  0.73    67.71% 

Kappa = 0.55, OOB = 32.29% 

b. Error matrix of pixel-based steppe degradation classification (Urat Middle Banner) 

  Reference 

    a b c d Total UA 

C
la

ss
if

ie
d

 

a 6731 2727 762 141 10361 0.65  

b 921 11297 3274 192 15684 0.72  

c 218 4617 10648 283 15766 0.68  

d 533 2065 1149 1142 4889 0.23  

Total 8403 20706 15833 1758 46700 OA 

PA 0.80  0.55  0.67  0.65    63.85% 

Kappa = 0.48, OOB = 36.15% 

c. Error matrix of pixel-based steppe degradation classification from reduced dataset of pixel samples 

(Urat Middle Banner) 



23 
 

  Reference 

    a b c d Total UA 
C

la
ss

if
ie

d
 

a 6722 1675 361 125 8883 0.76  

b 918 6867 1719 176 9680 0.71  

c 238 2786 5398 258 8680 0.62  

d 525 1201 580 1009 3315 0.30  

Total 8403 12529 8058 1568 30558 OA 

PA 0.80  0.55  0.67  0.64    65.44% 

Kappa = 0.51, OOB = 34.56% 

 

Table 11. The error matrices of patch-based steppe type classification with texture 

features of (a) Ewenk autonomous region, (b) Xilinhot city and (c) Urat middle banner. 

UA is user's accuracy, PA is producer's accuracy and OA is overall accuracy. For 

steppe type, please refer to table 3. 

 

a. Error matrix of patch-based steppe classification with texture features (Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  A B C D E F G H I J total UA 

A 

188

3 423 52 528 16 230 48 18 299 0 3497 0.54 

B 63 

215

3 9 12 0 314 1 2 502 0 3056 0.70 

C 438 91 354 139 72 96 47 12 153 0 1402 0.25 

D 545 74 3 

409

7 18 59 164 62 4 5 5031 0.81 

E 220 5 116 366 462 46 75 11 1 0 1302 0.35 

F 207 301 21 89 1 

216

7 21 27 387 9 3230 0.67 

G 32 8 10 301 12 65 

129

6 130 0 92 1946 0.67 

H 30 4 1 134 6 119 165 473 3 102 1037 0.46 

I 218 726 20 8 0 372 0 2 

409

1 0 5437 0.75 

J 13 2 0 47 1 139 94 194 0 599 1089 0.55 

tota

l 

364

9 

378

7 586 

572

1 588 

360

7 

191

1 931 

544

0 807 

2702

7 OA 

PA 0.52 0.57 

0.6

0 0.72 

0.7

9 0.60 0.68 

0.5

1 0.75 

0.7

4   

65.0

% 

KAPPA = 0.59, OOB = 34.97% 

 

b. Error matrix of patch-based steppe vegetation classification with texture features (Xilinhot City) 

  Reference 

    A B D E F G H K Total UA 
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C
la

ss
if

ie
d

 

A 1197 18 2051 71 47 3 1 21 3409 0.35  

B 118 182 176 23 6 0 1 91 597 0.30  

D 38 2 14608 211 79 139 4 23 15104 0.97  

E 84 3 1362 2910 29 44 1 10 4443 0.65  

F 49 1 1197 90 594 187 56 8 2182 0.27  

G 0 0 1213 117 116 1960 80 1 3487 0.56  

H 5 0 233 23 144 313 182 0 900 0.20  

K 38 27 1562 29 17 13 8 489 2183 0.22  

Total 1529 233 22402 3474 1032 2659 333 643 32305 OA 

PA 0.78  0.78  0.65  0.84  0.58  0.74  0.55  0.76  
 

68.48% 

Kappa=0.51, OOB=31.52% 

 

c. Error matrix of patch-based steppe vegetation classification with texture features (Urat Middle 

Banner) 

  Reference 

    F G H J L M N O P Q Total UA 

C
la

ss
if

ie
d

 

F 164 141 2 1 88 4 0 96 105 0 601 0.27  

G 22 642 13 18 729 71 2 167 67 0 1731 0.37  

H 1 48 20 7 64 0 0 0 0 0 140 0.14  

J 5 83 5 41 592 4 0 10 8 0 748 0.05  

L 0 33 0 2 7392 426 0 237 5 0 8095 0.91  

M 0 6 0 0 931 
555

3 
0 844 2 0 7336 0.76  

N 0 1 0 0 13 17 12 51 1 0 95 0.13  

O 0 18 0 0 165 925 5 
449

9 
160 0 5772 0.78  

P 6 23 0 0 19 0 1 591 
191

9 
14 2573 0.75  

Q 2 5 0 1 7 0 0 5 233 66 319 0.21  

Tota

l 
200 

100

0 
40 70 

1000

0 

700

0 
20 

650

0 

250

0 
80 

2741

0 
OA 

PA 
0.8

2  
0.64  

0.5

9  

0.5

9  
0.74  0.79  

0.6

0  
0.69  0.77  

0.8

3  
  

74.09

% 

Kappa = 0.66, OOB =25.91% 

 

Table 12. The error matrices of patch-based steppe degradation classification with 

texture features of (a) Ewenk autonomous region, (b) Xilinhot city and (c) Urat 

middle banner. UA is user's accuracy, PA is producer's accuracy and OA is overall 

accuracy. For degradation level, please refer to merged class codes in Table 4. 

 

a. Error matrix of patch-based steppe degradation classification with texture features (Ewenk 

Autonomous Region) 

  Reference 
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C
la

ss
if

ie
d

 

  a b c d total UA 

a 13753 579 217 42 14591 0.94 

b 1783 3185 710 169 5847 0.54 

c 1010 1002 1352 317 3681 0.37 

d 455 399 654 1400 2908 0.48 

total 17001 5165 2933 1928 27027 OA 

PA 0.81 0.62 0.46 0.73   72.8% 

Kappa = 0.54, OOB = 27.15% 

 

b. Error matrix of patch-based steppe degradation classification with texture features (Xilinhot City) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 4664 2349 953 93 8059 0.58  

b 1122 4651 1905 485 8163 0.57  

c 377 2147 4555 1320 8399 0.54  

d 183 1047 1920 4534 7684 0.59  

Total 6346 10194 9333 6432 32305 OA 

PA 0.73  0.46  0.49  0.70    56.97% 

Kappa = 0.43, OOB = 43.03% 

 

c. Error matrix of patch-based steppe degradation classification with texture features (Urat Middle 

Banner) 

  Reference 

    a b c d Total UA 

C
la

ss
if

ie
d

 

a 7107 1844 361 81 9393 0.76  

b 569 6699 1263 104 8635 0.78  

c 181 2634 5538 191 8544 0.65  

d 511 1300 862 1185 3858 0.31  

Total 8368 12477 8024 1561 30430 OA 

PA 0.85  0.54  0.69  0.76    67.46% 

Kappa = 0.55, OOB = 32.54% 

 

4.2 Patch-based classification at the scale of 20 vs. scale of 40 

 

There was not a big difference in overall accuracy, based on Kappa valuesandOOB 

errors between classifications at two scales (comparing Tables 13-15 to Tables 5a and 

10a). This might be because, with larger patch size, more heterogeneity was filtered 

out but, at the same time, more mixed patches were created making samples less 

representative of the classes they were labeled. Based the result of this experiment, we 

decided to keep on using patch data at scale of 20 for a couple of reasons. First, 

according to our visual examination during image segmentation, smaller ground 

features such as little sandy patch or small and narrow lowland grassland patch 

around streams or ponds can be bettercapturedat scale of 20. The size of the dataset 
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with finer-scale patches was not too big, while we can still maintain a lot of details. 

Second, though larger patch sizes can decrease data size, we were not able to reach a 

much higher accuracy rate at the cost of losing more information in data. Thus we 

believe that for our study, 20 was an appropriate value of scale parameter in 

segmentation. 

 

Table 13. The error matrices of patch-based steppe (a) vegetation and (b) degradation 

at scale 40 of Ewenk autonomous region. UA is user's accuracy, PA is producer's 

accuracy and OA is overall accuracy. For steppe type, refer to Table 3. For 

degradation level, refer to merged class codes in Table 4. 

 

a. Error matrix of patch-based steppe vegetation classification at scale of 40 (Ewenk Autonomous 

Region) 

  Reference 

C
la

ss
if

ie
d

 

  A B C D E F G H I J Total UA 

A 523 128 12 146 3 52 14 3 101 0 982 0.53  

B 22 512 5 3 0 73 0 0 161 0 776 0.66  

C 126 24 84 38 30 19 15 2 38 0 376 0.22  

D 178 21 2 1197 1 11 42 18 3 0 1473 0.81  

E 48 0 32 105 140 10 18 0 0 0 353 0.40  

F 58 76 4 21 0 594 5 11 86 1 856 0.69  

G 12 2 3 70 5 11 385 39 0 19 546 0.71  

H 10 0 1 41 3 45 48 132 0 31 311 0.42  

I 61 219 1 0 0 91 0 0 1172 0 1544 0.76  

J 2 1 0 14 0 51 16 51 0 171 306 0.56  

Total 1040 983 144 1635 182 957 543 256 1561 222 7523 OA 

PA 0.50  0.52  0.58  0.73  0.77  0.62  0.71  0.52  0.75  0.77    65.27% 

Kappa = 0.60 OOB = 34.73% 

 

b. Error matrix of pixel-based steppe degradation classification at scale of 40 (Ewenk Autonomous 

Region) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 3760 218 73 12 4063 0.93  

b 490 871 202 54 1617 0.54  

c 303 295 347 80 1025 0.34  

d 124 105 166 423 818 0.52  

Total 4677 1489 788 569 7523 OA 

PA 0.80  0.58  0.44  0.74    71.79% 

Kappa = 0.53, OOB = 28.21% 

 

Table 14. The error matrices of patch-based steppe (a) vegetation and (b) degradation 

at scale 40 of Xilinhot city. UA is user's accuracy, PA is producer's accuracy and OA is 
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overall accuracy. For steppe type, please refer to table 3. For degradation level, refer 

to mergedclass codes in table 4. 

 

a. Error matrix of patch-based steppe vegetation classification at scale of 40 (Xilinhot City) 

  Reference 

    A B D E F G H K Total UA 

cl
as

si
fi

ed
 

A 311 8 545 25 8 0 0 3 900 0.35  

B 34 46 46 3 2 0 0 20 151 0.30  

D 14 0 4047 58 15 26 2 7 4169 0.97  

E 30 0 314 715 5 11 2 1 1078 0.66  

F 14 1 243 18 168 54 21 5 524 0.32  

G 0 0 360 26 30 527 14 0 957 0.55  

H 2 0 70 11 49 112 56 0 300 0.19  

K 13 5 414 9 2 3 4 104 554 0.19  

Total 418 60 6039 865 279 733 99 140 8633 OA 

PA 0.74  0.77  0.67  0.83  0.60  0.72  0.57  0.74  
 

69.20% 

Kappa=0.51, OOB=30.80% 

 

a. Error matrix of patch-based steppe degradation classification at scale of 40 (Xilinhot City) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 1182 669 278 40 2169 0.54  

b 329 1243 507 116 2195 0.57  

c 95 583 1138 353 2169 0.52  

d 49 308 515 1228 2100 0.58  

Total 1655 2803 2438 1737 8633 OA 

PA 0.71  0.44  0.47  0.71    55.50% 

  Kappa = 0.41, OOB = 44.50% 

 

Table 15. The error matrices of patch-based steppe (a) vegetation and (b) degradation 

at scale 40 of Urat middle banner. UA is user's accuracy, PA is producer's accuracy 

and OA is overall accuracy. For steppe type, please refer to Table 3. For degradation 

level, please refer to merged class codes in Table 4. 

 

a. Error matrix of patch-based steppe vegetation classification at scale of 40(Urat Middle Banner) 

  Reference 

    F G H J L M N O P Q Total UA 

C
la

ss
if

ie
d

 

F 38 48 1 0 22 0 0 47 34 1 191 0.20  

G 10 135 7 8 117 4 0 21 5 0 307 0.44  

H 0 12 7 0 14 2 0 2 0 0 37 0.19  

J 1 24 0 11 118 7 0 9 0 0 170 0.06  

L 0 11 0 0 1861 128 0 63 0 0 2063 0.90  

M 0 7 0 0 309 1344 1 179 0 0 1840 0.73  
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N 0 0 0 0 0 10 3 15 0 0 28 0.11  

O 1 8 0 1 48 253 3 1217 86 0 1617 0.75  

P 0 4 0 0 4 2 0 68 453 2 533 0.85  

Q 0 1 0 0 7 0 0 4 47 17 76 0.22  

Total 50 250 15 20 2500 1750 7 1625 625 20 6862 OA 

PA 0.76  0.54  0.55  0.55  0.74  0.77  0.43  0.75  0.72  0.85    74.12% 

Kappa = 0.66, OOB =25.88% 

 

b. Error matrix of patch-based steppe degradation classification at scale 40(Urat Middle Banner) 

  Reference 

    a b c d Total UA 

C
la

ss
if

ie
d

 

a 2021 509 119 28 2677 0.75  

b 192 1671 350 30 2243 0.74  

c 31 821 1552 63 2467 0.63  

d 143 339 214 309 1005 0.31  

Total 2387 3340 2235 430 8392 OA 

PA 0.85  0.50  0.69  0.72    66.17% 

Kappa = 0.53, OOB = 33.83% 

 

4.3 Local prediction 

 

Comparing local prediction results (Tables 16-18) with those of patch-based 

classification presented (Table 5-10), most of results show no big differences in 

overall performance of steppe classes and degradation levels in terms of classification 

accuracy, except that the accuracy of degradation classification of Xilinhot City 

dropped a few percentage points. The way we sampled the training dataset gave 

thetraining and testing datasets similar ranges and distributions of predictor variables. 

Assuming that we have collected abundant training samples in the way that we do for 

supervised classification for a new image, the classification accuracy we get from the 

training dataset by using RF might be close to the best we could get if we use RF to 

classify the entire image. 

In this experiment, the difference between commission error and omission error 

of some classes became even more distinct, which indicated confusion between two 

classes or among more classes. There were probably two major reasons leading to the 

misclassification. First, classes shared great similarity so that the predictor variables 

are not capable of distinguishing them. Second, patches were not labeled 

appropriately, which affected both training and testing datasets. We used the class of 

majority of pixels within the patch to label the patch. Those patches with mixed pixels 

could mislead the classifier. Moreover, the manually digitized boundary may not be 

accurate or those boundaries had changed in our images due to different climate 

conditions in a different year, or the degradation had developed (or mitigated) (Figure 

2). 

 During this local prediction experiment, the same input variables were used for 

both steppe vegetation type and degradation classification. However, if steppe type 
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information is already available, it can be used as another input predictor variable in 

the RF model of degradation classification. For example, under the assumption that 

steppe classes were known, using steppe class information as an additional input in 

degradation classification model of Ewenk Autonomous Regioncan greatly improve 

accuracy of local prediction (Table 19a). Thisis because there is correlation between 

degradation and steppe class. For example, lowland meadow with salinizationor sand 

land meadow or typical steppes are usually degraded which has already reflected in 

steppe class names. However, when we used the predicted steppe class to label all 

patches and classify this dataset during local prediction of degradation, the accuracy 

dropped back (Table 19b). Error in steppe type classification can even further reduced 

accuracy compared to model with no steppe type as one of the input variables. Thus 

even if the accuracy was high, it would be risky to use steppe class information in the 

degradation classification process when validation dataset is too small to assess how 

reliable isthe steppe type classification result. However, it might be a useful and more 

efficient way to create degradation map if a steppe type map was available, compared 

with manually digitizing. 

 

Table 16. The error matrices of local prediction on (a) vegetation and (b) degradation 

ofEwenk autonomous region. UA is user's accuracy, PA is producer's accuracy and 

OA is overall accuracy. For steppe type, please refer to Table 3. For degradation level, 

please refer to merged class codes in Table 4. 

 

a. Error matrix oflocal prediction of steppe types (Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  A B C D E F G H I J Total UA 

A 

177

3 431 36 547 12 244 33 18 313 0 3407 0.52  

B 48 

215

9 4 18 0 326 0 1 771 0 3327 0.65  

C 421 93 423 185 75 75 49 6 148 0 1475 0.29  

D 610 78 4 

393

2 17 58 140 40 18 4 4901 0.80  

E 197 2 73 314 468 47 93 19 1 0 1214 0.39  

F 293 329 17 102 3 

220

4 25 58 357 9 3397 0.65  

G 36 10 5 304 5 37 

127

8 86 2 68 1831 0.70  

H 42 8 3 264 7 134 211 546 4 105 1324 0.41  

I 218 674 21 14 0 378 2 2 

382

6 0 5135 0.75  

J 11 3 0 41 1 104 80 155 0 621 1016 0.61  

Tota

l 

364

9 

378

7 586 

572

1 588 

360

7 

191

1 931 

544

0 807 

2702

7 OA 

PA 0.49  0.57  0.7 0.69  0.8 0.61  0.67  0.5 0.70  0.7   63.75
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2  0  9  7  % 

Kappa = 0.58, OOB (training dataset) = 36.70% 

 

b. Error matrix of local prediction of degradation (Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 13775 827 253 36 14891 0.93  

b 1812 2984 744 169 5709 0.52  

c 932 942 1343 308 3525 0.38  

d 482 412 593 1415 2902 0.49  

Total 17001 5165 2933 1928 27027 OA 

PA 0.81  0.58  0.46  0.73    72.21% 

Kappa = 0.53, OOB (training dataset) = 37.25% 

 

Table 17. The error matrices of local prediction on (a) vegetation and (b) degradation 

of Xilinhot city. UA is user's accuracy, PA is producer's accuracy and OA is overall 

accuracy. For steppe type, please refer to Table 3. For degradation level, please refer 

to merged class codes in Table 4. 

 

a. Error matrix of local prediction of steppe types (Xilinhot City) 

  Reference 

    A B D E F G H K Total UA 

cl
as

si
fi

ed
 

A 1193 4 1741 95 36 4 1 14 3088 0.39  

B 116 225 194 29 10 0 1 65 640 0.35  

D 50 0 14345 244 52 137 0 20 14848 0.97  

E 84 0 1052 2759 18 23 0 7 3943 0.70  

F 46 0 1503 104 619 146 15 5 2438 0.25  

G 0 0 1334 165 95 1827 33 2 3456 0.53  

H 7 0 540 38 186 510 278 1 1560 0.18  

K 33 4 1693 40 16 12 5 529 2332 0.23  

Total 1529 233 22402 3474 1032 2659 333 643 32305 OA 

PA 0.78  0.97  0.64  0.79  0.60  0.69  0.83  0.82  
 

67.40% 

Kappa=0.50, OOB (training dataset) =30.19% 

 

b. Error matrix of local prediction of degradation (Xilinhot City) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 4281 2399 949 110 7739 0.55  

b 1298 4487 2274 523 8582 0.52  

c 510 2143 4097 1363 8113 0.50  

d 257 1165 2013 4436 7871 0.56  

Total 6346 10194 9333 6432 32305 OA 

PA 0.67  0.44  0.44  0.69    53.56% 
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Kappa = 0.38, OOB (training dataset)  = 42.62% 

 

Table 18. The error matrices of local prediction on (a) merged vegetation and (b) 

degradation of Urat middle banner. UA is user's accuracy, PA is producer's accuracy 

and OA is overall accuracy. For steppe type, please refer to Table 3. For degradation 

level, please refer to merged class codes in Table 4. 

 

a. Error matrix of local prediction of steppe types (Urat Middle Banner) 

  Reference     

    F GH J L MN O PQ Total UA 

C
la

ss
if

ie
d

 

F 274 184 0 774 241 140 9 1622 0.17  

GH 7 793 0 489 57 411 48 1805 0.44  

J 2 1 319 0 2 0 1 325 0.98  

L 9 55 0 6187 295 1167 26 7739 0.80  

MN 2 16 0 1136 7253 654 69 9130 0.79  

O 4 51 0 1921 144 4026 121 6267 0.64  

PQ 1 23 0 419 93 553 2453 3542 0.69  

Total 299 1123 319 10926 8085 6951 2727 30430 OA 

PA 0.92  0.71  1.00  0.57  0.90  0.58  0.90    70.01% 

Kappa = 0.61, OOB (training dataset) = 25.43 

 

b. Error matrix of local prediction of steppe degradation (Urat Middle Banner) 

  Reference 

    a b c d Total UA 

C
la

ss
if

ie
d

 

a 7326 2273 466 87 10152 0.72  

b 478 5939 1599 97 8113 0.73  

c 167 3056 5255 202 8680 0.61  

d 397 1209 704 1175 3485 0.34  

Total 8368 12477 8024 1561 30430 OA 

PA 0.88  0.48  0.65  0.75    64.72% 

Kappa = 0.51, OOB (training dataset)= 31.37% 
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(a)                                     (b) 

Figure 2. (a) A lowland meadow subset 

of 2010 Landsat TM5 image in false 

color infrared of Xilinhot City, (b) 

boundaries of segmented patches in the 

same area, and (c) the 2009 digitized 

steppe classes. Class G (Salinized 

lowland meadow) is in purple, class H 

(Swampy lowland meadow) is in red 

and class D (Plain/hill typical steppe) is 

in green. 

              (c) 

 

Table 19. The error matrices of local prediction of degradation of Ewenk autonomous 

region. (a) Used steppe class information from reference map for both training dataset 

and testing dataset (all patches in the map). (b) Used steppe class information from 

reference map for training dataset and used predicted steppe classification for all 

patches during degradation prediction. UA is user's accuracy, PA is producer's 

accuracy and OA is overall accuracy. For degradation level, please refer to merged 

class codes in Table 4. 

 

a. Error matrix of local prediction of degradation with steppe class added into model (Ewenk 

Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 15391 321 109 14 15835 0.97  

b 1278 4071 787 180 6316 0.64  

c 145 569 1484 298 2496 0.59  

d 187 204 553 1436 2380 0.60  

Total 17001 5165 2933 1928 27027 OA 

PA 0.91  0.79  0.51  0.74    82.81% 

Kappa = 0.70, OOB (training dataset) = 29.38% 

b. Error matrix of local prediction of degradation with steppe class added into model and by using 
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predicted steppe class for degradation prediction (Ewenk Autonomous Region)  

  Reference 
C

la
ss

if
ie

d
 

  a b c d Total UA 

a 14068 834 455 174 15531 0.91  

b 2054 3156 734 143 6087 0.52  

c 511 777 1132 236 2656 0.43  

d 368 398 612 1375 2753 0.50  

Total 17001 5165 2933 1928 27027 OA 

PA 0.83  0.61  0.39  0.71    73.00% 

Kappa = 0.53, OOB (training dataset) = 29.38% 

 

4.4 Predicting within eco-region 

 

Unlike local prediction, dividing every IMAR county into two halvesmeans training 

and testing datasets came from two different pools, so the ranges and distributions of 

variables may vary. We divided Ewenk Autonomous Region into northern and 

southern halves. Since the size of the dataset was halved, we reduced the sample size 

for input to the RF to 100 per steppe type. Compared to our previous experiments, the 

accuracy rate of steppe type classification dropped greatly when an RF was trained in 

the north and tested in the south of the Ewenk site (Table 20a). With no input from the 

other half part of the image in RF model, it was possible that the classifier tended to 

"overfit" the northern half. So when the RF was used to classify the southern part, 

class centers in south Ewenkweredifferent or the distribution of data changed in the 

multi-dimensional space so that the RF classifier could no longer distinguish different 

classes. For example class B (Mountain meadow steppe) and class I (Low/middle 

mountain meadow) were confused with each other which lead to high error rates for 

both classes (Table 20a). Mountain meadow steppe (B) is distributedto the north of 

the stream, which runs across the middle subset of the image (Figure 3);Low/middle 

mountain meadow is in southern part. Both types of steppes are in a mountainous area 

and they both have high reflectance in near infrared, so they are easily confused with 

each other. Within the multi-dimensional space defined by all predictor variables, 

classes overlap with each other so the classifier failed to separate them well. 

 The degradation classification results also show lower accuracy rates for the 

within eco-region predictions, but they did not drop as much as that of steppe type 

classification (Tables 20b and 20d). A main reason is that there were fewer classes in 

degradation classification. The non-degraded steppe hasmanymore patches than the 

other degradation levels, which means that it has a large influence onthe overall 

assessment. On the other hand, degraded steppes, especially slight and moderate 

degradation levels hadmuch lower accuracy. This same pattern, i.e., dominance of a 

single class having a negative influence on ability to classify other classes, has been 

shown in previous experiments' results. 

 As for Xilinhot City, we divided it into eastern and western halves.Steppe of type 

B (Mountain meadow steppe) only existed in the east part. The overall performance 

was better when trained on east and predicted the western half (Tables 21a and 21c). 
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Class D (Plain/hill typical steppe) contributed a lot to the accuracy rate because it was 

the dominantsteppe type in the area. Other steppe types that coveredmuch smaller 

areas had very low user's accuracy or both user's and producer's accuracy. The 

absence of class B in western half also affected the prediction result. The accuracy 

rates for mutual prediction of degradation further dropped compared to local 

prediction (Tables 21b and 21d). Unlike Ewenk, degradation levels had more 

balanced distributions, in terms of number of patches and relatively mottled pattern 

(Figure 4 (a)). Moreover, steppes in theeastern half generally appeared to have higher 

reflectance in near infrared band while band 4 and brightness from tasseled cap 

transformation were among top three variables in terms of "Mean Decrease Accuracy" 

plots generated during training process. All these factors mentioned above can explain 

poor prediction results. 

Urat Middle Banner was divided into northeast and southwest halves in order to 

ensure that both parts cover as many steppe types within the region as possible. Class 

J (Swamp/marsh) was not in northeast part. The prediction results turned out to have 

similar pattern as previous experiments on Urat in terms of accuracy rate (Table 22). 

Steppe M&N (Mountain desert steppe and Sand land desert steppe) and Steppe L 

(Plain/hill desert steppe) had better classification results and classes P&Q (Gravelly 

desert and Sandy desert) had higher accuracies when using southwest half to predict 

the northeast one. Another big steppe type, class O (Steppe desert) could not be well 

classified as it was confused with Plain/hill desert steppe (L). The rest of the steppe 

classes, which contained fewer patches, had very high error rates. As for degradation 

classification, comparing to previous experiments on Urat the accuracy rates of all 

classes dropped especially the severe degradation class. This was probably also 

mainly caused by the small size of the classes in the dataset.  

 In general, the results of "prediction within eco-region" experiments of all IMAR 

sites had higher error rates than local prediction for both steppe type and degradation 

classification. By dividing image into two halves, correlation between training and 

to-be-predicted datasets decreased due to the difference between two parts, such as 

different elevation, which usually ranked very high in variable importance plots 

generated during the run of RF model. It becamemore apparent that classes covering a 

small area in the image, i.e. with manyfewer patches, werevery negativelyaffected by 

the presence larger classes during classification. This experiment also showedthat 

steppe classes sometimes only existed in training area or testing area. Though not too 

many patches were misclassified because of this, it still contributed to higher error 

rates. More importantly, the explanatory factors used in the RF model were not able to 

help distinguish classes veryeffectively,thus the overlaps of classes affect the 

performance of the classifier. It is also possible that even if we introduce more 

features into the model, using Landsat TM5 imagery and DEM data alone is not 

capable enough to meet our requirement and serve our goal due to the amount of 

information they contain. 

 

Table 20. The error matrices of prediction within eco-region ofEwenk autonomous 

region. (a) Used northern part for training and classify steppe types of southern part. 
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(b). Used northern part for training and classify degradation of southern part. (c) Used 

southern part for training and classify steppe types of northern part. (d) Used southern 

part for training and classify degradation of northern part.UA is user's accuracy, PA is 

producer's accuracy and OA is overall accuracy. For steppe type, please refer to Table 

3. For degradation level, please refer to merged class codes in Table 4. 

 

a. Error matrix of steppe type prediction within eco-region -- train on north and predict on south 

(Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  A B C D E F G H I J Total UA 

A 859 68 41 603 57 123 14 17 26 1 1809 0.47  

B 370 81 21 125 1 48 1 15 27 0 689 0.12  

C 279 28 133 192 315 56 33 21 34 2 1093 0.12  

D 147 7 0 

109

3 3 23 147 78 0 13 1511 0.72  

E 5 0 1 29 7 1 87 14 0 0 144 0.05  

F 164 138 7 24 0 

114

2 15 206 114 119 1929 0.59  

G 3 0 0 17 0 2 199 27 0 1 249 0.80  

H 0 0 0 1 0 4 23 63 0 16 107 0.59  

I 101 

269

3 23 1 0 669 0 1 

168

5 0 5173 0.33  

J 0 0 0 0 0 0 4 26 0 24 54 0.44  

Tota

l 

192

8 

301

5 226 

208

5 383 

206

8 523 468 

188

6 176 

1275

8 OA 

PA 0.45  0.03  

0.5

9  0.52  

0.0

2  0.55  

0.3

8  

0.1

3  0.89  

0.1

4    

41.43

% 

Kappa = 0.32 OOB (training dataset) = 32.95% 

 

b. Error matrix of degradation prediction within eco-region -- train on north and predict on south 

(Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 7922 898 261 26 9107 0.87  

b 252 852 575 20 1699 0.50  

c 326 307 495 108 1236 0.40  

d 40 85 228 363 716 0.51  

Total 8540 2142 1559 517 12758 OA 

PA 0.93  0.40  0.32  0.70    75.50% 

Kappa = 0.50, OOB (training dataset) = 29.27% 

 

c. Error matrix of steppe type prediction within eco-region -- train on south and predict on north 

(Ewenk Autonomous Region) 
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  Reference 

C
la

ss
if

ie
d

 
  A B C D E F G H I J Total UA 

A 707 379 23 279 0 85 37 0 381 0 1891 0.37  

B 3 1 0 0 0 12 0 0 229 0 245 0.00  

C 172 63 137 51 2 28 24 0 149 0 626 0.22  

D 277 63 2 

165

2 0 8 7 12 7 0 2028 0.81  

E 113 9 117 31 10 3 0 0 1 0 284 0.04  

F 97 59 7 10 0 495 0 0 259 0 927 0.53  

G 167 19 58 

117

5 180 146 

112

7 169 0 138 3179 0.35  

H 84 44 11 367 11 232 153 211 9 174 1296 0.16  

I 79 121 3 2 0 128 1 0 

251

9 0 2853 0.88  

J 22 14 2 69 2 402 39 71 0 319 940 0.34  

Tota

l 

172

1 772 360 

363

6 205 

153

9 

138

8 463 

355

4 631 

1426

9 OA 

PA 0.41  

0.0

0  

0.3

8  0.45  

0.0

5  0.32  0.81  

0.4

6  0.71  

0.5

1    

50.30

% 

Kappa = 0.42 OOB (training dataset) = 35.71% 

 

d. Error matrix of degradation prediction within eco-region -- train on south and predict on north 

(Ewenk Autonomous Region) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 5708 284 120 32 6144 0.93  

b 1584 1593 314 102 3593 0.44  

c 657 824 398 239 2118 0.19  

d 512 322 542 1038 2414 0.43  

Total 8461 3023 1374 1411 14269 OA 

PA 0.67  0.53  0.29  0.74    61.23% 

Kappa = 0.41, OOB (training dataset) = 23.2% 
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(a)                                  (b) 

Figure 3. (a) A subset of 2009 steppe vegetation map (red: "Low/middle mountain 

meadow", green: "Mountain meadow steppe", yellow: "Lowland and wetland 

meadow", blue: water, black: non-steppe area), and (b) the same area of 2010 Landsat 

TM5 image in false color infrared of Ewenk Autonomous Region. 

 

Table 21. The error matrices of prediction within eco-region of Xilinhot city. (a) Used 

east part for training and classify steppe types of west part. (b) Used east part for 

training and classify degradation of west part. (c) Used west part for training and 

classify steppe types of east part. (d) Used west part for training and classify 

degradation of east part. * Indicated that the class was absent. UA is user's accuracy, 

PA is producer's accuracy and OA is overall accuracy. For steppe type, please refer to 

Table 3. For degradation level, please refer to merged class codes in Table 4. 

 

a. Error matrix of steppe type prediction within eco-region -- train on east and predict on west (Xilinhot 

City) 

  Reference 

    A B* D E F G H K Total UA 

cl
as

si
fi

ed
 

A 197 0 212 1 6 0 0 0 416 0.47  

B 5 0 9 1 3 0 0 0 18 0.00  

D 2 0 8226 65 35 73 2 32 8435 0.98  

E 17 0 679 778 19 33 1 3 1530 0.51  

F 0 0 88 3 124 44 37 1 297 0.42  

G 1 0 1464 33 198 1171 69 1 2937 0.40  

H 1 0 26 1 34 66 31 0 159 0.19  

K 2 0 545 2 7 6 4 127 693 0.18  

Total 225 0 11249 884 426 1393 144 164 14485 OA 

PA 0.88  0.00  0.73  0.88  0.29  0.84  0.22  0.77  
 

73.55% 

Kappa = 0.49, OOB (training dataset) =35.01% 

 

b. Error matrix of degradation prediction within eco-region -- train on east and predict on west 

(Xilinhot City) 
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  Reference 

C
la

ss
if

ie
d

 
  a b c d Total UA 

a 280 128 31 0 439 0.64  

b 686 1335 386 94 2501 0.53  

c 471 2666 3197 813 7147 0.45  

d 59 694 1609 2036 4398 0.46  

Total 1496 4823 5223 2943 14485 OA 

PA 0.19  0.28  0.61  0.69    47.28% 

  Kappa = 0.25, OOB = 41.73% 

 

c. Error matrix of steppe type prediction within eco-region -- train on west and predict on east (Xilinhot 

City) 

  Reference 

    A B D E F G H K Total UA 

cl
as

si
fi

ed
 

A 873 179 2166 77 48 6 6 268 3623 0.24  

B * 0 0 0 0 0 0 0 0 0 0.00  

D 89 8 5533 165 22 57 0 21 5895 0.94  

E 67 14 533 1744 12 24 0 11 2405 0.73  

F 268 20 1519 400 438 173 44 62 2924 0.15  

G 0 0 408 136 25 754 49 0 1372 0.55  

H 0 0 303 45 61 246 86 4 745 0.12  

K 7 12 691 23 0 6 4 113 856 0.13  

Total 1304 233 11153 2590 606 1266 189 479 17820 OA 

PA 0.67  0.00  0.50  0.67  0.72  0.60  0.46  0.24  
 

53.54% 

Kappa=0.38, OOB=25.22% 

 

d. Error matrix of degradation prediction within eco-region -- train on west and predict on east 

(Xilinhot City) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 4291 3477 1511 328 9607 0.45  

b 377 931 879 213 2400 0.39  

c 53 533 974 573 2133 0.46  

d 129 430 746 2375 3680 0.65  

Total 4850 5371 4110 3489 17820 OA 

PA 0.88  0.17  0.24  0.68    48.10% 

  Kappa = 0.30, OOB = 44.50% 
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(a)                                     (b) 

Figure 4. (a) 2009 steppe degradation map of XilinhotCity which was divided into 

east and west halves, and (b) 2011 Landsat TM5 image in false color infrared of 

Xilinhot City. 

 

Table 22. The error matrices of prediction within eco-region of Urat middle banner. (a) 

used northeast part for training and classify steppe types of southwest part. (b) Used 

northeast part for training and classify degradation of southwest part. (c) Used 

southwest part for training and classify steppe types of northeast part. (d) Used 

southwest part for training and classify degradation of northeast part. * Indicated that 

the class was absent. UA is user's accuracy, PA is producer's accuracy and OA is 

overall accuracy. For steppe type, please refer to Table 3. for degradation level, please 

refer to merged class codes in Table 4. 

 

a. Error matrix of steppe type prediction within eco-region -- train on northeast and predict on 

southwest (Urat Middle Banner) 

    Reference 

    F GH J L MN O PQ Total UA 

C
la

ss
if

ie
d

 

F 66 169 293 115 69 16 1 729 0.09  

GH 101 239 0 380 94 134 15 963 0.25  

J* 0 0 0 0 0 0 0 0 0.00  

L 34 44 28 2759 178 1374 23 4440 0.62  

MN 16 35 0 491 4683 715 0 5940 0.79  

O 3 7 0 239 96 1231 143 1719 0.72  

PQ 7 95 0 504 618 439 1128 2791 0.40  
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Total 227 589 321 4488 5738 3909 1310 16582 OA 

PA 0.29  0.41  0.00  0.61  0.82  0.31  0.86    60.95% 

Kappa = 0.49, OOB (training dataset) = 27.72% 

 

b. Error matrix of degradation prediction within eco-region -- train on northeast and predict on 

southwest (Urat Middle Banner) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 4473 2080 425 569 7547 0.59  

b 469 1520 1402 48 3439 0.44  

c 123 887 2782 169 3961 0.70  

d 335 458 505 337 1635 0.21  

Total 5400 4945 5114 1123 16582 OA 

PA 0.83  0.31  0.54  0.30    54.95% 

  Kappa = 0.37, OOB = 44.50% 

 

c. Error matrix of steppe type prediction within eco-region -- train on southwest and predict on 

northeast (Urat Middle Banner) 

  Reference 

    F GH J* L MN O PQ Total UA 

C
la

ss
if

ie
d

 

F 51 238 0 595 144 46 17 1091 0.05  

GH 2 50 0 96 13 52 32 245 0.20  

J 2 1 0 0 0 0 0 3 0.00  

L 11 147 0 3880 315 1509 327 6189 0.63  

MN 4 8 0 369 1851 21 100 2353 0.79  

O 1 83 0 1337 21 1282 19 2743 0.47  

PQ 1 7 0 162 7 132 924 1233 0.75  

Total 72 534 0 6439 2351 3042 1419 13857 OA 

PA 0.71  0.09  0.00  0.60  0.79  0.42  0.65    58.01% 

Kappa = 0.41, OOB (training dataset) = 23.30% 

 

d. Error matrix of degradation prediction within eco-region -- train on southwest and predict on 

northeast (Urat Middle Banner) 

  Reference 

C
la

ss
if

ie
d

 

  a b c d Total UA 

a 1701 503 73 15 2292 0.74  

b 354 2322 484 87 3247 0.72  

c 174 4218 2139 231 6762 0.32  

d 747 489 215 105 1556 0.07  

Total 2976 7532 2911 438 13857 OA 

PA 0.57  0.31  0.73  0.24    45.23% 

Kappa = 0.25, OOB (training dataset) = 27.35% 
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4.5 Prediction across eco-region 

 

Mutual prediction of steppe type between Ewenk Autonomous Region and Xilinhot 

City produced accuracy assessment valuesthat were very lowexcept for class D 

(Plain/hill typical steppe) (Table 23). These two study sites belong to two eco-regions 

and it turned out that they were different enough that the RF approach could not learn 

to accurately predict between them. When we trained on Ewenk, many patches of 

Xilinhot were misclassified into class C (Sand land meadow steppe) and E (Sand land 

typical steppe) (Table 23a and 23c). On the other hand, when we trained on Xilinhot, 

many Ewenk patches were misclassified into Lowland meadow (class F: Lowland and 

wetland meadow, G: Salinized lowland meadow, H: Swampy lowland meadow). 

Thiswas probably because the dominant steppe type, Plain/hill typical steppe (class D) 

was growing on drier soil and grass tend to be more similar to those growing on sand 

land in Ewenk, while the steppe of Ewenk tended to have more reflectance in near 

infrared than the same kind of steppe in Xilinhot, thus they were classified as 

Lowland meadow. This experiment, again, showed that in general, typical steppe and 

meadow steppe cannot be successfully distinguished by the classifier.The degradation 

classification results and the accuracy rates were also extremely low (Table 23). When 

we trained on the Ewenk data, many No degradation (class a) patches inXilinhot were 

classified as Slight degradation (b) and many Slight degradation patches were 

misclassified as Moderate degradation patches. On the contrary, when we used 

training data sampled from Xilinhot, a lot of patches in Ewenk were misclassified as 

No degradation class. This was probably for similar reasons as the high error rates of 

steppe type classification. The steppe of Ewenk, which was located in the meadow 

steppe eco-region, looked healthier especially that growing in mountainous areas. 

Thus when we use Ewenk as the source of training data, the steppe of Xilinhot was 

more similar to more degraded grasslands in Ewenk and vice versa when we trained 

on Xilinhot samples. As introduced earlier in Data section of this paper, the 

degradation level was determined by comparing with nearby conserved steppe. The 

difference in situation of those conserved steppes led to different standards of 

degradation measurement thus when predicted across eco-region, the error rates were 

high. There were probably many other factors that contributed to low classification 

accuracy of this experiment. 

 

Table 23. The error matrices of prediction across eco-region. (a) Used 200-per-class 

sample sets of Ewenk autonomous region for training and classify steppe types of all 

patches in Xilinhot city. (b) Used 200-per-class sample sets of Xilinhot city for 

training and classify steppe types of all patches inEwenk autonomous region. (c) Used 

200-per-class sample sets of Ewenk autonomous region for training and classify 

degradation of all patches in Xilinhot city. (d) Used 200-per-class sample sets of 

Xilinhot city for training and classify degradation of all patches in Ewenk autonomous 

region. * Indicated that the class was absent. UA is user's accuracy, PA is producer's 

accuracy and OA is overall accuracy. For steppe type, pleaserefer to Table 3. For 

degradation level, please refer to merged class codes in Table 4. 
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a. Prediction across eco-region of steppe type (train on samples of Ewenk Autonomous Region, predict on all 

patches of Xilinhot City)  

  Reference 

    A B C* D E F G H I* J* K Total UA 

C
la

ss
if

ie
d

 

A 288 6 0 1723 102 88 114 25 0 0 39 2385 0.12  

B 240 122 0 298 9 24 0 0 0 0 102 795 0.15  

C 217 77 0 7277 
204

3 
269 839 110 0 0 418 

1125

0 
0.00  

D 509 0 0 6905 19 24 26 4 0 0 0 7487 0.92  

E 51 0 0 4086 
118

2 
212 

105

3 
91 0 0 3 6678 0.18  

F 76 6 0 247 37 215 17 11 0 0 8 617 0.35  

G 17 0 0 799 15 87 574 69 0 0 2 1563 0.37  

H 20 0 0 36 6 85 23 20 0 0 0 190 0.11  

I 111 22 0 1030 61 28 13 3 0 0 71 1339 0.00  

J 0 0 0 1 0 0 0 0 0 0 0 1 0.00  

K* 0 0 0 0 0 0 0 0 0 0 0 0 N/A 

Total 
152

9 
233 0 

2240

2 

347

4 

103

2 

265

9 
333 0 0 643 

3230

5 
OA 

PA 0.19  0.52  N/A 0.31  0.34  0.21  0.22  0.06  N/A N/A 0.00    
28.81

% 

Kappa = 0.12, OOB (training dataset) = 36.50% 

 

b. Prediction across eco-region of steppe type (train on samples of Xilinhot City, predict on all patches of 

EwenkAutonomous Region)  

  Reference 

    A B C D E F G H I J K* Total UA 

C
la

ss
if

ie
d

 

A 192 244 4 286 0 25 0 5 569 0 0 1325 0.14  

B 27 107 2 3 0 5 0 0 224 0 0 368 0.29  

C* 0 0 0 0 0 0 0 0 0 0 0 0 N/A 

D 928 164 36 
220

1 
55 45 108 27 115 0 0 3679 0.60  

E 6 1 3 1 1 0 3 0 1 0 0 16 0.06  

F 
140

0 
927 73 

160

0 
19 

250

6 
203 340 

113

3 
236 0 8437 0.30  

G 106 7 73 152 162 32 732 50 5 56 0 1375 0.53  

H 681 54 278 
140

6 
338 560 815 507 75 514 0 5228 0.10  

I* 0 0 0 0 0 0 0 0 0 0 0 0 N/A 

J* 0 0 0 0 0 0 0 0 0 0 0 0 N/A 

K 309 
228

3 
117 72 13 434 50 2 

331

8 
1 0 6599 0 
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Tota

l 

364

9 

378

7 
586 

572

1 
588 

360

7 

191

1 
931 

544

0 
807 0 

2702

7 
OA 

PA 0.05  0.03  0 0.38  
0.0

0  
0.69  0.38  

0.5

4  
0 0 

N/

A 
  

23.11

% 

Kappa = 0.16, OOB (training dataset) = 30.00% 

 

c. Prediction across eco-region of degradation (train on samples of Ewenk Autonomous Region, predict 

on all patches of Xilinhot City)  

  Reference 

    a b c d Total UA 

C
la

ss
if

ie
d

 

a 1275 670 305 106 2356 0.54  

b 3156 3861 2770 602 10389 0.37  

c 1696 4590 4455 1865 12606 0.35  

d 219 1073 1803 3859 6954 0.55  

Total 6346 10194 9333 6432 32305 OA 

PA 0.20  0.38  0.48  0.60    41.63% 

Kappa = 0.20, OOB (training dataset)  = 36.88% 

 

d. Prediction across eco-region of degradation (train on samples of Xilinhot City, predict on all patches 

of Ewenk Autonomous Region)  

  Reference 

    a b c d Total UA 

C
la

ss
if

ie
d

 

a 6669 3598 1640 456 12363 0.54  

b 8086 706 395 104 9291 0.08  

c 1948 490 311 144 2893 0.11  

d 298 371 587 1224 2480 0.49  

Total 17001 5165 2933 1928 27027 OA 

PA 0.39  0.14  0.11  0.63    32.97% 

Kappa = -0.07, OOB (training dataset) = 43.25% 

 

4.6 Pooling 

 

We combined the balanced sampled patches from Ewenk Autonomous Region and 

Xilinhot City into one training dataset to test how the pooling affected the classified 

results compared with local prediction and across eco-region prediction. The pooling 

of Ewenk and Xilinhot samples generated very similar classification power of the 

local prediction (Tables 24a and 24b). Although the results of "prediction across 

eco-region" experiment suggested thatdata from outside of the region could not well 

represent characteristics of steppes within the region, adding these data to local 

randomly sampled training dataset did not bring a lot of disturbance. The training 

dataset had anincreased variety in variable values and samples from classes that were 

not in either one of the regions, andthe RF classifier worked as well as those trained 

by local samples. Moreover, different from the results of mutual prediction in the last 
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experiment, in this experiment, few to no patches were misclassified into classes that 

did not exist in the region. Just like steppe type classification, even if pooling did not 

increase the classification accuracy, it did not decrease it compared with results of 

local prediction (Table 24c). 

 Since RF determines onclassassignments according to votes and because about 

half thetraining samples were from each local region, any givenpatch hada reasonable 

chance to be classified as it should be according toits similarity to those local sample 

patches. Moreover, though differences existed between the two samples of the same 

class but from different site, the RF classifier might identify two or more class centers 

for that class during the training process, thus the accuracy was not greatly affected by 

additional external training samples when classify patches from two regions 

respectively. 

 

Table 24. The error matrices of classification by pooling Ewenk autonomous region 

and Xilinhot city sample datasets and classified (a) steppe types of all patches in 

Ewenk autonomous region, (b) steppe types of all patches in Xilinhot city, (c) 

degradation of all patches in Ewenk autonomous region and (d) degradation of all 

patches in Xilinhot city. * Indicated that the class was absent. UA is user's accuracy, 

PA is producer's accuracy and OA is overall accuracy. For steppe type, please refer to 

Table 3. For degradation level, please refer to merged class codes in Table 4. 

 

a. Pooling and predicting on Ewenk Autonomous Region - steppe type classification 

    Reference 

    A B C D E F G H I J K* Total UA 

C
la

ss
if

ie
d

 

A 

168

7 390 25 617 10 209 39 21 245 0 0 3243 0.52  

B 27 

198

5 2 10 0 286 0 0 526 0 0 2836 0.70  

C 521 99 456 278 126 121 74 18 145 2 0 1840 0.25  

D 576 72 2 

386

5 16 49 144 47 19 3 0 4793 0.81  

E 150 4 54 254 421 36 70 9 2 1 0 1001 0.42  

F 277 258 10 98 2 

203

4 17 57 290 6 0 3049 0.67  

G 36 8 6 229 3 28 

119

0 66 1 49 0 1616 0.74  

H 42 5 3 248 6 126 237 492 4 80 0 1243 0.40  

I 314 953 28 37 0 510 7 3 

420

8 0 0 6060 0.69  

J 17 7 0 85 4 207 133 218 0 666 0 1337 0.50  

K 2 6 0 0 0 1 0 0 0 0 0 9 0.00  

Tota

l 

364

9 

378

7 586 

572

1 588 

360

7 

191

1 931 

544

0 807 0 

2702

7 OA 

PA 0.46  0.52  0.7 0.68  0.7 0.56  0.62  0.5 0.77  0.8 N/   62.91
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8  2  3  3  A % 

Kappa = 0.57, OOB (training dataset)  = 35.61% 

 

b. Pooling and predicting on Xilinhot City - steppe type classification 

    Reference 

    A B C* D E F G H I* J* K Total UA 

C
la

ss
if

ie
d

 

A 

113

9 4 0 2139 83 46 6 0 0 0 10 3427 0.33  

B 122 221 0 204 28 10 0 1 0 0 57 643 0.34  

C 0 0 0 2 0 0 0 0 0 0 0 2 0.00  

D 53 0 0 

1372

9 231 57 145 0 0 0 9 

1422

4 0.97  

E 86 0 0 1312 

277

4 22 36 1 0 0 10 4241 0.65  

F 59 0 0 1027 117 572 91 17 0 0 5 1888 0.30  

G 1 0 0 1262 137 103 

192

4 39 0 0 0 3466 0.56  

H 13 0 0 522 41 201 442 267 0 0 0 1486 0.18  

I 0 0 0 0 0 0 0 0 0 0 0 0 N/A 

J 0 0 0 0 0 0 0 0 0 0 0 0 N/A 

K 56 8 0 2205 63 21 15 8 0 0 552 2928 0.19  

Tota

l 

152

9 233 0 

2240

2 

347

4 

103

2 

265

9 333 0 0 643 

3230

5 OA 

PA 0.74  

0.9

5  

N/

A 0.61  0.80  0.55  0.72  

0.8

0  

N/

A 

N/

A 

0.8

6    

65.56

% 

Kappa = 0.48, OOB (training dataset) = 35.61% 

 

c. Pooling and predicting on Ewenk Autonomous Region - steppe degradation classification 

    Reference 

    a b c d Total UA 

C
la

ss
if

ie
d

 

a 13956 921 302 42 15221 0.92  

b 1638 2971 783 159 5551 0.54  

c 883 856 1199 301 3239 0.37  

d 524 417 649 1426 3016 0.47  

Total 17001 5165 2933 1928 27027 OA 

PA 0.82  0.58  0.41  0.74    72.34% 

Kappa = 0.53, OOB (training dataset) = 39.50% 

 

d. Pooling and predicting on Xilinhot City - steppe degradation classification 

    Reference 

    a b c d Total UA 

C
la

ss
if

i

ed
 a 4149 2111 767 81 7108 0.58  

b 1340 4467 2105 458 8370 0.53  
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c 565 2335 4300 1426 8626 0.50  

d 292 1281 2161 4467 8201 0.54  

Total 6346 10194 9333 6432 32305 OA 

PA 0.65  0.44  0.46  0.69    53.81% 

Kappa = 0.38, OOB (training dataset) = 39.50% 

 

4.7 Pooling of filtered training patches 

 

After filteringout some highly mixed and road patches, we combined the purified 

sample patches from Ewenk and Xilinhot, as in the pooling experiment. Based on the 

bootstrapping classification result of training samples using RF, the accuracy rate in 

this experiment was higher than any training dataset in all of previous experiments. 

Not only the overall accuracy and Kappa value, but every class also had higher user's 

accuracy and producer's accuracy (Table 25 a). This is probably due to the filtering 

process which increased the homogeneity within patches thus the samples were less 

similar to patches of other classes. However, when we used this new training dataset 

to classify steppe type for all patches in Ewenk and Xilinhot, the classification results 

were worse than the pooling experiments without filtered training sample datasets and 

the local prediction experiments as well (Table 25 b and c). 

 The randomly sampled training dataset, though containing mixed patches, 

covered a greater variety of samples for every class. When classifying all patches 

within the region, patches containing a small portion of pixels from other classes 

could still be appropriately dealt with. On the contrary, with the filtering process, 

though within training dataset difference between patches from different classes 

became more distinct, mixed patches in the map became less similar to class center 

and were more likely to be classified into other similar classes. 

 

Table 25. The error matrices of classification by pooling Ewenk autonomous region 

and Xilinhot city filtered samples and classified (a) combined training dataset itself, 

(b) steppe type of all patches in Ewenk autonomous region and (c) steppe type of all 

patches in Xilinhot city. * Indicated that the class was absent. UA is user's accuracy, 

PA is producer's accuracy and OA is overall accuracy. For steppe type, please refer to 

Table 3. 

 

a. Pooling of filtered sample patches from Ewenk Autonomous Region and Xilinhot City 

    Reference 

    A B C D E F G H I J K 

Tota

l UA 

C
la

ss
if

ie
d

 

A 154 19 4 36 3 7 0 3 2 0 5 233 0.66  

B 13 196 0 2 2 3 0 0 10 0 30 256 0.77  

C 4 4 134 0 62 1 6 2 1 0 0 214 0.63  

D 17 3 1 186 8 3 5 6 0 0 3 232 0.80  

E 7 2 19 11 218 1 6 1 0 0 1 266 0.82  

F 9 16 1 6 5 159 1 16 10 3 4 230 0.69  
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G 0 0 3 6 13 4 242 27 0 2 0 297 0.81  

H 2 0 3 11 10 30 31 139 0 6 2 234 0.59  

I 2 40 2 1 0 16 0 0 110 0 0 171 0.64  

J 0 0 0 0 0 0 0 34 0 87 0 121 0.72  

K 9 23 0 13 1 0 0 2 0 0 143 191 0.75  

Tota

l 217 303 167 272 322 224 291 230 133 98 188 

244

5 OA 

PA 

0.7

1  

0.6

5  

0.8

0  

0.6

8  

0.6

8  

0.7

1  

0.8

3  

0.6

0  

0.8

3  

0.8

9  

N/

A   

72.31

% 

Kappa = 0.69, OOB = 27.69% 

 

b. Pooling of purified samples and predicting on Ewenk Autonomous Region - steppe type classification 

    Reference 

    A B C D E F G H I J K* Total UA 

C
la

ss
if

ie
d

 

A 

124

5 332 13 

125

4 19 93 59 26 295 0 0 3336 0.37  

B 18 

145

1 0 19 0 279 1 1 238 0 0 2007 0.72  

C 952 205 466 510 239 260 169 48 357 7 0 3213 0.15  

D 367 54 1 

291

2 4 20 126 37 46 1 0 3568 0.82  

E 102 0 40 384 297 31 90 29 1 6 0 980 0.30  

F 604 396 25 337 5 

206

6 104 269 449 155 0 4410 0.47  

G 27 6 9 145 13 29 

107

5 92 1 82 0 1479 0.73  

H 72 29 10 112 11 191 167 229 91 49 0 961 0.24  

I 253 

129

8 22 17 0 488 3 4 

394

3 0 0 6028 0.65  

J 4 2 0 28 0 147 117 196 4 507 0 1005 0.50  

K 5 14 0 3 0 3 0 0 15 0 0 40 0.00  

Tota

l 

364

9 

378

7 586 

572

1 588 

360

7 

191

1 931 

544

0 807 0 

2702

7 OA 

PA 0.34  0.38  

0.8

0  0.51  

0.5

1  0.57  0.56  

0.2

5  0.72  

0.6

3  

N/

A   

52.51

% 

Kappa = 0.45, OOB (training dataset)  = 27.69% 

 

c. Pooling of purified samples and predicting on Xilinhot City - steppe type classification 

    Reference 

    A B C* D E F G H I* J* K Total UA 

C
la

ss
if

ie
d

 

A 994 7 0 1822 32 31 2 0 0 0 28 2916 0.34  

B 165 209 0 207 33 13 1 0 0 0 90 718 0.29  

C 0 0 0 30 1 0 5 0 0 0 2 38 0.00  
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D 67 2 0 

1316

7 191 58 102 2 0 0 9 

1359

8 0.97  

E 98 3 0 1583 

281

6 36 75 2 0 0 10 4623 0.61  

F 115 2 0 521 92 378 40 23 0 0 9 1180 0.32  

G 5 0 0 1508 93 150 

183

0 70 0 0 1 3657 0.50  

H 38 0 0 1273 144 347 577 228 0 0 1 2608 0.09  

I 0 0 0 0 0 0 0 0 0 0 0 0 N/A 

J 0 0 0 0 0 0 1 0 0 0 0 1 N/A 

K 47 10 0 2291 72 19 26 8 0 0 493 2966 0.17  

Tota

l 

152

9 233 0 

2240

2 

347

4 

103

2 

265

9 333 0 0 643 

3230

5 OA 

PA 0.65  

0.9

0  

N/

A 0.59  0.81  0.37  0.69  

0.6

8  

N/

A 

N/

A 

0.7

7    

62.27

% 

Kappa = 0.44, OOB (training dataset) = 27.69% 

 



49 
 

Table 26. The summary table of key experiments on IMAR sites. OA is overall accuracy; K is kappa value. 

 

C
la

ss
if

ic
at

io
n
 

Site 

Pixel-based Patch-based Add texture Scale of 40 Local prediction 
Within eco-region 

Across eco-region Pooling 
Half 1 Half 2 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

OA 

(%) 
K 

S
te

p
p
e 

ty
p
e 

Ewenk 54.4  0.47  64.6  0.59  65.0  0.59  65.3  0.60  63.8  0.58  41.4  0.32  50.3  0.42  23.1  0.16  62.9  0.57  

Xilinhot 62.9  0.44  66.2  0.48  68.5  0.51  69.2  0.51  67.4  0.50  73.6  0.49  53.5  0.38  28.8  0.12  65.6  0.48  

Urat 65.5  0.55  74.5  0.66  74.1  0.66  74.1  0.66  70.0  0.61  61.0  0.49  58.0  0.41          

D
eg

ra
d

at
io

n
 Ewenk 68.9  0.49  72.0  0.53  72.8  0.54  71.8  0.53  72.2  0.53  75.5  0.50  61.2  0.41  33.0  -0.07  72.3  0.53  

Xilinhot 54.3  0.39  56.9  0.42  57.0  0.43  55.5  0.41  53.6  0.38  47.3  0.25  48.1  0.30  41.6  0.20  53.8  0.38  

Urat 65.4  0.51  67.7  0.55  67.5  0.55  66.2  0.52  64.7  0.51  55.0  0.37  45.2  0.25          
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4.8 Classifying image subsets in theMongolia 

 

We used an RF trained using the IMAR samplesites toclassify thethree sites in 

Mongolia, and used the field survey points to assess the result. We used the same 

training datasetwhen classified Meadow steppe site (Landsat TM 5 image subset of 

path 124 and row 27) and Typical steppe site in Mongolia (Landsat TM 5 image 

subset of path 126 and row 28). This training datasethas the non-filtered pooling 

samples of Xilinhot and Ewenk as we used in pooling experiment with theIMAR data. 

Almost all patches within these two Mongolian subsets were classified as the 

"Plain/hill typical steppe”. Most of the middle part of image of path 124, row 27was 

classified as Plain/hill typical steppe (Figure 5). A lot of patches along a long and 

narrow river in the north were classified as lowland meadow. Some sandy patches 

with mottled texture on the riverside were classified as the Sand land meadow steppe 

(class C) and the Sand land typical steppe (class E).Many patches that look like steppe 

on sandy land in the south of the subset were also classified into class C and E. The 

classifier recognized sand land but seemed to failed to distinguishSand land meadow 

steppe and Sand land typical steppe. On the east and south sides of the image, there 

were many patches labeled as the Plain/hill meadow steppe and these patches seem to 

have higher reflectance in near infrared band. A few patches in the middle, which 

were actually agriculture land, were also classified as the Plain/hill meadow steppe or 

typical steppe. Most of the field survey points clustered in the middle north of this 

area and a few were near water (Figure 5). Based on the match table, the majority of 

these pointed (12 out of 19) were labeled as Plain/hill typical steppe and they were all 

classified as the Plain/hill typical steppe. However, the other seven points (1 Sand 

land meadow steppe, 6 Salinized lowland meadow) were also classified as Plain/hill 

typical steppe. 

 Similar to image of path 124, row 27, the image of path 126 and row 26 was 

almost all classified as the Plain/hill typical steppe (Figure 6). There was no river in 

the area, according to our visual image interpretation, but there were some small 

ponds and their surrounding area appeared bright white to very bright cyan tone. 

These patches were mostly classified into lowland meadow classes (F, G, H). There 

were also some patches classified as the Low/middle mountain meadow but they did 

not form a large area. We also found that, at the edges of the image and around 

removed clouds, there were more different classified steppe types. This might be 

caused by some edge effects when we created features (such as TWI) and during 

zonal mean calculation. In terms of field survey points, there were 71 points falling in 

this area and according to the match table, 55 of them werePlain/hill typical steppe, 3 

class E (Sand land typical steppe), 8 class G (Salinized lowland meadow), 4 class L 

(Plain/hill desert steppe) and 1class M (Mountain desert steppe). Among these points, 

3 of the class D sites were classified into class G and 1 was classified as class C (Sand 

land meadow steppe). All the other points were classified into class D. 

 As for the subset of image of path 129 and row 30, the steppe type classification 

map did not have as a quite homogeneous resultas for the other two areas. Two major 

classes were the Steppe desert (O) and the merged class P&Q (Gravelly desert and 
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Sandy desert). Due to the topographyof this area, it looked likethere were many 

ditch-like ground features and there were all classified as the Lowland meadows 

(class F, G and H). In general, this area was basically regarded as a desert area, which 

indicated very little vegetation. In terms of field survey data assessment, this area had 

the worst result. Among all 29 points, only 4 of them (1 of class O, 3 of class P&Q) 

were classified as they were labeled. There were 7 points labeled as class L (Plain/hill 

desert steppe) and 11 as class M&N (Mountain desert steppe and Sand land desert 

steppe) and they were all classified into class G&H, O or P&Q. 

 Almost all the correctly classified points, which had their labeled classes 

according to match table agree with classes assigned by the RF classifier, were the 

Plain/hill typical steppe points (Table 26). The rest of points were mostly 

misclassified under the assumption that our labeling of validation points based on the 

match table wascorrect. However, it was possible that we did not label those points 

correctly because only used species information to assign the labels. Some species 

grow on many kinds of steppes and the table cannot cover all the combinations. We 

also did not take other factors such as neighbor points or how these places look on the 

image into our consideration to keep this labeling process independent. It was also 

possible that neither the match table labeling nor the RF classification was correct. 

 We also classified the degradation levels of these three subsets. However, we do 

not have ground truth data to assess the accuracy. Most of the area in theimages of 

path 124, row 27, and path 126, row 28 was classified as slight degradation (Figure 8, 

9 and 10). It was interesting that most of the image of path 129, row 30 was classified 

as severely degraded. It can be misclassification, and it also can be due to the 

presence of theGobi Desert in the image, which can look degraded. Without other 

ancillary data, it's hard to better evaluatethe degradation classification results. 

Because the result of accuracy assessment by using field survey data of Mongolia was 

not satisfying, we did not use the predicted steppe class as additional input to classify 

the degradation level again. 

 

Table 27. The error matrix of assessing classification results of subsets of 

Mongolianimages.* Indicated that the class was absent. UA is user's accuracy, PA is 

producer's accuracy and OA is overall accuracy. For steppe type, please refer to Table 

3.  

 

    Labeled according to match table 

    C D E GH L MN O PQ Total UA 

cl
as

si
fi

ed
 b

y
 R

F
 

C 0 1 0 0 0 0 0 0 1 0.00  

D 1 63 3 14 4 1 0 0 86 0.73  

E* 0 0 0 0 0 0 0 0 0 N/A 

GH 0 3 0 0 1 1 1 1 7 0.00  

L* 0 0 0 0 0 0 0 0 0 N/A 

MN* 0 0 0 0 0 0 0 0 0 N/A 

O 0 0 0 0 3 8 1 3 15 0.07  

PQ 0 0 0 0 3 2 2 3 10 0.30  
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Total 1 67 3 14 11 12 4 7 119 OA 

PA 0.00  0.94  0.00  0.00  0.00  0.00  0.25  0.43    0.56  

Kappa = 0.24 

 

 

Figure 5. Steppe type classification map of Mongolia image subset (path 124, row 27) 
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Figure 6. Steppe type classification map of Mongolia image subset (path 126, row 28) 

 

 Figure 7. Steppe type classification map of Mongolia image subset (path 129, row 

30) 

 

 

Figure 8. Steppe degradation classification map of Mongolia image subset (path 124, 

row 27)
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Figure 9. Steppe degradation classification map of Mongolia image subset (path 126, 

row 28) 

 

 

Figure 10. Steppe degradation classification map of Mongolia image subset (path 129, 

row 30) 

 

5. CONCLUSIONS 

 

Through a series of experiments on sites in Inner Mongolia, we searched for an 

appropriate way to collect training data for a random forest (RF) model with which to 

classify Mongolian images. Wefound that patch-based or object-based classification 

was superior to pixel-based classification in terms of accuracy. By comparing patches 

created with two "scale" parameter value of segmentation process, we noticed that 

there was not a big difference in accuracy rates between them, which is probably 

because, as we increased the size of patches, stronger averaging effects on extreme 
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pixel values and increased heterogeneity within patches exerted influence over the 

classification these effects mutually offset each other. Byselecting the smaller scale 

value, i.e. small patch size, we preserved more details while the computational load 

was still light for the RF. We also found that by using patch-based classification, 

adding texture features into the list explanatory factors slightly improved 

classification accuracy, especially for sand land steppe types in this study. The "local 

prediction," "prediction within eco-region," "prediction across eco-region," and 

"pooling" experiments demonstrated the importance of the source of the training 

samples. The similarity between different steppe types and degradation levels made 

the classifier sensitive to changes in ranges and distributions of values of 

predictorvariables. Thus error rates got very high when the source areafor thetraining 

dataset did not intersect with the targetclassification area. It was also found that 

classes with muchfewer samples werelargely affected by dominant classes and the RF 

classifier was sensitive to a very skewed class distribution. The "pooling" experiment 

also showed that with local training samples, although additional external training 

patches from another area did not further improve the accuracy, neither did they bring 

much disturbance. The accuracy assessment of classification results for the images in 

Mongolia was notvery satisfying (overall accuracy was 56% and Kappa was 0.24). 

Only the Plain/hill typical steppe class showed acceptable accuracy rate (user’s 

accuracy = 0.73, producer’s accuracy = 0.94). However, we cannot be very confident 

that the validation data in this region is very reliable. So, the actual accuracy could be 

better, but could also be even worse. Unfortunately, with no available and suitable 

data, we cannot further evaluate our classification results. The research questions of 

this study arose from lacking of Mongolia data which, however, still limited the work. 

 For all the classification results of our experiments, there were at least four 

sources of errors that likely affected the performance of the classifier: the source data, 

the segmentation process, the model variables, and the validation data of Mongolia. 

Firstly, the source reference data, i.e. the 2009 vegetation and degradation map of 

IMAR sites, were created by manually digitizing based on Landsat TM5 images. 

Since we tried to minimize time difference between IMAR and Mongolia images and 

to have less cloud cover, our remote sensing images of IMAR were from 2010 and 

2011 instead of 2009. There were also differences in dates; although images were all 

from growing season. The climate and phenology of grass at these different times 

could make images less comparable to each other or to the reference maps. This might 

be one reason why an area that looked homogenous in the image was classified into 

two steppe types in the reference map. Secondly, it is possible that, based on all the 

data we have, we may not be able to fully meet the requirement of the target 

vegetation and degradation classification systems. Though the reference maps were 

created based on Landsat TM5 imagery, the interpreters also had better understanding 

of the study area, historical data for reference, and a lot of ground truth points. The 

spectral resolution of the Landsat TM5 imagery may not be fine enough for derived 

features to be able to distinguish well among different types. Also the degradation 

level is a concept of a relative amount. Steppes were compared with nearby conserved 

grassland so the standard is not set but varies from place to place. With no such 
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information for Mongolia sites, it is very hard for us to do both classification and 

validation of the degradation level.  

Patch-based classification proved to be more accurate than pixel-based in our 

study, but the segmentation of patches could also bring errors. Although we did trials 

to find the best combination of segmentation parameter values, the segmentation 

algorithm had to ensure homogeneity within patch and boundaries of patches did not 

perfectly aligned with boundaries of different steppes in the reference map. These 

mixed patches could increase similarity between classes and affect outcomes.  

In the final model, 20 predictor variables (12 spectral features, 4 terrain features 

and 4 texture features) were included. Even if the RF does not require variable 

deletion, there were probably better feature combinations and more features could be 

involved, which may distinguish classes better than current variables and produce 

better result. In the study, we did not do much about feature selection. According to 

the variable importance measurement generated during the run (Appendix A), only 

terrain variables like elevation and slope had big influence on classification accuracy 

while there were no big differences between the rest of the features in terms of 

decrease in accuracy or Gini index. Nor did we know what roles these variables 

would play if we could train the model with Mongolian samples. However, a previous 

study has shown that feature selection had positive influence on the overall 

performance in object-based remote sensing image classification by using RF (Stumpf 

and Kerle, 2011).  

Because points in the validation data for Mongolia images, as we have discussed 

earlier, were labeled according to a species-and-steppe-type match table, they were 

not as reliable as firsthand ground truth data. All these factors above affected the 

results of our experiments in this study. 

 This study was a systematic and comprehensive exploration of the RF 

classification of steppes of Mongolia Plateau. Though the classification results were 

not satisfying for the purposes actually carrying accurate classifications of vegetation 

types in Mongolia that matched those in IMAR, which was our goal, we gained many 

helpful findings that can guide future work. This study provided a framework of 

exploring the RF method for prediction which may be helpful for similar studies on 

different land-cover types. Though our work was limited by availability of data to 

some degree, the RF method was nonetheless useful in developing accurate classifiers 

in those situations where we had sufficient data, for example in the local prediction, 

prediction within eco-region, and pooling experiments. it seems possible that, 

anIMAR scholar could use RFto update their degradation maps, especially with 

accurate vegetation map being available as input, which can be more efficient than 

on-screen digitizing. 

 Possible further experiments might also improve the effectiveness of the methods 

demonstrated here.For example,hierarchical classification could be used, by 

filteringout non-steppe patches and classifying steppes based on the first level of the 

classification system before classifying the second-level types separately among 

first-level patches. Additionally, including more features like temperature and 

precipitation in themodel may improve itsclassification ability. It mightalso be 
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interesting to incorporate multi-temporal images when building the model to deal with 

time-differences between images and reference data. Lastly, it is important to collect 

ground truth data from the target area and these data can be used for both training and 

validation in future research. 
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Appendix A 

Variable Importance Measurement Plot 

 

Table 5.a 

Error matrix of patch-based steppe vegetation classification (Evenk Autonomous 

Region) 

 

 

Table 5.b 

Error matrix of pixel-based steppe vegetation classification (Evenk Autonomous 

Region) 

 

 

Table 5.c 



Error matrix of pixel-based steppe vegetation classification from reduced dataset of 

pixel samples (Evenk Autonomous Region) 

 

Table 6.a 

Error matrix of patch-based steppe vegetation classification (Xilinhot City) 

 

 

Table 6.b 

Error matrix of pixel-based steppe vegetation classification (Xilinhot City) 



 
 

Table 6.c 

Error matrix of pixel-based steppe vegetation classification from reduced dataset of 

pixel samples(Xilinhot City) 

 

Table 7.a 

Error matrix of patch-based steppe vegetation classification (Uraq Middle Banner) 



 

Table 7.b 

Error matrix of pixel-based steppe vegetation classification (Urat Middle Banner) 

 

 

Table 8.a 

Error matrix of patch-based steppe degradation classification (Evenk Autonomous 

Region) 



 

 

Table 8.b 

Error matrix of pixel-based steppe degradation classification (Evenk Autonomous 

Region) 

 

Table 8.c 

Error matrix of pixel-based steppe degradation classification from reduced dataset of 

pixel samples (Evenk Autonomous Region) 



 

 

Table 9.a 

Error matrix of patch-based steppe degradation classification (Xilinhot City) 

 

Table 9.b 

Error matrix of pixel-based steppe degradation classification (Xilinhot City) 



 

 

Table 9.c 

Error matrix of pixel-based steppe degradation classification from reduced dataset of 

pixel samples  (Xilinhot City) 

 

Table 10.a 

Error matrix of patch-based steppe degradation classification (Urat Middle Banner) 



 

 

Table 10.b 

Error matrix of pixel-based steppe degradation classification (Urat Middle Banner) 

 

 

Table 10.c 

Error matrix of pixel-based steppe degradation classification from reduced dataset of 

pixel samples (Urat Middle Banner) 



 

 

Table 11.a 

Error matrix of patch-based steppe classification with texture features (Evenk 

Autonomous) 

 

 

Table 11.b 

Error matrix of patch-based steppe vegetation classification with texture features 

(Xilinhot City) 



 

 

Table 11.c 

Error matrix of patch-based steppe vegetation classification with texture features 

(Uraq Middle Banner) 

Table 12.a 

Error matrix of patch-based steppe degradation classification with texture features 

(Evenk Autonomous) 



 

 

Table 12.b 

Error matrix of patch-based steppe degradation classificationwith texture features 

(XilinhotCity) 

 

 

Table 12.c 

Error matrix of patch-based steppe degradation classification with texture features 

(Urat Middle Banner) 



 

 

Table 13.a 

Error matrix of patch-based steppe vegetation classification at scale of 40 (Evenk 

Autonomous) 

 

Table 13.b 

Error matrix of pixel-based steppe degradation classification at scale of 40 (Evenk 

Autonomous) 



 

 

Table 14.a 

Error matrix of patch-based steppe vegetation classification at scale of 40 (Xilinhot 

City) 

 

 

Table 14.b 

Error matrix of patch-based steppe degradation classification at scale of 40 (Xilinhot 

City) 



 

Table 15.a 

Error matrix of patch-based steppe vegetation classification at scale of 40(Uraq 

Middle Banner) 

 

 

Table 15.b 

Error matrix of patch-based steppe degradation classification at scale 40(Urat Middle 

Banner) 



 

Table 16.a 

Error matrix of local prediction of steppe types (Evenk Autonomous) 

 

 

Table 16.b 

Error matrix of local prediction of degradation (Evenk Autonomous) 



 

 

Table 17.a 

Error matrix of local prediction of steppe types (Xilinhot City) 

 

 

Table 17.b 

Error matrix of local prediction of degradation (Xilinhot City) 



 

 

Table 18.a 

Error matrix of local prediction of steppe types (Urat Middle Banner) 

 

 

Table 18.b 

Error matrix of local prediction of steppe degradation (Urat Middle Banner) 



 

 

Table 19.a 

Error matrix of local prediction of degradation with steppe class added into model 

(Ewenk Autonomous Region) 

 

 

Table 19.b 

Error matrix of local prediction of degradation with steppe class added into model and 

by using predicted steppe class for degradation prediction (Ewenk Autonomous 

Region) 

 

See Table 19. a 

 



Table 20.a 

Error matrix of steppe type prediction within eco-region -- train on north and predict 

on south (Ewenk Autonomous Region) 

 

 

Table 20.b 

Error matrix of degradation prediction within eco-region -- train on north and predict 

on south (Ewenk Autonomous Region) 

 

 

Table 20.c 

Error matrix of steppe type prediction within eco-region -- train on south and predict 

on north (Ewenk Autonomous Region) 



 

 

Table 20.d 

Error matrix of degradation prediction within eco-region -- train on south and predict 

on north (Ewenk Autonomous Region) 

 

 

Table 21.a 

Error matrix of steppe type prediction within eco-region -- train on east and predict on 

west (Xilinhot City) 



 

Table 21.b 

Error matrix of degradation prediction within eco-region -- train on east and predict 

on west (Xilinhot City) 

 

 

Table 21.c 

Error matrix of steppe type prediction within eco-region -- train on west and predict 

on east (Xilinhot City) 



 

 

Table 21.d 

Error matrix of degradation prediction within eco-region -- train on west and predict 

on east (Xilinhot City) 

 

 

Table 22.a 

Error matrix of steppe type prediction within eco-region -- train on northeast and 

predict on southwest (Urat Middle Banner) 



 

 

Table 22.b 

Error matrix of degradation prediction within eco-region -- train on northeast and 

predict on southwest (Urat Middle Banner) 

 

Table 22.c 

Error matrix of steppe type prediction within eco-region -- train on southwest and 

predict on northeast (Urat Middle Banner) 



 

Table 22.d 

Error matrix of degradation prediction within eco-region -- train on southwest and 

predict on northeast (Urat Middle Banner) 

 

Table 23.a 

Prediction across eco-region of steppe type (train on samples of Ewenk Autonomous 

Region, predict on all patches of Xilinhot City)  



 

Table 23.b 

Prediction across eco-region of steppe type (train on samples of Xilinhot City, predict 

on all patches of Ewenk Autonomous Region)  

 

 

Table 23.c 

Prediction across eco-region of degradation (train on samples of Ewenk Autonomous 

Region, predict on all patches of Xilinhot City)  



 

 

Table 23.d 

Prediction across eco-region of degradation (train on samples of Xilinhot City, predict 

on all patches of Ewenk Autonomous Region) 

 

 

Table 24.a 

Pooling and predicting on Ewenk Autonomous Region - steppe type classification 



 

Table 24.b 

Pooling and predicting on Xilinhot City - steppe type classification 

 

See Table 24. a 

 

Table 24.c 

Pooling and predicting on Ewenk Autonomous Region - steppe degradation 

classification 

 

 

Table 24.d 

Pooling and predicting on Xilinhot City - steppe degradation classification 

 



See Table 24. c 

 

Table 25.a 

Pooling of filtered sample patches from Ewenk Autonomous Region and Xilinhot 

City 

 

 

Table 25.b 

Pooling of purified samples and predicting on Ewenk Autonomous Region - steppe 

type classification 

 

See Table 25. a 

 

Table 25.c 

Pooling of purified samples and predicting on Xilinhot City - steppe type 

classification 

 

See Table 25. a 

 

 



Site_ID vege-community vege-community (in CHN) 1st_guess Code 2nd_guess Code

1
Stipa gobica-Anabasis 
brevifolia-Salsola collina 戈壁针茅-短叶假木贼-猪毛菜 30032 M 30070 O

2
Stipa gobica-Cleistogenes 
songorica-Salsola collina 戈壁针茅-无芒隐子草-猪毛菜 30032 M 30070 O

3
Eurotia ceratoides-Kochia 
prostrata-Salsola collina 驼绒藜(?)-木地肤-猪毛菜 30031 L not find

suspect:Krascheninnikovi
a ceratoides驼绒藜

4
Cleistogenes songorica-
Caragana stenophylla-Eurotia 
ceratoides 无芒隐子草-狭叶锦鸡儿-驼绒藜(?) 30031 L not find

suspect:Krascheninnikovi
a ceratoides驼绒藜

5
Cleistogenes songorica-
Caragana pygmaea-Eurotia 
ceratoides 无芒隐子草-矮锦鸡儿-驼绒藜(?) 30031 L not find

suspect:Krascheninnikovi
a ceratoides驼绒藜

6
Stipa gobica-Artemisia 
adamsii 戈壁针茅-丝裂(叶)蒿 30032 M

7 Haloxylon ammodendron 梭梭 30082 Q

8 Caragana pugmaea-Artemisia 
adamsii-Stipa gobica 矮锦鸡儿(?)-丝裂(叶)蒿-戈壁针茅 30070 O typo Caragana pygmaea

9 Allium polyrrhizum-Eurotia 
ceratoides 碱韭(多根葱)(?)-驼绒藜(?) 30082 Q 30021 D

typo,not 
find

Allium 
polyrhizum;suspect:Krasc
heninnikovia 

10
Stipa gobica-Caragana 
pygmaea 戈壁针茅-矮锦鸡儿 30032 M

11 Stipa gobica-Cleistogenes 
songorica-Allium mongolicum 戈壁针茅-无芒隐子草-蒙古韭(蒙古葱） 30032 M

12
Stipa gobica-Convolvulus 
ammanii 戈壁针茅-银灰旋花(?) 30032 M typo Convolvulus ammannii

13 Convolvulus ammanii-Stipa 
gobica-Cleistogenes songorica 银灰旋花(?)-戈壁针茅-无芒隐子草 30031 L 30032 M typo Convolvulus ammannii

14
shrubs (Eurotia ceratoides, 
Artemisia xerophytica, 
Reaumurea songorica) ?-旱蒿-红砂(?) 30081 P typo Reaumuria soongarica

15
Anabasis brevifolia-Allium 
polyrrhizum 短叶假木贼-碱韭(多根葱)(?) 30070 O 30081 P typo Allium polyrhizum

notes for ?

Appendix B Mongolia Field Survey Data (for validating classification results)



16
Anabasis brevifolia-Stipa 
glareosa 短叶假木贼-沙生针茅 30070 O

17
Haloxylon ammodendron with 
shrubs 梭梭(及灌木) 30082 Q

18
Reaumurea songoorica-
Anabasis brevifolia-Allium 红砂(?)-短叶假木贼-葱属(?) 30081 P

typo, not 
find Reaumuria soongarica

19
Nitraria sibirica-Cleistogenes 
songorica (小果)白刺?-无芒隐子草 30082 Q 30070 O

same 
genus 

20
Ajania achilleoides-Salsola 
collina-Eurotia ceratoides 蓍状亚菊-猪毛菜-？ 30031 L

not 
find,susp

21
Stipa gobica-Anabasis 
brevifolia 戈壁针茅-短叶假木贼 30032 M 30070 O

22 Stipa gobica-Artemisia frigida 戈壁针茅-冷蒿 30032 M

23
Allium polyrrhizum-Stipa 
gobica 碱韭(多根葱)(?)-戈壁针茅 30031 L typo Allium polyrhizum

24
Stipa gobica-Cleistogenes 
songorica-Allium mongolicum 
with shrubs

戈壁针茅-无芒隐子草-
蒙古韭(蒙古葱）(及灌木） 30031 L

25
Allium polyrrhizum-Allium 
mongolicum-Cleistogenes 
songorica

碱韭(多根葱)(?)-蒙古韭(蒙古葱）-
无芒隐子草 30031 L typo Allium polyrhizum

26
Allium mongolicum-Allium 
polyrrhizum-Cleistogenes 
songorica

蒙古韭(蒙古葱）-碱韭(多根葱)(?)-
无芒隐子草 30031 L typo Allium polyrhizum

27
Cleistogenes songorica with 
shrubs 无芒隐子草(及灌木） 30031 L

28
shrubs with Allium 
mongolicum and Cleistogenes 
songorica 灌木(及蒙古韭(蒙古葱）-无芒隐子草） 30031 L 30070 O

29
Anabasisi brevifolia-Stipa 
gobica 短叶假木贼(?)-戈壁针茅 30070 O typo Anabasis brevifolia

30
Stipa gobica-Cleistogenes 
songorica with shrubs 戈壁针茅-无芒隐子草(及灌木) 30032 M

31
Stipa gobica-Cleistogenes 
songorica 戈壁针茅-无芒隐子草 30032 M

32
Allium mongolicum-Stipa 
gobica 蒙古韭(蒙古葱）-戈壁针茅 30081 P 30031 L

33
Stipa gobica-Cleistogenes 
songorica 戈壁针茅-无芒隐子草 30032 M



34
Allium mongolicum-Stipa 
gobica-Artemisia frigida 蒙古韭(蒙古葱）-戈壁针茅-冷蒿 30081 P 30031 L

35
Stipa gobica-Allium 
mongolicum 戈壁针茅-蒙古韭(蒙古葱） 30032 M

36
Stipa gobica-Cleistogenes 
squarrosa with Caragana 
microphylla 戈壁针茅-糙隐子草(及小叶锦鸡儿) 30032 M

37
Stipa gobica-Anabasis 
brevifolia 戈壁针茅-短叶假木贼 30032 M

38
Stipa gobica-Cleistogenes 
squarrosa 戈壁针茅-糙隐子草 30032 M

39 Stipa krylovii-Allium 
polyrrhizum-Carex duriuscula 克氏针茅-碱韭(多根葱)(?)-寸草苔 30021 D typo Allium polyrhizum

40
Stipa krylovii-Allium 
polyrrhizum 克氏针茅-碱韭(多根葱)(?) 30021 D typo Allium polyrhizum

41
Caragana microphylla-Allium 
odorum-Artemisia frigida with 
Chenopodium viride 小叶锦鸡儿-?-冷蒿(及野韭？) 30021 D

typo, not 
find

Allium 
odorumsuspect：野韭

42
Elymus chinensis-Stipa-
Cleistogenes squarrosa 羊草(?)-糙隐子草 30021 D not find

suspect：Leymus 
chinensis羊草

43 Elymus chinensis-Cleistogenes 
squarrosa-Artemisia frigida 羊草(?)-糙隐子草-冷蒿 30021 D not find

suspect：Leymus 
chinensis羊草

44 Cleistogenes squarrosa-Allium 
with Chenopodium viride 糙隐子草-葱属(及?) 30021 D not find

45 Cleistogenes squarrosa-Allium 
with Chenopodium viride 糙隐子草-葱属(及?) 30021 D not find

46 Allium polyrrhizum-Caragana 
microphylla with annual plants

碱韭(多根葱)(?)-
小叶锦鸡儿(及一年生杂类草） 30021 D typo Allium polyrhizum

47
Allium polyrrhizum-Caragana 
stenophylla 碱韭(多根葱)(?)-狭叶锦鸡儿 30021 D typo Allium polyrhizum

48
Stipa krylovii-Allium 
polyrrhizum-Cleistogenes 
squarrosa 克氏针茅-碱韭(多根葱)(?)-糙隐子草 30021 D typo Allium polyrhizum

49 Allium polyrrhizum 碱韭(多根葱)(?) 30021 D typo Allium polyrhizum



50
Artemisia frigida-Leymus 
chinensis-Allium polyrrhizum 
with Chenopodium viride 冷蒿-羊草-碱韭(多根葱)(?)(及？) 30021 D

typo, not 
find Allium polyrhizum

51
Allium polyrrhizum-
Convolvulus ammanii 碱韭(多根葱)(?)-银灰旋花(?) 30021 D 30031 L typo

Allium polyrhizum, 
Convolvulus ammannii

52
Allium polyrrhizum-
Convolvulus ammanii 碱韭(多根葱)(?)-银灰旋花(?) 30021 D 30031 L typo

Allium polyrhizum, 
Convolvulus ammannii

53 Allium-Elymus chinensis 葱属(?)-羊草(?) 30021 D not find suspect：Leymus 

54
Allium polyrrhizum-
Convolvulus ammanii-
Caragana

碱韭(多根葱)(?)-银灰旋花(?)-
锦鸡儿属(?) 30021 D

typo, not 
find

Allium polyrhizum, 
Convolvulus ammannii

55
Allium polyrrhizum-
Convolvulus ammanii-
Caragana

碱韭(多根葱)(?)-银灰旋花(?)-
锦鸡儿属(?) 30021 D

typo, not 
find

Allium polyrhizum, 
Convolvulus ammannii

56
Leymus chinensis-
Cleistogenes squarrosa with 
Chenopodium viride 羊草-糙隐子草(及？) 30021 D not find

57 Allium polyrrhizum 碱韭(多根葱)(?) 30021 D typo Allium polyrhizum
58 Allium polyrrhizum 碱韭(多根葱)(?) 30021 D typo Allium polyrhizum

59

Artemisia frigida-Leymus 
chinensis-Cleistogenes 
squarrosa with Chenopodium 
viride 冷蒿-羊草-糙隐子草(及？) 30021 D not find

60
Stipa krylovii-Cleistogenes 
squarrosa-Carex duriuscula 克氏针茅-糙隐子草-寸草苔 30021 D

61
Allium polyrrhizum-Carex 
duriuscula 碱韭(多根葱)(?)-寸草苔 30152 G 30021 D typo

Allium polyrhizum, 
Convolvulus ammannii

62 Stipa grandis-Cleistogenes 
squarrosa with annual plants 大针茅-糙隐子草(及一年生杂类草） 30021 D

63
Stipa krylovii-Carex 
duriuscula-Caragna 
microphylla 克氏针茅-寸草苔-小叶锦鸡儿 30021 D

64
Stipa krylovii-Elymus 
chinensis 克氏针茅-羊草(?) 30021 D not find

suspect：Leymus 
chinensis羊草

65
Cleistogenes squarrosa-Stipa 
krylovii-Kochia prostrata with 
Salsola collina 糙隐子草-克氏针茅-木地肤(及猪毛菜） 30021 D



66
Stipa krylovii-Corispermum 
mongolicum-chenopodium 
viride 克氏针茅-蒙古虫实-？ 30023 M 30021 D not find

67 Stipa krylovii-Cleistogenes 
squarrosa with annual plants 克氏针茅-糙隐子草(及一年生杂类草） 30021 D

68
Carex duriuscula-Stipa 
krylovii with annul plants 寸草苔-克氏针茅(及一年生杂类草） 30152 G

69
Stipa krylovii with Salsola 
collina 克氏针茅(及猪毛菜） 30021 D 30022 K

70 Allium-Caragana pygmaea 葱属(?)-矮锦鸡儿 30031 L not find

71
Salsola collina-Carex 
duriumscula with 
Chenopodium viride 猪毛菜-寸草苔(及?) 30031 L not find

72
Stipa krylovii-Elymus 
chinensis-Cleistogenes 
squarrosa 克氏针茅-羊草(?)-糙隐子草 30021 D not find

suspect：Leymus 
chinensis羊草

73 Stipa krylovii-Salsola collina-
Convolvulus ammanii 克氏针茅-猪毛菜-银灰旋花(?) 30021 D 30031 L typo Convolvulus ammannii

74
Allium polyrrhizum-Elymus 
chinensis-Cleistogenes 
squarrosa 碱韭(多根葱)(?)-羊草(?)-糙隐子草 30021 D

typo, not 
find

Allium 
polyrhizum，suspect：Le
ymus chinensis羊草

75
Artemisia frigida-Leymus 
chinensis with Chenopodium 
viride 冷蒿-羊草(?)(及？) 30023 E 30021 D not find

suspect：Leymus 
chinensis羊草

76 Stipa krylovii-Carex 
stenophylloides-Salsola collina 克氏针茅-中亚苔草(砾苔草)-猪毛菜 30021 D

77 Elymus chinensis-Artemisia 
frigida-Cleistogenes squarrosa 羊草(?)-冷蒿-糙隐子草 30021 D 30023 E not find

suspect：Leymus 
chinensis羊草

78
Lappula intermedia-Caragana 
microphylla-Artemisia frigida 
with Chenopodium album

东北鹤虱(中间鹤虱)-小叶锦鸡儿-
冷蒿(及藜(白藜,灰菜)) 30021 D

79
Allium polyrrhizum-Stipa 
grandis-Cleistogenes squarrosa 
with Chenopodium viride 碱韭(多根葱)(?)-大针茅-糙隐子草(及?) 30021 D

typo, not 
find Allium polyrhizum



80
Cleistogenes squarrosa-Carex 
duriuscula-Haplophyllum 
dauricum 糙隐子草-寸草苔-假芸香(北芸香） 30021 D

81 Allium polyrrhizum-Caragana 
pygmaea-Carex duriuscula 碱韭(多根葱)(?)-矮锦鸡儿-寸草苔 30021 D

typo, not 
find Allium polyrhizum

82
Carex duriuscula-Cleistogenes 
squarrosa-Carex 
stenophylloides 寸草苔-糙隐子草-中亚苔草(砾苔草) 30152 G

83 Cleistogenes squarrosa-Carex 
duriuscula-Salsola collina 糙隐子草-寸草苔-猪毛菜 30021 D

84
Carex duriuscula-Caragana 
microphylla-Convolvulus 
ammanii 寸草苔-小叶锦鸡儿-银灰旋花(?) 30152 G typo Convolvulus ammannii

85
Carex duriuscula-Cleistogenes 
squarrosa with Chenopodium 
viride 寸草苔-糙隐子草(及?) 30152 G not find

86
Carex duriuscula-Salsola 
collina-Allium polyrrhizum 寸草苔-猪毛菜-碱韭(多根葱)(?) 30152 G typo Allium polyrhizum

87 Stipa krylovii-Elymus 
chinensis-Allium polyrrhizum 克氏针茅-羊草(?)-碱韭(多根葱)(?) 30021 D

typo, not 
find

Allium 
polyrhizum,suspect：Ley
mus chinensis羊草

88
Cleistogenes squarrosa-Carex 
duriuscula with Chenopodium 
album 糙隐子草-寸草苔(及藜(白藜,灰菜)) 30021 D 30023 E

89
Cleistogenes squarrosa-Carex 
duriuscula-Caragana 
korshinskii 糙隐子草-寸草苔-柠条锦鸡儿 30021 D 30023 E

90
Stipa krylovii-Convolvulus 
ammanii-Allium polyrrhizum 克氏针茅-银灰旋花(?)-碱韭(多根葱)(?) 30021 D 30023 E typo

Convolvulus 
ammannii,Allium 

91
Allium polyrrhizum-Carex 
duriuscula-Cleistogenes 
squarrosa 碱韭(多根葱)(?)-寸草苔-糙隐子草 30021 D 30031 L typo Allium polyrhizum

92 Convolvulus ammanii-Carex 
duriuscula-Allium polyrrhizum 银灰旋花(?)-寸草苔-碱韭(多根葱)(?) 30031 L 30021 L typo

Convolvulus 
ammannii,Allium 
polyrhizum



93
Convolvulus ammanii-Carex 
duriuscula-Elymus chinensis 
with Chenopodium viride 银灰旋花(?)-寸草苔-羊草(?)(及?) 30031 L 30021 L

typo, not 
find

Convolvulus 
ammannii,suspect：Leym
us chinensis羊草

94 Stipa krylovii-Cleistogenes 
squarrosa-Dasiphora fruticosa 克氏针茅-糙隐子草-？ 30021 D not find suspect：金露梅

95
Stipa krylovii-Agropyron 
cristatum-Allium mongolicum 
with Chenopodium album

克氏针茅-冰草-
蒙古韭(蒙古葱）(及藜(白藜,灰菜)) 30021 D

96
Allium polyrrhizum-Stipa 
krylovii-Convolvulus ammanii-
Cleistogenes squarrosa

碱韭(多根葱)(?)-克氏针茅-银灰旋花(?)-
糙隐子草 30021 D 30023 E typo

Convolvulus 
ammannii,Allium 
polyrhizum

97
Allium mongolicum-Stipa 
krylovii-Carex duriuscula 蒙古韭(蒙古葱)-克氏针茅-寸草苔 30021 D

98 Stipa krylovii 克氏针茅 30021 D

99
Cleistogenes squarrosa-
Artemisia adamsii-Medicago 
ruthenica 糙隐子草-丝裂(叶)蒿-花苜蓿 30021 D

100 Salsola collina-Cleistogenes 
squarrosa-Elymus chinensis 猪毛菜-糙隐子草-羊草(?) 30023 E 30021 D not find

suspect：Leymus 
chinensis羊草

101
Elymus chinensis with Salsola 
collina and Chenopodium 
viride 羊草(?)(及猪毛菜-？） 30021 D not find

suspect：Leymus 
chinensis羊草

102
Cleistogenes squarrosa-
Artemisia frigida with annual 
plants 糙隐子草-冷蒿(及一年生杂类草) 30021 D

103
Cleistogenes squarrosa-
Caragana microphylla-Allium 
tenuissimum 糙隐子草-小叶锦鸡儿-细叶韭(细叶葱） 30021 D

104
Stipa krylovii-Artemisia 
adamsii-Allium polyrrhizum 
with Chenopodium album

克氏针茅-丝裂(叶)蒿-
碱韭(多根葱)(?)(及藜(白藜,灰菜)) 30021 D typo Allium polyrhizum

105 Carex -Cleistogenes squarrosa 苔草类(?)-糙隐子草 30152 G 30021 D not find



106
Carex duriuscula-Convolvulus 
ammanii with Chenopodium 
viride 寸草苔-糙隐子草 30152 G 30021 D

107
Stipa grandis-Elymus 
chinensis-Caragana 
microphylla 大针茅-羊草(?)-小叶锦鸡儿 30021 D not find

suspect：Leymus 
chinensis羊草

108 Elymus chinensis-Cleistogenes 
squarrosa-Salsola collina 羊草(?)-糙隐子草-猪毛菜 30021 D not find

suspect：Leymus 
chinensis羊草

109

Stipa grandis-Elymus 
chinensis-Cleistogenes 
squarrosa with Chenopodium 
album

大针茅-羊草(?)-
糙隐子草(及藜(白藜,灰菜)) 30021 D

110
Cleistogenes squarrosa-Carex 
korshinskyi with Chenopodium 
album 糙隐子草-黄囊苔草(及藜(白藜,灰菜)) 30023 E 30021 D

111
Stipa grandis- Cleistogenes 
squarrosa-Salsola collina with 
Chenopodium album

大针茅-糙隐子草-
猪毛菜(及藜(白藜,灰菜)) 30021 D

112
Stipa krylovii-Allium 
polyrrhizum-Heteropappus 
hispidus 克氏针茅-碱韭(多根葱)(?)-狗娃花 30021 D typo Allium polyrhizum

113
Salsola collina-Cleistogenes 
squarrosa-Carex duriuscula 
with Chenopodium viride 猪毛菜-糙隐子草-寸草苔(及?) 30031 L 30023 E not find

114 Stipa krylovii-Carex 
korshinskyi-Elymus chinensis 克氏针茅-黄囊苔草-羊草(?) 30021 D not find

suspect：Leymus 
chinensis羊草

115 Cleistogenes squarrosa-Stipa 
grandis-Elymus chinensis 糙隐子草-大针茅-羊草(?) 30021 D not find

suspect：Leymus 
chinensis羊草

116
Cleistogenes squarrosa-Stipa -
Elymus chinensis 糙隐子草-针茅(?)-羊草(?) 30021 D not find

suspect：Leymus 
chinensis羊草

117
Stipa krylovii-Cleistogenes 
squarrosa-Artemisia adamsii 
with Chenopodium album

克氏针茅-糙隐子草-
丝裂(叶)蒿(及藜(白藜,灰菜)) 30021 D



118
Stipa grandis-Cleistogenes 
squarrosa-Allium polyrrhizum 
with Chenopodium album

大针茅-糙隐子草-
碱韭(多根葱)(?)(及藜(白藜,灰菜)) 30021 D typo Allium polyrhizum

119
Allium-Carex duriuscula-Stipa 
krylovii 葱属(?)-寸草苔-克氏针茅 30152 G 30021 D not find

120 Allium senescens-Medicago 
ruthenica-Carex duriuscula 山韭-花苜蓿-寸草苔 30013 C

121
Elymus chinensis-Stipa 
sibirica-Artemisia frigida with 
Chenopodium virides 羊草(?)-羽茅(光颖芨芨草)(?)-冷蒿(及?) 30021 D not find

suspect：Leymus 
chinensis羊草；suspect
：Achnatherum 

122
Elymus chinensis-Stipa 
sibirica with Chenopodium 
viride 羊草(?)-羽茅(光颖芨芨草)(?)(及?) 30021 D not find

suspect：Leymus 
chinensis羊草；suspect
：Achnatherum 

123
Cleistogenes squarrosa-Allium 
senescens-Grasses 糙隐子草-山韭-杂类草 30021 D

124 Allium senescens-Cleistogenes 
squarrosa-forbs 山韭-糙隐子草-非禾本草本植物 30021 D

125
Cleistogenes squarrosa-Elymus 
chinensis-Carex duriuscula-
Allium polyrrhizum

糙隐子草-羊草(?)-寸草苔-
碱韭(多根葱)(?) 30021 D

typo, not 
find

Allium 
polyrhizum,suspect：Ley
mus chinensis羊草

126
Caragana microphylla-Stipa 
sibirica-Allium senescens 小叶锦鸡儿-羽茅(光颖芨芨草)(?)-山韭 30021 D

127
Elymus chinensis-Cleistogenes 
sguarrosa-Salsola collina-
Allium 羊草(?)-糙隐子草-猪毛菜-葱属(?) 30021 D not find

suspect：Leymus 
chinensis羊草

128
Carex duriuscula-Stipa 
krylovii-Allium senescens 寸草苔-克氏针茅-山韭 30152 G

129 Cleistogenes squarrosa-Stipa 
krylovii-Elymus chinensis 糙隐子草-克氏针茅-羊草(?) 30021 D not find

suspect：Leymus 
chinensis羊草

130
Carex duriuscula-Artemisia 
frigida-Stipa 寸草苔-冷蒿-针茅(?) 30152 G not find

131
Carex duriuscula-Stipa 
krylovii-Iris tigridia-Forbs

寸草苔-克氏针茅-粗根鸢尾-
非禾本草本植物 30152 G

132
Carex duriuscula-Stipa 
krylovii-Iris tigridia-Forbs

寸草苔-克氏针茅-粗根鸢尾-
非禾本草本植物 30152 G



133
Elymus chinensis-Cleistogenes 
squarrosa with Chenopodiun 
virides 羊草(?)-糙隐子草(及？) 30021 D not find

suspect：Leymus 
chinensis羊草

134
Cleistogenes squarrosa-Elymus 
chinensis-Allium 糙隐子草-羊草(?)-葱属(?) 30021 D not find

suspect：Leymus 
chinensis羊草

135
Cleistogenes squarrosa- 
Allium- Stipa krylovii 糙隐子草-葱属(?)-克氏针茅 30021 D not find

suspect：Leymus 
chinensis羊草

136
Carex duriuscula-Cleistogenes 
squarrosa-Stipa krylovii-
Allium 寸草苔-糙隐子草-克氏针茅-葱属(?) 30152 G not find

137
Cleistogenes squarrosa-
Artemisia frigida-Allium 糙隐子草-冷蒿-葱属(?) 30021 D not find
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Appendix D 

Steppe Type and Vegetation Match Table 

Type 

code Class Subclass Association group Association 

Ⅰ 
Temperate 
meadow steppe       

A   

Plain/hill 

meadow steppe     

1     Gramineae with shrubs group   

(1)       Prunus sibirica-Stipa baicalensis+Cleistogenes polyphylla 

2     Forbs with shrubs group   

(1)       Prunus sibirica-Filifolium sibiricum+Carex pediformis 

(2)       Prunus sibirica-Lespedeza hedysaroides+forbs 

3     Semi-brush group   

(1)       Lespedeza hedysaroides-Cleistogenes polyphylla 

4     Rhizomatous grass group   

(1)       Leymus chinensis+Stipa baicalensis 

(2)       Leymus chinensis+Cleistogenes chinensis 

(3)       Leymus chinensis+forbs 

(4)       

Calamagrostis epigejos+Filifolium sibiricum+Leymus 

chinensis 

(5)       Arundinella hirta+Cleistogenes chinensis 

5     Bunch grass group   

(1)       Stipa baicalensis+Leymus chinensis 

(2)       

Stipa baicalensis+Cleistogenes polyphylla+Arundinella 

hirta 

(3)       Stipa baicalensis+Filifolium sibiricum 

(4)       Stipa baicalensis+Carex pediformis 

(5)       

Cleistogenes polyphylla+Artemisia frigida+Carex 

pediformis 

(6)       Cleistogenes polyphylla+Lespedeza hedysaroides 

6     Eleocharis acicularis group   

(1)       Carex pediformis+Filifolium sibiricum+Stipa baicalensis 

7     Erect forbs group   

(1)       Filifolium sibiricum+Stipa baicalensis 

(2)       Filifolium sibiricum+Leymus chinensis 

(3)       Filifolium sibiricum+Stipa grandis 

(4)       

Filifolium sibiricum+Lespedeza 

hedysaroides+Cleistogenes polyphylla 

(5)       Sanguisorba officinalis+Artemisia tanacetifolia 

(6)       Sanguisorba officinalis+Stipa baicalensis 

B   
Mountain 
meadow steppe     

1     

Sage semi-brush rangeland with 

shrubs and trees group   

(1)       

Populus davidiana（Betula platyphylla）-Prunus 

sibirica-Artemisia gmelinii+Lespedeza hedysaroides 

(2)       

Populus davidiana（Betula platyphylla）-Corylus 

davidiana-Artemisia gmelinii+Carex pediformis 

2     Gramineae with shrubs and trees   



group 

(1)       

Populus davidiana（Betula platyphylla）-Spiraea 

pubescens-Stipa baicalensis 

3     Gramineae with trees group   

(1)       

Populus davidiana（Betula platyphylla）-Stipa 

baicalensis+Filifolium sibiricum+Carex pediformis 

4     Forbs with trees and shrubs group   

(1)       

Populus davidiana（Betula platyphylla）-Spiraea 

pubescens-Filifolium sibiricum-Carex pediformis 

(2)       

Populus davidiana（Betula platyphylla）-Corylus 

davidiana-Filifolium sibiricum+Stipa baicalensis 

5     

Sage semi-brush rangeland with 

shrubs group   

(1)       Prunus sibirica-Artemisia gmelinii+forbs 

(2)       Corylus davidiana-Artemisia gmelinii 

6     Gramineae with shrubs group   

(1)       Prunus sibirica-Leymus chinensis+Stipa baicalensis 

(2)       Rosa davurica-Leymus chinensis+Carex pediformis 

(3)       Prunus sibirica-Stipa baicalensis+Cleistogenes chinensis 

(4)       

Prunus sibirica-Cleistogenes polyphylla+Lespedeza 

davurica 

(5)       Corylus davidiana-Stipa baicalensisCarex 

(6)       Corylus davidiana-Cleistogenes polyphylla 

(7)       Lespedeza nivolot-Cleistogenes chinensis 

7     Cyperaceae with shrubs group   

(1)       Prunus sibirica-Carex pediformis+Sanguisorba officinalis 

(2)       Corylus davidiana-Carex lanceolata+forbs 

(3)       Corylus davidiana-Carex pediformis+forbs 

(4)       Spiraea pubescens-Carex pediformis+forbs 

(5)       Spiraea trilobata-Carex lanceolata 

(6)       Potentilla fruticosa-Carex lanceolata 

8     Forbs with shrubs group   

(1)       Prunus sibirica-Filifolium sibiricum+forbs 

(2)       Corylus davidiana-Filifolium sibiricum+forbs 

(3)       Spiraea pubescens-Filifolium sibiricum+Stipa baicalensis 

(4)       

Lespedeza nivolot-Filifolium sibiricum+Sanguisorba 

officinalis 

9     Rhizomatous grass group   

(1)       
Leymus chinensis+Stipa baicalensis+Cleistogenes 
polyphylla 

(2)       Leymus chinensis+Cleistogenes polyphylla 

(3)       Leymus chinensis+Festuca ovina 

(4)       Leymus chinensis+Arundinella hirta 

(5)       Leymus chinensis+Carex pediformis 

(6)       Arundinella hirta+Stipa baicalensis+Cleistogenes chinensis 

10     Bunch grass group   

(1)       Stipa baicalensis+Filifolium sibiricum 

(2)       Stipa baicalensis+Leymus chinensis 

(3)       Stipa baicalensis+Cleistogenes polyphylla 



(4)       Cleistogenes polyphylla+Artemisia frigida 

(5)       Cleistogenes polyphylla+Lespedeza hedysaroides 

11     Semi-brush group   

(1)       
Lespedeza davurica+Lespedeza hedysaroides-Agropyron 
cristatum 

12     sagesemi-brush rangeland group   

(1)       Artemisia gmelinii-Stipa baicalensis 

(2)       

Artemisia gmelinii-Carex pediformis+Cleistogenes 

polyphylla 

13     Eleocharis acicularis group   

(1)       Carex pediformis+forbs 

(2)       Carex lanceolata+forbs 

14     Erect forbs group   

(1)       Filifolium sibiricum+Stipa baicalensis 

(2)       Filifolium sibiricum+Cleistogenes caespitosa 

(3)       Filifolium sibiricum+Festuca ovina 

(4)       Filifolium sibiricum+Spodiopogon sibiricus 

(5)       Filifolium sibiricum+Carex pediformis 

(6)       Artemisia tanacetifolia+Carex lanceolata 

C   
Sand land 
meadow steppe     

1     

Sage semi-brush rangeland with 

shrubs group   

(1)       
Salix gordejevii-Artemisia halodendron-Agropyron 
cristatum 

(2)       

Lespedeza nivolot-Artemisia halodendron-Allium 

senescens 

2     sagesemi-brush rangeland group   

(1)       Artemisia halodendron-Leymus chinensis+forbs 

Ⅱ 
Temperate 
typical steppe       

A   

Plain/hill typical 

steppe     

1     Semi-brush with shrubs group   

(1)       Caragana microphylla-Ceratoides latens+Artemisia frigida 

(2)       Caragana intermedia-Oxytropis aciphylla 

(3)       

Caragana intermedia-Thymus serpyllum var. 

mongolicus+Stipa bungeana 

2     
Sage semi-brush rangeland with 
shrubs group   

(1)       

Ulmus macrocarpa-Artemisia gmelinii-Cleistogenes 

chinensis 

(2)       Caragana microphylla-Artemisia frigida+Stipa krylovii 

(3)       Caragana stenophylla-Artemisia frigida+Leymus chinensis 

3     Gramineae with shrubs group   

(1)       Caragana microphylla-Leymus chinensis+forbs 

(2)       

Caragana microphylla-Leymus chinensis+Allium 

polyrhizum 

(3)       Prunus sibirica-Stipa grandis+Cleistogenes squarrosa 

(4)       
Prunus sibirica-Cleistogenes squarrosa+Lespedeza 
davurica 

(5)       Ulmus macrocarpa-Cleistogenes chinensis+Stipa grandis 

(6)       Caragana microphylla-Stipa grandis+Agropyron cristatum 



(7)       

Caragana microphylla-Stipa krylovii+Cleistogenes 

squarrosa 

(8)       

Caragana microphylla-Cleistogenes squarrosa+Stipa 

grandis 

(9)       

Caragana microphylla-Agropyron cristatum+Cleistogenes 

squarrosa 

(10)       

Caragana stenophylla-Stipa krylovii+Cleistogenes 

squarrosa 

(11)       Caragana stenophylla-Cleistogenes squarrosa 

(12)       

Caragana intermedia-Stipa bungeana+Cleistogenes 

squarrosa 

4     Semi-brush group   

(1)       Thymus serpyllum var. asiaticus+Stipa krylovii 

(2)       Thymus serpyllum var. asiaticus+Stipa bungeana 

(3)       Thymus serpyllum var. asiaticus+Stipa breviflora 

(4)       

Thymus serpyllum var. asiaticus+Cleistogenes 

squarrosa+Lespedeza davurica 

(5)       
Thymus serpyllum var. asiaticus+Artemisia frigida+Stipa 
krylovii 

(6)       Lespedeza davurica+Cleistogenes squarrosa 

(7)       Oxytropis aciphylla+Oxytropis psammocharis 

(8)       Ephedra sinica+Lespedeza davurica+forbs 

5     Sagesemi-brush rangeland group   

(1)       
Artemisia gmelinii-Lespedeza davurica+Cleistogenes 
squarrosa 

(2)       Artemisia frigida+Stipa grandis+Cleistogenes squarrosa 

(3)       Artemisia frigida+Stipa krylovii+Leymus chinensis 

(4)       Artemisia frigida+Stipa bungeana 

(5)       Artemisia frigida+Cleistogenes squarrosa 

(6)       
Artemisia frigida+Leymus chinensis+Cleistogenes 
squarrosa 

(7)       Artemisia frigida+Festuca ovina 

(8)       Artemisia brachyloba+Stipa gobica 

(9)       Artemisia giraldii+Thymus serpyllum var. asiaticus 

6     Rhizomatous grass group   

(1)       Leymus chinensis+Stipa grandis 

(2)       Leymus chinensis+Stipa krylovii 

(3)       
Leymus chinensis+Cleistogenes squarrosa+Agropyron 
cristatum 

(4)       Leymus chinensis+Artemisia frigida 

(5)       Leymus chinensis+forbs 

(6)       

Leymus chinensis+Artemisia capillaris+Cleistogenes 

squarrosa 

7     Bunch grass group   

(1)       Stipa grandis+Leymus chinensis 

(2)       Stipa grandis+Cleistogenes squarrosa 

(3)       Stipa grandis+Artemisia frigida 

(4)       Stipa krylovii+Leymus chinensis+Cleistogenes squarrosa 

(5)       Stipa krylovii+Cleistogenes squarrosa 

(6)       Stipa krylovii+Artemisia frigida 

(7)       

Stipa bungeana+Cleistogenes squarrosa+Thymus 

serpyllum var. mongolicus 



(8)       Stipa bungeana+Lespedeza davurica+Artemisia scoparia 

(9)       Cleistogenes squarrosa+Stipa grandis+Agropyron cristatum 

(10)       Cleistogenes squarrosa+Stipa krylovii+Carex duriuscula 

(11)       Cleistogenes squarrosa+Artemisia frigida 

(12)       
Cleistogenes squarrosa+Polygonum divaricatum+Digitaria 
ischaemum 

(13)       Cleistogenes squarrosa+Lespedeza davurica+Stipa grandis 

(14)       Cleistogenes squarrosa+Leymus chinensis 

(15)       Agropyron cristatum+Stipa grandis 

(16)       

Agropyron cristatum+Artemisia frigida+Allium 

polyrhizum 

(17)       Festuca ovina+Leymus chinensis 

8     erect leguminous grass group   

(1)       Glycyrrhiza uralensis 

(2)       Sophora alopecuroides 

9     bulbousforbsgroup   

(1)       Allium polyrhizum+Leymus chinensis+Stipa grandis 

(2)       Allium polyrhizum+Cleistogenes squarrosa 

(3)       Allium ramosum+Stipa krylovii+Leymus chinensis 

10     erect 杂草 group   

(1)       Cynanchum komarovii+annual forbs 

B   
Mountain typical 
steppe     

1     Gramineae with shrubs group   

(1)       Prunus sibirica-Cleistogenes polyphylla 

(2)       Prunus pedunculata-Stipa krylovii 

(3)       Prunus pedunculata-Stipa gobica 

2     
Sage semi-brush rangeland with 
shrubs group   

(1)       Corylus davidiana-Artemisia gmelinii+Carex lanceolata 

(2)       Prunus pedunculata-Artemisia gmelinii 

3     Semi-brush group   

(1)       Thymus serpyllum var. asiaticus+Stipa krylovii 

(2)       Lespedeza davurica+Cleistogenes squarrosa+Stipa grandis 

4     Sage semi-brush rangeland group   

(1)       
Artemisia gmelinii+Thymus serpyllum var. 
asiaticus+Cleistogenes squarrosa 

(2)       Artemisia gmelinii+Lespedeza davurica+Stipa grandis 

(3)       

Artemisia gmelinii+Artemisia frigida+Cleistogenes 

squarrosa 

(4)       Artemisia gmelinii+Artemisia dracunculus+Stipa bungeana 

(5)       
Artemisia brachyloba+Lespedeza davurica+Cleistogenes 
squarrosa 

5     Rhizomatous grass group   

(1)       Leymus chinensis+Cleistogenes squarrosa 

(2)       Leymus chinensis+Artemisia frigida 

6     Bunch grass group   

(1)       Stipa grandis+Cleistogenes squarrosa 



(2)       Stipa krylovii+Artemisia frigida 

(3)       Stipa krylovii+Thymus serpyllum var. asiaticus 

(4)       Stipa krylovii+Potentilla acaulis 

(5)       Cleistogenes squarrosa+Lespedeza davurica 

C   
Sand land typical 
steppe     

1     

Sage semi-brush rangeland with 

trees and shrubs group   

(1)       Ulmus-Betula gmelinii+Artemisia frigida 

(2)       
Ulmus-Caragana microphylla-Artemisia 
halodendron+Pennisetum flaccidum 

(3)       Ulmus-Caragana microphylla-Artemisia intramongolica 

2     

Sage semi-brush rangeland with 

trees group   

(1)       Ulmus-Artemisia frigida+Poa sphondylodes+Carex 

(2)       Ulmus-Artemisia frigida+Cleistogenes squarrosa+Carex 

(3)       

Ulmus-Artemisia frigida+Artemisia 

halodendron+Pennisetum flaccidum 

(4)       
Ulmus-Artemisia halodendron+Melissitus ruthenicus var. 
oblongifolius 

(5)       

Ulmus-Ephedra sinica-Artemisia frigida+Pennisetum 

flaccidum 

3     
Gramineae with trees and shrubs 
group   

(1)       

Ulmus-Prunus sibirica-Cleistogenes squarrosa+Lespedeza 

davurica 

4     Gramineae with trees group   

(1)       
Ulmus-Agropyron cristatum+Melissitus ruthenicus var. 
oblongifolius 

(2)       Ulmus-Pennisetum flaccidum+Cleistogenes squarrosa 

(3)       Ulmus-Cleistogenes squarrosa+annual forbs 

5     Scale-leaf shrubsgroup   

(1)       Sabina vulgaris+forbs 

6     Semi-brush with shrubs group   

(1)       Salix gordejevii-Ephedra sinica+Lespedeza davurica 

(2)       
Caragana microphylla-Ephedra sinica-Cleistogenes 
squarrosa 

(3)       Caragana microphylla-Lespedeza davurica 

(4)       Caragana microphylla-Hedysarum fruticosum 

7     

Sage semi-brush rangeland with 

shrubs group   

(1)       

Prunus sibirica-Artemisia halodendron+Polygonum 

divaricatum 

(2)       Spiraea trilobata-Artemisia frigida+Agropyron desertorum 

(3)       
Ulmus macrocarpa-Artemisia halodendron+Cleistogenes 
polyphylla 

(4)       

Atraphaxis manshurica-Artemisia halodendron+Artemisia 

frigida 

(5)       Salix gordejevii-Artemisia halodendron 

(6)       Salix gordejevii-Artemisia intramongolica 

(7)       Caragana microphylla-Artemisia halodendron 

(8)       
Caragana microphylla-Artemisia frigida+Agropyron 
desertorum 

(9)       

Caragana intermedia-Artemisia 

intramongolica-Psammochloa villosa 

(10)       Caragana intermedia-Artemisia ordosica 



8     Gramineae with shrubs group   

(1)       Salix gordejevii-Pennisetum flaccidum 

(2)       
Caragana microphylla-Leymus chinensis+Agropyron 
desertorum 

(3)       

Caragana microphylla-Psammochloa villosa+Agropyron 

desertorum 

(4)       Caragana microphylla-Pennisetum flaccidum 

(5)       Caragana intermedia-Pennisetum flaccidum 

(6)       Ulmus macrocarpa-Stipa grandis+Cleistogenes polyphylla 

(7)       
Atraphaxis manshurica-Agropyron desertorum+Lespedeza 
davurica 

(8)       Lespedeza nivolot-Agropyron desertorum 

(9)       

Caragana microphylla-Agropyron desertorum+Lespedeza 

davurica 

9     Semi-brush group   

(1)       Lespedeza davurica-Agropyron desertorum 

(2)       Lespedeza davurica-Cleistogenes squarrosa 

(3)       Hedysarum fruticosum-Pennisetum flaccidum 

(4)       Oxytropis aciphylla-forbs 

(5)       Ephedra sinica-Artemisia halodendron 

(6)       Ephedra sinica-Cleistogenes squarrosa 

10     Sage semi-brush rangeland group   

(1)       
Artemisia oxycephala-Cleistogenes squarrosa+Lespedeza 
davurica 

(2)       

Artemisia halodendron-Artemisia frigida+Pennisetum 

flaccidum 

(3)       Artemisia halodendron-Polygonum divaricatum 

(4)       Artemisia halodendron-Agropyron desertorum 

(5)       Artemisia ordosica-Psammochloa villosa 

(6)       Artemisia ordosica-Artemisia frigida 

(7)       Artemisia ordosica+Salix psammophyla 

(8)       Artemisia ordosica-forbs 

(9)       

Artemisia frigida+Agropyron desertorum+Cleistogenes 

squarrosa 

(10)       
Artemisia intramongolica+Hedysarum fruticosum var. 
lignosum+Thymus serpyllum var. asiaticus 

(11)       

Artemisia intramongolica-Psammochloa 

villosa+Agropyron cristatum 

11     Rhizomatous grass group   

(1)       Leymus chinensis+Stipa grandis+Artemisia frigida 

(2)       Leymus chinensis+Poa annua+Artemisia frigida 

(3)       

Leymus chinensis+Lespedeza davurica+Cleistogenes 

squarrosa 

(4)       Aneurolepidium dasystachys+annual forbs 

(5)       

Pennisetum flaccidum+Artemisia frigida+Phragmites 

australis 

(6)       

Psammochloa villosa+Agropyron desertorum+Artemisia 

frigida 

(7)       Psammochloa villosa+Agriophyllum pungens 

12     Bunch grass group   

(1)       
Agropyron desertorum+Cleistogenes squarrosa+Artemisia 
frigida 

(2)       Agropyron desertorum+Melissitus ruthenicus var. 



oblongifolius+Cleistogenes squarrosa 

(3)       Cleistogenes squarrosa+Lespedeza davurica+forbs 

(4)       
Cleistogenes squarrosa+Polygonum 
divaricatum+Agropyron desertorum 

13     Erect leguminous grass group   

(1)       Glycyrrhiza uralensis+annual forbs 

14     Annualforbs group   

(1)       Artemisia scoparia+Cleistogenes squarrosa 

(2)       Artemisia scoparia+Artemisia frigida 

(3)       Agriophyllum pungens+Setaria viridis 

Ⅲ 
Temperate 
desert steppe       

A   

Plain/hill desert 

steppe     

1     Semi-brush with shrubs group   

(1)       Caragana stenophylla-Oxytropis aciphylla 

(2)       Caragana stenophylla-Atraphaxis pungens 

2     Gramineae with shrubs group   

(1)       Caragana stenophylla-Aneurolepidium dasystachys 

(2)       Caragana intermedia-Psammochloa villosa 

(3)       

Prunus pedunculata-Stipa tianschanica var. 

klemenzii+Agropyron cristatum 

(4)       
Caragana microphylla-Stipa tianschanica var. 
klemenzii+Artemisia frigida 

(5)       Caragana microphylla-Stipa breviflora+Artemisia frigida 

(6)       

Caragana microphylla-Cleistogenes songorica+Artemisia 

frigida 

(7)       
Caragana stenophylla-Stipa tianschanica var. 
klemenzii+Cleistogenes songorica 

(8)       Caragana stenophylla-Stipa breviflora+Artemisia frigida 

(9)       

Caragana stenophylla-Agropyron desertorum+Cleistogenes 

songorica 

(10)       
Caragana stenophylla-Stipa breviflora+Cleistogenes 
squarrosa 

3     Semi-brush group   

(1)       Hippolytia trifida+Stipa tianschanica var. klemenzii 

(2)       Ceratoides latens+Stipa tianschanica var. klemenzii 

(3)       Oxytropis aciphylla+Stipa tianschanica var. klemenzii 

(4)       Ephedra sinica+forbs 

4     Sagesemi-brush rangeland group   

(1)       
Artemisia frigida+Stipa breviflora+Stipa tianschanica var. 
klemenzii 

(2)       Artemisia frigida+Agropyron desertorum 

(3)       Artemisia frigida+Lespedeza nivolot 

5     Bunch grass group   

(1)       Stipa breviflora+Artemisia frigida 

(2)       Stipa breviflora+Cleistogenes songorica 

(3)       
Stipa tianschanica var. klemenzii+Artemisia 
frigida+Cleistogenes songorica 

(4)       Stipa tianschanica var. klemenzii+Cleistogenes songorica 

(5)       

Stipa tianschanica var. klemenzii+Ajania 

achilloides+Allium polyrhizum 



(6)       Stipa tianschanica var. klemenzii+Convolvulus ammannii 

(7)       Cleistogenes songorica+Stipa tianschanica var. klemenzii 

6     Erect leguminous grass group   

(1)       Glycyrrhiza uralensis+forbs 

(2)       Sophora alopecuroides+forbs 

(3)       Astragalus melilotoides+Artemisia capillaris 

7     Erectforbs group   

(1)       

Iris bungei+Stipa tianschanica var. klemenzii+Cleistogenes 

songorica 

(2)       Iris bungei+forbs 

8     Bulbousforbs group   

(1)       
Allium polyrhizum+Stipa tianschanica var. 
klemenzii+Cleistogenes songorica 

(2)       Allium polyrhizum+Allium mongolicum 

9     Annual forbs group   

(1)       Salsola collina+forbs 

B   

Mountain desert 

steppe     

1     Forbs with trees group   

(1)       Ulmus glaucescens+Prunus ansu-forbs 

2     Gramineae with shrubs group   

(1)       Prunus mongolica-Stipa gobica 

3     Bunch grass group   

(1)       Stipa tianschanica var. klemenzii+Agropyron desertorum 

(2)       Stipa tianschanica var. klemenzii+Ajania achilloides 

(3)       Stipa gobica+Convolvulus tragacanthoides 

(4)       Stipa breviflora+Artemisia frigida 

C   
Mountain desert 
steppe     

1     

Sage semi-brush rangeland with 

shrubs group   

(1)       Caragana stenophylla-Artemisia ordosica 

(2)       Caragana intermedia-Artemisia ordosica 

2     Semi-brush group   

(1)       Hedysarummongolicum turcz+Artemisia ordosica 

3     Sagesemi-brush rangeland group   

(1)       Artemisia ordosica-Psammochloa villosa 

(2)       Artemisia ordosica-Glycyrrhiza uralensis 

(3)       Artemisia ordosica-forbs 

4     Rhizomatous grass group   

(1)       Pennisetum flaccidum+Setaria viridis 

(2)       Psammochloa villosa+forbs 

Ⅳ 
Temperate 
steppe desert       

A   

Gravelly steppe 

desert     

1     Succulent shrub group   

(1)       Caragana korshinskii 



(2)       Caragana intermedia+Caragana tibetica 

(3)       

Caragana korshinskii+Nitraria sphaerocarpa-Psammochloa 

villosa 

2     Semi-brush with shrubs group   

(1)       Caragana korshinskii-Oxytropis aciphylla 

3     

Sage semi-brush rangeland with 

shrubs group   

(1)       Caragana korshinskii-Artemisia ordosica 

4     Gramineae with shrubs group   

(1)       
Caragana stenophylla+Reaumuria soongarica-Stipa 
tianschanica var. klemenzii 

(2)       Caragana korshinskii-Cleistogenes songorica 

(3)       Caragana intermedia-sand Gramineae 

(4)       

Caragana brachypoda-Potaninia mongolica-Cleistogenes 

songorica 

(5)       Caragana brachypoda-Stipa tianschanica var. klemenzii 

(6)       Caragana opulens-Stipa breviflora+Cleistogenes songorica 

(7)       

Ammopiptanthus mongolicus-Ceratoides latens+Stipa 

tianschanica var. klemenzii 

(8)       
Nitraria tangutorum+Reaumuria soongarica-Cleistogenes 
songorica 

(9)       

Zygophyllum xanthoxylon+Reaumuria 

soongarica-Cleistogenes songorica 

(10)       
Reaumuria soongarica+Stipa tianschanica var. 
klemenzii+Cleistogenes songorica 

5     Bulbous forbs with shrubs group   

(1)       

Nitraria tangutorum+Reaumuria soongarica-Allium 

polyrhizum 

6     Succulent shrub group   

(1)       Nitraria tangutorum+Zygophyllum xanthoxylon 

(2)       Zygophyllum xanthoxylon+Ammopiptanthus mongolicus 

(3)       Zygophyllum xanthoxylon+Caragana brachypoda 

(4)       Reaumuria soongarica+Potaninia mongolica 

(5)       Tetraena mongolica+Potaninia mongolica 

(6)       Tetraena mongolica+Reaumuria soongarica 

7     

Cushion-like shrub and 

semi-brush group   

(1)       Caragana tibetica+Reaumuria soongarica 

(2)       Caragana tibetica+Zygophyllum xanthoxylon 

8     

Sage semi-brush rangeland with 

cushion-like shrubs group   

(1)       Caragana tibetica-Artemisia frigida+Stipa gobica 

9     
Gramineae with cushion-like 
shrubs group   

(1)       

Caragana tibetica-Stipa tianschanica var. 

klemenzii+Cleistogenes songorica 

(2)       
Helianthemum songaricum-Stipa tianschanica var. 
klemenzii 

10     Semi-brush group   

(1)       Ceratoides latens+Hippolytia trifida+Ajania achilloides 

(2)       Ceratoides latens+Stipa tianschanica var. klemenzii 

(3)       Oxytropis aciphylla-Stipa tianschanica var. klemenzii 

11     Saltsemi-brush group   



(1)       

Salsola passerina+Reaumuria soongarica-Allium 

polyrhizum 

B   

Terrene steppe 

desert     

1     Saltsemi-brush group   

(1)       

Kalidium foliatum+Salsola passerina+Reaumuria 

soongarica 

(2)       Kalidium foliatum+Nitraria sibirica 

(3)       Kalidium foliatum+Suaeda glauca 

(4)       

Salsola passerina-Stipa tianschanica var. 

klemenzii+Allium polyrhizum 

C   
Gravelly steppe 
desert     

1     Gramineae with shrubs group   

(1)       

Prunus mongolica+Reaumuria soongarica+Stipa 

tianschanica var. klemenzii 

(2)       Salsola laricifolia+Stipa gobica 

2     Bulbous forbs with shrubs group   

(1)       Salsola laricifolia-Allium polyrhizum 

3     Saltsemi-brush group   

(1)       

Salsola passerina+Reaumuria soongarica-Stipa 

tianschanica var. klemenzii 

(2)       
Salsola passerina+Reaumuria soongarica-Allium 
polyrhizum 

(3)       Salsola passerina+Sympegma regelii-Stipa bungeana 

(4)       

Salsola passerina+Sympegma regelii+Brachanthemum 

mongolicum 

(5)       Sympegma regelii+Nitraria sibirica-Ptilagrostis pelliotii 

(6)       Anabasis brevifolia-Stipa gobica 

Ⅴ 

Temperate 

desert       

A   Sandy desert     

1     Shrubs with trees group   

(1)       Haloxylon ammodendron 

(2)       Haloxylon ammodendron-Nitraria tangutorum 

(3)       
Haloxylon ammodendron-Calligonum 
mongolicum+Zygophyllum xanthoxylon 

2     Succulent shrub group   

(1)       Nitraria sibirica 

(2)       Nitraria tangutorum+Ammopiptanthus mongolicus 

3     Semi-brush group   

(1)       
Calligonum mongolicum+Zygophyllum 
xanthoxylon+Nitraria sphaerocarpa 

4     Sagesemi-brush rangeland group   

(1)       

Artemisia desertorum+Zygophyllum 

xanthoxylon+Reaumuria soongarica 

(2)       Artemisia desertorum+Ammopiptanthus mongolicus 

(3)       Artemisia desertorum+Psammochloa villosa 

(4)       Artemisia desertorum+Nitraria tangutorum 

(5)       

Artemisia ordosica+Zygophyllum 

xanthoxylon+Ammopiptanthus mongolicus 

(6)       Artemisia ordosica+Glycyrrhiza uralensis 

(7)       Artemisia ordosica+forbs 



(8)       Artemisia sphaerocephala+forbs 

5     Rhizomatous grass group   

(1)       Psammochloa villosa 

B   
Sandy and 
gravelly desert     

1     Shrubs with trees group   

(1)       Haloxylon ammodendron+Reaumuria soongarica 

2     Succulent shrub group   

(1)       Caragana leucophloea+Nitraria sibirica 

(2)       

Caragana leucophloea+Zygophyllum xanthoxylon+Stipa 

gobica 

(3)       

Ammopiptanthus mongolicus+Reaumuria 

soongarica+Nitraria sibirica 

(4)       

Potaninia mongolica+Salsola passerina+Reaumuria 

soongarica 

(5)       

Potaninia mongolica+Zygophyllum 

xanthoxylon+Ceratoides latens 

(6)       Potaninia mongolica+Caragana brachypoda 

(7)       Potaninia mongolica+Tetraena mongolica 

(8)       
Sympegma regelii+Zygophyllum xanthoxylon+Anabasis 
brevifolia 

(9)       Zygophyllum xanthoxylon+Potaninia mongolica 

(10)       

Zygophyllum xanthoxylon+Ceratoides latens+Oxytropis 

aciphylla 

(11)       Nitraria sphaerocarpa+Zygophyllum xanthoxylon 

(12)       

Nitraria sphaerocarpa+Salsola passerina+Kalidium 

sinicum 

3     Semi-brush group   

(1)       

Oxytropis aciphylla+Zygophyllum 

xanthoxylon+Ceratoides latens 

(2)       Ceratoides latens+Nitraria sphaerocarpa 

C   Gravelly desert     

1     Succulent shrub group   

(1)       

Zygophyllum xanthoxylon+Prunus mongolica+Reaumuria 

soongarica 

(2)       Nitraria sphaerocarpa+Reaumuria soongarica 

(3)       Reaumuria soongarica 

(4)       Reaumuria soongarica+Salsola passerina 

(5)       Brachanthemum gobicum 

(6)       

Brachanthemum mongolicum+Zygophyllum 

xanthoxylon+Oxytropis aciphylla 

(7)       
Brachanthemum mongolicum+Reaumuria 
soongarica+Salsola passerina 

(8)       Brachanthemum mongolicum+Ceratoides latens 

2     Scale-leaf shrubsgroup   

(1)       

Ephedra przewalskii+Reaumuria soongarica+Zygophyllum 

xanthoxylon 

(2)       Ephedra przewalskii+Artemisia desertorum+Stipa gobica 

3     Semi-brush group   

(1)       Convolvulus tragacanthoides+Artemisia xerophytica 

(2)       Convolvulus tragacanthoides+Potaninia mongolica 

(3)       Convolvulus gortschakovii+Brachanthemum gobicum 

4     Saltsemi-brush group   



(1)       Salsola passerina+Reaumuria soongarica 

(2)       Salsola passerina+Anabasis brevifolia 

(3)       Anabasis brevifolia+Salsola laricifolia 

5     Annualforbs group   

(1)       Elachanthemum intricatum+annual forbs 

D   Saline desert     

1     Succulent shrub group   

(1)       Nitraria roborowskii+Reaumuria soongarica 

2     Saltsemi-brush group   

(1)       Kalidium sinicum+Sympegma regelii 

(2)       Kalidium sinicum+Salsola passerina 

(3)       Kalidium gracile 

(4)       Kalidium gracile+Nitraria tangutorum 

(5)       Salsola passerina+Kalidium foliatum+Sympegma regelii 

(6)       
Salsola passerina+Kalidium sinicum+Reaumuria 
soongarica 

(7)       Salsola passerina+Nitraria sphaerocarpa 

Ⅵ 

Mountain 

meadow        

A   
Subalpine 
meadow     

1     Cyperaceae group   

(1)       Kobresia bellardii+Festuca ovina 

(2)       Kobresia pygmaea+Kobresia bellardii 

B   

Mountain 

meadow     

1     

Gramineae with trees and shrubs 

group   

(1)       

Quercus mongolica+Corylus heterophylla+Lespedeza 

nivolot+Calamagrostis arundinacea 

2     

Eleocharis acicularis with trees 

and shrubs group   

(1)       

Quercus mongolica-Lespedeza nivolot-Carex 

pediformis+Sanguisorba officinalis 

3     Gramineae with trees group   

(1)       

Populus davidiana-Spodiopogon sibiricus+Arundinella 

hirta 

4     
Eleocharis acicularis with trees 
group   

(1)       Populus davidiana-Carex pediformis+Vicia gigantea 

(2)       Pinaceae-Carex caespitosa+forbs 

5     Erectforbs with shrubs   

(1)       

Populus davidiana-Sanguisorba officinalis+Carex 

pediformis 

(2)       
Populus davidiana-Filifolium sibiricum+Spodiopogon 
sibiricus+Arundinella hirta 

(3)       Populus davidiana+Hemerocallis citrina+Carex pediformis 

6     

Eleocharis acicularis with shrubs 

group   

(1)       Salix+Spiraea salicifolia-Carex 

(2)       Rosa davurica-Carex pediformis+Vicia gigantea 

7     Forbs with shrubs group   

(1)       Salix+Spiraea salicifolia-Sanguisorba 



officinalis+Artemisia tanacetifolia 

8     Rhizomatous grass group   

(1)       Calamagrostis epigejos+Sanguisorba officinalis 

(2)       Bromus inermis+Leymus chinensis 

9     Bunch grass group   

(1)       Roegneria kamoji+Sanguisorba officinalis 

(2)       Poa annua+forbs 

10     Eleocharis acicularis group   

(1)       Carex pediformis+Sanguisorba officinalis 

(2)       Carex pediformis+Poa annua 

(3)       Carex lanceolata+forbs 

11     Erectforbs group   

(1)       Sanguisorba officinalis+Carex pediformis 

Ⅶ 

Lowland 

meadow       

A   

Lowland and 

wetland meadow     

1     Gramineae with trees group   

(1)       
Salix-Roegneria kamoji+Artemisia 
tanacetifolia+Sanguisorba officinalis 

2     Cyperaceae with shrubs group   

(1)       Salix-Carex+Calamagrostis purpurea+forbs 

(2)       Salix-Carex+forbs 

3     

Forbs with trees and shrubs 

group   

(1)       
Populus cuphratica-Tamarix chinensis-Sophora 
alopecuroides+forbs 

(2)       Populus cuphratica-forbs 

(3)       

Elaeagnus angustifolia-Tamarix chinensis-Sophora 

alopecuroides+forbs 

(4)       Ulmus-forbs 

4     Gramineae with shrubs group   

(1)       Salix bush-Leymus chinensis+forbs 

(2)       Salix bush-Phragmites australis 

(3)       

Salix bush-Calamagrostis purpurea+Artemisia 

lavandulaefolia 

(4)       
Salix bush-Miscanthus sacchariflorus+Hemarthria 
compressa var. fasciculata 

(5)       Salix bush-Arundinella hirta+Sanguisorba officinalis 

(6)       Salix bush-Agrostis gigantea+forbs 

5     Cyperaceae with shrubs group   

(1)       Salix bush-Scirpus triqueter+forbs 

(2)       Salix bush-Carex appendiculata 

6         

(1)       Salix bush-Sanguisorba officinalis+forbs 

(2)       Spiraea salicifolia-forbs 

(3)       Betula fruticosa-forbs 

7     Rhizomatous grass group   

(1)       Calamagrostis epigejos+Carex+forbs 



(2)       Calamagrostis epigejos+Arundinella hirta 

(3)       Calamagrostis epigejos+Phragmites australis+forbs 

(4)       Phragmites australis+Leymus chinensis+forbs 

(5)       Agrostis gigantea+Scirpus triqueter+forbs 

(6)       Agrostis gigantea+Calamagrostis epigejos+forbs 

(7)       Arundinella hirta+Leymus chinensis 

(8)       Arundinella hirta+Sanguisorba officinalis 

(9)       Leymus chinensis+Arundinella hirta+forbs 

(10)       

Leymus chinensis+Phragmites australis+Calamagrostis 

epigejos 

(11)       Leymus chinensis+Carex+forbs 

(12)       Leymus chinensis+Sanguisorba officinalis+forbs 

(13)       Leymus chinensis+Iris lactea var. chinensis+forbs 

(14)       
Poa subfastigiata+Hordeum brevisubulatum+Leymus 
chinensis 

8     Bunch grass group   

(1)       Elymus dahuricus+Leymus chinensis+Carex 

(2)       Elymus dahuricus+Phragmites australis 

9     Eleocharis vivipara group   

(1)       Carex meyeriana+forbs 

10     Creepingforbs group   

(1)       Potentilla ansrina+forbs 

B   

Swampy lowland 

meadow     

1     Rhizomatous grass group   

(1)       Phragmites australis+Scirpus triqueter+forbs 

(2)       Phragmites australis+Calamagrostis epigejos+forbs 

(3)       
Calamagrostis epigejos+Agrostis gigantea+Scirpus 
triqueter 

(4)       Agrostis gigantea+Scirpus triqueter+Leymus chinensis 

(5)       Calamagrostis purpurea+Carex+forbs 

(6)       Agrostis mongolica+Potentilla ansrina+Eleocharis intersita 

2     Cyperaceae group   

(1)       

Carex+Hemarthria compressa var. fasciculata+Scirpus 

planiculmis 

(2)       Carex+Phragmites australis+forbs 

(3)       Carex+forbs 

(4)       Eleocharis intersita+Potentilla ansrina+forbs 

C   

Salinized 

lowland meadow     

1     Gramineae with shrubs group   

(1)       Nitraria tangutorum-Achnatherum splendens+forbs 

(2)       

Reaumuria soongarica-Leymus chinensis+Allium 

polyrhizum 

2     Forbs with shrubs group   

(1)       Nitraria tangutorum-Salineforbs 

(2)       Reaumuria soongarica-forbs 

3     Saltsemi-brush group   



(1)       Kalidium foliatum+Reaumuria soongarica-forbs 

(2)       Kalidium gracile-Phragmites australis 

(3)       Kalidium foliatum-forbs 

4     Rhizomatous grass group   

(1)       
Phragmites australis+Puccinellia distans+Hordeum 
brevisubulatum 

(2)       

Leymus chinensis+Calamagrostis epigejos+Puccinellia 

tenuiflora 

(3)       Leymus chinensis+Puccinellia distans+Suaeda glauca 

(4)       Leymus chinensis+Iris lactea var. chinensis+Suaeda glauca 

(5)       Leymus chinensis+Carex+forbs 

(6)       Hordeum brevisubulatum+forbs 

(7)       Hordeum brevisubulatum+Leymus chinensis+forbs 

5     Bunch grass group   

(1)       Puccinellia distans+Suaeda glauca+forbs 

(2)       Puccinellia distans+forbs 

(3)       Puccinellia tenuiflora+Phragmites australis 

(4)       Achnatherum splendens+Leymus chinensis+forbs 

(5)       Achnatherum splendens+Iris lactea var. chinensis+forbs 

(6)       Achnatherum splendens+Suaeda glauca 

(7)       Achnatherum splendens+Puccinellia distans 

(8)       
Achnatherum splendens+Reaumuria soongarica+Salsola 
passerina 

(9)       Achnatherum splendens+Nitraria sibirica 

(10)       Achnatherum splendens+Kalidium foliatum-forbs 

(11)       Achnatherum splendens-Allium polyrhizum+forbs 

(12)       Achnatherum splendens-Allium mongolicum+forbs 

(13)       Achnatherum splendens-Carex+forbs 

6     Eleocharis acicularis group   

(1)       Carex duriuscula+forbs 

(2)       Carex+Hordeum brevisubulatum+forbs 

(3)       Carex+Puccinellia distans+forbs 

7     Erectforbs groups   

(1)       Iris lactea var. chinensis+Leymus chinensis+forbs 

(2)       Iris lactea var. chinensis+Carex+forbs 

(3)       Iris lactea var. chinensis+Hordeum brevisubulatum+forbs 

(4)       Iris lactea var. chinensis+Suaeda glauca+forbs 

8     Annualforbs group   

(1)       Suaeda glauca+Artemisia anethifolia+forbs 

(2)       Suaeda corniculata+forbs 

Ⅷ Swamp/marsh       

1     Rhizomatous grass group   

(1)       Phragmites australis+Scirpus triqueter+Carex 

(2)       Phragmites australis+Typha orientalis 

(3)       Phragmites australis 

2     Eleocharis vivipara group   



(1)       Carex meyeriana+Calamagrostis purpurea 

(2)       Eleocharis intersita+forbs 

(3)       Scirpus triqueter+forbs 

(4)       Scirpus tabernaemontani+forbs 

(5)       Carex appendiculata+Carex meyeriana 

3     Erectforbs group   

(1)       Typha orientalis+forbs 

Ⅸ 

Supplementary 

grassland        

 




