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[1] The velocity distribution of interstellar pickup ions (PUIs) has typically been described
as evolving through fast pitch angle scattering followed by adiabatic cooling while being
transported radially outward with the solar wind. In combination, the ionization rate, which
controls the radial profile of the interstellar neutrals, and the cooling process determine the
slope of the observed PUI distributions. Thus far, a cooling index of 3/2 for the PUI velocity
distributions has been used in almost all studies. This value is based on the implicit
assumptions of immediate PUI isotropization due to pitch angle scattering and solar wind
expansion with the square of the distance from the Sun. Here we determine the observed
cooling index in a comparison of He™ PUI distributions taken for 1 month in the upwind
direction with ACE SWICS from 1999 through 2010 over the past solar cycle with such an
isotropic PUI model, treating the cooling index as a free parameter. The ionization rate is
obtained simultaneously from independent observations. To separate effects of slow pitch
angle scattering of PUIs, the comparison is repeated for times restricted to perpendicular
interplanetary magnetic field (IMF). When averaged over the entire data set, the cooling
index is very close to 3/2. However, it varies substantially from 1.1 to 1.9 between samples,
shows a distinct variation with solar activity, and has a significant correlation with sunspot
number when data are restricted to nearly perpendicular IMF (83, > 60°) excluding the
slow pitch angle scattering in the radial IMF direction. The potential influence of slow pitch
angle scattering, solar wind structures, and electron ionization on the cooling index and its

variations is discussed.
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1. Introduction

[2] Interstellar pickup ions (PUIs) constitute a charged-
particle population in the heliosphere that originates from
interstellar neutrals inside the heliosphere. They are produced
by photoionization, charge exchange with the solar wind, and
electron impact ionization. Once ionized, they are picked
up by the interplanetary magnetic field (IMF) and rapidly
swept outward with the solar wind. In the absence of obser-
vation, the basic characteristics of interstellar PUIs created
from these interstellar neutrals were predicted [Vasyliunas
and Siscoe, 1976] by considering two extreme cases, either
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involving no scattering of the PUIs or assuming rapid scatter-
ing to isotropy by waves in the solar wind frame. Assuming
that ions attain instantaneous isotropy in the solar wind
frame, the latter case is equivalent to treating PUIs as an ideal
gas with adiabatic expansion. Under these constraints,
the adiabatic cooling process provides a simple mapping
between the speed v of a portion of the pickup ion distribu-
tion, observed at position 7, and the radial position », where
these ions were picked up. The relation can be written as a

power law:
r=n(2) 1)

where vy, is the solar wind speed and a represents the cooling
index, where a higher cooling index corresponds to slower
cooling. This mapping of the radial interstellar neutral gas
distribution onto a PUI velocity distribution is schematically
depicted in Figure 1. Assuming that on average, the solar
wind density is inversely proportional to the square of the
distance from the Sun and the PUI velocity distribution has
3 degrees of freedom, we arrive at a cooling index a=3/2
for adiabatic cooling [Vasyliunas and Siscoe, 1976; Mébius
et al., 1988].
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r 6:1 AU

Figure 1. Schematic representation of the mapping of the
neutral gas density along the Sun-spacecraft line into the
observed velocity distribution in the solar wind direction
assuming perfect isotropization. (bottom) The radial variation
of the neutral gas density (dark shading). The arrows indicate
how the radial variation of the neutral gas density translates
into (top) the velocity distribution function f(v) for different
cooling indices a.

[3] Interstellar PUIs were first discovered through the iden-
tification of interstellar He™ PUIs at 1 AU with the AMPTE
SULEICA instrument by Moébius et al. [1985]. They
interpreted the observations in terms of an isotropic velocity
distribution in the solar wind according to the model by
Vasyliunas and Siscoe [1976]. The observational base was
broadened by the discovery of additional species, such as
H, O, and Ne [Gloeckler et al., 1993; Geiss et al., 1994].
However, PUI observations also showed signs that appeared
to deviate from the simple model. Gloeckler et al. [1995]
reported a substantial anisotropy consistent with a mean free
path of ~ 1 AU in the pickup proton velocity distributions for
observations with Ulysses SWICS at high ecliptic latitudes,
where the interplanetary magnetic field (IMF) is oriented

largely along the solar wind direction. Strongly anisotropic
PUI distributions also became apparent when Mébius et al.
[1998] found that pickup helium fluxes, measured with 20
min integration time with AMPTE SULEICA, were substan-
tially reduced and showed a strong decrease as a function of
energy just below the PUI cutoff energy for time periods
when the IMF was near radial. In the solar wind frame, ions
that are injected under quasi-radial field conditions initially
stream toward the Sun. They need to be scattered effectively
in pitch angle to be detected in the antisunward hemisphere
of the PUI distribution. However, pitch angle scattering of
these PUIs appears to be substantially inhibited in contrast to
their expected behavior in the simple model. Consequently,
the observed anisotropies may be related to inefficient or
incomplete pitch angle scattering.

[4] To account for the observed anisotropies in the pickup
ion distributions, Fisk et al. [1997] suggested that the long
mean free path was caused by a low scattering rate through
90° pitch angle, leading to the application of the hemis-
pherical approximation [e.g., Isenberg, 1997; Schwadron,
1998)]. Isenberg [1997] divided the PUI distribution into
two separate antisunward and sunward streams, where the
rapid scattering assumption is retained within each hemi-
sphere in velocity space. Lu and Zank [2001] extended this
hemispherical model. They used a higher-order truncation
of the underlying Boltzmann equation, thus allowing a more
detailed analysis of the evolving PUI distribution, and
included a finite scattering rate within each velocity space
hemisphere. In an alternate approach, Chalov and Fahr
[1998] studied the evolution of hydrogen PUIs from 1 to
6 AU by solving the transport equation numerically, includ-
ing drifts and energy diffusion. They found that substantial
PUI anisotropies persist for relatively low magnetic turbu-
lence levels. In a statistical study of helium PUI with
Geotail, Oka et al. [2002] found anisotropic (toroidal)
velocity distributions during low magnetic turbulence levels
(AB/B < ~ 0.1) and evolution toward isotropic distributions
for higher magnetic turbulence levels (AB/B > ~0.2). Saul
et al. [2007] applied the hemispherical model to deduce a
cross-hemispherical scattering rate from observations. With
these assumptions, they found that the resulting mean free
path varies with the observed wave power from 0.1 to
1.2 AU and the cross-hemispherical scattering rate is expo-
nentially dependent on wave power.

[s] However, for the case of rapid pitch angle scattering,
i.e., when the scattering mean free path is short, the PUI
velocity distribution function can be treated as isotropic.
For almost perpendicular IMF, the gyrotropic pickup ion
distribution exhibits no anisotropy within the field of view
(FOV) in the solar wind direction. For collisionless solar
wind plasma confined by magnetic field, Fahr [2007]
pointed out that the conservation of the first magnetic adia-
batic moment leads to a cooling index a=1 if PUIs are
freely convected with the solar wind and the magnitude of
the magnetic field magnitude varies inversely with the
square of the distance from the Sun. Magnetic confinement
only cools the two velocity components perpendicular to the
magnetic field.

[6] Any modification of the cooling law may result in
a somewhat different mapping of a given neutral gas
distribution into the PUI velocity distribution. For these
reasons, we suggest that the original assumption of
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Vasyliunas and Siscoe [1976] with regard to the cooling rate
deserves some additional scrutiny. Recently, Saul et al.
[2009] have studied the cooling index with a data set from
CTOF/CELIAS during a solar minimum. They found a
cooling index a=1.35+0.2. However, the available data
set did not allow separating in a straightforward manner the
solar cycle effect on the neutral gas distribution which is
determined by the average ionization rate. In this paper, we
will test the previous implicit assumptions of a constant
cooling index that is equal to 3/2 over a wide range of indepen-
dently measured ionization rates, which determine the radial
gradient of the neutral gas distribution. We will treat the
cooling index a as an independent free parameter in the isotro-
pic PUI model according to Vasyliunas and Siscoe [1976] that
is compared with observations. We will briefly introduce the
instrument in section 2 and then describe the simulation of
the PUI velocity distribution as seen by the instrument in
section 3. The observed distributions are compared with the
simulated PUI velocity distributions in section 4. The results
from the data and model comparison and some implications
are discussed in section 5.

2. Instrumentation and Spacecraft

[7] The observations presented in this paper were
obtained with the SWICS (Solar Wind Composition
Spectrometer) instrument [Gloeckler et al., 1998] onboard
the Advanced Composition Explorer (ACE). ACE is a spin-
stabilized spacecraft which orbits the Lagrangian L1 point
about 200 Earth radii upstream from the Earth and is always
in interplanetary space, thus providing nearly continuous
coverage of interstellar He". The particle identification
technique of the SWICS sensor is based on a combination
of an electrostatic deflection analyzer covering a solid angle
of 10° in azimuth and 69° in polar angle, postacceleration,
a time-of-flight spectrometer, and energy measurement.
Combining these techniques, we can determine mass per
charge, mass, speed, and arrival direction of incoming ions.
The energy range from ~0.6 to ~100 keV/charge is covered
by stepping the deflection analyzer voltage through up to
60 logarithmically spaced voltage steps. SWICS readily
identifies He" ions and determines their velocity distribution
for normalized ion speeds w=v/vg, (v is the ion speed and
vsw the solar wind speed) between ~0.9 and ~5. A more
detailed description of the instrument may be found
elsewhere [Gloeckler et al., 1998]. The interplanetary magnetic
field was measured by the fluxgate magnetometer MAG
onboard ACE [Smith et al., 1998].

[8] The photoionization rates were derived from Solar
EUV Experiment (SEE) data [Woods et al., 2005] onboard
the Thermosphere Ionosphere Mesosphere Energetics
and Dynamics (TIMED) spacecraft, Solar EUV Monitor
(SEM) data [Hovestadt et al., 1995] onboard the Solar and
Heliospherical Observatory (SOHO), and a system of
EUV radiation proxies (for details, see Bzowski et al.
[2012, 2013]).

3. Isotropic PUI Transport Model

3.1.

[v] The starting point for a model of PUIs is the spatial
distribution of the interstellar neutral gas in the heliosphere.

Interstellar Neutral Density

To calculate the neutral gas distribution neutrals on the
upwind side of the heliosphere, we consider a cold model
of interstellar gas. As Fahr [1971] and Blum et al. [1975]
have shown, a finite temperature has a minor influence on
the density distribution in the upwind direction, and the cold
gas model is accurate enough for most purposes. For this
study, we have restricted the ACE SWICS observations to
1 month each year around the upwind direction, which
justifies the use of the cold gas approximation. In this case,
the steady state density of neutral helium as a function of
heliocentric distance » can be written in a simplified form as

n(r) =nop exp[fiC(\/l_IZ_/af 1)] 2)

where ng is the neutral helium density at infinity for which we
take 7o=0.015 cm™>; 1 is the penetration depth, or the
distance from the Sun where the neutral density falls to 1/e
of the value at infinity,

=1L py 3)

Vo is the speed of the initial interstellar neutral helium inflow,
and f is the loss rate of helium at 7z = 1 AU.
[10] The constant C is described as

c= Vi

== 4)

where G is the gravitational constant and M is the solar mass.

[11] Furthermore, we approximate the loss rate by the
integration of the helium photoionization rate [McMullin
et al., 2004; Woods et al., 2005] over the year preceding
the observation. We take the initial speed of a neutral atom
as 23.2kms~' [Mébius et al., 2012]. We neglect charge
exchange (less than 1%) and electron impact ionization (about
10% of the total ionization rate in the ecliptic at 1 AU) for now.
It should be noted that electron impact ionization could
become important closer to the Sun because it varies stronger
than 1/ with distance from the Sun [e.g., Rucirnski et al.,
1996; McMullin et al., 2004; Bzowski et al., 2012, 2013].
The evaluation of the potential influence of electron ionization
close to the Sun is left to future investigations.

3.2. Formation of an Isotropic PUI Distribution

[12] Interstellar He" pickup ions originate from ionization
of interstellar neutral helium atoms which penetrate into the
inner heliosphere as a neutral interstellar wind. Hence, the
radial source function S(») for pickup ions is the product of
the density of neutral helium #n(r) and the PUI production rate
B (r), for which we concentrate again on photoionization:

S(r) =n(r)p*(r) Q)

[13] After being ionized, the newly born ions are picked up
by the IMF into the solar wind. As a consequence, they
perform a gyromotion with pitch angle ®, i.e., the angle
between the IMF direction and the PUI velocity in the solar
wind frame, forming a ring distribution in velocity space
around the IMF.

[14] Because of the IMF fluctuations embedded in the solar
wind, the ions are scattered in pitch angle. Typically, a mean
free scattering length of He™ pickup ions during convection
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with the solar wind of the order of 0.1 AU [Mébius et al.,
1988] has been used, which is small compared with the
distance of the observer from the Sun or with the total
integration length. In this case, the ions are effectively
pitch angle scattered, thus quickly transforming the initial
velocity ring distribution into a spherical shell in velocity
space. During its outward convection with the expanding
solar wind, the PUI distribution is adiabatically cooled
[Vasyliunas and Siscoe, 1976]. The spherical shell shrinks
in velocity space, and newly born He" pickup ions are
added to the outermost shell. The relationship for adiabatic
cooling from the point of ionization to the observer location
provides a direct mapping of the local neutral helium
density distribution n(r) as a function of distance from the
Sun into the resulting PUI velocity distribution function
according to equation (1). The mapping is shown in
Figure 1 for two different values of a. Since the ions are
quickly distributed over the surface of a sphere in velocity
space, with the number of ions conserved, the source func-
tion can be written as

W) (1)t = 5(1) L = aaf ()P ©
or
s
T0) =3 e (@

[15] The source function S(») has its maximum close to the
Sun due to the 1/#* dependence of the photoionization rate.
However, the density of newly generated PUIs also varies
as 1/r? with distance from the Sun, so that the 1/ depen-
dence cancels in the velocity distribution function when ob-
served at a specific distance » from the Sun [Mobius et al.,
1988]. Therefore, the distribution function can be described
with a fixed photoionization rate ] at the observer location.
As the appropriate production rate, we use the average value
over the month of June of each year which is justified by the
fact that the accumulation of the local PUI distribution occurs
only over 3—4 days that it takes the solar wind to travel from
the Sun to 1 AU. Combined with the cooling law from equa-
tion (1) and including the interstellar gas inflow speed, the
PUI velocity distribution reads

1 + a a—3
a——ﬁo 0 nlr= 7o Y ! @)
4 szvi-.ax V max V max

Vmax 1S the injection speed of the ion into the solar wind,
which is equal to the sum of the solar wind speed and the in-
terstellar neutral helium inflow speed in the upwind direction,
and vy, is the measured solar wind speed. vy, varies with
distance from the Sun as

fv) =

Vmax (}") = Vsw t Vism (I’) (8)

where vigm(7) is determined by

vism(r) =/ Ve + ZCiM )

[16] Combining equations (7), (8), and (9), we find
an isotropic PUI velocity distribution function with a

modified PUI injection speed in the solar wind frame
as follows:

SO =ar firo

1)
4 Vsw (vsw + Vism [r =ry (»L) ] ) Vmax Vmax

(10)

3.3. Modeling of PUI Observations

[17] In order to allow a quantitative comparison of the
model distributions with the observations, the velocity distri-
bution function is transformed into the spacecraft frame. The
differential flux is calculated from the distribution function
and integrated over the instrument field of view (FOV) AQ
and energy range AE to obtain the predicted counting rate
CHe* of He"

4
— Vsw 1IN LT .
Chet = AE X Gp x AQAEAAIAE;‘ (Ww" dw'dgsinfdd  (11)

where G is the geometrical factor of the instrument and
f"(w'") is the distribution function in the spacecraft frame,
with w'=v'/vg,, where v' is the ion speed in the spacecraft
frame, which can be directly related to the measured ion
energy E.

[18] Here we use the fact that the velocity distribution
function is Lorentz invariant [Forman, 1970]:

FO) =10/ (12)

[19] The ion velocities in the two frames of reference are
related by the following transformation:

- -

V= v Ay (13)

[20] Finally, the phase space density Fy+(w') [Gloeckler
et al., 2004] in unit of s> km™° is computed from the
predicted counting rate using the following:

Fyer (W) = 378.4 x (m/q)* x (Cye+ /6%) (14)

where ¢ is the mean energy per charge for each voltage step,
m/q =4 is the mass per charge of He*, and the constant 378.4
includes the nominal geometric factor and efficiency of the
SWICS instrument as well as all unit conversions. The
predicted phase space density can now be compared with
the observed distribution or the phase space density, which
is averaged over spin and instrument field of view and
already corrected for the instrument efficiency.

4. Data and Model Comparison

4.1.

[21] In order to allow a comprehensive comparison of the
observed and predicted phase space densities based on the
simplified neutral helium profile in the upwind direction,
the ACE SWICS data have been selected for the month of
June each year from 1999 to 2010 when Earth is on the
upwind side. To eliminate contributions from inner source
PUls [Geiss et al., 1995; Gloeckler et al., 2000] and from
the rollover near the PUI cutoff, we restrict our analysis to
the velocity range 1.4 <v/vg,, <1.8.

Data Selection
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Figure 2. Phase space density Fy.+ (w) of pickup He" in the
spacecraft frame as a function of w measured with ACE
SWICS at 1 AU in the upwind direction, averaged over a
30 day time period in 2000. The model curve (dashed) repre-
sents a resulting cooling index a=1.79. It is normalized to
match the observed phase space density.

[22] We average the daily values of helium photoionization
rate (at 1 AU) [Bzowski et al., 2012, 2013] over the preceding
year to obtain the loss rate f, of neutral helium atoms and over
the month of June to obtain the He" PUI production rate A . It
should be noted that electron impact ionization has a stronger
dependence than 1/72 [McMullin et al., 2004]. Its contribution
at 1 AU is about 10%, but it could be a significant fraction of
the photoionization rate or for short times may even exceed
it, very close to the Sun. We ignore such occasional increases
in the current study but plan to address these in the future work.

4.2. Cooling Index Optimization

[23] To directly compare the predicted and observed phase
space densities, we use a power law representation according
to Fe+ (W) = Aw'’. We fit the power law index y= o — 3 and
the constant A4 that is associated with the absolute value of the
observed distribution. The cooling index « is optimized in the
fit so that the predicted phase space density has the observed
power law index y. In combination, the total loss rate and the
adiabatic cooling index determine the slope of the observed
PUI distribution, but we already include the observed ioniza-
tion rate as a known quantity in the model.

[24] InFigure 2, we show a comparison between the model
and the observation. Plotted is the observed He" phase space
density averaged over June 2000 as a function of w. The
dashed curve is a model fit to the observed distribution with
a resulting cooling index a=1.79. It can be seen that the
model curve reproduces well the observed distribution in
the phase space density region 1.4<v/v,, <1.8. Also, the
cutoff appears to be reflected correctly when including
nonzero interstellar medium (ISM) inflow speed in the model

[M6bius et al., 1999]. An extension of the He" pickup distribu-
tion beyond the cutoff speed v=_2v,, or a suprathermal tail, as
seen here, has been reported as a ubiquitous feature in the so-
lar wind [e.g., Gloeckler, 2003], which may be explained by
acceleration mechanisms [e.g., Fisk and Gloeckler, 2006] that
are active even in the quiet solar wind. The increase in the
observed phase space density at lower energies may be attrib-
uted to a contribution of inner source PUIs at 0.9 <w<1.17,
which completely dominate the pickup He" spectrum.
However, the resulting cooling index for the selected range
of w is larger than the previously assumed value of a=1.5.

[25] In order to see whether the cooling index is consis-
tently different from the assumed value, we use the 12 min
averaged ACE SWICS data sets in June from 1999 to 2010
along with hourly averaged solar wind velocity and IMF data
sets and apply the same analysis method. Figure 3 shows the
resulting cooling indices as a function of the sunspot number
(averaged over the month of June each year, ftp:/ftp.ngdc.
noaa.gov/STP/SOLAR_DATA/SUNSPOT NUMBERS/
INTERNATIONAL/monthly/ MONTHLY). It is evident
that the resulting cooling indices can be substantially larger
or smaller than the ideal value of a=1.5. Furthermore, there
appears to exist a trend with solar activity, but with large scat-
ter. Because it is known that during radial IMF condition, PUI
distributions show a strong and varying anisotropy [Gloeckler
et al., 1995; Mébius et al., 1998], we restricted the data sets
in a second step to nearly perpendicular IMF (6, > 60°).
Figure 4 shows the resulting cooling indices for this data selec-
tion in the same representation as in Figure 3. Here the corre-
lation with solar activity appears significant, but still with
noticeable scatter. We also calculated the correlation with the
monthly averaged 10.7 cm solar radio flux; the correlation
coefficient is similar (#cor=0.77, pyvawe=0.003) for nearly
perpendicular IMF and smaller (rcor=0.65, pvape=0.02) for
all IMF directions.

All IMF-Directions

2.2 T
[ — 0.24
rCorr_o'65 i0.53
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1.8 | z E
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Figure 3. Resulting cooling indices (with uncertainties
from the fit) as a function of 1 month averaged sunspot num-
ber in all IMF directions. rc, is the correlation coefficient
and pvape 18 the probability from the Student’s ¢ test for the
fit relation to arise by chance. The blue dashed line is a=1.5.
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Figure 4. Same representation as in Figure 3, but the
observed He" phase space density is constrained to nearly
perpendicular IMF (> 60°).

5. Discussion and Conclusions

[26] We have presented observations of interstellar pickup
He" distributions taken with ACE SWICS over 1 month
(June) each year in the upwind direction over the previous
solar cycle from 1999 to 2010. We compared these distribu-
tions with predicted velocity distributions, which are based
on a stationary interstellar neutral gas distribution and ioniza-
tion rates from direct observations of the solar EUV flux.
Assuming rapid pitch angle scattering, an isotropic PUI
velocity distribution was used according to equation (7)
(based on Vasyliunas and Siscoe [1976]). It is characterized
by a cooling index a, taken as a free parameter. In the
comparison with the observations, we find that the cooling
index averaged over the entire data set is a=1.53+0.02,
i.e., rather close to the value of 1.5 attained by Vasyliunas
and Siscoe [1976]. However, the individual monthly
averages show a substantial variation from=~1.1 to=1.9.

[27] As pointed out in the introduction, a value of 1.5 for
the cooling index would only be justified if the PUI distribu-
tion cools adiabatically like an ideal gas with 3 degrees of
freedom in a solar wind that expands exactly as 1/72. Ideal
gas-like adiabatic cooling can only be achieved if the PUIs
are pitch angle scattered to isotropy on a shorter time scale
compared with that for the expansion. In addition, the ioniza-
tion of interstellar gas must scale strictly as 1/7°. Based on
these conditions, the cooling index a may vary due to the
following effects.

[28] 1. Slow and thus incomplete pitch angle scattering can
substantially reduce the observed PUI fluxes in the
antisunward hemisphere for IMF directions that are not
perpendicular to the solar wind and lead to a steeper slope of
the PUI distribution. Therefore, the slope of the distribution
also depends on the IMF orientation and wave power.

[20] 2. For slow pitch angle scattering, the ideal gas
approximation with 3 degrees of freedom as assumed in the
numerator of a=3/2 is not valid. Then the conservation of

the magnetic moment can only cool the velocity components
perpendicular to the IMF and thus would lead to a cooling
index o < 3/2 for solar wind expansion as 1/7°.

[30] 3. Solar wind expansion as 1/#? is only valid for an
idealized radial and isotropic expansion at constant solar
wind speed. However, there are many reasons for deviations,
such as solar wind overexpansion at high latitudes, compres-
sive stream interaction regions (SIRs), the compressed turbu-
lent sheath ahead of fast coronal mass ejections (CMEs), and
rarefaction or expansion in trailing edges of SIRs and CMEs.

[31] 4. Electron ionization typically decreases steeper with
distance from the Sun than 1/%. At times, electron ionization
may become substantial inside 1 AU and then lead to a
steeper neutral gas source function for PUIs with distance
from the Sun than assumed.

[32] To eliminate as much as possible effects due to
anisotropic distributions caused by incomplete pitch angle
scattering noted in Point 1 which may show steeper and
varying slopes, we repeated our analysis for a subset of our
data restricted to pitch angles within 60°-120° when the
PUI distributions show no anisotropy in the solar wind
direction, which eliminates the direct steepening effects of
incomplete pitch angle scattering. However, the distributions
are not necessarily isotropic and, thus, may still not reflect an
ideal gas behavior. In this sample, we find generally larger
values for a, on average and for individual monthly averages.
As shown in equation (7), the slope of the PUI distribution
function is expressed as a — 3; thus, a larger value of a is
equivalent to a PUI distribution with a shallower slope as
one would expect after eliminating cases with substantial
steepening due to incomplete pitch angle scattering. A
more detailed analysis of individual potential causes for the
variation of the cooling index goes beyond the scope of this
paper and will be the topic of future studies.

[33] As can be seen in Figures 3 and 4, the cooling indices
appear to increase with the sunspot number. At least for the
subset of the data taken for nearly perpendicular IMF, the
correlation with the sunspot number appears to be significant,
as the probability for the slope to occur by chance is only
0.3%. This result implies that the cooling index correlates
with some conditions in interplanetary space that are related
to solar activity. However, there are still large variations in
the cooling index beyond the correlation with sunspot
number. Let us explore a few potential sources for the
observed correlation with solar activity and for the
remaining variations.

[34] In our analysis, the resulting cooling index represents
an average cooling over the entire PUI accumulation and
transport to the observer and does not yet provide detailed
insight into PUI transport processes. Although there is no
anisotropy for pickup ion distribution which is a gyrotropic
distribution within the field of view in the solar wind
direction when the IMF is perpendicular, this gyrotropic
distribution still does not represent an isotropic distribution
if the pitch angle scattering is not as rapid as what is implic-
itly assumed equation (7) to apply. The related effects may
result in a smaller cooling index as pointed out in Point 2.
Therefore, wave power also plays a significant role in
forming an isotropic distribution.

[35] Another possible source of the variations may be the
presence of large-scale structures in the solar wind, such as
solar wind compression and rarefaction regions. When the
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fast solar wind overtakes the slow wind, a compression
region is formed on both sides of the interface and a rarefaction
region at the trailing edge of the fast wind. If the flow pattern
persists over consecutive solar rotations, such a compression
region is called a corotating interaction region (CIR); other-
wise, it is a transient interaction region. Additionally, the
shock and sheath ahead of a fast interplanetary coronal mass
ejection (ICME) and the ICME itself contain compression
and rarefaction regions, respectively. Compressions partially
compensate the solar wind expansion if the expansion is
described as 7~ ¥, where & is the expansion factor resulting in
k<2 for compression regions and k>2 for rarefaction
regions. This behavior leads to an increase in o under the ideal
gas assumption for compression regions. Also, PUI fluxes are
higher in the compression regions, so their influence on the
averaged PUI distribution is more pronounced. More ICMEs
occur during high solar activity, which should lead to a higher
value of o during this time. On the other hand, the occurrence
rate and the compression strength of these events are varying
stochastically. Thus, they can contribute to the remaining
observed variations.

[36] As mentioned in Point 4 above, another cause for the
variability of & may be enhanced electron impact ionization
under certain solar wind conditions and at small heliocentric
distance. It should be pointed out that the ionization
processes play a dual role for the PUI velocity distribution
function as given by equation (7): (1) The loss rate §, for
several months/years shapes a specific pattern of neutral
density distribution and (2) the production rate ] which
changes within days/weeks determines the actual production
and the resulting phase space density of pickup He" observed
by spacecraft. Because electron impact ionization becomes
important only for short time periods, it has only a small
effect on the overall loss rate 5, and thus, the neutral gas
distribution is still largely shaped by the 1/7* dependence of
the dominant ionization processes. However, electron impact
ionization does affect the production rate 8, for times when it
becomes important and cannot be neglected. The electron
impact ionization rate depends strongly on the actual distri-
bution function of the electrons in interplanetary space,
which varies greatly with solar wind conditions and the
distance from the Sun. In particular, downstream of strong
CME-driven shocks, where the solar wind density and
temperature are very high, electron impact ionization could
become a significant fraction of the photoionization rate
[Isenberg and Feldman, 1995; Feldman et al., 1996] and,
at times, may even exceed it. Contrary to photoionization
and charge exchange, electron impact ionization is steeper
than the distance dependence of 1/%, which is relatively
strong when it is very close to the Sun. This behavior will
result in a steeper slope of the PUI distribution, which corre-
sponds to a smaller cooling index a. Therefore, the distance
dependence of electron impact ionization counteracts the
effect of a compression and, thus, may lead to partial
compensation. Therefore, both effects need to be studied
separately in the future. As a corollary to this discussion, it
should be noted that observational uncertainties in the total
ionization rates used here have only minimal influence on
our result. A relative 10% uncertainty (over the solar cycle)
in the total rate results in a cooling index uncertainty of less
than 5%, and such a variation does not change the correlation
with sunspot number.

[37] In a comparison of PUI observations over one solar
cycle with ACE SWICS, we found that, while the evolution
of the PUI distributions in the inner heliosphere may be
described, on average, over a long time period sample with
adiabatic cooling and a cooling index a~1.5, as proposed
by Vasyliunas and Siscoe [1976], the index varies substan-
tially under a variety of interplanetary and solar activity
conditions. In particular, it shows an increase with sunspot
number as an indicator of varying solar activity. The
resulting cooling index is generally larger and still shows
some variations around the trend with solar activity when
the observations are restricted to near-perpendicular IMF
conditions and thus almost gyrotropic PUI distributions.
Several potential causes related to varying conditions in
interplanetary space have been identified that may contribute
to the observed trend with solar activity and to the remaining
variations in the cooling index. Among them, the expected
effects of compressions and expansions in the solar wind,
through CIRs and CMEs, on PUI cooling hold the promise
of further insight. Therefore, a study comparing PUI distribu-
tions in individual compression and expansion regions with
the same modeling technique presented here making use of
the improved counting statistics with plastic stereo is under-
way. Furthermore, the potential effects of electron impact
ionization in strong solar wind compressions and of varying
degrees of pitch angle scattering need to be investigated in
detail in the future by comparing the observations with a more
sophisticated model of the PUI distributions. However, this
work is beyond the scope of this introductory study.
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