Angewandte Chemie

Supporting Information
© Wiley-VCH 2013

69451 Weinheim, Germany

Desymmetrization of meso-2,5-Diallylpyrrolidinyl Ureas through Asymmetric Palladium-Catalyzed Carboamination: Stereocontrolled Synthesis of Bicyclic Ureas**
 Nicholas R. Babij and John P. Wolfe*

ange_201302720_sm_miscellaneous_information.pdf

Supporting Information

Experimental procedures and characterization data for new compounds in Tables 1-2, Schemes 2-3, and Equation 1.

Table of Contents

General Considerations S1
Preparation and Characterization of meso-N-Aryl-2,5-Diallylpyrrolidine-1-Carboxamide Substrates S2
Preparation and Characterization of Bicyclic Urea Products S7
Deprotection of Bicyclic Urea Product 8c S22
Conversion of Bicyclic Urea Product 8c to Tricyclic Guanidine 12 S23
Conversion of Bicyclic Urea Product 8c to 9-epi-Batzelladine K 16 S25
Assignment of Stereochemistry S28
References S34
Copies of NMR Spectra and HPLC traces S35

General: All reactions were carried out under a nitrogen atmosphere in flame-dried glassware unless otherwise noted. Tris(dibenzylidene)acetone dipalladium, tri(2-furyl)phosphine, and (S)-Siphos-PE were purchased from Strem Chemical Co. and used without purification. Tricyclohexylphosphonium tetrafluoroborate was purchased from Acros Chemical Co. and used without further purification. 2-Di-tert-butylphosphino-3,4,5,6-tetramethyl-2',4',6'-triisopropyl-1,1'biphenyl was purchased from Sigma-Aldrich and used without further purification. All other reagents were obtained from commercial sources and were used as obtained unless otherwise noted. NaOtBu and CuCl were stored in the glove box and removed prior to use. $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ and POCl_{3} were purified by distillation under N_{2} prior to use. (Z)-1-bromobutene ${ }^{[1]}$ was prepared according to a slight modification of a literature procedure; the preparation was conducted at rt instead of using microwave heating. (Z)-1-bromohexene, ${ }^{[2]}$ and (E)-1-bromohexene ${ }^{[2]}$ were prepared according to published procedures. Toluene, THF, diethyl ether and dichloromethane
were purified using a GlassContour solvent purification system. Yields refer to isolated yields of compounds estimated to be $\geq 95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR analysis unless otherwise noted. The yields reported in the supporting information describe the result of a single experiment, whereas yields reported in Tables 1-2, Scheme 2, and Equation 1 are average yields of two or more experiments. Thus, the yields reported in the supporting information may differ from those shown in Tables 1-2, Scheme 2, and Equation 1. Structural and stereochemical assignments were made on the basis of 2-D COSY, and NOESY experiments. Ratios of diastereomers were determined by ${ }^{1} \mathrm{H}$ NMR analysis. The reported optical rotation values refer to measurements taken of the isolated mixtures of diastereomers upon which chemical yields were based. Ratios of enantiomers were determined by HPLC analysis. Although diastereomers were not easily separable by chromatography, for most examples (with the exception of $\mathbf{8 i}$ and $\mathbf{8 j}$) it was possible to separate small amounts of the pure ($>20: 1 \mathrm{dr}$) major diastereomer for chiral HPLC analysis.

Preparation and Characterization of meso-N-Aryl-2,5-Diallylpyrrolidine-1-Carboxamide Substrates

(\pm)-tert-Butyl octa-1,7-dien-4-ylcarbamate (S1). The title compound was prepared by modifying a procedure published by Veenstra. ${ }^{[3]}$ A flame-dried flask was cooled under a stream of N_{2}, charged with dichloromethane (60 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. Pent-4-enal ($2.96 \mathrm{~mL}, 30$ $\mathrm{mmol})$, allyltrimethylsilane ($4.77 \mathrm{~mL}, 30 \mathrm{mmol}$) and tert-butyl carbamate ($3.5 \mathrm{~g}, 30 \mathrm{mmol}$) were added to the flask and the resulting solution was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$. Distilled $\mathrm{BF}_{3} \mathrm{OEt}_{2}$ $(2.3 \mathrm{~mL}, 18 \mathrm{mmol})$ was added and the reaction mixture was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. The mixture was gradually warmed to rt and stirred for 30 min . The reaction was then quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and stirred for 5 min at rt . The mixture was transferred to a separatory funnel and the layers were separated. The organic layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and then the combined aqueous layers were extracted with dichloromethane (15 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford 3.8 g (56%) of the title compound as a clear colorless oil. This compound was found to exist as a mixture of rotamers as judged by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N M R$ analysis; data are for the mixture. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.84-5.73(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.95$
(m, 4 H), 4.33 (d, br, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{br}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.60-$ $1.55(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,138.0$, $134.4,117.7,114.9,79.0,49.6,39.5,33.9,30.2,28.4$; IR (film) $3337,1684 \mathrm{~cm}^{-1}$. MS (ESI) 248.1621 (248.1621 calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

$(\pm)-\left(E, 2 R^{*}, 5 S^{*}\right)$-tert-Butyl 2-allyl-5-[3-(trimethylsilyl)allyl]pyrrolidine-1-carboxylate (S2). A flame-dried Schlenk flask was cooled under a stream of N_{2} and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(81 \mathrm{mg}$, $0.089 \mathrm{mmol})$, tri(2 -furyl)phosphine ($82 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $\mathrm{NaOtBu}(853 \mathrm{mg}, 8.9 \mathrm{mmol}$). The flask was purged with N_{2}, then a solution of $\mathbf{S} 1(1.0 \mathrm{~g}, 4.4 \mathrm{mmol})$ in freshly distilled xylenes (22.2 mL) was added via syringe and the resulting mixture was stirred at rt for 5 min . (E)-(2bromovinyl)trimethylsilane ($1.36 \mathrm{~mL}, 8.9 \mathrm{mmol}$) was added and the flask was heated to $137^{\circ} \mathrm{C}$ and stirred overnight (ca. 14 h). The mixture was cooled to room temperature and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and ethyl acetate $(10 \mathrm{~mL})$ were added. The layers were separated, the organic layer was filtered through a plug of silica gel, and the silica gel was washed with ethyl acetate (20 mL). The filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford $1.11 \mathrm{~g}(77 \%)$ of the title compound as a dark red-brown oil. This compound was found to exist as a mixture of rotamers as judged by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis; data are for the mixture. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.98-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.06-5.01 (m, 2 H), 3.92-3.68 (m, 2 H), 2.64-2.41 (m, 2 H), 2.34 (dt, J = 8.0, 13.0 Hz, 1 H), 2.09 (dt, J = 8.0, $13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87-1.82 (m, 2 H), 1.68-1.64 (m, 2 H), 1.46 (s, 9 H), 0.03 (s, 9 $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7,143.2,135.4,132.9,116.8,79.0,58.0,57.9,42.1,42.0$, $40.0,39.8,28.5,-1.2$; IR (film) $1692 \mathrm{~cm}^{-1}$. MS (ESI) 346.2174 (346.2173 calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}$, $\left.\mathrm{M}+\mathrm{Na}^{+}\right)$.

General Procedure for Synthesis of meso-N-Aryl-2,5-Diallylpyrrolidine-1-Carboxamide

 Substrates 7. A round-bottom flask equipped with a stirbar was charged with S2 (1.0 equiv) and dichloromethane (0.2 M). Trifluoroacetic acid (1.0 M) was added to the flask and the mixture was heated to reflux and stirred overnight. The solution was cooled to rt, diluted with water, basified with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}>12$, and transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crudeproduct was dissolved in dichloromethane (0.2 M) and the appropriate isocyanate (1.1 equiv) was added. The reaction mixture was stirred at rt until starting material had been completely consumed as judged by TLC analysis (ca. 1 h). The crude reaction mixture was concentrated in vacuo, and purified by flash chromatography on silica gel.

(2S,5R)-2,5-Diallyl-N-(4-methoxyphenyl)pyrrolidine-1-carboxamide (7a). The title compound was prepared from $\mathbf{S 2}(2.13 \mathrm{~g}, 6.6 \mathrm{mmol})$ and 4-methoxyphenyl isocyanate ($940 \mu \mathrm{~L}, 7.3 \mathrm{mmol}$) in two steps via the general procedure described above. This procedure afforded $1.2 \mathrm{~g}(61 \%)$ of the title compound as a white solid: $\mathrm{mp}=63-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.91-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.15(\mathrm{~m}, 4 \mathrm{H})$, 3.99-3.96 (m, 2 H), 3.77 (s, 3 H), 2.55 (dt, J = 14.0, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.24(\mathrm{dt}, J=7.0,14.0 \mathrm{~Hz}, 2$ H), 2.02-1.97 (m, 2 H), 1.78-1.74 (m, 2 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,155.2,135.2$, 132.3, 121.4, 118.0, 114.1, 58.8, 55.5, 40.2, 29.5; IR (film) 3311, $1635 \mathrm{~cm}^{-1}$. MS (ESI) 301.1917 (301.1911 calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$).

(2S,5R)-2,5-Diallyl-N-(3,4-dimethoxyphenyl)pyrrolidine-1-carboxamide (7b). The title compound was prepared from $\mathbf{S} 2$ ($965 \mathrm{mg}, 2.98 \mathrm{mmol}$) and 3,4-dimethoxyphenyl isocyanate $(488 \mu \mathrm{~L}, 3.3 \mathrm{mmol})$ in two steps via the general procedure described above. This procedure afforded $542 \mathrm{mg}(55 \%)$ of the title compound as a tan solid: $\mathrm{mp}=112-114{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=2.8,8.4 \mathrm{~Hz}, 1$ H), $6.36(\mathrm{~s}, 1 \mathrm{H}), 5.91-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.16(\mathrm{~m}, 4 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.84$ (s, 3 H), 2.57 (dt, $J=6.3,13.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.25(\mathrm{dt}, J=7.7,13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 2 \mathrm{H})$,
1.79-1.75 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.1, 149.1, 144.8, 135.2, 133.0, 118.1, 111.4, 110.9, 104.7, 58.7, 56.2, 55.9, 40.2, 29.5; IR (film) 3327, $1635 \mathrm{~cm}^{-1}$. MS (ESI) 331.2018 (331.2016 calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}^{+}$).

(2S,5R)-2,5-Diallyl-N-(4-chlorophenyl)pyrrolidine-1-carboxamide (7c). The title compound was prepared from $\mathbf{S 2}(1.05 \mathrm{~g}, 3.2 \mathrm{mmol})$ and 4-chlorophenyl isocyanate ($541 \mathrm{mg}, 3.5 \mathrm{mmol}$) in two steps via the general procedure described above. This procedure afforded $574 \mathrm{mg}(58 \%)$ of the title compound as a white solid: $\mathrm{mp}=91-93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, \mathrm{~J}=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (d, J = $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.51 ($\mathrm{s}, 1 \mathrm{H}$), $5.91-5.85$ (m, 2 H), 5.22-5.16 (m, 4 H), $4.00-3.95(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dt}, J=14.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{dt}, J=14.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.97$ ($\mathrm{m}, 2 \mathrm{H}$), 1.79-1.74 (m, 2 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.5,137.9,135.1,128.7,127.4$, 120.3, 118.3, 58.9, 40.1, 29.6; IR (film) 3318, $1640 \mathrm{~cm}^{-1}$. MS (ESI) 327.1242 (327.1235 calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{Na}^{+}$).

(2S,5R)-2,5-Diallyl-N-(4-bromophenyl)pyrrolidine-1-carboxamide (7d). The title compound was prepared from S2 ($1.2 \mathrm{~g}, 3.7 \mathrm{mmol}$) and 4-bromophenyl isocyanate ($806 \mathrm{mg}, 4.1 \mathrm{mmol}$) in two steps via the general procedure described above. This procedure afforded $827 \mathrm{mg}(64 \%)$ of the title compound as a off-white solid: $\mathrm{mp}=101-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.91-5.85(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 4 \mathrm{H})$, $3.99-3.97(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dt}, J=6.3,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{dt}, J=7.0,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.99$ ($\mathrm{m}, 2 \mathrm{H}$), 1.80-1.77 (m, 2 H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.5,138.4,135.1,131.7,120.7$,
118.3, 115.0, 58.9, 40.1, 29.6; IR (film) 3316, $1635 \mathrm{~cm}^{-1}$. MS (ESI) 349.0912 (349.0910 calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$).

(2S,5R)-2,5-Diallyl-N-(4-cyanophenyl)pyrrolidine-1-carboxamide (7e). The title compound was prepared from $\mathbf{S 2}$ ($1.12 \mathrm{~g}, 3.46 \mathrm{mmol}$) and 4-cyanophenyl isocyanate ($549 \mathrm{mg}, 3.81 \mathrm{mmol}$) in two steps via the general procedure described above. This procedure afforded 613 mg (60%) of the title compound as a off-white solid: $\mathrm{mp}=76-79^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 5.92-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 4 \mathrm{H})$, 4.02-3.96 (m, 2 H), 2.55 (dt, J = 6.3, 14.0 Hz, 2 H), 2.25 (dt, J = 7.0, 14.0 Hz, 2 H), 2.03-1.99 ($\mathrm{m}, 2 \mathrm{H}$), 1.80-1.77 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.9,143.5,135.0,133.1,119.2$, 118.6, 118.6, 105.1, 59.1, 39.9, 29.6; IR (film) 3365, $1652 \mathrm{~cm}^{-1}$. MS (ESI) 296.1756 (296.1757 calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$).

(2S,5R)-2,5-Diallyl-N-(4-nitrophenyl)pyrrolidine-1-carboxamide (7f). The title compound was prepared from $\mathbf{S 2}(660 \mathrm{mg}, 2.04 \mathrm{mmol})$ and 4-nitrophenyl isocyanate ($368 \mathrm{mg}, 2.24 \mathrm{mmol}$) in two steps via the general procedure described above. This procedure afforded 366 mg (57%) of the title compound as a pale-yellow solid: $\mathrm{mp}=96-97^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 5.94-5.88(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.21$ (m, 4 H$)$, 4.04-4.01 (m, 2 H), 2.56 (dt, J = 7.0, 13.3 Hz, 2 H), 2.29 (dt, $J=7.0,14.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.07-2.03 (m, 2 H), 1.83-1.79 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (175 MHz, CDCl_{3}) $\delta 153.7,145.5,142.2,135.0,125.1$,
118.8, 117.8, 59.2, 39.9, 29.7; IR (film) 3331, $1652 \mathrm{~cm}^{-1}$. MS (ESI) 316.1656 (316.1656 calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}^{+}\right)$.

Preparation and Characterization of Bicyclic Urea Products

General Procedure for Synthesis of Racemic Bicyclic Ureas (for HPLC assays). A flamedried Schlenk tube was cooled under vacuum and charged with the appropriate meso- N -aryl-2,5-diallylpyrrolidine-1-carboxamide substrate (1.0 equiv), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (0.02 equiv), $\mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4}$ (0.08 equiv), and NaOtBu (1.5 equiv). The flask was evacuated and purged with N_{2}. Toluene (0.2 M) was added via syringe and the resulting mixture was stirred at rt for 2 min . The appropriate aryl or alkenyl bromide (1.5 equiv) was added and the tube was heated to $100{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The mixture was cooled to room temperature and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ ($5 \mathrm{~mL} / \mathrm{mmol}$ substrate) and ethyl acetate ($5 \mathrm{~mL} / \mathrm{mmol}$ substrate) were added. The layers were separated, the organic layer was filtered through a plug of silica gel, and the silica gel was washed with ethyl acetate ($5 \mathrm{~mL} / \mathrm{mmol}$ substrate). The filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel.

General Procedure for Synthesis of Enantiomerically-Enriched Bicyclic Ureas

A flame-dried Schlenk tube was cooled under vacuum and charged with the appropriate meso-N-aryl-2,5-diallylpyrrolidine-1-carboxamide substrate (1.0 equiv), Pd_{2} (dba) ${ }_{3}$ (0.02 equiv), (S)-Siphos-PE (0.08 equiv), and NaOtBu or NaOMe (1.5 equiv). The flask was evacuated and purged with N_{2}. Toluene (0.2 M) was added via syringe and the resulting mixture was stirred at rt for 2 min . The appropriate aryl or alkenyl bromide (1.5 equiv) was added and the tube was heated to $100^{\circ} \mathrm{C}$. The solution was stirred for 2 h or until the starting material was completely consumed as judged by TLC analysis. The mixture was cooled to room temperature and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL} / \mathrm{mmol}$ substrate) and ethyl acetate ($5 \mathrm{~mL} / \mathrm{mmol}$ substrate) were added. 6 M HCl was used instead of $\mathrm{NH}_{4} \mathrm{Cl}$ to remove aniline side products if column chromatography could not separate the desired product from aniline side products. The layers were separated, the organic layer was filtered through a plug of silica gel, and the silica gel was washed with ethyl acetate ($5 \mathrm{~mL} / \mathrm{mmol}$ substrate). The filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel.

(+)-(Z,3S,4aS,7R)-7-Allyl-2-(4-methoxyphenyl)-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-one (8a). The general procedure was employed for the coupling of 7a (60 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and (Z)-1-bromobut-1-ene ($150 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded $48 \mathrm{mg}(68 \%)$ of the title compound as a brown oil and as a $7: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}+9.5$ (c 4.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2$ H), $5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{dt}, J=7.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dt}, J=2.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 3.65 (ddt, $J=2.1,4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=5.6,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.18-$ 2.15 (m, 2 H), 2.08 (dt, $J=8.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}$) $1.99-1.88$ ($\mathrm{m}, 4 \mathrm{H}$), 1.83 (dd, $J=6.3,12.6 \mathrm{~Hz}, 1$ H) $1.68-1.60(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.6,154.2$, 135.8, 135.1, 134.6, 129.3, 124.2, 116.8, 114.1, 58.3, 57.3, 55.4, 52.7, 37.8, 31.3, 31.0, 30.9, 27.8, 20.7, 14.0; IR (film) $1642 \mathrm{~cm}^{-1}$. MS (ESI) 355.2382 (355.2380 calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}+$ H^{+}). The enantiopurity was determined to be 86:14 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 2.5 \% \mathrm{IPA} /$ Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 245 \mathrm{~nm}, \mathrm{RT}=44.2$ and 49.1 min$)$.

(+)-(Z,3S,4aS,7R)-7-Allyl-2-(3,4-dimethoxyphenyl)-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (8b). The general procedure was employed for the coupling of 7b (66 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and (Z)-1-bromobut-1-ene ($150 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded $30 \mathrm{mg}(39 \%)$ of the title compound as a brown oil and as a $7: 1$ mixture
of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}+7.0\left(c\right.$ 2.9, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Data are for the major isomer. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.77(\mathrm{~m}, 2 \mathrm{H})$, $5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{dt}, J=7.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}) 5.13-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1$ H), $5.00(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dt}, J=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.66 (ddt, $J=2.1,5.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dd, $J=5.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30-2.28 (m, 1 H), 2.182.15 (m, 2 H), 2.07 (dt, J = 8.4, $13.3 \mathrm{~Hz}, 1 \mathrm{H}$) 2.00-1.96 (m, 1 H), 1.93-1.87 (m, 3 H), 1.83 (dd, $J=7.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}) 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.1,148.9,147.2,135.8,135.4,134.7,124.2,120.1,116.8,112.3,111.1,58.5,57.3,56.0$, $55.9,52.7,37.8,31.3,31.1,30.9,27.7,20.7,14.1$; IR (film) $1641 \mathrm{~cm}^{-1}$. MS (ESI) 385.2486 (385.2486 calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be $82: 18$ er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 205$ $\mathrm{nm}, \mathrm{RT}=20.4$ and 23.5 min).

(-)-(Z,3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-one (8c). The general procedure was employed for the coupling of 7c (305 $\mathrm{mg}, 1.0 \mathrm{mmol}$) and (Z)-1-bromobut-1-ene ($750 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(18.3 \mathrm{mg}, 0.02 \mathrm{mmol})$, and (S)-Siphos-PE ($40.4 \mathrm{mg}, 0.08 \mathrm{mmol}$). This procedure afforded $288 \mathrm{mg}(80 \%)$ of the title compound as a yellow oil: $[\alpha]^{23}{ }_{\mathrm{D}}-14.3$ (c 5.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-$ 5.71 (m, 1 H), 5.45 (dt, $J=7.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.01 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dt}, J=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J=4.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (ddt, $J=2.1,4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (dd, $J=5.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23-2.15 (m, 3 H), 2.07 (dt, J $=9.1,13.3 \mathrm{~Hz}, 1 \mathrm{H}) 1.99(\mathrm{dt}, J=6.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{dd}, J=6.3,12.6$ $\mathrm{Hz}, 1 \mathrm{H}) 1.69-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.7$, $140.8,135.6,134.9,131.2,129.3,128.9,123.8,117.0,58.0,57.4,52.8,37.7,31.3,31.0,30.9$, 27.8, 20.7, 14.0; IR (film) $1643 \mathrm{~cm}^{-1}$. MS (ESI) 359.1887 (359.1885 calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{CIN}_{2} \mathrm{O}, \mathrm{M}+$
H^{+}). The enantiopurity was determined to be 95:5 er by chiral HPLC analysis (chiralcel ADH, 25 $\mathrm{cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 190 \mathrm{~nm}, \mathrm{RT}=13.4$ and 18.1 min).

(-)-(Z,3S,4aS,7R)-7-Allyl-2-(4-bromophenyl)-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-

c]pyrimidin-1(2H)-one (8d). The general procedure was employed for the coupling of 7d (70 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and (Z)-1-bromobut-1-ene ($150 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded 15 mg (18\%) of the title compound as a brown oil and as a 18:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-21.1\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. This material also contained ca. 20% of an unidentified side product. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.45$ (dt, $J=7.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.12-5.08$ (m, 1 H), $5.04(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.01(\mathrm{dt}, J=2.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J=4.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{ddt}, J=2.8,5.6,11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78$ (dd, $J=5.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{dt}, J=8.4,13.3 \mathrm{~Hz}, 1 \mathrm{H})$ 1.99 (dt, $J=5.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95-1.88 (m, 3 H), 1.84 (dd, $J=6.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}$) 1.69-1.63 ($\mathrm{m}, 2 \mathrm{H}$), $0.90(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,141.4,135.6,134.9$, 131.9, 129.7, 123.8, 119.2, 117.0, 57.9, 57.4, 52.7, 37.7, 31.3, 31.0, 30.8, 27.7, 20.7, 14.0; IR (film) $1645 \mathrm{~cm}^{-1}$. MS (ESI) 403.1379 (403.1380 calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 95:5 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6$ $\mathrm{mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 205 \mathrm{~nm}, \mathrm{RT}=14.5$ and 20.0 min).

(-)-4-[(Z,3S,4aS,7R)-7-Allyl-1-oxo-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-c]pyrimidin$\mathbf{2 (1 H)}$-yl]benzonitrile (8e). The general procedure was employed for the coupling of $7 \mathrm{e}(59 \mathrm{mg}$, 0.2 mmol) and (Z)-1-bromobut-1-ene ($150 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded 29 mg (41%) of the title compound as a brown oil and as a 17:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23} \mathrm{D}-71.0\left(c 2.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. This material also contained ca. 5% of 4 -aminobenzonitrile. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, CDCl_{3}) $\delta 7.62(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.76-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{dt}, J=$ $7.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.12-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dt, $J=4.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.02 (dt, $J=2.1,8.4, \mathrm{~Hz} 1 \mathrm{H}$), 3.68 (ddt, $J=2.1,5.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (dd, $J=6.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.23(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20-2.14 (m, 2 H), 2.06 (dt, $J=8.4$, $13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.03-2.00 (m, 1 H), 1.97-1.85 (m, 4 H), 1.71-1.63 (m, 2 H), $0.89(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,146.6,135.3,135.2,132.6,127.8,123.4,118.9,117.2$, 108.5, 57.7, $57.4,52.7,37.4,31.4,31.0,30.8,27.7,20.7,14.0$; IR (film) $1648 \mathrm{~cm}^{-1}$. MS (ESI) 350.2227 (350.2227 calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 94:6 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda$ $205 \mathrm{~nm}, \mathrm{RT}=33.2$ and 42.9 min).

(-)-(Z,3S,4aS,7R)-7-Allyl-2-(4-nitrophenyl)-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-one (8f). A modification of the general procedure was employed for the coupling of $7 \mathrm{f}(63 \mathrm{mg}, 0.2 \mathrm{mmol})$ and (Z)-1-bromobut-1-ene ($150 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE (8
$\mathrm{mg}, 0.016 \mathrm{mmol}$). In contrast to the general procedure, this reaction was run overnight (16 h) at $120^{\circ} \mathrm{C}$. This procedure afforded $18 \mathrm{mg}(24 \%)$ of the title compound as a yellow oil and as a 20:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-281.3$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). This material also contained ca. 8% of unreacted starting material and ca. 3% of a bicyclic urea side product lacking the butenyl group (tentatively assigned as 7-allyl-3-methyl-2-(4-nitrophenyl)-4a,5,6,7-tetrahydropyrrolo[1,2-c]pyrimidin-1(2H)-one). Data are for the major isomer. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-$ 5.71 (m, 1 H), 5.46 (dt, $J=7.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.12 (ddt, $J=2.1,8.4,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.03$ (m, 2 H), $4.15(\mathrm{dt}, J=4 ., 99.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dt}, J=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddt}, J=2.8,5.6$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=5.6,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 2 \mathrm{H})$, 2.10-2.02 (m, 2 H) 1.97-1.87 (m, 4 H), 1.73-1.66 (m, 2 H), $0.90\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,148.5,144.4,135.3,135.3,127.2,124.1,123.3,117.3,57.8,57.4$, $52.7,37.3,31.5,31.0,30.8,27.7,20.8,14.0$; IR (film) $1649 \mathrm{~cm}^{-1}$. MS (ESI) 370.2126 (370.2125 calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 96:4 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $1.5 \mathrm{~mL} / \mathrm{min}, \lambda 310 \mathrm{~nm}, \mathrm{RT}=19.1$ and 26.2 min).

(-)-(E,3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(hept-2-en-1-yl)hexahydropyrrolo[1,2-

c]pyrimidin-1 $\mathbf{(2 H}$)-one ($\mathbf{8 g}$). The general procedure was employed for the coupling of $\mathbf{7 c}$ (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and (E)-1-bromohex-1-ene ($49 \mathrm{mg}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). 6 M HCl was used in the workup to remove 4-chloroaniline side product. This procedure afforded $44 \mathrm{mg}(57 \%)$ of the title compound as a yellow oil: $[\alpha]^{23}{ }_{D}-30.3$ (c 1.9, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). This material also contained ca. 15% of a regioisomeric bicyclic urea product generated from the coupling of 7c and 2-bromohex-1ene (tentatively assigned as (3S,4aS,7R)-7-allyl-2-(4-chlorophenyl)-3-(2-methylenehexyl)hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one). Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.70(\mathrm{~m}, 1$ H), $5.41-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dt}, J=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.92-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.65$ (ddt, $J=2.5,5.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=6.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-$ 2.23 (m, 2 H), 2.10-1.98 (m, 3H), 1.95-1.87 (m, 3H), 1.84 (dd, J = 6.5, $12.5 \mathrm{~Hz}, 1 \mathrm{H}) 1.69-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.7$, 140.9, 135.6, 134.6, 131.2, 129.4, 128.8, 125.1, 116.9, 57.9, 57.4, 52.6, 37.7, 36.9, 32.2, 31.4, 30.8, 27.8, 22.1, 13.9 (one carbon signal is absent due to incidental equivalence); IR (film) $1643 \mathrm{~cm}^{-1}$. MS (ESI) 387.2207 (387.2198 calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{CIN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 95:5 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 1.5 \%$ IPA/Hexanes, $1.5 \mathrm{~mL} / \mathrm{min}, \lambda 205 \mathrm{~nm}, \mathrm{RT}=20.0$ and 37.5 min$)$.

(-)-(Z,3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(hept-2-en-1-yl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-one (8h). The general procedure was employed for the coupling of 7c (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and (Z)-1-bromohex-1-ene ($49 \mathrm{mg}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($3.7 \mathrm{mg}, 0.004 \mathrm{mmol}$), and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). 6 M HCl was used in the workup to remove 4-chloroaniline side product. This procedure afforded $47 \mathrm{mg}(61 \%)$ of the title compound as a yellow brown oil: $[\alpha]^{23} \mathrm{D}-14.8\left(c 3.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.77-5.71$ ($\mathrm{m}, 1$ H), 5.45 (dt, $J=7.0,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.15-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dt}, J=2.8,8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.91-3.88 (m, 1 H), 3.66 (ddt, $J=2.1,4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.78 (dd, $J=8.4,13.3 \mathrm{~Hz}, 1$ H), 2.24-2.14 (m, 3H), 2.07 (dt, $J=8.4,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00-1.97 (m, 1 H) 1.95-1.83 (m, 4 H), $1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.7, 140.8, 135.6, 133.4, 131.3, 129.4, 128.9, 124.4, 117.0, 58.1, 57.4, 52.8, 37.7, 31.6, 31.3, 31.0, 30.8, 27.8, 27.2, 22.3, 13.9; IR (film) $1642 \mathrm{~cm}^{-1}$. MS (ESI) 387.2203 (387.2198 calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{CIN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}\right)$. The enantiopurity was determined to be 95:5 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 1.5 \% \mathrm{IPA} /$ Hexanes, $1.5 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=20.9$ and 36.2 $\min)$.

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(3-methylbut-2-en-1-yl)hexahydropyrrolo[1,2-c]pyrimidin-1 $\mathbf{(2 H}$)-one ($\mathbf{8 i}$). The general procedure was employed for the coupling of 7c (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-bromo-2-methyl-1-propene ($31 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol}$), and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded 37 mg (52\%) of the title compound as a yellow oil and as a 10:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23} \mathrm{D}-37.9$ (c 2.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H})$, 5.74 (dddd, $J=6.3,7.7,10.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (dd, $J=2.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (d, $J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}$), $4.89(\mathrm{dt}, J=1.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.66$ (ddt, $J=2.8,5.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dd, $J=6.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21-2.16 (m, 2 H), 2.09-2.04 (m, 2 H), 2.02-1.99 (m, 1 H), 1.95-1.89 (m, 1 H), 1.84 (dd, $J=7.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}) 1.68-1.62(\mathrm{~m}$, $2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,140.9,135.6,134.9$, 131.1, 129.3, 128.8, 119.6, 117.0, 58.3, 57.4, 52.8, 37.7, 32.2, 31.1, 30.9, 27.7, 25.7, 17.9; IR (film) $1643 \mathrm{~cm}^{-1}$. MS (ESI) 359.1895 (359.1885 calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{CIN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 94:6 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6$ $\mathrm{mm}, 5 \% \mathrm{IPA} /$ Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=13.8$ and 24.0 min).

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(2-methylallyl)hexahydropyrrolo[1,2-

c]pyrimidin-1(2H)-one (8j). The general procedure was employed for the coupling of 7c (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-bromopropene ($89 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ $(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and $(S)-S i p h o s-P E(8 \mathrm{mg}, 0.016 \mathrm{mmol})$. This procedure afforded 39 mg
(56\%) of the title compound as a yellow oil and as a $20: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23} \mathrm{D}-33.5$ (c 2.9, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.19(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.71$ ($\mathrm{m}, 1$ H), $5.06-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.09-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dt}, J=2.8,8.4 \mathrm{~Hz}$, 1 H), 3.66 (ddt, $J=2.8,4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dd, $J=6.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27-2.23 (m, 2 H), 2.12 (dd, $J=11.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}) 2.07$ (dt, $J=8.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.03-1.99 (m, 1 H), 1.95-1.89 (m, 1 H), 1.85 (dd, J = 7.0, $12.6 \mathrm{~Hz}, 1 \mathrm{H}$) 1.68-1.64 (m, 2 H), 1.55 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.7,141.5,140.7,135.6,131.2,129.3,128.9,117.0,113.9,57.5,55.8,52.6,41.8$, 37.7, 30.8, 30.5, 27.8, 22.0; IR (film) $1641 \mathrm{~cm}^{-1}$. MS (ESI) 345.1735 (345.1728 calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{CIN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 88:12 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 3 \% \mathrm{IPA} /$ Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 254 \mathrm{~nm}, \mathrm{RT}=22.8$ and 28.4 min).

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(4-methylbenzyl)hexahydropyrrolo[1,2-
c]pyrimidin-1 $\mathbf{(2 H}$)-one ($\mathbf{8 k}$). The general procedure was employed for the coupling of $\mathbf{7 c}$ (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-bromotoluene ($37 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($3.7 \mathrm{mg}, 0.004 \mathrm{mmol}$), and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded 66 mg (83%) of the title compound as a pale yellow oil and as a $8: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23} \mathrm{D}-125.6\left(c 3.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.10 (dt, $J=4.911 .2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.03(\mathrm{dt}, J=2.8,8.4, \mathrm{~Hz} 1 \mathrm{H}$), 3.76 (ddt, $J=2.8$, $5.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{dd}, J=2.8,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=11.2,14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{dt}, J=5.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.85(\mathrm{dd}, J=5.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}) 1.64-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{dt}, J=6.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,140.8,136.2,135.6,134.5,131.3,129.3,129.3,129.0,128.9,117.0$, $59.8,57.5,52.6,39.2,37.6,30.8,30.1,27.8,21.0$; IR (film) $1642 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 395.1887 (395.1885 calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{CIN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 92:8 er by
chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \% \mathrm{IPA} /$ Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 254$ $\mathrm{nm}, \mathrm{RT}=17.3$ and 19.4 min).

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(4-methoxybenzyl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-one (8I). The general procedure was employed for the coupling of 7c (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-bromoanisole ($38 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ $(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded 58 mg (70%) of the title compound as a pale yellow oil and as a $8: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-169.4\left(c 2.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=9.1$ Hz, 2 H), 6.79 (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (d, J= $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dt}, J=4.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dt}, J=2.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.77-$ 3.72 ($\mathrm{m}, 1 \mathrm{H}$), 2.87 (dd, $J=3.5 .14 .0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.80(\mathrm{dd}, J=6.3,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51$ (dd, $J=$ $11.2,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09-2.04 (m, 2 H), $2.00(\mathrm{dt}, J=5.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.91(\mathrm{~m}, 1 \mathrm{H})$, 1.85 (dd, $J=7.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}) 1.65-1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,153.6$, $140.8,135.6,131.3,130.0,129.6,129.3,129.0,117.0,114.0,59.9,57.5,55.2,52.6,38.7,37.6$, $30.8,30.1,27.8$; IR (film) $1642 \mathrm{~cm}^{-1}$. MS (ESI) 411.1834 (411.1834 calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{CIN}_{2} \mathrm{O}_{2}, \mathrm{M}+$ H^{+}). The enantiopurity was determined to be 92:8 er by chiral HPLC analysis (chiralcel ADH, 25 cm x $4.6 \mathrm{~mm}, 3 \% \mathrm{IPA} /$ Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 204 \mathrm{~nm}, \mathrm{RT}=49.3$ and 55.7 min$)$.

(-)-(3S,4aS,7R)-7-Allyl-3-benzyl-2-(4-chlorophenyl)hexahydropyrrolo[1,2-c]pyrimidin-
$\mathbf{1 (2 H)}$-one (8 m). The general procedure was employed for the coupling of $7 \mathbf{c}(61 \mathrm{mg}, 0.2 \mathrm{mmol})$
and bromobenzene ($32 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004$ mmol), and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded $63 \mathrm{mg}(83 \%)$ of the title compound as a pale brown foam oil and as a $7: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-61.2\left(c 5.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2$ H), $5.77-5.71$ (m, 1 H), $5.05-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{dt}, J=4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dt}, J=2.1,8.4$ Hz, 1 H), 3.77 (ddt, $J=2.1,4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 (dd, $J=3.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dd, J = 6.3, $13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.57 (dd, J = 11.2, $14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.10-2.04 (m, 2 H), 2.03-2.00 (m, 1 H), 1.971.91 (m, 1 H), 1.86 (dd, J = $6.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}) 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 153.6, 140.8, 137.6, 135.6, 131.4, 129.3, 129.1, 129.0, 128.6, 126.6, 117.0, 59.7, 57.5, 52.7, 39.6, 37.6, $30.8,30.2,27.8$; IR (film) $1642 \mathrm{~cm}^{-1}$. MS (ESI) 381.1736 (381.1728 calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be $90: 10$ er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 245 \mathrm{~nm}, \mathrm{RT}=21.1$ and 24.2 min).

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-[4-

(trifluoromethyl)benzyl]hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (8n). The general procedure was employed for the coupling of $7 \mathrm{c}(61 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4-bromobenzotriflouride ($42 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol}$), and (S)-SiphosPE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded $66 \mathrm{mg}(74 \%)$ of the title compound as a pale yellow oil and as a $5: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-$ 46.1 (c 6.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Data are for the major isomer. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, \mathrm{~J}=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-$ $5.71(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{dt}, J=4.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dt}, J=2.1,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.76 (ddt, $J=2.1,5.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (dd, $J=3.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dd, $J=5.6,13.3 \mathrm{~Hz}$, 1 H), 2.66 (dd, $J=11.2,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09-2.00 (m, 3 H), 1.98-1.93 (m, 1 H), 1.87 (dd, $J=$ $6.3,11.9 \mathrm{~Hz}, 1 \mathrm{H}) 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5,141.7,140.6,135.5$, 131.6, 129.4, 129.3, 129.2 ($q, J=37 \mathrm{~Hz}$), 129.1, 125.6 (q, 3.3 Hz), $124.0(\mathrm{q}, J=270 \mathrm{~Hz}), 117.1$,
$59.5,57.6,52.6,39.6,37.6,30.8,30.3,27.8$; IR (film) $1642 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 449.1600 (449.1602 calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 85:15 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 205 \mathrm{~nm}, \mathrm{RT}=$ 19.9 and 27.5 min$)$.

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-[4-
(trifluoromethyl)benzyl]hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (8n). A modified general procedure was employed for the coupling of $7 \mathrm{c}(61 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 4 bromobenzotriflouride ($42 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) using $\mathrm{NaOMe}(16.2 \mathrm{mg}, 0.3 \mathrm{mmol}$) as base and a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded $54 \mathrm{mg}(60 \%)$ of the title compound as a pale yellow oil and as a 10:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-51.1$ (c 2.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The enantiopurity was determined to be 90:10 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} x$ $4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 205 \mathrm{~nm}, \mathrm{RT}=19.4$ and 26.7 min). Spectroscopic data were identical to those provided above.

(-)-(3S,4aS,7R)-7-Allyl-3-benzyl-2-(4-chlorophenyl)-3-[4-
(trifluoromethoxy)benzyl]hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (80). The general procedure was employed for the coupling of $7 \mathrm{c}(61 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-bromo-4(trifluoromethoxy)benzene ($45 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}$, 0.004 mmol), and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded $63 \mathrm{mg}(68 \%)$ of the title compound as a pale yellow oil and as a 8:1 mixture of diastereomers as determined by
${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}$ D -48.7 (c 5.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dt}, J=4.2,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (dt, $J=2.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{ddt}, J=2.8,4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=4.2,14.0 \mathrm{~Hz}, 1$ H), 2.79 (dd, $J=6.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.60(\mathrm{dd}, J=10.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.98-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=6.3,12.6 \mathrm{~Hz}, 1 \mathrm{H}) 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $153.5,147.9,140.7,136.7,135.5,131.5,130.3,129.3,129.1,121.2,117.0,59.6,57.5,52.6$, 39.1, 37.6, 30.8, 30.3, 27.8 (the CF_{3} carbon signal could not be determined due to the appearance of carbon signals from the minor diastereomer in the CF_{3} region of the spectrum); IR (film) $1642 \mathrm{~cm}^{-1}$. MS (ESI) 465.1557 (465.1551 calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 88:12 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} x$ $4.6 \mathrm{~mm}, 5 \% \mathrm{IPA} /$ Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 245 \mathrm{~nm}, \mathrm{RT}=17.1$ and 19.8 min).

(-)-(3S,4aS,7R)-7-Allyl-3-benzyl-2-(4-chlorophenyl)-3-[4-
(trifluoromethoxy)benzyl]hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (80). A modified general procedure was employed for the coupling of $7 \mathrm{c}(61 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1-bromo-4(trifluoromethoxy)benzene ($45 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) using $\mathrm{NaOMe}(16.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ as base and a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded 48 mg (52\%) of the title compound as a pale yellow oil and as an 17:1 mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-55.6$ (c 1.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The enantiopurity was determined to be 93:7 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6$ $\mathrm{mm}, 5 \% \mathrm{IPA} /$ Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 245 \mathrm{~nm}, \mathrm{RT}=16.8$ and 19.8 min). Spectroscopic data were identical to those provided above.

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(3-methoxybenzyl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-one (8p). The general procedure was employed for the coupling of 7c (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and 3-bromoanisole ($38 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ ($3.7 \mathrm{mg}, 0.004 \mathrm{mmol}$), and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded 61 mg (74\%) of the title compound as a yellow brown solid and as a $5: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23} \mathrm{D}-65.1$ (c 2.8, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{Mp}=132-137{ }^{\circ} \mathrm{C}$. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 2$ H), 7.18 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.74 (dd, $J=2.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.57(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1$ H), $5.77-5.71$ (m, 1 H), 5.04 (dd, $J=1.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=1.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (dt, $J=4.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dt}, J=2.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.91$ (dd, $J=3.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dd, $J=5.6,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (dd, $J=11.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.102.04 (m, 2 H), 2.03-1.99 (m, 1 H), 1.96-1.91 (m, 1 H), 1.85 (dd, J = 6.3, 12.6 Hz, 1 H), 1.651.56 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,153.6,140.7,139.2,135.6,131.4,129.6$, 129.3, 129.0, 121.4, 117.0, 115.3, 111.3, 59.6, 57.5, 55.2, 52.7, 39.7, 37.6, 30.8, 30.3, 27.8; IR (film) $1642 \mathrm{~cm}^{-1}$. MS (ESI) 411.1841 (411.1834 calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{CIN}_{2} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 87:13 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} x$ $4.6 \mathrm{~mm}, 5 \% \mathrm{IPA} /$ Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 248 \mathrm{~nm}, \mathrm{RT}=27.2$ and 30.6 min$)$.

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(napthalen-2-ylmethyl)hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (8q). The general procedure was employed for the coupling of $\mathbf{7 c}$ (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-bromonapthanlene ($62 \mathrm{mg}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded
$66 \mathrm{mg}(77 \%)$ of the title compound as a white solid and as a $7: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-77.9\left(c 4.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Data are for the major isomer. Mp $=63-65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.47-7.44$ (m, 3 H), 7.38 (d, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 (dd, $J=0.7,8.4 \mathrm{~Hz}$, 1 H), $5.78-5.72$ (m, 1 H), 5.04 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (dt, J = 4.2, $11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (dt, $J=2.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (ddt, $J=2.1,4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, $J=$ $3.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (dd, $J=5.6,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (dd, $J=11.9,14.0, \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.05$ (m, 2 H), 2.04-1.94 (m, 2 H), 1.86 (dd, J = 7.0, $12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.65-1.56 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (175 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,140.8,135.6,135.1,133.4,132.2,131.4,130.4,129.4,129.1,128.4$, 127.7, 127.3, 127.1, 126.3, 125.7, 117.0, 59.6, 57.5, 52.7, $37.6,30.8,31.0,30.2,27.8$; IR (film) $1646 \mathrm{~cm}^{-1}$. MS (ESI) 431.1886 (431.1885 calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{CIN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 88:12 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 215 \mathrm{~nm}, \mathrm{RT}=24.4$ and 28.2 min).

(-)-(3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(2-methylbenzyl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-one (8r). The general procedure was employed for the coupling of 7c (61 $\mathrm{mg}, 0.2 \mathrm{mmol}$) and 2-bromotoluene ($36 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), using a catalyst composed of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ $(3.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, and (S)-Siphos-PE ($8 \mathrm{mg}, 0.016 \mathrm{mmol}$). This procedure afforded 65 mg (82%) of the title compound as a pale brown oil and as a $5: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23} \mathrm{D}-30.1\left(c\right.$ 5.7, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR (700 MHz, CDCl ${ }_{3}$) $\delta 7.36(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.08$ (m, 3 H), 6.93-6.92 (m, 1 H), $5.78-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.04$ (dd, $J=1.4,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (dd, $J=1.4$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=4.2,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dt}, J=2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (ddt, $J=2.8$, $5.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=3.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=5.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=$ $11.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11-2.02 (m, 3 H), 2.01 (s, 3 H), 1.99-1.94 (m, 1 H), 1.87 (dd, J = 6.3, $12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.65 (ddd, $J=6.3,11.2,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{dt}, J=5.6,12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,140.7,136.3,135.7,135.6,131.5,130.6,130.3,129.6,129.0,126.8$, 126.0, 117.0, 58.4, 57.5, 52.9, 37.7, 36.8, 30.8, 30.1, 27.8, 19.2; IR (film) $1642 \mathrm{~cm}^{-1}$. MS (ESI)
395.1885 (395.1885 calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$). The enantiopurity was determined to be 71:29 er by chiral HPLC analysis (chiralcel ADH, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, 0.75 $\mathrm{mL} / \mathrm{min}, \lambda 215 \mathrm{~nm}, \mathrm{RT}=20.1$ and 24.3 min).

Deprotection of Bicyclic Urea Product 8c

(-)-(Z,3S,4aS,7R)-N-\{4-[7-Allyl-1-oxo-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-c]pyrimidin-2(1H)-yl]phenyl\}acetamide (S3). A flame-dried screwtop-flask was cooled under vacuum and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.2 \mathrm{mg}, 0.006 \mathrm{mmol})$, 2-di-tert-butylphosphino-3,4,5,6-tetramethyl$2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropyl-1,1'-biphenyl ($13.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($182 \mathrm{mg}, 0.86 \mathrm{mmol}$) and acetamide ($50.8 \mathrm{mg}, 0.86 \mathrm{mmol}$). The flask was evacuated and backfilled with N_{2}, and then a solution of $8 \mathbf{c}(206 \mathrm{mg}, 0.57 \mathrm{mmol})$ in tert-butanol (3 mL) was added via syringe. The flask was sealed, heated to $110{ }^{\circ} \mathrm{C}$ and stirred overnight (14 h). The mixture was cooled to room temperature and the mixture was filtered through a plug of celite, eluted with EtOAc (10 mL), and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford $191 \mathrm{mg}(88 \%)$ of the title compound as a foamy brown solid: $\mathrm{mp}=38-42{ }^{\circ} \mathrm{C} .[\alpha]^{23} \mathrm{D}$ -25.2 (c 5.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.93(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.77-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.03(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{dt}, J=$ $2.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (dt, $J=4.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (ddt, $J=2.8,4.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.80(\mathrm{dd}, J$ $=4.9,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.08(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) 2.02-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 4 \mathrm{H})$, $1.70-1.64(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8,154.5,137.3$, 136.6, 135.5, 134.8, 128.3, 124.0, 121.3, 117.1, 58.5, 57.3, 52.8, 37.8, 31.2, 31.0, 30.8, 27.7, 24.0, 20.8, 14.1; IR (film) 3263, 1687, $1624 \mathrm{~cm}^{-1}$. MS (ESI) 382.2493 (382.2489 calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}\right)$.

(-)-(Z,3S,4aS,7R)-7-Allyl-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (9). A Schlenk tube was charged with a stirbar, $\mathbf{S 3}(39 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$. A solution of ceric ammonium nitrate ($164 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added to the reaction flask and the mixture was stirred at rt for 5 min . The mixture was then heated at $50{ }^{\circ} \mathrm{C}$ for 15 min before being cooled to rt , at which time EtOAc (5 mL) was added. The mixture was transferred to a separatory funnel and the layers were separated. The organic layer was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, and brine (5 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography ($2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) on silica gel to afford $19 \mathrm{mg}(77 \%)$ of the title compound as a yellow brown solid: $[\alpha]^{23}{ }_{\mathrm{D}}-63.2\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.06-$ 5.02 (m, 2 H), 4.73 (s, 1 H), 4.00 (dt, $J=3.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49 (ddt, $J=3.0,5.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46-3.41 (m, 1 H), 2.72 (d, J = $14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26-2.20 (m, 1 H), 2.13-1.93 (m, 6 H), 1.881.77 (m, 2 H), 1.61-1.52 (m, 2 H), $0.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1$, 135.6, 135.2, 124.0, 117.0, 56.2, 52.9, 50.0, 38.1, 35.7, 32.3, $30.7,27.4,20.8,14.1$; IR (film) 3207, $1652 \mathrm{~cm}^{-1}$. MS (ESI) 249.1963 (249.1961 calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}, \mathrm{M}+\mathrm{H}^{+}$).

Conversion of Bicyclic Urea Product 8c to Tricyclic Guanidine 12

(-)-(Z,3S,4aS,7R)-7-Allyl-2-(4-chlorophenyl)-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-imine hydrochloride (10). A flame-dried flask was cooled under a stream of N_{2} and charged with 8 c ($177 \mathrm{mg}, 0.49 \mathrm{mmol}$) and toluene (5 mL). Freshly distilled $\mathrm{POCl}_{3}(2.5$ $\mathrm{mL}, 27 \mathrm{mmol}$) was added and the mixture was stirred at rt until the starting material had been consumed as judged by ESI ${ }^{+}$MS analysis (ca. 3 hr). The reaction mixture was cooled to rt and concentrated in vacuo. The crude product was dissolved in acetonitrile (5 mL) and a solution of
ammonia ($20 \mathrm{~mL}, 2 \mathrm{M}$ in ethanol) was added. The mixture was stirred at rt until the starting material had been consumed as judged by ESI ${ }^{+}$MS analysis (ca. 1 hr). The reaction mixture was concentrated and dissolved in methylene chloride (5 mL). Water (5 mL) was added and the mixture was transferred to a separatory funnel. The layers were separated and the organic layer was washed with saturated aqueous $\mathrm{NaCl}(3 \times 10 \mathrm{~mL})$. The combined aqueous layers were extracted with methylene chloride ($3 \times 10 \mathrm{~mL}$). The combined organics layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford 146 mg (75%) of the title compound as a pale white-yellow foam: $[\alpha]^{23}{ }_{\mathrm{D}}-45.5\left(c 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, 1 H), 7.40 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.90(\mathrm{~m}$, 1 H), 5.45 (dt, $J=7.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.93(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.58(\mathrm{~m}, 1$ H), 2.67 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (dd, $J=2.1,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18-2.16 (m, 1 H) 2.12-2.06 (m, $3 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (175 MHz , CDCl_{3}) $\delta 151.3,136.6,136.1,135.8,134.5,131.5,131.4,130.8,128.9,121.7,118.3,59.5,59.1$, 53.1, 36.2, 30.8, 30.4, 29.6, 28.1, 20.8, 13.9; IR (film) 3457, 3275, $1636 \mathrm{~cm}^{-1}$. MS (ESI) 358.2048 (358.2045 calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{CIN}_{3}, \mathrm{M}^{+}$).

(-)-(Z,2aS,4S,7S,8aR)-5-(4-Chlorophenyl)-7-methyl-4-(pent-2-en-1-yl)-1,2,2a,3,4,5,6,7,8,8a-decahydro-2a ${ }^{1}, 5,6$-triazaacenaphthylen- $2 a^{1}$-ium chloride (12). A test tube was charged with 10 ($39.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{PdCl}_{2}(3.5 \mathrm{mg}, 0.02 \mathrm{mmol})$, and $\mathrm{CuCl}(14.8 \mathrm{mg}, 0.15 \mathrm{mmol})$. The tube was capped with a rubber septum, was briefly flushed with oxygen and then an oxygen-filled balloon attached to a needle (via an adaptor) was connected to the tube through the septum. A solution of THF and $\mathrm{H}_{2} \mathrm{O}(7: 1,1.0 \mathrm{~mL})$ was added to the test tube and the mixture was stirred at rt until the starting material had been consumed as judged by ESI ${ }^{+}$MS analysis (ca. 4 hr). Methanol (1 mL) and $\mathrm{NaCNBH}_{3}(62.8 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added and the mixture was heated to $50^{\circ} \mathrm{C}$ until the starting material had been consumed as judged by ESI ${ }^{+}$MS analysis (ca. 3 hr). The reaction mixture was cooled to rt and concentrated in vacuo. The crude product was dissolved in methylene chloride (20 mL), the mixture was transferred to a separatory funnel and
$2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added. The layers were separated and the organic layer was washed with $\mathrm{NH}_{4} \mathrm{OH}(10 \mathrm{~mL})$ to potentially remove any excess copper. The layers were separated and the organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$. The organics layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford $31 \mathrm{mg}(79 \%)$ of the title compound as a pale white-tan oil and as a $5: 1$ mixture of diastereomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis: $[\alpha]^{23}{ }_{\mathrm{D}}-38.1$ (c 0.6, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Data are for the major isomer. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.34 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.57-5.52 (m, 1 H), 5.10-5.05 (m, 1 H), 4.64 (s, 1 H), 3.99-3.90 (m, 2 H), 3.77-3.73 (m, 1 H), 3.69-3.65 (m, 1 H), 2.46-2.32 (m, 5H), 2.28 (dt, J = 3.5, 13.0 Hz, 1 H), 1.99-1.93 (m, 3 H), 1.88-1.80 (m, 2 H), 1.51-1.44 (m, 1 H), $1.22(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.6,136.6,136.5,135.2,132.0-129.0(\mathrm{br}, 2 \mathrm{C})$, 121.9, 59.8, 57.7, 52.1, 47.4, 34.8, 30.0, 29.9, 29.6, 29.4, 20.9, 20.6, 14.0; IR (film) 3276, 1607 cm^{-1}. MS (ESI) 358.2047 (358.2045 calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{CIN}_{3}, \mathrm{M}^{+}$).

Conversion of Bicyclic Urea Product 8c to 9-epi-Batzelladine K 16

(-)-(Z,3S,4aS,7R)-N-\{4-[1-Oxo-7-(2-oxopropyl)-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-c]pyrimidin-2(1H)-yl]phenyl\}acetamide (13). A test tube was charged with S3 (300 mg, 0.79 $\mathrm{mmol}), \mathrm{PdCl}_{2}(28 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{CuCl}(117 \mathrm{mg}, 1.18 \mathrm{mmol})$. The tube was capped with a rubber septum, was briefly flushed with oxygen and then an oxygen-filled balloon attached to a needle (via an adaptor) was connected to the tube through the septum. A solution of DMF and $\mathrm{H}_{2} \mathrm{O}(7: 1,8.0 \mathrm{~mL})$ was added to the test tube and the mixture was stirred at rt until the starting material had been consumed as judged by ESI ${ }^{+}$MS analysis (ca. 4 hr). EtOAc (20 mL) and brine (20 mL) was added and the mixture was transferred to a separatory funnel. The layers were separated and the organic layer was washed with $\mathrm{NH}_{4} \mathrm{OH}(5 \mathrm{~mL})$ to potentially remove any excess copper. The combined aqueous layers were than extracted with EtOAc (20 mL). The organics layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo.

The crude material was purified by flash chromatography on silica gel to afford $230 \mathrm{mg}(74 \%)$ of the title compound as a pale yellow-pink solid: $\mathrm{mp}=68-72{ }^{\circ} \mathrm{C} .[\alpha]^{23} \mathrm{D}-38.8\left(c 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-$ 5.41 (m, 1 H), 5.06-5.03 (m, 1 H), 4.37-4.34 (m, 1 H), 3.80-3.77 (m, 1 H), 3.66 (ddd, J = 2.8, $4.9,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (dd, $J=2.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (dd, $J=9.8,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}$, 3 H), 2.10 ($\mathrm{s}, 3 \mathrm{H}$), 2.06 (s, 3 H), 2.09-2.03 (m, 2 H), 1.91-1.86 (m, 2 H), 1.77 (dd, J = 7.0, 13.3 $\mathrm{Hz}, 1 \mathrm{H}$), 1.65-1.58 (m, 2 H), $0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.5$, 168.7, 154.2, 137.2, 136.7, 134.9, 128.3, 123.8, 121.1, 58.5, 53.7, 52.8, 47.6, 31.1, 30.8, 30.2, 29.4, 24.0, 20.8, 14.0 (one carbon signal is absent due to incidental equivalence); IR (film) 3261, 1711, 1687, $1621 \mathrm{~cm}^{-1}$. MS (ESI) 398.2439 (398.2438 calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}^{+}$).

(-)-(3S,4aS,7R)-7-(2-Oxopropyl)-3-pentylhexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (14). A flame-dried flask was cooled under vacuum and charged with 13 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$. The flask was capped with a rubber septum, was briefly flushed with hydrogen and then a hydrogen-filled balloon attached to a needle (via an adaptor) was connected to the flask through the septum. Methanol (2.5 mL) was added to the flask and the mixture was stirred at rt until the starting material had been consumed as judged by ESI ${ }^{+}$MS analysis (ca. 45 min). The crude product was then filtered through a plug of celite to remove the Pd / C and washed with methanol (5 mL). The crude material was concentrated in vacuo and carried on to the next step without further purification. The crude product was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and transferred to a round-bottom flask charged with a stirbar. A solution of ceric ammonium nitrate ($123 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added to the reaction flask and the mixture was stirred at rt for 5 min . The mixture was then heated at $50^{\circ} \mathrm{C}$ for 4 hr before being cooled to rt , at which time EtOAc (25 mL) was added. The mixture was transferred to a separatory funnel and the layers were separated. The organic layer was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, and brine (15 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford 34 mg (51%) of the title compound as a white solid: $\mathrm{mp}=84-88{ }^{\circ} \mathrm{C} .[\alpha]^{23}{ }_{\mathrm{D}}-11.7\left(\mathrm{c} 2.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.79(\mathrm{~s}, 1 \mathrm{H})$, 4.30-4.28 (m, 1 H), 3.48-3.45 (m, 1 H), 3.43-3.39 (m, 2 H), 2.29 (dd, J = 9.8, 16.8 Hz, 1 H),
$2.10(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{dd}, \mathrm{J}=7.7,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-$ $1.46(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 7 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.7$, 155.0, 52.8, 52.8, 50.0, 47.6, 37.8, 32.9, 31.6, 30.6, 30.3, 29.0, 25.5, 22.6, 14.0; IR (film) 3207, 1709, $1649 \mathrm{~cm}^{-1}$. MS (ESI) 267.2065 (267.2067 calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}^{+}$).

(-)-9-epi-Batzelladine $K(16)$. A flame-dried flask was cooled under vacuum and charged with $14(25 \mathrm{mg}, 0.09 \mathrm{mmol})$ and dichloromethane (0.9 mL). 2,6-di-tert-butylpyridine ($203 \mu \mathrm{~L}, 0.94$ mmol) and MeOTf ($103 \mu \mathrm{~L}, 0.94 \mathrm{mmol}$) were added and the mixture was stirred at rt until the starting material had been consumed as judged by ESI ${ }^{+}$MS analysis (ca. 1 hr). The solvent was then removed in a hood by blowing a constant stream of N_{2} over the stirring mixture. The solution was then poured in diethyl ether (20 ml) and washed with $1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and brine (10 mL). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was used without further purification. The crude O-methylisourea was dissolved in methanol (2 mL) and transferred to a thick walled glass vial at which time ammonium chloride ($10.1 \mathrm{mg}, 0.19 \mathrm{mmol}$) was added to this solution. Anhydrous ammonia was bubbled through this solution for ~ 15 min before the reaction vessel was sealed and heated to $60^{\circ} \mathrm{C}$ overnight (14 hr). The reaction was cooled to rt and concentrated in vacuo. The crude guanidine product 15 was used without further purification. Crude product 15 was dissolved in methanol (3 mL), $\mathrm{NaCNBH}_{3}(59 \mathrm{mg}, 0.94 \mathrm{mmol})$ was added and the mixture was heated to 50 ${ }^{\circ} \mathrm{C}$ until the starting material had been consumed as judged by ESI ${ }^{+}$MS analysis (ca. 12 hr). The reaction mixture was cooled to rt and concentrated in vacuo. The crude product was dissolved in methylene chloride (20 mL), the mixture was transferred to a separatory funnel and washed with $2 \mathrm{M} \mathrm{HCl}(2 \times 10 \mathrm{~mL})$ and brine ($1 \times 10 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was determined to be a $3: 1$ mixture of diastereomers by ${ }^{1} \mathrm{H}$ NMR analysis. The crude material was purified by flash chromatography on silica gel to afford 13 mg (48%) of the title compound as a pale yellow oil. The following data is for the pure isolated major diastereomer. $[\alpha]^{23}{ }_{D}-43.8$ (c $0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.80-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.49$ ($\mathrm{m}, 1 \mathrm{H}$), 2.26-2.21 (m, 3 H), 2.19 (dd, J = 4.2, $13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73-1.64 (m, 2 H), 1.60-1.56 (m, $2 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.27(\mathrm{~m}, 7 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,56.3,51.6,48.4,45.8,36.2,35.5,31.5,31.2,30.5,30.2$, $25.5,22.4,20.5,14.0 ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{~d}, J=8.5$ Hz, 2 H), 5.57-5.52 (m, 1 H), 5.10-5.05 (m, 1 H), 4.64 (s, 1 H), 3.99-3.90 (m, 2 H), 3.77-3.73 ($\mathrm{m}, 1 \mathrm{H}$), 3.69-3.65 (m, 1 H), 2.46-2.32 (m, 5 H), 2.28 (dt, J = 3.5, 13.0 Hz, 1 H), 1.99-1.93 (m, $3 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 150.4,57.5,53.5,50.2,47.3,36.8,36.1,32.7,31.9,31.3,30.7$, 26.8, 23.6, 20.8 14.3; IR (film) 3284, 3202, $1637 \mathrm{~cm}^{-1}$. MS (ESI) 250.2278 (250.2278 calcd for $\left.\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{3}, \mathrm{M}^{+}\right)$.

Assignment of Stereochemistry

The relative stereochemistry of compound $\mathbf{8 k}$ was assigned on the basis of observed ${ }^{1} \mathrm{H}$ NMR nOe experiments. Significant nOe relationships are shown below. The stereochemistry of all other bicyclic urea products was assigned based on analogy to $\mathbf{8 k}$.

The relative stereochemistry of compounds 12 and 16 were assigned on the basis of observed ${ }^{1} \mathrm{H}$ NMR nOe experiments. Significant nOe relationships are shown below.

9-epi-Batzelladine K (16)

The absolute stereochemistry of the urea products was assigned via the synthesis of compound ent-8c from pent-4-enal via the route illustrated below in Scheme S1. The optical rotation of product ent-8c prepared via this route was opposite that of the product $\mathbf{8 c}$ generated in the Pd catalyzed carboamination reaction between 7c and Z-bromobutene. In addition, analysis of
product ent-8c by chiral HPLC indicated that ent-8c was the enantiomer of product $\mathbf{8 c}$ formed in the catalytic reaction.

Scheme S1

(-)-(R_{S})-2-Methyl-N-(pent-4-en-1-ylidene)propane-2-sulfinamide (S4). This compound was prepared according to the procedure reported by Ellman. ${ }^{[4]}$ A flame-dried flask was cooled under a stream of N_{2} and charged with pent-4-enal ($1.38 \mathrm{~mL}, 14 \mathrm{mmol}$) and THF (40 mL). Titanium ethoxide ($4.2 \mathrm{~mL}, 20 \mathrm{mmol}$) was added and the reaction mixture was stirred at rt for $5 \mathrm{~min} .(R)-$ tert-butanesulfinamide ($1.21 \mathrm{~g}, 10 \mathrm{mmol}$) was added in one portion and the mixture was stirred overnight (ca. 14 h) at rt. The reaction mixture was poured into brine $(40 \mathrm{~mL})$ and stirred for 10 min. Ethyl acetate (20 mL) was added, the mixture was filtered through celite and the celite was washed with ethyl acetate (50 mL). The mixture was transferred to a separatory funnel, brine $(20 \mathrm{~mL})$ was added, and the layers were separated. The aqueous phase was extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford $1.38 \mathrm{~g}(74 \%)$ of the title compound as a colorless oil. Spectroscopic properties are identical to those previously reported. ${ }^{[5]}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 8.08(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (ddt, $J=4.5,10.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=1.5,17.0 \mathrm{~Hz}, 1$ H), 5.02 (dd, $J=1.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.63(\mathrm{td}, J=4.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.19$ (s, 9 H).

($\boldsymbol{R}_{\mathrm{S}}, 4 R$)-2-Methyl-N-(octa-1,7-dien-4-yl)propane-2-sulfinamide (S5). A flame-dried flask was cooled under a stream of N_{2} and charged with freshly ground magnesium turnings ($720 \mathrm{mg}, 4$ equiv). The magnesium was suspended in ether ($14.8 \mathrm{~mL}, 1 \mathrm{M}$), cooled to $0^{\circ} \mathrm{C}$ in an ice/water bath and allyl bromide ($1.28 \mathrm{~mL}, 14.8 \mathrm{mmol}$) was added dropwise. After addition, the ice bath was removed, and the reaction mixture was stirred at rt for 30 min . Stirring was stopped and the solution was filtered through glass wool prior to addition to S4. A flame-dried flask was cooled under a stream of N_{2} and charged with $\mathbf{S 4}(1.38 \mathrm{~g}, 7.4 \mathrm{mmol})$ and THF ($37 \mathrm{~mL}, 0.2 \mathrm{M}$). The sulfinyl imine solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice/water bath before the filtered Grignard reagent solution was added dropwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ until the starting material had been completely consumed as judged by TLC analysis (1 h). Water was then added dropwise until precipitation of magnesium salts occurred and the resulting solution was decanted into a separate flask. The solution was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. Analysis of the crude product by ${ }^{1} \mathrm{H}$ NMR indicated that a 10:1 mixture of diastereomers had formed. The crude material was purified by flash chromatography on silica gel to afford 1.02 g (60%) of the title compound as a $10: 1$ mixture of diastereomers as a clear colorless oil. Data are for the major isomer. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ d $5.83-5.74(\mathrm{~m}$, $2 \mathrm{H}), 5.18-4.97(\mathrm{~m}, 4 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 1 \mathrm{H})$, 2.37-2.32 (m, 1 H), 2.18-2.08 (m, 2 H), 1.62-1.58 (m, 2 H), 1.21 (s, 9 H).

(R)-tert-Butyl octa-1,7-dien-4-ylcarbamate (S1). A flame-dried flask was cooled under a stream of N_{2} and charged with $\mathbf{S 5}(1.02 \mathrm{~g}, 4.4 \mathrm{mmol})$ and methanol (22 mL). A solution of anhydrous hydrochloric acid ($4.4 \mathrm{~mL}, 17.7 \mathrm{mmol}, 4 \mathrm{M}$ in dioxane) was added and the mixture was stirred at rt for 1 h , at which time TLC analysis indicated that the starting material had been
completely consumed. The reaction mixture was diluted with water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, basified with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}>12$, and transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was dissolved in THF ($44 \mathrm{~mL}, 0.1 \mathrm{M}$), solid di-tert-butyldicarbonate ($1.2 \mathrm{~g}, 5.3 \mathrm{mmol}$) was added and the reaction mixture was stirred at rt for $3 \mathrm{~h} .1 \mathrm{M} \mathrm{NaOH}(5 \mathrm{~mL})$ was added and the resulting biphasic mixture was stirred for 1 h at rt . The mixture was transferred to a separatory funnel, the layers were separated and the aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford 941 mg (94%) of the title compound as a clear colorless oil. The spectroscopic properties of this compound were identical to that of compound ($\mathbf{\pm}$)-S1 described above.

($E, 2 R, 5 S$)-tert-Butyl 2-allyl-5-[3-(trimethylsilyl)allyl]pyrrolidine-1-carboxylate (S2). A flamedried Schlenk flask was cooled under a stream of N_{2} and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(77 \mathrm{mg}, 0.084$ $\mathrm{mmol})$, tri(2 -furyl)phosphine ($77 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{NaOtBu}(802 \mathrm{mg}, 8.4 \mathrm{mmol})$. The flask was purged with N_{2}, then a solution of (\boldsymbol{R})-S1 ($941 \mathrm{mg}, 4.2 \mathrm{mmol}$) in freshly distilled xylenes (21 mL) was added via syringe and the resulting mixture was stirred at rt for 2 min . (E)-(2bromovinyl)trimethylsilane ($1.28 \mathrm{~mL}, 8.4 \mathrm{mmol}$) was added and the flask was heated to $140{ }^{\circ} \mathrm{C}$ and stirred for 3 h . The mixture was cooled to room temperature and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$ and ethyl acetate $(10 \mathrm{~mL})$ were added. The layers were separated, the organic layer was filtered through a plug of silica gel, and the silica gel was washed with ethyl acetate (20 mL). The filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford 647 g (48%) of the title compound as a dark brown oil. The spectroscopic properties of this compound were identical to that of compound ($\mathbf{\pm}$)-S2 described above.

(E,2R,5S)-2-Allyl-N-(4-chlorophenyl)-5-[3-(trimethylsilyl)allyl]pyrrolidine-1-carboxamide
(S6). A round-bottom flask equipped with a stirbar was charged with ($E, 2 R, 5 S$)-S2 ($647 \mathrm{mg}, 2.0$ mmol) and dichloromethane ($20 \mathrm{~mL}, 0.1 \mathrm{M}$). Trifluoroacetic acid ($2.0 \mathrm{~mL}, 1.0 \mathrm{M}$) was added to the flask and the mixture was stirred for 20 min at rt . The solution was diluted with water, basified with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}>12$, and transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was dissolved in dichloromethane ($20 \mathrm{~mL}, 0.1 \mathrm{M}$) and 4-chlorophenyl isocyanate (369 $\mathrm{mg}, 1.2$ equiv) was added. The reaction mixture was stirred at rt for 1 h until starting material had been completely consumed as judged by TLC analysis. The crude reaction mixture was concentrated in vacuo, and purified by flash chromatography on silica gel to afford 244 mg (32\%) of the title compound as a orange brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31$ (d, J=9.0 $\mathrm{Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{dt}, J=7.0,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.84(\mathrm{~m}, 1$ H), 5.82 (d, J = $18.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22-5.17 (m, 2 H), 4.02-3.95 (m, 2 H), 2.61-2.52 (m, 2 H), 2.35 (dt, $J=7.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.24(\mathrm{dt}, J=7.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 2$ H), 0.05 (s, 9 H$)$.

(E,Z,3R,4aR,7S)-2-(4-Chlorophenyl)-3-(pent-2-en-1-yl)-7-[3-
(trimethylsilyl)allyl]hexahydropyrrolo[1,2-c]pyrimidin-1(2H)-one (S7). A flame-dried Schlenk tube was cooled under vacuum and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(3.1 \mathrm{mg}, 0.003 \mathrm{mmol}), \mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4}$ ($5.0 \mathrm{mg}, 0.014 \mathrm{mmol}$) and $\mathrm{NaOtBu}(25 \mathrm{mg}, 0.26 \mathrm{mmol}$). The flask was evacuated and purged with N_{2}. A solution of $\mathbf{S} \mathbf{6}(65 \mathrm{mg}, 0.17 \mathrm{mmol})$ in toluene $(0.85 \mathrm{~mL})$ was added via syringe and
the resulting mixture was stirred at rt for 2 min . (Z)-1-bromobut-1-ene ($130 \mu \mathrm{~L}, 0.26 \mathrm{mmol}, 2.0 \mathrm{M}$ solution in toluene) was added and the tube was heated to $100{ }^{\circ} \mathrm{C}$ and stirred until the starting material was completely consumed as judged by TLC analysis (1 h). The mixture was cooled to room temperature and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and ethyl acetate (1 mL) were added. The layers were separated, the organic layer was filtered through a plug of silica gel, and the silica gel was washed with ethyl acetate (1 mL). The filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel to afford $53 \mathrm{mg}(71 \%)$ of the title compound as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $)_{3}$) 7.31 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.94$ (ddd, $J=6.0$, $7.5,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dt}, \mathrm{J}$ $=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J=4.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{ddt}, J=2.5,5.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (dd, $J=5.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.69-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$.

(+)-(Z,3R,4aR,7S)-7-Allyl-2-(4-chlorophenyl)-3-(pent-2-en-1-yl)hexahydropyrrolo[1,2-
c]pyrimidin-1(2H)-one (ent-8c). A Schlenk tube was charged with S 7 ($53 \mathrm{mg}, 0.12 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$. TFA $(0.6 \mathrm{~mL})$ was added and the reaction mixture was stirred overnight at 40 ${ }^{\circ} \mathrm{C}$. The reaction mixture was then cooled to rt , diluted with water (1 mL), and basified with $\mathrm{NH}_{4} \mathrm{OH}$ to $\mathrm{pH}>12$. The reaction mixture was transferred to a separatory funnel and the layers were separated. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography on silica gel. This procedure afforded $29 \mathrm{mg}(67 \%)$ of the title compound as a yellow oil: $[\alpha]^{23}{ }_{D}+17.7$ (c 2.9, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The spectroscopic properties of this compound were identical to that of compound $8 \mathbf{c}$. The enantiopurity was determined to be 10:90 er by chiral HPLC analysis (chiralcel ADH, 25 cm x $4.6 \mathrm{~mm}, 5 \%$ IPA/Hexanes, $0.75 \mathrm{~mL} / \mathrm{min}, \lambda 190 \mathrm{~nm}, \mathrm{RT}=13.4$ and 17.8 min).

References

[1] H. Harada, R. K. Thalji, R. G. Bergman, J. A. Ellman, J. Org. Chem. 2008, 73, 6772-6779.
[2] S. Hanessian, A. Tehim, P. Chen, J. Org. Chem. 1993, 58, 7768-7781.
[3] S. J. Veenstra, P. Schmid, Tetrahedron Lett. 1997, 38, 997-1000.
[4] G. Liu, D. A. Cogan, T. D. Owens, T. P. Tang, J. A. Ellman, J. Org. Chem. 1999, 64, 12781284.
[5] N. R. Babij, J. P. Wolfe, Angew. Chem. 2012, 124, 4204-4206; Angew. Chem. Int. Ed. 2012, 51, 4128-4130.

Sample Nan
Data Collected on:
Sn. Chem. LSA. UMich. edu-inova500
rectory
元
FidF1le: NRB-4-88-1H
Pulse Sequence: Proton (s2pul)
Solvent: caclu
Data colloctod on: Sop 222012

S2
samplo Namo

Sn. Chem. LSA. UMich. edu-inova50
Archive directory:
Sample directory:
FidFile: NRB-4-88-13C
Pulse Sequence: CARBoN (s2pul)
Solvent: cdc13
Data collected on: Sep 222012

7d

Agilent Technologies
Sample Name:
Data Collected on
yb-vnmrs 700
Archive directory:
Sample directory:
FidFile: NRB-4-100-C-13C
Pulse Sequence: CARBoN (s2pul)
olvent: cdc13
Da collected on: Oct 162012

Sample Name:

Data Collected on:
Yb-vnmss 700
Archive directory:

Sample directory:
FidFile: NRB-4-100-D-1H

Pulse Sequence: PRoton (s2pul)
Solvent: cdcle
Data collected on: Oct 162012

7e

Sample Name:
$\begin{aligned} & \text { Data Collected on: } \\ & \text { Yb-vnmrs } 700\end{aligned}$
$\begin{aligned} & \text { Archive directory: }\end{aligned}$
Sin
Fample directory:
Pulse Sequence: CARBor (s 2 pu 1)
Solvent: cdc13
Data collected
Data collected on: Oct 162012

Sample Name:
Agilent Technologies

Data Collected on:
Yb-vnmrs 700
Archive directory
Archive directory

FidFile: NRB-4-22-X-13C
pulse Sequence: CARBon (s2pui)
Solvent: cde13
Data collected on: Oct 182012

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\BABIJIRACEMIC-NRB-4-11-PMP-Z-BUTENE-100-ADH-2.5\%IPA-0.75ml_min.Icd
Acquired by Sample Name Sample ID Tray\#
Vail \#
Injection Volume
Data File Name Method File Name Batch File Name Report File Name Data Acquired Data Processed Admin
RACEMIC-NRB-4-11-PMP-Z-BUTENE-100-ADH-2.5\%IPA-0.75ml min
: <SAMPLE>
$: 1$
$: 1$
: 1 uL
RACEMIC-NRB-4-11-PMP-Z-BUTENE-100-ADH-2.5\%IPA-0.75ml_min.lcd
: Cyclic Urea Method.Iom
:
Defaultior
10/24/2012 1:59:11 PM
10/24/2012 2:54:56 PM
<Chromatogram>
C:ILabSolutions\Data\BABIJIRACEMIC-NRB-4-11-PMP-Z-8UTENE-100-ADH-2.5\%IPA-0.75mi_min.Icd
mAU

1 PDA Mult $1 / 245 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDACh1 245 mm 4nm

Peak	Ret. Time	Area	Height	Area $\%$
1	44.346	12121126	126849	51.297
2	48.073	11508366	99562	48.703
Total		23629492	226411	100.000

8a

==== Shimadzu LCsolution Analysis Report ====

```
    C:ILabSolutions\DatalBABIJICHIRAL-NRB-4-11-PMP-Z-BUTENE-90-SSIPHOSPE-ADH-2.5%IPA-0.75ml_min.lcd
Acquired by
Sample Name :CHIRAL-NRB-4-11-PMP-Z-BUTENE-90-SSIPHOSP-ADH-2.5%/PA-0.75ml_min
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed :5/2/2012 7:02:07 PM
<Chromatogram>
```


1 PDA Mult $1 / 245 \mathrm{~nm} 4 \mathrm{~nm}$

PDACh1 245 mm 4 mm				
Peak\#	Ret. Time	Area	Height	Area \%
1	44.237	12187752	106584	86.224
2	49.097	1947258	15346	13.776
Total		14135011	121931	100.000

8a

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutionsiData\BABIJRACEMIC-NRE-4-101-34PMP-Z-BUTENE-100-PCY3-ADH-5\%IPA-0.75ml.Iod
Acquired by Sample Name Sample ID Tray\#
Vail \#
Injection Volume
Data File Name Method File Name Batch File Name
Report File Name Data Acquired Data Processed

<Chromatogram>

1 PDA Multi 1/205nm 4nm

PDA Ch1 205nm 4nm PeakTable				
Peakll	Ret. Time	Area	Height	Area \%
1	21.169	34368966	550494	49.582
2	24.035	34947914	487647	50.418
Total		69316880	1038141	100.000

8b

==== Shimadzu LCsolution Analysis Report ====

```
C:ILabSolutions\Data\BABIJICHIRAL-NRB-4-101-34PMP-Z-BUTENE-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.Icd
Acquired by
Sample Name : CHIRAL-NRB-4-101-34PMP-Z-BUTENE-100-NaOtBu-SSIPHOSPE-5%IPA-0.75
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: <SAMPLE>
:1
:1uL
CHIRAL-NRB-4-101-34PMP-Z-BUTENE-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.Icd
    : Cyclic Urea Method.Iom
: Defaulticr
    10/17/2012 9:55:54 PM
<Chromatogram>
```


1 PDA Mult $1 / 205 \mathrm{~nm} 4 \mathrm{~nm}$
Peak Table

PDA Chl 205 nm 4 nm (Pak Table					
Peak ${ }^{\text {a }}$	Ret Time	Area	Height	Area \%	Height \%
1	20.395	81981175	1343363	81.873	84.618
2	23.463	18150993	244195	18.127	15.382
Total		100132168	1587557	100.000	100.000

8b

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\BABIJIRACEMIC-NRB-4-95-pCl-Z-BUTENE-100-PCY3-5\%IPA-0.75ml_min.Jcd
Acquired by Sample Name Sample ID Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed Admin
: RACEMIC-NRB-4-95-pCl-Z-BUTENE-100-PCY3-5\%IPA-0.75ml_min
: <SAMPLE>
: 1
: 1
: 1 uL
RACEMIC-NRB-4-95-pCl-Z-BUTENE-100-PCY3-5\%IPA-0.75ml_min.lod
: Cyclic Urea Method.Iom
:
Defaulticr
: 10/10/2012 3:40-20 PM
: 10/10/2012 4:01:04 PM
<Chromatogram>

1 PDA Mult 1/190nm 4nm

PeakTable								
PDA Ch1 190nm 4nm								
Peak\#	Ret. Time	Area					Height	Area \%
1	13.356	10978832	430437	50.161				
2	18.045	10908139	295015	49.839				
Total		21886971	725452	100.000				

8c

==== Shimadzu LCsolution Analysis Report ====

==== Shimadzu LCsolution Analysis Report ====

1 PDA Mult 1/190nm 4nm
PDACh1 190 mm 4nm

Peak				
PeakTable				
Ret. Time	Area	Height	Area $\%$	
1	13.351	1900239	77384	9.636
2	17.847	17820385	506100	90.364
Total		19720624	583483	100.000

ent-8c

==== Shimadzu LCsolution Analysis Report ====

C:VLabSolutions\Data\BABIJIRACEMIC-NRB-4-74-pBr-Z-BUTENE-100-PCY3-5\%IPA-0.75ml_min.Icod

Acquired by Sample Name Sample ID Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed Admin
: RACEMIC-NRB-4-74-pBr-Z-BUTENE-100-PCY3-5\%IPA-0.75ml_min
: <SAMPLE>
: 1
$: 1$
: 1 ul
: RACEMIC-NRB-4-74-pBr-Z-BUTENE-100-PCY3-5\%IPA-0.75ml_min.lod
: Cyclic Urea Method.Icm
:
: Defaulticr
B/28/2012 6:58:36 PM
: 8/28/2012 7:25:17 PM

<Chromatogram>

1 PDA Multi 1/205nm 4nm
PeakTable

PDACh1 205 nm 4 mm				
Peak\#	Ret. Time	Area	Height	Area \%
1	14.517	154799302	3681642	49.793
2	19.163	156088664	2926638	50.207
Total		310887966	6608280	100.000

8d

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\BABIJJCHIURAL-NRB-4-74-pBr-Z-BUTENE-100-SIPHOSPE-5\%IPA-0.75ml_min.Iod
Acquired by Sample Name Sample ID

CHIURAL-NRB-4-74-pBr-Z-BUTENE-100-SIPHOSPE-5\%IPA-0.75ml_min Tray\# <SAMPLE
Tray\#
Vail \#\#
Injection Volume
Data File Name Method File Name Batch File Name Report File Name Data Acquired Data Processed \therefore : 1 uL
: CHIURAL-NRB-4-74-pBr-Z-BUTENE-100-SIPHOSPE-5\%IPA-0.75ml min.lcd : Cyclic Urea Method.Iom

> : Defaulticr
: B/28/2012 7:28:02 PM
: 10/19/2012 7:38:06 PM
<Chromatogram>

1 PDA Multi 1/205nm 4nm
PDA Ch1 205nm 4nm

Peaki	Ret. Time	Area	Height	Area \%
1	14.528	32443013	1090281	94.464
2	20.017	1901139	49794	5.536
Total		34344152	1140076	100.000

8d

==== Shimadzu LCsolution Analysis Report ====

```
C:LLabSolutions\Data\BABIJ\RACEMIC-NRB-4-102-pCN-Z-BUTENE-100-PCY3-5%IPA-0.75ml_min.Iod
Acquired by
Sample Name :RACEMIC-NRB-4-102-pCN-Z-BUTENE-100-PCY3-5%IPA-0.75ml_min
Sample ID
    <SAMPLE>
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed : 10/17/2012 5:22:38 PM
:1
:1
:1uL
RACEMIC-NRB-4-102-pCN-Z-BUTENE-100-PCY3-5%/PA-0.75ml_min.lod
    : Cyclic Urea Method.Icm
    :
    : Defaulticr
    : 10/17/2012 4:27:14 PM
<Chromatogram>
```


1 PDA Mult $1 / 205 \mathrm{~nm} 4 \mathrm{~nm}$

		PeakTable		
PDA Ch1 205nm 4nm				
Peakll	ReL Time	Area	Height	Area \%
1	33.091	38677775	559423	50.478
2	41.446	37945343	343252	49.522
Total		76623118	902676	100.000

8e

==== Shimadzu LCsolution Analysis Report ====

```
C:LLabSolutions\Data\BABIJICHIRAL-NRB-4-102-2-pCN-Z-BUTENE-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lod
Acquired by
Sample Name
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Batch File Name
Data Acquired
Data Processed
: Admin 
CHIRAL-NRB-4-102-2-pCN-Z-8UTENE-100-NaOtBu-SSIPHOSPE-5%IPA-0.75
: <SAMPLE>
:1
:1 ul
CHIRAL-NRB-4-102-2-pCN-Z-BUTENE-100-NaOtBu-SSIPHOSPE-5%1PA-0.75ml_min.lod
Cyclic Urea Method.lom
: Defaulticr
10/23/2012 6:10:26 PM
Data Processed : 10/23/2012 7:08:32 PM
<Chromatogram>
```


1 PDA Mult $1 / 205 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 205um 4nm

PeakH	Ret. Time	Area	Height	Area \%
1	33.160	57259672	784638	94.609
2	42.857	3262654	31536	5.391
Total		60522326	816174	100.000

8e

==== Shimadzu LCsolution Analysis Report ====

```
    C:LabSolutions\Data\BABIJRACEMIC-NRB-4-106-2-pNO2-Z-BUTENE-120-SSIPHOSPE-5%IPA-1.5ml_min.lod
Acquired by 
Sample Name
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Batch File Name
Data Acquired
Data Processed
: Admin
CHIRAL-NRB-4-106-2-pNO2-Z-BUTENE-120-SSIPHOSPE-5%IPA-1.5ml
    : <SAMPLE>
:<SA
Vail#
    :1
    : 1 uL
    : RACEMIC-NRB-4-106-2-pNO2-Z-BUTENE-120-SSIPHOSPE-5%IPA-1.5ml_min.Iod
    : Cyclic Urea Method.lom
    :
    : Defaulticr
    10/30/2012 4:06:25 PM
    10/30/2012 4:40:18 PM
```


<Chromatogram>

1 PDA Mult $1 / 310 \mathrm{~nm} 4 \mathrm{~nm}$

Peak Table				
PDAChl 310nm 4nm				
Peakll	Ret Time	Area	Height	Area \%
1	19.256	10775717	217860	49.820
2	25.832	10853467	168010	50.180
Total		21629184	385871	100.000

==== Shimadzu LCsolution Analysis Report ====

```
C:LLabSolutions\DatalBABIJICHIRAL-NRB-4-106-pNO2-Z-BUTENE-120-NaOtBu-SSIPHOSPE-5%IPA-1.5ml_min.lod Acquired by Sample Name Sample IO Tray\# Vail \#
Injection Volume
Data File Name Method File Name Batch File Name Report File Name Data Acquired Data Processed
<Chromatogram>
```


1 PDA Mult $1 / 310 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable				
PDA Chi 310 mm 4 nm				
Peakll	Ret Time	Area	Height	Area \%
1	19.106	10898189	210578	96.308
2	26.193	417817	6715	3.692
Total		11316006	217293	100.000

8f

Standard proton parameters
Sample Name:
Data Collected on:
To-vnmrs 500
To-vnmrs500
Archive directory:
Sample directory:
FidF1le: NRB-4-140-x-13C
Pulse Sequence: CARBON (s2pul)
olvent: cdc13
Data collected on: Jan 62013

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\BABIJ\RACEMIC-NRB-4-140-pCl-Ehexene-100-NaOtBu-PCy3-1.5\%aPA-1.5ml_min.Icd
Acquired by
Sample Name : RACEMIC-NRB-4-140-pCl-Ehexene-100-NaOtBu-PCy3-1.5\%IPA-1.5ml_min
Sample ID <SAMPLE>
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: 1
: 1
: 1 uL
RACEMIC-NRB-4-140-pCl-Ehexene-100-NaOtBu-PCy3-1.5\%IPA-1.5ml_min.lod
: Cyclic Urea Method.Iom
:
: Defaultiler
1/4/2013 4:14:52 PM
: 1/4/2013 4:58:59 PM
<Chromatogram>
C:ILabSolutions\Data\BABIJ\RACEMIC-NRB-4-140-pCl-Ehexene-100-NaOtBu-PCy3-1.5\%IPA-1.5ml_min.Icd mAU

1 PDA Mult $1 / 205 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable				
PDA Cal 205 mm 4 mm				
Peak\#	Rec. Time	Area	Height	Area \%
1	20.727	13698615	239789	50.749
2	37.695	13294427	136862	49.251
Total		26993042	376651	100.000

$8 \mathbf{g}$

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Datal8 Acquired by	ABIJCHIRAL-NRB-4-140-X-2-pCl-Ehexene-100-NaOtBu-SSIPHOSPE-1.5\%IPA-1.5mi_min.lod : Admin
Sample Name	: CHIRAL-NRB-4-140-X-2-pCl-Ehexene-100-NaOtBu-SSIPHOSPE-1.5\%IPA-1
Sample ID	: <SAMPLE>
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	: CHIRAL-NRB-4-140-X-2-pCl-Ehexene-100-NaOtBu-SSIPHOSPE-1.5\%/PA-1.5ml min.lod
Method File Name	: Cyclic Urea Method.Icm
Batch File Name	
Report File Name	: Defaulticr
Data Acquired	: 1/4/2013 4:59:58 PM
Data Processed	: 1/4/2013 5:42:12 PM

1 PDA Multi 1/205nm 4nm
PeakTable

PDA Chl 205nm 4nm				
Pcakll	Ret. Time	Area	Height	Area \%
1	19.956	18822079	322958	95.508
2	37.471	885292	10642	4.492
Total		19707371	333600	100.000

8 g

==== Shimadzu LCsolution Analysis Report ====

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

PDAChl 254 nm 4 nm				
Peak	Ret. Time	Arca	Height	Area \%
1	20.055	27108175	474557	50.964
2	33.734	26082514	222410	49.036
Total		53190689	696967	100.000

8h

==== Shimadzu LCsolution Analysis Report ====

<Chromatogram>

1 PDA Mult $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

PDACh1 254nm 4nm				
Peakt	Ret. Time	Area	Height	Area \%
1	20.939	5164727	95174	93.561
2	36.238	355461	4348	6.439
Total		5520188	99522	100.000

8h

Sample Name: Data Collected on: Yb -vnmrs 700 Archive directory: Sample directory: FidFile: NRB-4-134-X-13C Pulse Sequence: CARBON (s2pul) Solvent: cdcl3 Data collected on: Dec 192012	

==== Shimadzu LCsolution Analysis Report ====

C:....VDatalBABIJICHIRAL-NRB-4-123-pCl-1Br2MePropene-100-NaOtBu-SSIPHOSPE-5\%IPA-0.75ml_min.lcd
Acquired by
Sample Name
Sample ID
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: Admin
: CHIRAL-NRB-4-123-pCl-18r2MePropene-100-NaOtBu-SSIPHOSPE-5\%IPA-0
: <SAMPLE>
: 1
$: 1$
: 1 uL
: CHIRAL-NRB-4-123-pCl-1Br2MePropene-100-NaOtBu-SSIPHOSPE-5\%IPA-0.75ml_min.Icd
: Cyclic Urea Method.Iom
: Defaulticr
: 12/11/2012 6:02:30 PM
: 12/11/2012 6:43:19 PM
<Chromatogram>

1 PDA Mult $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

==== Shimadzu LCsolution Analysis Report ====

```
    C.L._Data\BABIJCHIRAL-NRB-4-134-X-pCl-1Br2MePropene-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lod
Acquired by
Sample Name : CHIRAL-NRB-4-134-X-pCl-1Br2MePropene-100-NaOtBu-SSIPHOSPE-5%IPA
Sample ID :<SAMPLE>
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Match File Name
Batch File Name
Data Acquired
Data Processed
Admin
:1
:1
: 1 ul
CHIRAL-NRB-4-134-X-pCl-1Br2MePropene-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml min.loc
: Cyclic Urea Method.Icm
: Defaulticr
<Chromatogram>
```


1 PDA Mult $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable					
PDA Ch1 254 nm 4nm					
PeakH	Ret. Time	Area	Height	Area \%	
1	13.819	40943767	1527198	93.771	
2	23.975	2719612	58406	6.229	
Total		43663379	1585604	100.000	

$8 i$

STANDARD PROTON PARAMETRRS
Sample Name:
$\begin{aligned} & \text { Data Collected on: } \\ & \text { Te-vims5000 }\end{aligned}$
Archive directory:
Sample directory:
FidFile: NRB-4-135-X-13C-2propene
Pulse Sequence: CARBON ($s 2$ pul)
Pulse Sequence: CARBON (s2pul)
Solvent: cdc13
Data collected on: Dec 212012

==== Shimadzu LCsolution Analysis Report ====

C:ILabSolutions\Data\BABIJRACEMIC-NRB-4-126-2-pCl-2Propene-100-PCY3-3\%IPA-0.75ml_min.Iod
Acquired by Sample Name Sample ID Tray\#
Vail \#
Injection Volume
Data File Name Method File Name Batch File Name Report File Name Data Acquired Data Processed
<Chromatogram>

8j

==== Shimadzu LCsolution Analysis Report ====

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable

PDA Ch1 254 nm 4 nm				
Peakll	Ret Time	Ares	Height	Area \%
1	22.761	6535743	152637	88.459
2	28.377	852687	14946	11.541
Total		7388431	167583	100.000

8j

==== Shimadzu LCsolution Analysis Report ====

```
            C:ILabSolutions\Data\BABIJRRACEMIC-NRB-4-55-pCl-TOLYL-100-PCY3-5%IPA-0.75ml_min.lod
Acquired by
Sample Name : RACEMIC-NRB-4-55-pCl-TOLYL-100-PCY3-5%IPA-0.75ml_min
Sample ID
    <SAMPLE>
Tray#
Tray#
Injection Volume
Data File Name
Method File Name
Match File Name
Batch File Name
Data Acquired
Data Processed : B/8/2012 3:10:15 PM
    :1
    .1
    :1
    : 1 uL
    RACEMIC-NRB-4-55-pCl-TOLYL-100-PCY3-5%IPA-0.75ml_min.lod
    : Cyclic Urea Method.Icm
    :Cy
    \Defaulticr
    : Default.lor 
<Chromatogram>
```


1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

		PeakTable		
PDACh1 254 nm 4 nm				
Peakll	Ret Time	Area	Height	Area \%
1	16.956	44268953	1299090	50.371
2	18.366	43617224	974723	49.629
Total		87886176	2273813	100.000

8k

==== Shimadzu LCsolution Analysis Report ====

```
C:ILabSolutions\Data\BABIJICHIRAL-NRB-4-92-2-pCl-4-TOLYL-100-NAOtBU-SSIPHOSPE-5%IPA-0.75ml_min.Iod
Acquired by
Sample Name
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: Admin
CHIRAL-NR
:1
:1
:1 (uL
:CHIRAL-NRB-4-92-2-pCl-4-TOLYL-100-NAOtBU-SSIPHOSPE-5%IPA-0.75ml_min.lod
: Cyclic Urea Method.Icm
    :
    : Defaulticr
    : 9/28/2012 4:49:24 PM
    : 9/28/2012 5:13:28 PM
<Chromatogram>
```


1 PDA Mult $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

		PeakTable		
PDACh1 254nm 4nm				
Peak ${ }^{\text {P }}$	Ret Time	Area	Height	Area \% $/ 8$
1	17.335	16104566	506093	92.981
2	19.436	1215674	32944	7.019
Total		17320240	539037	100.000

8k

==== Shimadzu LCsolution Analysis Report ====

Acquired by ${ }^{\text {C:ILab }}$	tionsiDatalBABIJIRACEMIC-NRB-4-86-pCl-OMe-100-PCY3-3\%IPA-0.75mi_min.lcd : Admin
Sample Name	: RACEMIC-NRB-4-86-pCl-OMe-100-PCY3-3\%IPA-0.75ml_min
Sample ID	: <SAMPLE>
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	: RACEMIC-NRB-4-86-pCl-OMe-100-PCY3-3\%IPA-0.75ml_min.lod
Method File Name	: Cyclic Urea Method.lom
Batch File Name	
Report File Name	: Defaulticr
Data Acquired	: 11/29/2012 6:05:51 PM
Data Processed	: 11/29/2012 7:24:45 PM

1 PDA Multi 1/204nm 4nm
PeakTable
PDA Ch1 204nm 4nm

| Peak | Ret. Time | Area | Height | Area \% |
| ---: | :--- | :--- | :--- | ---: | ---: |
| 1 | 48.326 | 123683130 | 1316190 | 50.164 |
| 2 | 52.485 | 122874255 | 830445 | 49.836 |
| Total | | 246557385 | 2146635 | 100.000 |

81

==== Shimadzu LCsolution Analysis Report ====

```
C:ILabSolutions\Data\BABIJ\CHIRAL-NRB-4-116-pCl-4-OMe-21-100-NaOtBu-SSIPHOSPE-3%1PA-0.75mi_min.lod
Acquired by
Sample Name
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
: Admin
<SAMPLE>
:1
:1
:1 uL
CHIRAL-NRB-4-116-pCl-4-OMe-21-100-NaOtBu-SSIPHOSPE-3%IPA-0.75ml_min.Icd
    : Cyclic Urea Method.Iom
: Defaulticr
: 11/29/2012 4:44:16 PM
    : 11/29/2012 6:04:21 PM
```


<Chromatogram>

1 PDA Mult $1 / 204 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable				
PDACh1 204nm 4mm				
Peakt	Ret. Time	Area	Height	Area \%
1	49.292	41066585	412959	92.385
2	55.654	3384865	26148	7.615
Total		44451450	439107	100.000

81

==== Shimadzu LCsolution Analysis Report ====

1 PDA Multi $1 / 245 \mathrm{~nm} 4 \mathrm{~nm}$

PDA Chi 245m 4nm PeakTable				
Peakt	Ret. Time	Area	Height	Area \%
1	21.348	6370242	157244	50.083
2	24.417	6349172	118480	49.917
Total		12719414	275724	100.000

8m

==== Shimadzu LCsolution Analysis Report ====

```
    C:ILabSolutions\Data\BABIJCHIRAL-NRB-4-96-pCl-PHENYL-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lco
Acquired by
Sample Name
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed : 10/10/2012 4:11:56 PM
: Admmin
    :<SAMPLE>
    :<S
    :1
    :1 ul
    : CHIRAL-NRB-4-96-pCl-PHENYL-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml min.Icd
    :Cyclic Urea Method.Icm
Oata Acquired
    : Defaulticr
    10/10/2012 3:37-24 PM
<Chromatogram>
```


1 PDA Mult $1 / 245 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable

PDA Chi 245 nm 4 nm PeakTable				
Peakil	Ret. Time	Area	Height	Area \%
1	21.087	32587442	843023	90.230
2	24.216	3528682	67790	9.770
Total		36116124	910813	100.000

8m

==== Shimadzu LCsolution Analysis Report ====

Acquired by	tionsiDatalBABIJTRACEMIC-NRB-4-58-pCl-CF3-100-PCY3-5\%IPA-0.75mi_min.Icd :Admin
Sample Name	: RACEMIC-NRB-4-58-pCl-CF3-100-PCY3-5\%IPA-0.75ml_min
Sample ID	: <SAMPLE>
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	: RACEMIC-NRB-4-58-pCl-CF3-100-PCY3-5\%IPA-0.75ml_min.lcd
Method File Name	: Cyclic Urea Method.Iom
Batch File Name	
Report File Name	: Defaulticr
Data Acquired	: B/10/2012 1:42:35 PM
Data Processed	: 8/10/2012 2:12:09 PM

1 PDA Multi 1/205nm 4nm

PDA Ch1 205nm 4nm PeakTable				
Peak $\#$	Ret. Time	Area	Height	Area \%
1	19.836	31756926	766828	49.635
2	26.478	32223518	510700	50.365
Total		63980444	1277528	100.000

8n

==== Shimadzu LCsolution Analysis Report ====

```
    C:ILabSolutions\Data\BABIJICHIRAL-NRB-4-107-pCl-4-CF3-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lod
Acquired by
Acquired by 
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
:<SAMPLE>
:<S
Data File Name
:1
:1uL
: CHIRAL-NRB-4-107-pCl-4-CF3-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lod
    : Cyclic Urea Method.Icm
    : Cyclic Urea
    : Defaulticr
    11/1/2012 1:56:29 PM
    : 11/1/2012 2:29:27 PM
```


<Chromatogram>

1 PDA Multi 1/205nm 4nm
PeakTable

PDACh1 205nm4nm PeakTa				
Peakl	Ret Time	Area	Height	Area \%
1	19.852	55981453	1343838	84.851
2	27.472	9994947	167907	15.149
Total		65976400	1511745	100.000

8n (with NaOtBu)

==== Shimadzu LCsolution Analysis Report ====

```
    C:ILabSolutions\Data\BABIJ\CHIRAL-NRB-4-83-pCl-CF3-95-NAOME-SSIPHOSPE-5%IPA-0.75ml_min.lod
Acquired by
Sample Name
Sample ID
CHIRAL-NRB-4-83-pCl-CF3-95-NAOME-SSIPHOSPE-5%IPA-0.75ml_min
    <SAMPLE>
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
    :1
    : 1 uL
    :CHIRAL-NRB-4-83-pCl-CF3-95-NAOME-SSIPHOSPE-5%IPA-0.75ml_min.Icd
    : Cyclic Urea Method.lom
    : Defaulticr
<Chromatogram>
```


1 PDA Mult $1 / 205 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA Ch1 205nm 4nm

Peakff	Ret. Time	Area	Height	Area $\%$
1	19.403	71981301	1731362	90.036
2	26.668	7966346	131922	9.964
Total		79947647	1863284	100.000

8n (with NaOMe)

==== Shimadzu LCsolution Analysis Report ====

Acquired by ${ }^{\text {C:LLab }}$	ionslData\BABIJRACEMIC-NRB-4-58-pCI-OCF3-100-PCY3-5\%IPA-0.75ml_min.lod : Admin
Sample Name	: RACEMIC-NRB-4-58-pCl-OCF3-100-PCY3-5\%IPA-0.75mi_min
Sample ID	: <SAMPLE>
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 ul
Data File Name	: RACEMIC-NRB-4-58-pCl-OCF3-100-PCY3-5\%IPA-0.75ml_min.Icd
Method File Name	: Cyclic Urea Method.lom
Batch File Name	:
Report File Name	: Defaulticr
Data Acquired	: B/10/2012 2:14:53 PM
Data Processed	: 8/10/2012 2:40:44 PM

1 PDA Mult $1 / 245 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable

PDACh1 245 nm 4 mm				
Pak\#	Ret Time	Area	Height	Ara \%
1	16.766	13936711	401672	50.472
2	19.105	13675829	298353	49.528
Total		27612540	700025	100.000

80

==== Shimadzu LCsolution Analysis Report ====

```
    C:ILabSolutions\DatalBABIJICHIRAL-NRB-4-94-pCl-4-OCF3-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.Iod
Acquired by
Sample Name
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Batch File Name
Data Acquired
Data Processed
: Admin
Sample Name
    : <SAMPLE>
:<S
Data File
:1
:1uL
:CHIRAL-NRB-4-94-pCl-4-OCF3-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lod
    : Cyclic Urea Method.Icm
    :Cy
    : Defaulticr
    :10/4/2012 10:46:14 AM
    10/4/2012 11:09:47 AN
```


<Chromatogram>

1 PDA Multi $1 / 245 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable

PDACh1 245 mm 4 nm				
Peak!	Ret Time	Area	Height	Area \%
1	17.124	74360169	1711279	87.935
2	19.768	10202360	209358	12.065
Total		84562529	1920637	100.000

80 (with NaOtBu)

==== Shimadzu LCsolution Analysis Report ====

```
    C:ILabSolutions\Data\BABIJICHIRAL-NRB-4-137-II-pCl-OCF3-100-NaOMe-SSIPHOSPE-5%IPA-0.75ml_min.Icd
Acquired by
Sample Name :CHIRAL-NRB-4-137-1-pCl-OCF3-100-NaOMe-SSIPHOSPE-5%IPA-0.75ml_m
Sample ID
Tray#
Tray#
Injection Volume
Data File Name
Method File Name
Batch File Name
Batch File Name
Data Acquired
Data Processed
    : <SAMPLE>
    :1
Data Processed : 12/23/2012 5.45.35 PM
<Chromatogram>
```


1 PDA Multi $1 / 245 \mathrm{~nm} 4 \mathrm{~nm}$

PDACh1 245nm 4nm Peak				
Peak	Ret. Time	Area	Height	Area \%
1	16.764	31880825	954387	92.755
2	19.756	2490104	57122	7.245
Total		34370929	1011509	100.000

80 (with NaOMe)

==== Shimadzu LCsolution Analysis Report ====

1 PDA Mult $1 / 248 \mathrm{~nm} 4 \mathrm{~nm}$

PDACh1 $248 \mathrm{~mm} 4 \mathrm{~nm} \quad$ PeakT				
Peakf	Ret Time	Area	Height	Area \%
1	27.381	48187230	552654	49.026
2	30.736	50102213	843446	50.974
Total		98289443	1396100	100.000

8p

==== Shimadzu LCsolution Analysis Report ====

```
C:ILabSolutions\DatalBABIJICHIRAL-NRB-4-94-pCl-3-OMe-100-NaOtBu-SSIPHOSPE-5\%IPA-0.75ml_min.Icd Acquired by Sample Name Sample ID
CHIRAL-NRB-4-94-pCl-3-OMe-100-NaOtBu-SSIPHOSPE-5\%IPA-0.75ml <SAMPLE>
Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
\(: 1\)
: 1
: 1 ul
: CHIRAL-NRB-4-94-pCl-3-OMe-100-NaOtBu-SSIPHOSPE-5\%IPA-0.75ml_min.lod
: Cyclic Urea Method.Icm
:
Defaulticr
10/4/2012 3:33:10 PM
: 10/4/2012 4:08:43 PM
<Chromatogram>
```


1 PDA Mult $1 / 248 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable				
PDA Chi 248 nm 4 nm				
Peakil	Ret Time	Area	Height	Area \%
1	27.173	5497076	67634	12.683
2	30.594	37845830	483921	87.317
Total		43342907	551556	100.000

8p

==== Shimadzu LCsolution Analysis Report ====

C:MLabSo	ns\DatalBABIJRACEMIC-NRB-4-90-pCl-2-napthyl-100-PCY3-5\%IPA-0.75mi_min.Icd : Admin
Sample Name	: RACEMIC-NRB-4-90-pCl-2-napthyl-100-PCY3-5\%IPA-0.75ml_min.lcd
Sample ID	: <SAMPLE>
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 ul
Data File Name	: RACEMIC-NRB-4-90-pCl-2-napthyl-100-PCY3-5\%IPA-0.75ml_min.lcd
Method File Name	: Cyclic Urea Method.Icm
Batch File Name	
Report File Name	: Defaulticr
Data Acquired	: 9/26/2012 1:51:54 PM
Data Processed	: 9/26/2012 2:25:28 PM

1 PDA Mult $1 / 215 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable				
PDA Chi 215 nm 4 nm				
Peakp	Ret Time	Area	Height	Ares \% $/ 8$
1	24.856	45755831	941390	49.764
2	28.662	46190576	639545	50.236
Total		91946407	1580935	100.000

8q

==== Shimadzu LCsolution Analysis Report ====

```
C:LabSolutions\DatalBABIJ\CHIRAL-NRB-4-107-2-pCl-2-napthyl-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lod Acquired by Sample Name Sample ID Tray\#
Vail \#
Injection Volume
Data File Name
Method File Name
Batch File Name
Report File Name
Data Acquired
Data Processed
```

: Admin
CHIRAL-NRB-4-107-2-pCl-2-napth-100-SSIPHOSPE-5\%IPA-0.75ml
: <SAMPLE>
: 1
: 1
: 1 ul
: CHIRAL-NRB-4-107-2-pCl-2-napthyl-100-NaOtBu-SSIPHOSPE-5\%IPA-0.75mi_min.lod
: Cyclic Urea Method.Icm
: Defaultiler
: 10/31/2012 5:21:45 PM
: 10/31/2012 6:05:47 PM

<Chromatogram>

1 PDA Mult 1/215nm 4nm

PeakTable				
PDACh1 215 mm 4 nm				
Peakf	Ret. Time	Area	Height	Area \%
1	24.372	129657052	2544179	87.682
2	28.231	18215094	271035	12.318
Total		147872146	2815214	100.000

8q

==== Shimadzu LCsolution Analysis Report ====

Acquired by ${ }^{\text {C:LLabS }}$	onsiData\BABIJRACEMIC-NRB-4-90-pCl-2-tolyl-100-PCY3-5\%IPA-0.75ml_min.lod : Admin
Sample Name	: RACEMIC-NRB-4-90-pCl-2-tolyl-100-PCY3-5\%IPA-0.75ml_min
Sample ID	: <SAMPLE>
Tray\#	: 1
Vail \#	: 1
Injection Volume	: 1 uL
Data File Name	: RACEMIC-NRB-4-90-pCl-2-tolyl-100-PCY3-5\%IPA-0.75mi_min.lcd
Method File Name	: Cyclic Urea Method.lom
Batch File Name	
Report File Name	: Defaulticr
Data Acquired	: 9/26/2012 11:30:07 AM
Data Processed	:9/26/2012 12:10-21 PM

1 PDA Mult $1 / 215 \mathrm{~nm} 4 \mathrm{~nm}$

PeakTable				
PDA Ch1 215 nm 4nm				
Peakit	Ret. Time	Area	Height	Area $\%$
1	19.869	39671328	972024	49.912
2	23.795	39810829	618614	50.088
Total		79482157	1590638	100.000

8r

==== Shimadzu LCsolution Analysis Report ====

```
    C:ILabSolutions\Data\BABIJICHIRAL-NRB-4-107-pCl-2-tolyl-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lod
Acquired by
Sample Name
Sample ID
Tray#
Vail #
Injection Volume
Data File Name
Method File Name
Batch File Name
Batch File Name
Data Acquired
Data Processed
: Admin 
<SAMPLE>
:<S
:1
:1 uL
: CHIRAL-NRB-4-107-pCl-2-tolyl-100-NaOtBu-SSIPHOSPE-5%IPA-0.75ml_min.lod
    : Cyclic Urea Method.lom
```


<Chromatogram>

1 PDA Mult $1 / 215 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable

PDA Ch1 21 nm 4nm							PeakTable
Peakf	Ret. Time	Area	Height	Area $\%$			
1	20.144	1240532	334865	70.853			
2	24.282	5076517	94929	29.147			
Total		17417049	429794	100.000			

8r

Sample Name:
Data Collected on:
Sn. Chem.LSA. UMich. edu-inova500
Archive directory:
Sample directory:
FidFile: NRB-4-122-1H

Pulse Sequence: PROTON (s2pul)
Solvent: Cdcl3
Data collected on: Dec 132012

9

> Sample Name:
> Data Collected on
> rchive directory:
> sumplo arroctory:
> FidFile: NRB-4-100-13C
pulse Sequence: CARBON (s2pul)
Data collected on: Oct 232012

12

Sample Name:
yb.chem. 1sa. umich. edu-vnmrs 700
Archive directory:
Sample directory:
FidFile: CARbon
Pulse Sequence: CARBON (22 pul)
Solvent: cdcl3
Data collected on: May 262013

9-epi-Batzelladine K (16) $\mathrm{CD}_{3} \mathrm{OD}$

