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CHAPTER I

Foundations: Equivariant Stable Homotopy Theory

1.1 Introduction

Our goal is to advance understanding of the homotopical equivariant complex

cobordism spectrum MUG of a finite abelian group G. This will be accomplished

on the one hand by concrete computation of the coefficients of MUG over the non-

equivariant unitary cobordism ring MU∗, generalizing results of Kriz [21], and on the

other hand, by concrete computation of the equivariant formal group law arising from

MUG, insofar as MU∗G is a complex oriented cohomology theory. The computation

of (MUG)∗ introduces a new Isotropy Separation Spectral Sequence, which tool has

broader application to the computation of the coefficients of equivariant spectra. We

will at times use cohomological grading MU∗G and at other times use homological

grading (MUG)∗ as convenient, since in any case these graded rings are just re-

indexings of each other.

The interest in equivariant formal group laws follows the non-equivariant case,

where Quillen’s Theorem establishes the universality of the formal group law corre-

sponding to cobordism MU∗ among formal group laws (cf. Ravenel [29]).

Theorem I.1. (Quillen) For any formal group law F over any commutative ring
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with unit R there is a unique ring homomorphism θ : MU∗ → R such that

F (x, y) = θFU(x, y),

where FU is the formal group law µ∗(x) = FU(x ⊗ 1, 1 ⊗ x) ∈ MU∗[[x ⊗ 1, 1 ⊗ x]],

and µ : CP∞ × CP∞ → CP∞ is the tensor product map.

That such a universal formal group law exists is trivial. Simply let

F (x, y) = x+ y +
∑
i,j

ai,jx
iyj

over the ring L generated by the ai,j subject to the minimal set of relations so that F

is a formal group law. Lazard [22] was the first to study the structure of this formal

group law in detail, and for this reason the ring of the universal formal group law,

which we know by Quillen’s theorem to be isomorphic to the complex cobordism

ring, is denoted by L and is called the Lazard ring. Quillen’s proof of Theorem I.1 in

[28] exhibited the isomorphism between the formal group law corresponding to the

complex cobordism ringMU∗ and the universal formal group law over the Lazard ring

L. Formal group laws in the non-equivariant sense play a crucial role in building a

lexicon between algebraic and topological information. Quillen’s Theorem represents

a key piece of this correspondence, allowing us to study the complex cobordism ring

using the algebra of formal group laws.

There is a corresponding notion of equivariant formal group laws. Any complex-

oriented equivariant cohomology theory has a naturally associated equivariant formal

group law. Since MU∗G admits a natural complex orientation, there is an associated

equivariant formal group law. Conjecture 2.4 of Greenlees [13] suggests that this

equivariant formal group law is algebraically universal for equivariant formal group

laws, and this is the proposed equivariant analog to Quillen’s Theorem. If proved,
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Greenlees’ Conjecture will allow similar algebraic methods to those developed in the

non-equivariant case to be carried over to the study of equivariant spectra.

Before we can proceed to compute the equivariant complex cobordism ring, we

must develop a sufficient scaffold of knowledge in equivariant stable homotopy theory.

One may ask, why should I care about equivariant stable homotopy theory? Beside

its inherent interest and anology with nonequivariant homotopy theory, Hill, Hopkins,

and Ravenel’s solution of the Kervaire Invariant One problem [16] demonstrated the

applicability of the structures of equivariant stable homotopy theory to important

problems in mathematics. Hill, Hopkins, and Ravenel show that elements of Kervaire

invariant one in π2j+1−2S
0 exist only for j ≤ 6, so that smooth framed manifolds of

Kervaire invariant one exist only in dimensions 2, 6, 14, 30, 62, and possibly 126.

Their proof relies heavily upon the structures of equivariant stable homotopy theory,

and the study of a Z/8-spectrum Ω.

Omitting some details, the Z/8-spectrum Ω is constructed by considering the

smash product

MUR ∧MUR ∧MUR ∧MUR

of four copies of the real cobordism spectrum as a Z/8-spectrum with action

(x1, x2, x3, x4) 7→ (x4, x1, x2, x3).

Ω is then obtained by inverting an equivariant version of the Bott periodicity class

and taking homotopy fixed points. The nonexistence of elements of Kervaire invariant

one follows from three theorems proved by Hill, Hopkins, and Ravenel [16]:

Theorem I.2. (Detection Theorem) Elements of Kervaire invariant one have nonzero

images in the homotopy groups of Ω.
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Theorem I.3. (Periodicity Theorem) The homotopy groups of Ω are periodic with

period 256.

Theorem I.4. (Gap Theorem) The homotopy groups of Ω in degrees −4 < i < 0

are all zero.

The result follows.

There have also been substantial recent developments within equivariant stable

homotopy theory, many of which concern complex cobordism, which will be discussed

in Section 1.5. Comezana and May [8] proved a completion theorem for complex

cobordism, and Greenlees and May [15] proved localization and completion theorems

for modules over complex cobordism. Kriz [21] computed the equivariant complex

cobordism ring of the p-primary cyclic group, and Strickland [31] gave a description

of generators and relations for the equivariant complex cobordism ring of Z/2. Sinha

[30] gave a non-constructive description of generators and relations for MUG when G

is a torus, and deduced generators for all abelian groups. Greenlees [13] proved that

the equivariant formal group law associated with the equivariant complex cobordism

spectrum classifies equivariant formal group laws over Noetherian rings. In light

of this recent progress, there has been a resurgence of interest in the subject, and

there is much to be gained from building up concrete algebraic descriptions of the

important objects of equivariant stable homotopy theory, and perhaps chiefly from

developing such an understanding of equivariant complex cobordism.

Thus, we proceed to develop equivariant stable homotopy theory at a level suitable

for our applications, and in the mean time note a curious result obtained by the

author and Kriz [3] pertaining to the foundations of the theory. In later chapters,

we will provide the promised computations in equivariant complex cobordism.
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1.2 The Equivariant Stable Homotopy Category

Our exposition most closely follows the standard source: Lewis, May, and Stein-

berger’s foundational book Equivariant Stable Homotopy Theory [23]. Let G be

a compact Lie group. A G-universe is a countably infinite dimensional real inner

product space on which G acts by isometries, which is the direct sum of its finite

dimensional G-invariant sub-inner product spaces, which contains infinitely many

copies of all of its finite-dimensional sub-inner product spaces, and which contains a

trivial representation of G. A complete G-universe U is a universe which contains

every irreducible representation of G. Recall that the regular representation of a

group G is the representation afforded by the action of G on itself by left translation.

If G is finite, this is given as the free real vector space generated by the elements

of G, and can be decomposed as the direct sum of the irreducible representations

of G with multiplicity their dimensions. If G is finite, the countable sum of copies

of the regular representation gives a canonical complete G-universe, and since this

work concerns finite groups, we will usually refer to the complete G-universe. A based

G-space is a based topological space equipped with a continuous G-action which acts

trivially on the basepoint. Given a finite-dimensional subrepresentation V of U , the

one-point compactification of V with basepoint at ∞ is a based G-space, denoted

SV . For V ⊂ W , write W − V for the orthogonal complement of V in W . For any

based G-space X define the suspension and loop spaces by V as

ΣVX = X ∧ SV and ΩVX = F (SV , X),

where X∧Y = (X×Y )/(X∨Y ) and F (X, Y ) is the function space of based G-maps

from X to Y .

We are now in a position to define equivariant prespectra. An indexing space
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in a G-universe U is a finite dimensional G-invariant sub-inner product space. An

indexing sequence is an increasing sequence A = {Ai|i > 0} of indexing spaces such

that A0 = {0} and U = ∪Ai. An indexing set A is a set of indexing spaces which

contains an indexing sequence. A G-prespectrum D indexed on an indexing set A

consists of based G-spaces DV for each finite-dimensional subrepresentation V ∈ A,

and, for V ⊂ W both in A, structure maps

σ : ΣW−VDV → DW ,

such that σ : Σ0DV → DV is the identity map, and for V ⊂ W ⊂ Z, the following

diagram commutes:

(1.1) ΣZ−WΣW−VDV

∼=
��

ΣZ−W σ // ΣZ−WDW

σ

��
ΣZ−VDV σ

// DZ .

Thus, whereas nonequivariant spectra are indexed over the integers, G-prespectra are

indexed over finite-dimensional representations of G. Let GT denote the category of

based G-spaces. Because of the space-level adjunctions

GT (ΣVX, Y ) ∼= GT (X,ΩV Y ),

the maps σ : ΣW−VDV → DW are equivalent data to based G-maps

σ̃ : DV → ΩW−VDW satisfying a similar commutative diagram, namely:

(1.2) DV

σ̃
��

σ̃ // ΩW−VDW

ΩW−V σ̃
��

ΩZ−VDZ ∼=
// ΩW−V ΩZ−WDZ .

A map f : D → E of G-prespectra indexed on A is then a collection of based G-maps

fV : DV → EV for V ∈ A finite-dimensional G-representations, such that for V ⊂ W
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the following diagram commutes:

(1.3) ΣW−VDV

σ

��

ΣW−V fV // ΣW−VEV

σ

��
DW fW

// EW .

While equivariant stable homotopy theory can be developed over arbitrary in-

dexing sets, we will usually work with the standard indexing set consisting of all

finite-dimensional subrepresentations of U . Moreover, we will usually work over the

complete universe U .

Following Lewis-May-Steinberger [23], the category of G-prespectra indexed over

the complete universe U in this way is denoted GPU . A G-prespectrum is an inclu-

sion prespectrum if the structure maps σ̃ are all inclusions. A G-prespectrum is a

G-spectrum if the maps σ̃ are all homeomorphisms, and the category of G-spectra

indexed over U is denoted GSU . The forgetful functor l : GSU → GPU has a left

adjoint L : GPU → GSU . In general, a construction of the functor L is complicated,

but for inclusion prespectra D - prespectra whose structure maps σ̃ are all inclusions

- we have

LD ∼= colim ΛV Σ∞DV ,

where ΛV Σ∞ : GT → GSU is thought of as “shift desuspension”, and is left adjoint

to the V th space functor Ω∞ΛV , both of which will be defined later. Because G-

prespectra were defined constructively and are well-understood, results about spectra

are generally proved for prespectra first then mapped over using L. For instance,

GSU has all colimits because GPU does, and left adjoints preserve colimits. GSU

also has all limits.

We will need to define a smash product

∧ : GSU ×GT → GSU
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of a spectrum with a space. This is defined as follows:

Definition I.5. Let D ∈ GPU be a G-prespectrum, and X ∈ GT be a based G-

space. Then D ∧X is defined by (D ∧X)V = DV ∧X for representations V , with

structure maps

σ = σ ∧ 1 : ΣW−V (DV ∧X) ∼= (ΣW−VDV ) ∧X → DW ∧X.

The spectrum level functor is then defined by letting E∧X = L(lE∧X) for E ∈ GSU

and X ∈ GT . One can define X ∧D and X ∧E analogously, and they are naturally

isomorphic to D ∧X and E ∧X, respectively.

We can also define function spectra.

Definition I.6. For D ∈ GPU and X ∈ GT , F (X,D) ∈ GPU is defined by

F (X,D)V = F (X,DV ), with structure maps

σ̃ : F (X,DV )→F (1,σ̃) F (X,ΩW−VDW ) ∼= ΩW−V F (X,DW ).

Definitions I.5 and I.6 allow us to define cylinders E ∧ I+, cones CE = E ∧ I,

suspensions ΣE = E ∧ S1, free path spectra F (I+, E), path spectra PE = F (I, E),

and loops ΩE = F (S1, E), where S1, I, and I+ all have trivial G-action, and the

subscript “+” denotes union with a disjoint basepoint. One also gets generalized

suspensions ΣVE = E ∧ SV and generalized loops ΩVE = F (SV , E) of spectra.

Several other functors are of interest. There is a “zero-th space functor”

GPU → GT

which sends D 7→ D0. This gives by restriction a functor

Ω∞ : GSU → GT .
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Infinite loop G-spaces and G-maps are those spaces and maps, respectively, which

lie in the image of Ω∞. This is an important class of spaces, studied for instance by

May in [25]. A good reference is the book [4] of Adams.

Conversely, for a space X ∈ GT , there is associated a suspension G-prespectrum

D such that DV = ΣVX, and the maps σ : ΣW−VDV → DW are determined by the

natural isomorphisms ΣW−V ΣVX ∼= ΣWX. We obtain a functor

Σ∞ : GT → GSU

by taking Σ∞X = LD, D as above. Σ∞ is left adjoint to Ω∞ ([23], Proposition

I.2.3).

Analogous to the zero-th space functor, we have for any Z in our indexing set the

Zth space functor

Ω∞ΛZ : GSU → GT ,

i.e. Ω∞ΛZ(E) = EZ . This functor also has a left adjoint, denoted

ΛZΣ∞ : GT → GSU .

It is constructed as follows: first map GT to GPU by sending X to the prespectrum

D such that DV = ΣV−ZX if Z ⊂ V , and DV = {∗} otherwise, and whose maps

are given by the obvious isomorphisms ΣW−V ΣV−ZX ∼= ΣW−ZX. Then apply the

functor L.

Let R denote the trivial representation of G. Then the functor ΛR
n
Σ∞ is denoted

simply by ΛnΣ∞, and likewise SR
n

is denoted simply as Sn, ΣR
n

=: Σn, etc. We can

also define the sphere spectra Sn ∈ GSU (in both positive and negative dimensions)

by

Sn = Σ∞Sn = ΣnΣ∞S0 ; S−n = ΛnΣ∞S0 for n ≥ 0.
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For closed subgroups H ⊂ G, we can define generalized spheres

SnH = (G/H)+ ∧ Sn.

This allows us to define the homotopy groups, for H ⊂ G, n ∈ Z, E ∈ GSU :

πHn E := π(SnH , E)G

is the homotopy classes of based G-maps from SnH to E.

Now we are in a position to define the weak equivalences in GSU . A map

f : D → E in GSU is a weak equivalence if for all H ⊂ G and n ∈ Z, the map

f∗ : πHn D → πHn E

is an isomorphism.

Before we can construct the equivariant stable category, we need to define the

proper equivariant notion of cell spectra. E ∈ GSU is a G-cell spectrum if there

are subspectra En (for n ≥ 0) of E, wedges Jn of spheres SqH (in positive and/or

negative dimensions), and maps jn : Jn → En, such that E0 = ∗, En+1 = Cjn is the

mapping cone, and E = ∪En. jn|Sq
H

are called attaching maps, and {En} is called

the sequential filtration of E. A map f : E → F of G-cell spectra is sequentially

cellular if f(En) ⊂ Fn for every n ≥ 0. A G-cell subspectrum of a G-cell spectrum

E is a subspectrum A ⊂ E that is itself a G-cell spectrum with sequential filtration

{An}, such that An ⊂ En, and the composite CSqH → An ⊂ A ⊂ E is a cell of E

with image in En. This just means that A is a union of cells from E.

A G-CW spectrum is a G-cell spectrum such that the attaching maps SqH → En

factor through only cells of dimension at most q. Thus, if E is a G-CW spectrum,

we obtain another filtration {En} of E called the skeletal filtration, where En is

the n-skeleton of E, or the union of cells of E with dimension at most n. A map
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f : E → F of G-CW spectra is cellular if it preserves the skeletal filtration, so that

f(En) ⊂ F n.

Let GCU denote the category of G-CW spectra indexed over the complete universe

U and cellular maps. Appropriate analogs of the Cellular Approximation Theorem,

Homotopy Extension and Lifting Property, Whitehead’s Theorem, and the Brown

Representability Theorem all apply (cf. [23], pp. 29-30). We document these results

here.

Theorem I.7. (Cellular Approximation) A map f : D → E of G-CW spectra that is

cellular when restricted to a cell subspectrum A of D is homotopic rel A to a cellular

map. Thus, any map of G-CW spectra is homotopic to a cellular map and any two

homotopic cellular maps are cellularly homotopic.

Theorem I.8. (HELP) Suppose D is a G-cell spectrum, A a cell subspectrum of D,

and e : E → F is a weak equivalance of G-spectra. Suppose hi1 = eg and hi0 = f in

the diagram

A
i0 //

��

A ∧ I+

h

{{

��

A
i1oo

��

g

~~
F Eeoo

D

f
??

i0
// D ∧ I+

h̃

cc

D.
i1

oo

g̃
``

Then there are maps h̃ and g̃ making the diagram commute, and the inclusion A→ D

is a cofibration.

Theorem I.9. (Whitehead’s Theorem) If e : E → F is a weak equivalence of G-

spectra and D is a G-cell spectrum, then e∗ : π(D,E)G → π(D,F )G is a bijection.

If E and F are G-cell spectra, then e is an equivalence of spectra.
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Theorem I.10. (Brown Representability Theorem) A contravariant functor

T : hGCU → Set,

where Set denotes the category of sets, is representable as TE = π(E,F )G for a

G-CW spectrum F if and only if T takes wedges to products and homotopy pushouts

to weak pullbacks.

In this context homotopy pushout is a double mapping cylinder and a weak pull-

back satisfies the existence part of the definition of a pullback, but not necessarily

the uniqueness part.

Thus it is possible, given a spectrum E ∈ GSU , to make a natural choice of a

weakly equivalent spectrum in GCU . In other words, working in homotopy categories,

there is a functor Γ : hGSU → hGCU and a natural weak equivalence γ : ΓE → E

for E ∈ GSU . This is Theorem I.5.12 of [23].

The equivariant stable homotopy category hGSU is then defined by formally

inverting the weak equivalences in hGSU . The exact procedure is discussed in Lewis-

May-Steinberger [23], but the crucial points are as follows. A spectrum D ∈ hGSU

is cocomplete if for every weak equivalence of spectra e : E → F ,

e∗ : π(D,E)G → π(D,F )G

is a bijection. By Whitehead’s Theorem, G-CW spectra are cocomplete in the ho-

motopy category of G-spectra, and by the Cellular Approximation Theorem every

G-spectrum E admits a cocompletion, which is the weak equivalence γ : ΓE → E.

We can then formally invert the weak equivalences, with maps from X → Y in the

resulting category corresponding to maps ΓX → ΓY , with composition carried over

from hGSU . Note then that the functor Γ : hGSU → hGCU is an equivalence.
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The process of inverting weak equivalences in this way can be done in more general

categories; the appropriate concept is the notion of a model category, as discussed in

Dwyer and Spalinski [10]. A model category is a category C with three distinguished

classes of morphisms, called weak equivalences, fibrations, and cofibrations, having all

the properties than one would expect morphisms so named to have. This is a useful

general concept for many applications in homotopy theory.

The equivariant stable category hGSU is a closed symmetric monoidal category,

meaning it has an associative, commutative, unital smash product functor (with

unit the sphere spectrum S = Σ∞S0), and a right adjoint function spectrum functor.

hGSU can be called a stable category because of the Desuspension Theorem:

Theorem I.11. ([23], Theorem I.6.1) For all finite dimensional real representations

V of G, the natural adjunction maps

η : E → ΩV ΣVE,

ε : ΣV ΩVE → E

in hGSU are isomorphisms, so that ΣV and ΩV are inverse self-equivalences of

hGSU .

The analogous result is not true before passage to the stable category. The Desus-

pension Theorem is proved by constructing inverse adjoint equivalences ΛV and ΛV of

hGSU , and such that ΛV is naturally equivalent to ΩV , hence ΛV is equivalent to ΣV .

The result follows. We will construct ΛV and ΛV in the Section 1.4. Theoerem I.11

allows us to write Σ−VE for ΩVE, since we can think of this as desuspension by the

representation V .
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1.3 Homology and Cohomology

Just as in the nonequivariant case, the stable category hGSU is equivalent to

the category of cohomology theories on G-spectra, where such cohomology theo-

ries are graded on the free abelian group RO(G) generated by the irreducible G-

representations. A virtual representation is an element a = V −W ∈ RO(G), where

V and W are sums of distinct irreducible representations. For a ∈ RO(G) as above,

we define a generalized sphere by Sa := Σ−WSV . Given a spectrum E ∈ hGSU , we

can now define E-homology and E-cohomology by

EaY = [Sa, Y ∧ E]G and EaY = [Y,ΣaE]G for G-spectra Y ,

as should be familiar from the non-equivariant case (cf. Adams [5]). We have not yet

defined the smash product of two spectra, but we will do so shortly, thereby making

sense of the above definitions. Of cousre, E∗(Y ) and E∗(Y ) are modules over π∗(E).

E∗ denotes the E-homology of a point, which is isomorphic to π∗(E
G). E∗ is the

E-cohomology of a point, and is also isomorphic to π∗(E
G) as non-graded rings. The

only difference between E∗ and E∗ is the grading, and in fact E∗ = E−∗. We will

have occasion below for both perspectives.

A spectrum E also gives (co)homology theories at the level of based G-spaces,

namely

Ẽ∗X = E∗(Σ
∞X) and Ẽ∗X = E∗(Σ∞X) for X ∈ GT .

All of this is recorded in [23].

We need now to define the smash product of twoG-spectra, and this can be done in

a coherent manner. In the process we will also define the function spectrum functor.

The constructions work as follows. First, we define an external smash product on
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prespectra

∧ : GPU ×GPU → GPU ⊕ U

by

(D ∧ E)(V⊕Z) = DV ∧ EZ

with structure maps

Σ(W−V )⊕(Y−Z)DV ∧ EZ ∼= ΣW−VDV ∧ ΣY−ZEZ →σ∧σ DW ∧ EY .

for prespectra D and E. The spectrum level definition is obtained by use of the

functor L, namely D ∧ E = L(lD ∧ lE) for spectra D and E.

We can also definite an external function spectrum functor

F : GPU ×GPU ⊕ U → GPU .

Here F (D,E)V = PU(D,E[V ]), where E[V ] ∈ GPU is the prespectrum with Zth

space E[V ]Z = EV⊕Z and structure maps induced by those of E. The structure maps

of F (D,E) are given by

σ̃ : PU(D,E[V ])→ PU(D,ΩW−VE[W ]) ∼= ΩW−VPU(D,E[W ]).

If E is a G-spectrum, then F (D,E) is also a spectrum, so F restricts to a functor

on categories of spectra. The external smash product is left adjoint to the external

function spectrum functor ([23], Proposition II.3.4).

Next, for a G-linear isometry f : U ⊕ U → U , one obtains a change of universe

functor f ∗ : GSU → GSU ⊕ U defined by (f ∗E)V = Ef(V ), with structure maps

σ : ΣW−VEf(V ) = Ef(V ) ∧ SW−V →1∧f Ef(V ) ∧ Sf(W )−f(V ) →σ Ef(W ).

f ∗ has a left adjoint f∗ : GSU ⊕ U → GSU , defined as follows.
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Definition I.12. For a prespectrum D ∈ GSU⊕U , (f∗D)V = Df−1(V )∧SV−f(f−1(V )),

with structure maps

Df−1(V ) ∧ SV−f(f−1(V )) ∧ SW−V ∼= Df−1(V ) ∧ Sf(f−1(W ))−f(f−1(V )) ∧ SW−f(f−1(W ))

→1∧f∧1 Df−1(V ) ∧ Sf
−1(W )−f−1(V ) ∧ SW−f−1(W ) →σ∧1 Df−1(W ) ∧ SW−f(f−1(W )).

We can now definite internal smash products and function spectra for spectra

D,E ∈ GSU by

D ∧ E = f∗(D ∧ E) and F (D,E) = F (D, f ∗E),

where the smash product and function spectra functors on the right are the external

versions. These functors give G-spectra in GSU as output. While this does depend

on the choice of G-linear isometry f : U ⊕ U → U . The following theorem from

Lewis-May-Steinberger saves us from this potential problem.

Theorem I.13. ([23] Theorem II.1.7) The functors f∗ : GSU → G→ GSU ′ induced

by the various G-linear isometries f : U → U ′ induce canonically and coherently

naturally equivalent functors on passage to the stable categories hGSU and hGSU ′.

Thus, we have constructed coherent smash product and function spectrum func-

tors for the stable category hGSU . The (co)homology theories defined above are

with respect to this smash product.

1.4 Shift Desuspension and Loop Space of Suspension Spectra

The functors Ω∞ΛV : GSU → GT and ΛV Σ∞ : GT → GSU defined above are

actually composites of the functors Ω∞ : GSU → GT and Σ∞ : GT → GSU with

functors ΛV ,Λ
V : GSU → GSU , respectively. We will define ΛV and ΛV for a real G-

representation V now, following Lewis-May-Steinberger [23]. The following functors,
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though constructed on the prespectrum level, preserve spectra, and hence restrict to

endofunctors of GSU .

Write U = U ⊕ V ∞ (pull out all the copies of V for bookkeeping purposes). The

finite dimensional representations in U may be written as W = Z + V n for some

Z ⊂ U and some n ≥ 0. For D ∈ GPU , define

σ̃+ : D(Z+V n−1) → ΩVD(Z+V n)

to be σ̃ composed with the homeomorphism ΩVD(Z+V n) → ΩVD(Z+V n) which rein-

terprets the loop coordinate as the (Z + V n+1) − (Z + V n) coordinate rather than

the (Z + V n)− (Z + V n−1) coordinate.

We can now define ΛVD as a prespectrum by ΛVD(Z+V n) = ΩVDZ if n = 0 and

ΛVD(Z+V n) = D(Z+V n−1) if n ≥ 1. We define

σ̃ : ΛVD(Z+V n) → ΩW−ZΛVD(W+V n)

and

σ̃ : ΛVD(Z+V n) → ΩV ΛVD(Z+V n+1)

in terms of the original σ̃ corresponding to D to be σ̃ = ΩV σ̃ if n = 0, and σ̃ = σ̃+

if n ≥ 1.

Similarly, we define ΛVD(Z+V n) = D(Z+V n+1), with structural maps defined in an

analogous way using the map

σ̃− : D(Z+V n) → ΩVD(Z+V n+1),

which is the composition of the original σ̃ corresponding to D and the inverse of

the homeomorphism used to construct σ̃+. Define σ̃ to be the ordinary σ̃ for D for

Z + V n ⊂ W + V n and σ̃− for Z + V n ⊂ Z + V n+1. ΛV and ΛV are inverse adjoint

equivalences of GSU ([23], Lemma I.7.2).



18

Now evidently shift desuspension ΛV and loop space ΩV are isomorphic functors

on passage to the stable homotopy category hGSU , though they are not in general

the same before inverting the weak equivalences. Nevertheless the present author and

Kriz show in [3] that shift desuspension and loop space do correspond for suspension

spectra - that is, spectra of the form Σ∞X for a based G-space X- before passage to

the stable category, and that is the main result of the paper referenced. This result

should perhaps have been obtained earlier, except that it was generally assumed to

be false. We present the theorem and its proof here.

Theorem I.14. (Abram and Kriz, [3]) For any X ∈ GT , there is a natural isomor-

phism

ΛV Σ∞X ∼= ΩV Σ∞X

in GSU .

Proof. LetA(V ) denote the indexing set of all finite-dimensional realG-representations

containing V . Let E(V ) be defined as a spectrum in GSA(V ) by defining, for

W ∈ A(V ),

(1.4) E(V )W = EW−V .

To define the structure maps, we need some notation. Let Eσ̃
W
Z denote the E-

structure map σ̃ : EZ → ΩW−ZEW . Then E(V ) has structure maps

(1.5) E(V )σ̃
W ′

W =E σ̃
W ′−V
W−V .

That the diagram (1.2) commutes for E(V ) follows from its commutativity for E, so

E(V ) is a G-spectrum after application of the spectrification functor L.

The spectrum E(V ) just constructed is in fact naturally isomorphic to ΩVE. To

see this, note that for W ∈ A(V ), the structure maps

(1.6) Eσ̃
W ′−V
W−V : EW−V → ΩVEW
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give an isomorphism

(1.7) E(V )W → ΩVEW .

That this gives an isomorphism on the level of spectra follows from the evident

diagram

(1.8) EW−V

σ̃W
W−V

��

σ̃W ′−V
W−V // ΩW ′−WEW ′−V

ΩW ′−W σ̃W
W ′−V��

ΩVEW // ΩW ′−WΩVEW ′ .

But by (1.2) both compositions in (1.8) are equal to ν−1σ̃W
′

W−V , where ν is the natural

isomorphism ΩW−V ΩW ′−WEW ′ → ΩW ′−VEW ′ . In more detail, composing νW ′−W,V ◦

ΩW ′−W σ̃W
′

W ′−V ◦ σ̃W
′−V

W−V , which is σ̃W
′

W−V by (1.2). Composing νW ′−W,V with the bottom

row with the left column gives νV,W ′−W ◦ ΩV σ̃W
′

W ◦ σ̃WW−V , which is σ̃W
′

W−V by (1.2).

By cofinality, ΛV Σ∞X is naturally isomorphic to LD, where D ∈ GPA(V ) is the

prespectrum with W -th space

DW = ΣW−VX,

with the obvious structure maps. This gives a functor from GPU to GPA(V ),

and this commutes with spectrification (the functor L) on inclusion prespectra. We

obtain an isomorphism

LD ∼= E(V ),

i.e.

(1.9) ΛV Σ∞X ∼= ΩV Σ∞X,

which is what was to be proved.

Despite Theorem I.14, it is widely expected that shift desuspension and loop

space should not correspond in general, since the obvious spectrum level maps fail
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to commute with the structure maps due to a switch of isomorphic representation

summands in the definition of ΛV . Surprisingly, this issue has not yet been settled.

1.5 Equivariant Complex Cobordism

Having developed the relevant foundations of equivariant stable homotopy theory,

we are now in a position to define our key object of study, namely, the homotopical

equivariant complex cobordism spectrum MUG. First we will recall some geometrical

history and definitions. An almost complex structure on a smooth real manifold M

of even dimension is a complex structure on its tangent bundle τM , i.e. a map

J : E(τM) → E(τM) which maps each fiber R-linearly into itself, and such that

J(J(v)) = −v for every v ∈ E(τM). An almost complex structure J on M is a

complex structure if every point x of M has a neighborhood U such that there is

a diffeomorphism h : U ∼= Cn whose derivative is complex linear. A smooth real

manifold M of arbitrary dimension (not necessarily even) is stably complex if there

is a k ≥ 0 such that M ⊕ Rk admits a complex structure. Similarly M admits a

stably almost complex structure if M⊕Rk admits a complex structure on its tangent

bundle. A manifold admits a stably complex structure if and only if it admits a

stably almost complex structure (cf. [27]). Two closed stably complex n-manifolds

are cobordant if together they comprise the boundary of an (n+1)-dimensional stably

complex manifold. Cobordism is an equivalence relation, and the set of equivalence

classes is a graded ring under disjoint union and Cartesian product. Call it the

complex cobordism ring, and denote it ΩU
∗ . Let MU(n) be the Thom space of the

universal complex n-bundle γn : EU(n)→ BU(n). With structure maps induced by

the classifying map of the bundle γn ⊕ 1, where 1 is a trivial line bundle, we get a

nonequivariant spectrum MU . MU has a very nice description.
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Theorem I.15. (Milnor) The coefficient ring

MU∗ ∼= Z[x1, x2, x3, . . .]

for elements xk ∈ π2kMU .

ΩU
∗ and MU∗ are isomorphic rings. The Pontrjagin-Thom construction - to which

we will return - provides the map ΩU
∗ → MU∗, and the map MU∗ → ΩU

∗ is given

by smooth approximation and a transversality argument. This works as follows,

following Milnor and Stasheff [27]. Let f : MU∗ → π∗(MU) be an isomorphism of

rings (non-graded), and suppose x ∈ MU∗. Then f(x) ∈ π∗(MU) is represented by

some map g : Sm → MU for some n. Sm is compact, so g has image inside some

MU(n). Now MU(n) is the Thom space of the canonical bundle γn : EU(n) →

BU(n). MU(n)−{∞} can be given the structure of a smooth manifold, and we can

approximate g by a homotopyic map g̃ such that g(z) = g̃(z) for every z ∈ g−1(∞)

and such that g̃ is smooth on g−1(MU(n)−{∞}). It can also be arranged for g̃ to be

transverse to the zero cross-section BU(n). Then g̃−1(BU(n)) is a smooth manifold,

and its cobordism class depends only on the homotopy class of g. This cobordism

class is the image of x ∈ MU∗ in ΩU
∗ . Complex cobordism gives a generalized

(co)homology theory via the spectrum MU .

Equivariantly (for compact Lie groups G) one can also define a geometric notion

of cobordism. ΩU
G∗ is the cobordism ring of smooth closed G-manifolds M equipped

with an equivalence class of embeddings

M → V ⊕ Rn,

where V is a complex G-representation, and the equivalence relation on embeddings

is defined in a standard way. In the end, the cobordism groups defined geometrically
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can be characterized as the homotopy groups of an equivariant spectrum that is not

indexed over the complete universe. The resulting equivariant cohomology theory is

not graded by representations. These naive equivariant complex cobordism groups

are very difficult to compute explicitly, perhaps as hard as the stable homotopy

groups of spheres.

One needs therefore a new notion, and the correct idea was first studied by tom

Dieck [33]. tom Dieck’s equivariant homotopical bordism spectrum MUG is what I

call equivariant complex cobordism, following Kriz [21], and we define this presently.

First, we must recall some basic definitions and geometric constructions. If X is an

inner product space on which G acts by isometries, and n is a non-negative integer,

the G-equivariant Grassmannian Gr(n,X) is the set of all linear G-subspaces of X

of dimension n. The Grassmannian Gr(n,X) can itself be given the structure of a

G-space.

We will also need the Pontryagin-Thom construction, which works as follows.

Suppose p : E → B is a real vector bundle over the paracompact base space B.

The Thom space T (E) with respect to the bundle E is defined as follows. Since B

is paracompact, the vector bundle p : E → B can be metrized. Let D(E) be the

subspace of elements of E with norm at most 1, and let S(E) be the subspace of E

with norm exactly 1. There is a corresponding “disk bundle” with total space D(E)

and a “sphere bundle” with total space S(E). The Thom space T (E) is defined by

T (E) := D(E)/S(E).

One can also define the Thom space without reference to a metric. The sphere bundle

S(E) is formed by taking the one-point compactification of each fiber. The Thom

space is then given by joining all the points of S(E) which were added when forming

the sphere bundle and using this as the basepoint.
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We will define MUG = LD for a suitable prespectrum D. Define D by

DV = Gr(n,U ⊕ V )γn ,

where on the right-hand side Gr(n,W )γn denotes the Thom space by the canonical

n-dimensional complex line bundle of the Grassmannian G-space of n-dimensional

C-subspaces of W . Here n is the complex dimension of the representation V . The

structure maps are induced by the classifying maps for γ ⊕ (W − V ).

MUG is a ring spectrum, but it is not Noetherian. This has proven to be an

obstacle to calculation (cf. Greenlees [13]), so nice descriptions of MU∗G are difficult

to obtain in general, but for G a finite abelian group useful descriptions may be

obtained, and this is what we develop in the next chapter. I will note also that the

homotopy groups π∗(MUG) have a geometric interpretation as stabilized cobordism

groups, given as the direct limit under suspension. This was done by Bröcker and

Hook [6].

The relationship between geometric and homotopical equivariant cobordism is not

as simple in the equivariant case. The Pontrjagin-Thom construction still works, but

transversality is false, so

MU∗G � ΩU
G∗.

This was studied by Wasserman [35].

We recall now some recent results pertaining to equivariant complex cobordism.

In [31], Strickland gives an explicit and simple description of MUZ/2 via generators

and relations:

Theorem I.16. (Strickland) Let L = {
∑
aijx

iyj} denote the Lazard ring. Let R be

generated over L by elements sij (i, j ≥ 0) and ti (i ≥ 0) subject to the following
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relations:

t0 = 0;

s10 = 1;

si0 = 0 for i > 1;

tk − s0k = s00tk+1;

sjk − ajk = s00sj+1,k.

Give R a grading by |sij| = |aij| = 2(1− i− j) and |tk| = 2(1− k). Then there is an

isomorphism R ∼= MU∗Z/2 as graded MU∗-algebras.

Such explicit descriptions for more general MUG would be valuable, and this is

a worthy area for further research. To obtain his result, Strickland makes use of a

pullback diagram of Kriz [21] describing MUZ/p, to which we will return. A good

first step toward a more general result would be a similar diagram for MUG, for more

general G. In Chapter II we give such a description for G finite abelian.

In [13], Greenlees proves the following theorem:

Theorem I.17. (Greenlees) For a finite abelian group G, MU∗G classifies G-equivariant

formal group laws over Noetherian rings, in the since that there is a homomorphism

of rings from the G-equivariant analogue LG of the Lazard ring to MU∗G that is

surjective and whose kernel is Euler-torsion, Euler-divisible and Z-torsion.

Euler-torsion and Euler-divisibility refer to being torsion and divisible with respect

to equivariant Euler classes. We will return to the concept of equivariant Euler classes

soon. Greenlees conjectures that MU∗G classifies G-equivariant formal group laws in

general for any abelian compact Lie group G. This motivates a study of the algebraic

structure of the equivariant formal group law of equivariant complex cobordism, and

this is discussed in Chapter III.
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1.6 Sinha’s Computation

The goal of the present thesis is to give an explicit description of the equivariant

complex cobordism ring (MUG)∗ of a finite abelian group. Another computation of

(MUG)∗ is due to Sinha [30]. Sinha’s computation relies heavily upon the following

theorem of Comezaña [8].

Theorem I.18. (Comezaña) For any abelian group G, (MUG)∗ is a free MU∗-

module concentrated in even degrees.

To state Sinha’s result, we will need to know what is meant by an equivariant

Euler class. Let CP∞G = CP (U) be the complex projective space on the complete

G-universe, and let γG be the corresponding universal bundle. Since MUG admits a

canonical complex orientation, we can let e ∈ M̃U
2

GT (γG) be the orientation class,

where T denotes the Thom space. Let V be a finite dimensional complex repre-

sentaiton of G of real dimension 2k. Then there is a corresponding Euler class

eV ∈ M̃U
2k

G T (γG ⊗ V ), where in γG ⊗ V , the V is thought of as a G-gundle over a

point. This is given as follows, following Kriz [20]. If L is an irreducible complex

G-representation, then eL ∈ M̃U
2

GT (γG ⊗ L) is the image of e under the map

(1.10) M̃U
2

GT (γG)→ M̃U
2

GT (γG ⊗ L)

induced by the classifying map φ : CP∞G → CP∞G of the bundle γG ⊗ L. Now if

V = L1 ⊕ L2 ⊕ · · · ⊕ Lk, then

(1.11) eV =
k∏
i=1

eLi
,

where the product on the right hand side of 1.11 is calculated by the Thom diagonal.

We will discuss equivariant complex orientation more in Chapter III, where they will

be used to compute equivariant formal group laws.



26

Let (S1)n be a torus, let V be a non-trivial irreducible complex representation

of (S1)n, and let eV be the Euler class associated to V . Let K(V ) / (S1)n be the

subgroup that acts trivially on V , and for all subgroups H of (S1)n let

res
(S1)n

H : (MU(S1)n)∗ → (MUH)∗

be the homomorphism of algebras obtained by restriction to the subgroup H. By

Comezaña’s Theorem, we may fix a splitting sV of res
(S1)n

K(V ) as MU∗-modules, though

this splitting need not be unique nor a ring homomorphism. Let βV serve as an

abbreviation for the composition sv ◦ res
(S1)n

K(V ). Sinha defines an MU∗-linear operation

ΓV : (MU(S1)n)∗ → (MU(S1)n)∗ as follows:

Definition I.19. (Sinha) For x ∈ (MU(S1)n)∗, ΓV (x) ∈ (MU(S1)n)∗ is the unique

class such that

eV · ΓV (x) = x− βV (x).

Sinha’s computation in [30] is accomplished by the following theorem.

Theorem I.20. (Sinha) As an MU∗-algebra, (MU(S1)n)∗ is generated over the op-

erations ΓV by the classes eV and [CP (m ⊕ V )], where m ranges over the natural

numbers and V ranges over the non-trivial irreducible complex representations of

(S1)n, subject to the following relations:

(a) eV ΓV (x) = x− βV (x)

(b) ΓV (βV (x)) = 0

(c) ΓV (eV ) = 1

(d) ΓV (xy) = ΓV (x)y + βV (x)ΓV (y) + ΓV (βV (x)βV (y))
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(e)

ΓV (ΓW (x)) = ΓW (ΓV (x))ΓW (ΓV (βW (x)))

− ΓW (ΓV (eW ))βV (ΓW (x))− ΓW (ΓV (βV (eW )βV (ΓW (x))),

for any classes x and y in (MU(S1)n)∗.

Sinha also gives a surprising short exact sequence

0→ (MU(S1)n)∗ →·eV (MU(S1)n)∗ →res
(S1)n

K(V ) (MUK(V ))∗ → 0.

This short exact sequence can be used to recover generators of (MUG)∗ for any

abelian group G. Due to the highly non-constructive proof of Comezaña’s Theo-

rem I.18, Sinha’s generators are therefore necessarily non-explicit. What is remark-

able about Theorem I.20 applied to (MUS1)∗ is that changing generators within the

choices allowed leads to an isomorphism of rings with relations of the same form.

In the next chapter, we will develop a more explicit algebraic description of

(MUG)∗ for a finite abelian group G. In the sense that we both make heavy use

of localization by inverting Euler classes, our techniques are similar to that of [30].

However, utilizing the well-known Tate diagram, we obtain a more explicit descrip-

tion of (MUG)∗ as an MU∗-module. In the case G = Z/pn our description takes the

form of an n-fold pullback diagram, generalizing the result of Kriz [21] for G = Z/p.

The description for a general finite abelian group is as the limit of a diagram ob-

tained from several multifold pullbacks, one for each maximal series in G. Thus, we

rely on induction arguments, and our result does not extend beyond the finite case.

Nonetheless, we believe this work will facilitate computations in equivariant stable

homotopy theory that were not possible before.



CHAPTER II

Computing The Equivariant Complex Cobordism Ring

Our goal is to build on the techniques of Kriz [21] to compute coefficients of the

G-equivariant complex cobordism ring MUG. We will develop this theory for G a

finite abelian group.

2.1 Previous Work: The Case G = Z/p

Let F denote Lazard’s universal formal group law, and let V G denote the G-fixed

points of V . In [21], Kriz proves the following theorem.

Theorem II.1.

(2.1) (MUZ/p)∗

��

//MU∗[uk, u
−1
k , b

(i)
k |i > 0, k ∈ (Z/p)×]

φ

��
MU∗[[u]]/([p]Fu) ι //MU∗[[u]]/([p]Fu)[u−1]

is a perfect square and a pullback of rings, where ι is localization and φ(b
(i)
k uk) is the

coefficient of xi in x+F [k]Fu, where b
(0)
k = 1. This determines φ, since its target is

a domain.

A perfect square is a diagram that is both a pushout and pullback of abelian

groups. To prove this theorem, Kriz considered the Tate diagram

28
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(2.2)

(EZ/p+ ∧MUZ/p)
Z/p //

'
��

(MUZ/p)
Z/p

��

// ΦZ/pMUZ/p

��

(EZ/p+ ∧ F (EZ/p+,MUZ/p))
Z/p // F (EZ/p+,MUZ/p)

Z/p // M̂UZ/p.

The bottom right corner of the diagram denotes the Tate spectrum

(2.3) ÊG = (ẼG ∧ F (EG+, EG))G,

when EG is a G-spectrum. The top right corner of the diagram is the geometric fixed

points of MUZ/p, which are defined as follows.

Definition II.2. For a G-spectrum E over a complete universe U , D := lE,

l : GSU → GPU the forgetful functor from spectra to prespectra, the geometric

fixed points are defined by

ΦGE = L(lim−→Σ−V
G

DG
V ).

Lewis-May-Steinberger observe that, for E ∈ GSU , N E G, and J = G/N , UN

the J-universe obtained by taking N -fixed points of each finite dimensional subrep-

resentation of U , there is a natural weak equivalence in JSUN :

(2.4) ΦNE ' (ẼF [N ] ∧ E)N ,

where F [N ] = {H ⊆ G : N is not contained in H}. Thus, these spectra have the

same homotopy groups. The notation of familes F and their classifying spaces EF

will be revisited and explained in Section 2.2.

Proposition 2.5 of [21] states that, after passage to Z/p-equivariant homotopy

groups, the right-most square of the diagram (2.2) becomes the diagram (2.1). The
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hardest part of the proof of Theorem II.1 is then to compute the map φ, for which

Kriz used tom Dieck’s calculation of the geometric fixed points ΦZ/pMUZ/p in [34].

One useful property is that ẼZ/p has an infinite sphere model. Namely, if V is the

direct sum of the nontrivial irreducible real representations of Z/p, then

(2.5) ẼZ/p = S∞V = holim−→(S0 ⊂ SV ⊂ S2V ⊂ · · · ).

We will see the relevant techniques again, so we will not repeat Kriz’s argument

here.

2.2 The General Case

The main result of the present thesis is the extension of Kriz’s computation,

recorded in Section 2.1, to the case of a finite abelian group. This result is also

recorded in the paper [2]. Before we can state the result, we need to recall some

definitions from Lewis-May-Steinberger [23].

Definition II.3. A family F of subgroups of a finite group G is a collection of

subgroups that is closed under subconjugation. Given a family F , a based G-space

E is an F-space if the isotropy group of each of its points other than the basepoint

is in F . An F-CW complex is a G-CW complex such that the domain of every

attaching map is of the form SnH for some H ∈ F . An F -space E is said to be

universal if, for any (unbased) F -CW complex X, there is a unique homotopy class

of G-maps X → EF . EF must have the homotopy type of a G-CW complex,

and this restriction ensures that EF is unique up to equivalence. An alternative

characterization is that (EF)H be empty if H /∈ F and nonempty and contractible

if H ∈ F . EG is universal for the trivial family {e}.
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Having defined EF , ẼF is defined via a cofibration sequence

EF+ → S0 → ẼF .

Therefore ẼF
H
' S0 if H /∈ F and ẼF

H
' ∗ if H ∈ F . The main families needed

for this work are the family F(H) of subgroups contained in a given subgroup H ⊆ G,

and the family F [H] of subgroups not containing H. As is standard, we write EG/H

for the universal space EF(H), and this is consistent with the definition of EG above.

Let G be a finite abelian group. Let P (G) denote the partially ordered set of all

nonempty sets S = {H1 ( H2 ( · · · ( Hk} of subgroups of G which are totally

ordered by inclusion. The ordering on P (G) is given by S ≤ T if and only if S ⊆ T ;

that is, every subgroup in S is also in T .

Let X be a G-equivariant spectrum indexed on the complete G-universe U . We

define a functor

Γ = ΓG,X : P (G)→ GSU

as follows:

(2.6)

Γ(S) = F (EG/Hk+, ẼF [Hk] ∧ F (EG/Hk−1+, . . . ∧ F (EG/H1+, ẼF [H1] ∧X) . . .)).

There is a canonical natural morphism of G-spectra

(2.7) Y → F (EG/H+, ẼF [H] ∧ Y ),

and the effect of Γ on arrows is defined by iterating these maps. Iterating the maps

(2.7) also gives a canonical natural transformation

(2.8) ConstX → Γ,

where ConstX is the constant functor on P (G) with value X. The following theorem

is our main result:
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Theorem II.4. For a finite abelian group G and X = MUG the G-equivariant

complex cobordism spectrum, applying the homotopy groups functor π∗ to (2.8) gives

an isomorphism

(2.9) MUG∗ →
∼= lim
←

Γ(S)∗.

By a transitivity argument, it suffices to take the inverse limit on the right side

of (2.9) over the restriction of Γ to the subset P ′(G) ⊂ P (G) of sets S consisting

of either a single group or a pair of groups H1 ( H2 which do not contain any

intermediate subgroups. Also note that the validity of the isomorphism (2.9) in

the category of abelian groups automatically implies its validity in the category of

commutative rings, since the isomorphism concerns an inverse limit.

Before we prove Theorem II.4, we will compute the functor ΓG,MUG
. Together

with Theorem II.4, this computation will constitute an explicit description of the

ring (MUG)∗ for the finite abelian group G. By (2.4), (ẼF [H1] ∧MUG)H1
∗ is the

geometric fixed points ΦH1MUG. It follows by Corollary 10.4 of [33] that

(2.10) (ẼF [H1] ∧MUG)H1
∗ = MUG∗[u

±1
L , u

(i)
L |i > 0, L ∈ H∗1 ],

where A∗ = Hom(A, S1) and A = A − {0}. We set u
(0)
L = uL. Under the canonical

map of (2.10) into

(ẼF [H1]∧F (EG+,MUG))H1
∗ = MUG∗[[uL|L ∈ H∗1 ]]/(uL+FuM = uLM)[u−1

L |L ∈ H∗1 ],

we have

(2.11) u
(i)
L 7→ the coefficient of xi in x+F uL.

We will proceed via an induction argument. Assume we have calculated the

coefficients of the Hj−1-spectrum

(2.12) MUS,j−1 = ( ˜EF [Hj−1] ∧ F (EG/Hj−2, . . . ẼF [H1] ∧MUG) . . .))Hj−1 .
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MUS,j−1 is a split Hj/Hj−1-spectrum only for j = 2. Here a G-spectrum E is split

if there is a nonequivariant map ζ : E → EG such that the composite E → EG → E

with the inclusion EG → E is homotopic to the identity. In any case, the Borel

cohomology spectral sequence associated with

(2.13) F (EG/Hj−1+,MUS,j−1)
Hj
∗

collapses by evenness. It follows that (2.13) has an associated graded object isomor-

phic to

(2.14) (MUS,j−1)
Hj−1
∗ BHj/Hj−1.

The coefficients

(2.15) (ẼF [Hj] ∧ F (EG/Hj−1+,MUS,j−1))
Hj
∗

are computed from (2.13) by inverting the Euler classes uL of the irreducible complex

representations L of Hj which are non-trivial on Hj.

Let Rj, for j ∈ {0, . . . , k}, be G/Hj-representatives of the irreducible non-trivial

complex Hj+1/Hj-representations, where H0 = {e} and Hk+1 = G. Define a ring

(2.16)

AS = MU∗[uL, u
−1
M , u

(i)
N |i > 0, L ∈ R0

∐
· · ·
∐

Rk,M ∈ R0

∐
· · ·
∐

Rk−1, N ∈ R0].

We define a topology TS on the ring AS as follows. A sequence of monomials

at
∏

L∈R1
∐
···

∐
Rk

u
n(L,t)
L ∈ AS

with

0 6= at ∈MU∗[u
±1
L , u

(i)
L |i > 0, L ∈ R0]

converges to 0 if and only if there exists a j ∈ {1, . . . , k} such that n(L, t) is eventually

constant in t for L ∈ Ri, i > j, and n(L, t)→t ∞ for L ∈ Rj. A sequence 〈pt〉 from
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AS converges to 0 if and only if for all choices of monomial summands mt of pt, the

sequence of monomials 〈mt〉 converges to 0 in t. A set T ⊂ AS is closed with respect

to TS if and only if the limit of every sequence in T convergent in AS is in T .

We can define a closed ideal IS ⊂ AS as follows. Let IS be generated by the

relations

uL1 +F uL2 =

(
m∑
i=1

)
F

uMi
,

where

L1L2
∼=

m∏
i=1

Mi

and there is a j ∈ {1, . . . k} such that

L1, L2 ∈ Rj

and

Mi ∈ Rj+1

∐
· · ·
∐

Rk.

Since AS, TS, and IS depend on the group G, we will sometimes denote them by

AG,S, TG,S, and IG,S, respectively, when there is a possibility of ambiguity. We are

now able to describe the coefficients of the spectrum Γ(S)∗.

Theorem II.5. For S ∈ P (G), the coefficients of the image of S under the functor

Γ : P (G)→ GSU are

(2.17) Γ(S)∗ = (AS)T̂S/IS,

i.e. the completion of AS with respect to TS, modulo the closed ideal IS.

What is meant by the completion of AS at TS is the following. With TS, AS is

a topological ring. There is a topological ring R containing AS as a dense subring

enducing TS as the subspace topology, and such that R is complete. R can be

constructed by Cauchy sequences in the standard way.
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Proof. We will proceed by induction on the order of G and the order k of S. If

|G| = 1 the statment is obvious, and for k = 1 the computation (2.10) of tom Dieck

is already sufficient. Suppose k > 1, and assume Hk 6= G. Filter the ring

(AG,S)TG,S
/IG,S

by powers of the ideal

(uL|L ∈ Rk).

The associated graded ring is by definition

((AHk,S)T̂Hk,S
/IHk,S)[[uL|L ∈ Rk]]/(uL +F uM = uLM),

which coincides with (2.14) by the inductive hypothesis. The filtration coincides with

the Borel cohomology spectral sequence, so the statement follows.

Remaining is the case Hk = G. In this case we have, by definition,

(AG,S)T̂G,S
/IG,S = (AG,S−{G})T̂G,S−{G}

/IG,S−{G}[u
−1
L |L ∈ Rk].

This is Γ(S)∗ by the induction hypothesis and (2.10).

We still need to compute Γ on arrows. This is determined by

uL 7→ uL

and

u
(i)
L 7→ coeffxi(x+F uL).

Since the description of Γ(S)∗ in Theorem II.5 depends on choices of G/Hj-

representatives of the irreducible complex Hj+1/Hj-representations, we need also

to understand the nature of this dependence. Thus, we must specify how our de-

scription changes when different representatives are chosen. For j > 1, replacing L
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by

L′ = L
m∏
i=1

Mi,

with Mi ∈ Rj+1

∐
· · ·
∐
Rk, we use the relation

uL′ = uL +F uM1 +F · · ·+F uMm .

For j = 1, we use the relation

uL′ +F x = uL +F (uM1 +F · · ·+F uMm +F x).

This is done by comparing coefficients at xi, where

uM1 +F · · ·+F uMm +F x

is expanded as a power series in x.

Having completed our description of the functor Γ, it remains is to prove The-

orem II.4. Before we proceed to the proof, we will prove an easier derived state-

ment. Note that the natural transformation (2.8) induces a canonical morphism of

G-spectra

(2.18) ηX : X → ho lim
←

Γ.

Theorem II.6. ηX is an equivalence of G-spectra for any G-spectrum X.

Proof. We will proceed by induction on the order of G. If |G| = 1, the statement

is obvious. Assume inductively that the statement is true for G′-spectra whenever

|G′| < |G|. Let

P̌(G) = {S ∈ P (G)|G /∈ S}.
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Let D be the diagram

(2.19) ẼF [G] ∧X

��

ho lim← Γ|P̌(G)
// ẼF [G] ∧ ho lim← Γ|P̌(G).

Transitivity of homotopy limits gives an equivalence

(2.20) ho lim
←

Γ→ ho lim
←
D.

Recall that EG/G = ∗. Clearly if H ( G, there is a canonical inclusion P (H) ⊆

P̌(G). Let

Q = {H ( G}

be partially ordered by inclusion. Consider the functor

H → ho lim
←

Γ|P (H)

on Q.

There is a canonical equivalence

(2.21) ho lim
←

(ho lim
←

ΓP (H))→
∼= ho lim

←
Γ|P̌(G),

where the left-most homotopy limit is taken over Q.

Since by the induction hypothesis

F (EG/H+, X)→ ho lim
←

ΓP (H)

is an equivalence for every H ∈ Q, (2.21) gives a canonical equivalence

(2.22) F (EF [G]+, X) = ho lim
←
F (EG/?+, X)|Q →

∼= ho lim
←

Γ|P̌(G).
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It follows that if we let E be the diagram

(2.23) ẼF [G] ∧X

��

F (EF [G]+, X) // ẼF [G] ∧ F (EF [G]+, X),

the canonical map

(2.24) ho lim
←
E → ho lim

←
D

is an equivalence. This commutes with the canonical morphism

(2.25) X → ho lim
←
E .

The fiber of the canonical morphism

X → ẼF [G]

maps to the fiber of the bottomw row of E by the canonical equivalence

EF [G]+ ∧X → EF [G]+ ∧ F (EF [G]+, X),

hence the canonical morphism (2.25) is an equivalence, which proves the theorem.

While the derived Theorem II.6 was proved for any G-spectrum X, the isomor-

phism (2.9) of the main Theorem II.4 concerns the equivariant complex cobordism

spectrum MUG, and relies on its specific properties. We will prove Theorem II.4 by

induction. Extending the methods of Section 2.1, the computation of MUG requires

an isotropy separation argument, with computations at various fixed point spectra.

The definition (2.6) of Γ comes from iterating the Tate diagram construction and

computing geometric fixed points, and this entails a discussion of a slightly more

general class of spectra. Namely, we have the following definition.
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Definition II.7. The generalized equivariant complex cobordism classMU =
⋃
MUG

is the smallest class of G-equivariant spectra for all G finite abelian such that:

(1) MUG ∈MUG;

(2) If R ∈MUG and H ( G, then the geometric fixed points

ΦHR = (ẼF [H] ∧R)H ∈MUG/H ;

(3) If R ∈MUG, then F (EG+, R) ∈MUG.

Elements of MUG are called generalized MUG’s.

A crucial feature is the following.

Proposition II.8. The completion theorem of [15] and the statements of Section 7

of [13] remain valid with MUG replaced by R, where R is any generalized MUG.

Before proving Proposition II.8, it is timely to restate the cited results. We give

partial versions of these results to avoid the unecessary digression that would be

required to introduce the various definitions and constructions required to state the

precise versions of these results. For complete versions, the reader is therefore referred

to the cited work. The augmentation ideal of JG of a ring R∗ with respect to a group

G is the kernel JG = ker(RG
∗ → R∗).

Theorem II.9. (Greenlees and May, [15] Theorem 1.3) Suppose G is a finite group

or a finite extension of a torus. For any sufficiently large finitely generated ideal

I ⊂ JG, JG the augmentation ideal of (MUG)∗,

EG+ ∧MG → ΓI(MG) and (MG)Î → F (EG+,MG)

are equivalences for any MUG-module MG, where

ΓI(MG) = {x ∈MG|INx = 0 for some N},
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and the subscript Î denotes completion at the ideal I.

Lemma II.10. (Greenlees, [13] Lemma 7.1) If HI
j (MG) = 0 for i ≥ 0 then

M → HI
0 (MG) induces an isomorphism in local cohomology H∗I (·), hence also an

isomorphism Ȟ
i

I(·) for i ≥ 1. Here MG is an MUG-module, and we are referring to

local (co)homology and local Čech cohomology.

Here Čech cohomology is a theory based on open covers, but a rigorous review

would take us too far afield.

Lemma II.11. (Greenlees, [13] Lemma 7.2) K(MUG) ∼= K(F (EG+,MUG)), where

for an MUG-module X, K(X) is defined by the exact sequence

0→ K(X)→ XG
∗ (ẼG)→ Ȟ

0

I(X
G
∗ ).

Corollary II.12. (Greenlees, [13] Corolllary 7.3) MUG ∧ ẼG and

F (EG+,MUG) ∧ ẼG are isomorphic in odd degrees.

We can now prove Proposition II.8.

Proof. All generalized MUG’s arise by beginning with MUA for some finite abelian

group A, and successively applying the functor ΦH or F (EK+, ?) for subquotients

H,K of A. If only geometric fixed point functors are applied, we obtain an MUG-

algebra R where R∗ is flat over (MUG)∗ by Corollary 10.4 of Greenlees [13]. In this

case the proofs of Theorem II.9, Lemma II.10, Lemma II.11, and Corollary II.12

apply without alteration, replacing MUG by R.

If the construction of R from MUA requires the application of function spectrum

functors of the form F (EK+, ?), then the coefficients of R∗ are still known by the

tom Dieck style computations used when computing Γ(S)∗. We see that the Euler

classes of representations still generate the augmentation ideal of R∗, and the proofs

of the cited results still carry over.
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We are now ready to prove Theorem II.4.

Proof. The statement of Theorem II.4 is actually valid with MUG replaced by any

element R ∈ MUG, and we will prove this. We argue by induction on the order

of G. For |G| = 1, the statement is clear. Now suppose |G| > 1 for a given G. If

{e} 6= H ⊆ G, let MH be the subdiagram of Γ given by

(2.26) . . . F (EG/H ′+, ẼF [H ′] ∧R)

��

F (EG/{e}+, ˜EF [{e}] ∧R) // . . . ẼF [H ′] ∧ F (EG/{e}+, ˜EF [{e}] ∧R),

where H ′ ranges over all subgroups H ⊆ H ′ ⊆ G. The dots in the diagram are

an abbreviated notation, indicating that the top and bottom right corners of the

diagram actually consist of diagrams indexed over the subset of P (G) containing

only sets S with H ⊆ H1, the smallest subgroup from S. This subset is isomorphic

to P (G/H). Recall also that ˜EF [{e}] = S0.

For a given H 6= {e}, we can take homotopy limits at the top and bottom right

corners of (2.26) to get a diagram

(2.27) ẼF [H] ∧R

��

F (EG+,MU) // ẼF [H] ∧ F (EG+, R).

We can combine the diagrams (2.27) for the various H 6= {e} by putting in the

canonical arrows between the corresponding upper right and lower right corners

induced by inclusions of the subgroups H. This is equivalent to the homotopy limit of

the diagram formed by taking the union of the diagramsMH , and this is isomorphic

to Γ.

Alternatively, we can take homotopy limits over H 6= {e} in the upper and lower



42

right corners of (2.27) to obtain the ordinary Tate square for R:

(2.28) ẼG ∧R

��

F (EG+, R) // ẼG ∧ F (EG+, R).

By the induction hypothesis, the coefficients of the upper right and lower right

corners of (2.27) equal the inverse limits of the coefficient functor applied to the

corresponding parts of the diagram (2.26). Consider the spectral sequences corre-

sponding to the homotopy limits of the upper right and lower right corners of (2.27).

The vertical arrows of (2.27) give isomorphisms in filtration degrees at least 1 of the

E2-terms of these spectral sequences, and hence these terms may be ignored. This

follows from the first sentence of the proof of Lemma II.11 in [13], which is valid for

R by Proposition II.8. It follows that the corners of the diagram (2.28) for R are

obtained as the non-derived limits of the corresponding parts of Γ.

The homotopy limit of the Tate square can only have a derived term in filtration

degree 1, but such a term cannot exist because it would create odd degree elements in

(MUG)∗, which cannot exit by [8]. This concludes the proof of the main theorem.

2.3 An Illustration: The Case G = Z/pn

Having proved our main theorem, we will now illustrate our result in the case

G = Z/pn, and will provide a lower-level argument for our result in this case.

Theorem II.13. Let u[k] denote [pk]Fu, and

Rk = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pk − 1}][[u[k]]]/([p

n−k]Fu[k]),

Sk = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pk − 1}][[u[k]]]/([p

n−k]Fu[k])[u
−1
[k] ],

Rn = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pn − 1}].
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Then (MUZ/pn)∗ is the n-fold pullback of the diagram of rings

(2.29) Rn

φn−1

��
Rn−1

ψn−1 //

φn−2

��

Sn−1

R2

φ1
��

··· // Sn−2

R1

φ0
��

ψ1 // S1

R0
ψ0 // S0.

The maps ψk are localization by inverting u[k], and the maps φk are determined

by the properties of sending u[k+1] to [p]Fu[k] and b
(i)
j uj to the coefficient of xi in

x +F [j]Fu[k]. φ
n−1 is determined by the property of sending b

(i)
j uj to the coefficient

of xi in x+F [j]Fu[k].

Proof. Beginning with the cofibration of Z/pn-spaces

EZ/pn+ → S0 → ẼZ/pn,

smash with MUZ/pn and F (EZ/pn+,MUZ/pn) to obtain the Tate diagram, whose

right square is

(2.30) (MUZ/pn)Z/p
n

��

// (ẼZ/pn ∧MUZ/pn)Z/p
n

��

F (EZ/pn+,MUZ/pn)Z/p
n // M̂UZ/pn .

This is a pullback square, since the left vertical map

(EZ/pn+ ∧MUZ/pn)Z/p
n → (EZ/pn+ ∧ F (EZ/pn+,MUZ/pn))Z/p

n

of the Tate diagram is an isomorphism.
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We will be able to compute the bottom row of (2.30), but to compute the top right

we will have to express it as a pullback. This is done by considering another Tate

diagram. In particular, consider the exact sequence 0 → P1 → Z/pn → Q1 → 0,

where P1
∼= Z/p, and Q1

∼= Z/pn−1. We first take the P1-fixed points of

ẼZ/pn ∧MUZ/pn . Beginning with the cofibration of Q1-spaces

EQ1+ → S0 → ẼQ1

and smashing with (ẼZ/pn ∧MUZ/pn)P1 and F (EQ1+, (ẼZ/pn ∧MUZ/pn)P1), then

taking Q1-fixed points gives a Tate diagram, whose left vertical map is an isomor-

phism and whose right square is therefore a pullback of rings:

(2.31)

((ẼZ/pn ∧MUZ/pn)P1)Q1

��

// (ẼQ1 ∧ (ẼZ/pn ∧MUZ/pn)P1)Q1

��

F (EQ1+, (ẼZ/pn ∧MUZ/pn)P1)Q1 // (ẼQ1 ∧ F (EQ1+, (ẼZ/pn ∧MUZ/pn)P1))Q1 .

Notice that the top left corner of (2.31) is

((ẼZ/pn ∧MUZ/pn)P1)Q1 = (ẼZ/pn ∧MUZ/pn)Z/p
n

,

which is also the top right corner of (2.30). We will show later how to compute the

bottom row of (2.31). The difficulty is again to compute the top right corner.

For the sake of notation, it is convenient to note now that

(2.32) (ẼZ/pn ∧MUZ/pn)P1 = ΦP1MUZ/pn .

This follows from (2.4) and the fact that ẼZ/pn = ẼF [P1], which is true because

both sides of this equation have fixed point set ∗ with respect to the trivial subgroup

{e}, and fixed point set S0 with respect to any other subgroup of Z/pn. The top

right corner of (2.31) can then be written as (ẼQ1 ∧ ΦP1MUZ/pn)Q1 .
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As may be anticipated, we proceed by considering the exact sequence

0 → P2 → Q1 → Q2 → 0, where P2
∼= Z/p and Q2

∼= Z/pn−2. Rather than taking

Q1-fixed points all at once, we begin by taking P2-fixed points (ẼQ1∧ΦP1MUZ/pn)P2 .

A useful computation is the following.

Lemma II.14. Let P 2 denote the subgroup of Z/pn isomorphic to Z/p2. Then

(2.33) (ẼQ1 ∧ ΦP1MUZ/pn)P2 ∼= ΦP 2

MUZ/pn .

Proof. ẼQ1 = ẼF [P2], so by (2.4) the left hand side of (2.33) is ΦP2ΦP1MUZ/pn . The

equation we have to verify is

(2.34) (ẼF [P2] ∧ (ẼF [P1] ∧MUZ/pn)P1)P2 = (ẼF [P 2] ∧MUZ/pn)P
2

.

But both sides of (2.34) are isomorphic to (ẼF [P1] ∧MUZ/pn)P
2
.

Now we are ready to give the induction argument. For 1 ≤ k < n, let P k denote

the subgroup of Z/pn isomorphic to Z/pk. Suppose we have already considered the

exact sequence 0 → Pk → Qk−1 → Qk → 0, for Pk ∼= Z/p, Qk−1
∼= Z/pn−k+1, and

hence Qk
∼= Z/pn−k. We are trying to compute (ẼQk ∧ΦPk

MUZ/pn)Qk . We consider

an exact sequence 0→ Pk+1 → Qk → Qk+1, with Pk+1
∼= Z/p and Qk+1

∼= Z/pn−k−1,

and rather than taking Qk-fixed points all at once, we begin by taking Pk+1-fixed

points. Now (ẼQk ∧ΦPk
MUZ/pn)Pk+1 = ΦPk+1

MUZ/pn , and the proof is the same as

that for Lemma II.14. Taking the cofiber sequence of Qk+1-spaces

EQk+1+ → S0 → ẼQk+1,

and smashing with ΦPk+1
MUZ/pn and F (EQk+1+,Φ

Pk+1
MUZ/pn), then taking Qk+1-

fixed points, gives a Tate diagram whose left vertical map is an isomorphism and
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whose right square is the pullback of rings:

(2.35)

(ΦPk+1
MUZ/pn)Qk+1

��

// (ẼQk+1 ∧ ΦPk+1
MUZ/pn)Qk+1

��

F (EQk+1+,Φ
Pk+1

MUZ/pn)Qk+1 // (ẼQk+1 ∧ F (EQk+1+,Φ
Pk+1

MUZ/pn))Qk+1 .

Of course, if k = n − 1 then ΦPk+1
MUZ/pn = ΦZ/p

n
MUZ/pn , Qk+1 = {e}, and there

is no need to consider a pullback diagram such as (2.35), since tom Dieck’s method

is in that case already sufficient for computation. The result of this induction is a

description of (MUZ/pn)Z/p
n

as an n-fold pullback diagram as in (2.29).

Since π∗(MUZ/pn)Z/p
n

= π
Z/pn
∗ MUZ/pn = (MUZ/pn)∗, it remains only to compute,

on homotopy, the maps

(2.36) ψk : F (EQk+,Φ
Pk

MUZ/pn)Qk → (ẼQk ∧ F (EQk+,Φ
Pk

MUZ/pn))Qk ,

(2.37) φk : F (EQk+1+,Φ
Pk+1

MUZ/pn)Qk+1 → (ẼQk ∧ F (EQk+,Φ
Pk

MUZ/pn))Qk ,

and

(2.38) φn−1 : ΦZ/p
n

MUZ/pn → (ẼQn−1 ∧ F (EQn−1+,Φ
Pn−1

MUZ/pn))Qn−1 .

Lemma II.15.

π∗(F (EQk+,Φ
Pk

MUZ/pn)Qk) =

MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pk − 1}][[u[k]]]/([p

n−k]Fu[k]).

Proof. First, observe that

(2.39) ΦPk

MUZ/pn = (ẼF [P k] ∧MUZ/pn)P
k

= (S∞V ∧MUZ/pn)P
k

,

where V is the direct sum of infinitely many copies of each irreducible representation

of Z/pn which is nontrivial on the subgroup P k.
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Recall that MUZ/pn = LD for a prespectrum D over the complete universe U such

that DW = Gr(n,U ⊕ W )γn , where Gr(n,W ) is the Z/pn-space of n-dimensional

complex subspaces of W , n the dimension of W , and the superscript γn denotes

Thom space. Also recall that

ΦPk

MUZ/pn = lim
→

Σ−W
Pk

DPk

W ,

following Definition II.2. Let Vj be the irreducible representation of Z/pn on which

the generator acts by e2πij/pn . For each i ∈ {1, 2, . . . , pk − 1}, let U i be the direct

sum of infinitely copies of each Vj such that j ≡ i( mod pk). Now

(Gr(n,U ⊕W )γn)P
k ∼= (Gr(n,U)γn)P

k

=∨
0≤m,kj≤n;

∑
j∈Pk× kj=n−m

Gr(m,UPk

)γn ∧Gr(k1,U1)+ ∧ · · · ∧Gr(kpk−1,Up
k−1)+.

Then if dim(W ∩ U i) = li and dim(W ∩ UPk
) = m′, m′ −m+

∑pk−1
j=1 lj − kj = 0,

and

Σ−W
Pk

DPk

W
∼=∨

Σ−2mGr(m,UPk

)γ
m ∧ Σ2k1−2l1Gr(k1,U1)+ ∧ · · · ∧ Σ2k

pk−1
−2l

pk−1Gr(kpk−1,Up
k−1)+.

Taking the colimit, the right hand side becomes

(2.40)
∨

MU ∧ Σ2k1−2l1BU+ ∧ · · · ∧ Σ2k
pk−1

−2l
pk−1BU+.

As was done in [21] for G = Z/p, we wish to write (ΦPk
MUZ/pn)∗ as a ring of Laurent

series over (MU ∧BU+∧· · ·∧BU+)∗ in variables uj. For j ∈ {1, 2, . . . , pk−1}, select

j0 ≡ j( mod pk), and let uj denote the element of πVj0−2MUZ/pn multiplication by

which gives (Vj0 − 2)-periodicity of (MUZ/pn)∗. Define b
(i)
j so that b

(i)
j uj corresponds
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to the homotopy class bj ∈ MU∗BU(1)+ = MU∗{b0, b1, b2, . . . , bpk−1} in the wedge

summand of (2.40) with m > 0, ki = δij (the Kronecker delta), li = 0 for all i. Then

(2.41) (ΦPk

MUZ/pn)∗ = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pk − 1}].

We are interested in F (EQk+,Φ
Pk
MUZ/pn)Qk . Because ΦPk

MUZ/pn is a split

spectrum,

F (EQk+,Φ
Pk

MUZ/pn)Qk = F (BQk+,MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pk − 1}]).

The homotopy groups are calculated by considering the Gysin cofibration sequence

BQk+ → CP∞+ → (CP∞)(γ1)p
n−k

,

where the right hand side is the Thom space, γ1 the canonical line bundle on CP∞.

This gives the lemma.

Greenlees and May [14] then give that the map ψk is localization by inverting the

Euler class. At the top right of the diagram (2.29), it is clear by the computations

of tom Dieck that

(2.42) (ΦZ/p
n

MUZ/pn)∗ = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pn − 1}].

It is important to note that our construction in non-canonical, since for uj we

require a choice of representative j0
∼= j(mod pk). Nonetheless the other choices

must lie in the image of φk. Now that the map φk sends b
(i)
j uj to the coefficient at

xi of x +F [j]Fu[k] follows from the same proof method used by Kriz (Lemma 2.14,

[21]). The computation of the map φn−1 is also the same. We will give the argument

for the map

φk : Rk+1 → Sk,
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recalling that

Rk+1 = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pk+1 − 1}][[u[k+1]]]/([p

n−k−1]Fu[k+1]),

and

Sk = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, 2, . . . , pk − 1}][[u[k]]]/([p

n−k]Fu[k])[u
−1
[k] ].

Due to the similarity with Kriz [21], we will follow his notation and narrative for the

remainder of this section. From this point, I have nothing to add to Kriz’s argument,

and include it just for completeness. First, consider the Z/pn-equivariant complex

line bundle ξ = γ1 ⊗ αj0 on CP∞ × EZ/pn, where Z/pn acts trivially on CP∞,

γ1 is the canonical line bundle on CP∞, and αj0 is the equivariant line bundle on

a point arising from the representation αj0 : Z/pn → C∗ for which the generator

acts by e2πij0/pn , pulled back to EZ/pn, j0 representatives chosen earlier. To make

the theorem true, we should choose j0 = j. Recall that CP∞G = CP{U} refers to

the space of complex lines in the complete G-universe U , and γ1,G is the canonical

G-equivariant complex line bundle on this space. There is a map of line bundles

ω : ξ → γ1,Z/pn

obtained by considering the inclusion CP∞ ⊂ CP∞Z/pn , which gives a map

ρ : γ1 → γ1,Z/pn .

There is also a composition

EZ/pn →/Z/pn BZ/pn → CP∞,

inducing a map

λ : αj → γ1.
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The map ω is defined to be the composite map

ξ = γ1 ⊗ αj →Id⊗λ γ1 →ρ γ1,Z/pn .

There is another map

(2.43) ψ : ξ → γ1,Z/pn ,

given as follows: Let CP∞j = CP{U j}. Consider the map on based spaces

CP∞ × EZ/pn → CP∞ ∼= CP∞j ⊂ CP∞Z/pn .

The pullback of γ1,Z/pn under this map is ξ = γ1 ⊗ αj, and this therefore defines the

map ψ of (2.43).

By the classification of Z/pn-complex line bundles, the maps ω and ψ are homo-

topic through maps of equivariant line bundles. Therefore, the map

(2.44) CP∞+ ∧ EZ/pn+ → CP∞+ →
∼= CP∞j +

→ (CP∞Z/pn+
)γ1,Z/pn

is Z/pn-homotopic to

(2.45)

CP∞+ ∧ EZ/pn+ →
/Z/pn (CP∞ ×BZ/pn)+ → CP∞+ → CP∞Z/pn+

→ (CP∞Z/pn+
)γ1,Z/pn .

The target of (2.44) and (2.45) maps to Σ2MUZ/pn . Since MUZ/pn is a ring spectrum,

and by adjunction, we get two maps

CP∞+ ∧MU → F (EZ/pn+,MUZ/pn),

which on coefficients are maps

MU∗CP∞ → π
Z/pn
∗−2 (EZ/pn+,MUZ/pn).

The map coming from (2.44) sends bi to the image of b
(i)
j uj.
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To calculate the image of bi under the map coming from (2.45), recall that the

splitting MU →MUZ/pn induces an isomorphism

(2.46) π∗F (BZ/pn+,MU) = πZ/p
n

∗ F (EZ/pn+,MU)→ πZ/p
n

∗ F (EZ/pn+,MUZ/pn).

The map coming from (2.45) is the composition of (2.46) with the coefficients of

MU ∧ CP∞+ → Σ−2F (BZ/pn+,MU),

which is adjoint to

MU∧(BZ/pn × CP∞)+ →

MU ∧ CP∞+ →MU ∧ (CP∞+ )γ1 →MU ∧ Σ−2MU → Σ−2MU.

The map

BZ/pn × CP∞+ → CP∞+ → (CP∞+ )γ1 → Σ−2MU

is the class

(2.47) x+F [j]Fu[k] ∈MU∗(BZ/pn ⊗ CP∞),

where u generates MU∗BZ/pn and x generates MU∗CP∞. The map (2.46) is, on

coefficients, the slant product with (2.47). Since bi and xi are dual,

bi/x+F [j]Fu[k]

is the coefficient of x+F [j]Fu[k] at xi. That φk sends u[k+1] to [p]Fu[k] is clear. This

concludes the proof of Theorem II.13.

To summarize, we have described the equivariant complex cobordism ring (MUG)∗

as the limit of a diagram Γ. When G is the cyclic p-group G = Z/pn, Γ takes the

form of an n-fold pullback diagram, obtained by successively expanding the top right
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corner of Tate diagrams by other Tate diagrams. For G finite abelian, Γ is obtained

by gluing together several n-fold pullback diagrams Γ(S) arising from maximal chains

S = {H1 ( H2 ( · · · ( Hn} of subsgroups of G (i.e. no intermediate subgroups).

The diagrams Γ(S) can also be obtained by expanding the top right corners of a

succession of Tate diagrams. (MUG)∗ is obtained by taking homotopy groups on Γ

and taking a limit. The argument of Section 2.2 gives a new Isotropy Separation

Spectral Sequence (ISSS) for computing the coefficients of equivariant spectra E by

looking at the various fixed point spectra. The computation goes through because

the ISSS collapses for the spectrum E = MUG, since (MUG)∗ is in even degrees.



CHAPTER III

Equivariant Formal Group Laws

3.1 Introduction

Before defining equivariant formal group laws, we will need some preliminaries

from algebra and character theory. If R is a ring and I an ideal of R, RI refers to

the localization of R at I, which is

(3.1) RI = {a
b
|a ∈ R and b /∈ I},

informally speaking. Now an ideal I in a ring R also determines a topology, called

the Krull topology, on R. A basis of neighborhoods of 0 ∈ R for the Krull topology

is given by the powers In of the ideal I. The completion of R with respect to the

Krull topology is given by

(3.2) RÎ = lim
←
R/In.

If RÎ = R, R is called complete at the ideal I. Let G be a finite abelian group. Let

Ĝ denote the character group of G, which is the group of group homomorphisms

f : G→ C×. An abelian group of order n has n characters f1, . . . , fn, and these are

the irreducible complex representations of the group.

Let E be a G-equivariant spectrum. Kriz [20] makes the following definition.

Definition III.1. A G-equivariant formal group law consists of:

53
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(1) A ring R complete at an ideal I and a cocommutative, coassociative, counital

comultiplication

∆ : R→ R⊗̂R (R⊗̂R = (R⊗R)Î⊗R⊕R⊗I),

(2) An I-continuous map of rings ε : R→ E∗[Ĝ]̌ compatible with compultiplication:

R

ε
��

∆ // R⊗̂R

ε⊗̂ε
��

E∗[Ĝ]̌
ψ
// E∗[Ĝ]̌ ⊗ E∗[Ĝ]̌ ,

(3) A system of elements xL ∈ R, L ∈ Ĝ such that

R/(xL|L ∈ Ĝ) ∼= E∗

and

I =
∏
L∈Ĝ

(xL)

and

xL = (ε(L)⊗ 1)∆(x1) for L ∈ Ĝ.

Here the ˇ in E∗[Ĝ]̌ refers to discretization. The cocommutativity, coassociativity,

and counitality of a comultiplication are determined by diagrams dual to those which

determine commutativity, associativity, and unitality of a product. ψ is the natural

comultiplication.

Greenlees [13] makes an equivalent definition of equivariant formal group laws for

compact Lie groups, but I adopt Kriz’s definition because I believe its explicit nature

adds to the clarity of our discussion.

Kriz [20] shows that a complex orientation on a G-equivariant spectrum E over the

complete universe U specifies a G-equivariant formal group law with R = E∗CP∞G .
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Here CP∞G = CP (U) is the complex projective space on the complete G-universe. A

complex orientation on a G-spectrum E is a class x ∈ E2(CP∞G ) which satisfies the

appropriate equivariant analogues of the Thom theorems, but we will not admit of

this digression. The interested reader is referred to [27] for an historical perspective

on Thom’s theory. Kriz’s proof is constructive, and our goal is to trace this construc-

tion to compute the equivariant formal group law corresponding to the equivariant

complex cobordism spectrum MUG, for the case where G is a finite abelian group.

We can do this because MUG has a canonical complex orientation. In fact, MUG is

the universal complex-oriented G-spectrum, in the sense that the complex orienta-

tions of a ring spectrum E are in bijective correspondence with maps of ring spectra

φ : MUG → E, which maps send the orientation class of MUG to that of E. Here

a ring spectrum E is a spectrum with a homotopy associative and homotopy unital

product µ : E ∧E → E, with unit map η : S → E, S the sphere spectrum. It is well

known that MUG is a ring spectrum.

The computation of the equivariant formal group law of MUG is of interest be-

cause of Conjecture 2.4 of [13], which asks whether the coefficient ring of equivariant

complex cobordism classifies equivariant formal group laws in the same way that

non-equivariant cobordism classifies traditional formal group laws, vis á vis Quillen’s

Theorem ([29], Theorem 1.3.4). Greenlees [13] shows that the equivariant complex

cobordism ring classifies equivariant formal group laws over Noetherian rings, but

the general result is still unknown. Allow us to formulate Greenlees’ Conjecture in

this way:

Conjecture III.2. For any complex oriented G-equivariant spectrum E there is

a unique homomorphism of rings θ : MU∗G → E∗ such that θ induces maps that

send the structures (1), (2), and (3) for the canonical equivariant formal group law
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corresponding to MUG to the corresponding structure for E.

Our goal at present is to describe the equivariant formal group law corresponding

to MUG for G a finite abelian group, with an eye toward Greenlees’ Conjecture III.2.

3.2 The Case G = Z/p

Let us begin by considering the case G = Z/p. Then we may write

Ĝ = {1, α, α2, . . . , αp−1}.

Let γG be the canonical line bundle on CP∞G . Let E = MUG. Then E has a canonical

complex orientation, hence gives an equivariant formal group law by Theorem 3 of

[20]. We will match notation with Definition III.1 to describe this equivariant formal

group law. [20] gives R = E∗CP∞G = MU∗Z/pCP∞Z/p, and

(3.3) I =

(∏
L∈Ĝ

xL

)
=

(
p−1∏
k=0

xαk

)
=

(
p−1∏
k=0

xk

)
(defining xk := xαk).

The elements xk are Thom classes xk ∈ Ẽ2T (γG ⊗ αk), where T denotes Thom

space. These are obtained as follows. Let x0 ∈ Ẽ2T (γG) be the orientation class.

Now let φ : CP∞G → CP∞G classify γG ⊗ αk, i.e. φ∗(γG) = γG ⊗ αk. Then we define

xk = Im(Ẽ2T (γG)→Ẽ2Tφ Ẽ2T (γG ⊗ αk)).

Let U =
⊗p−1

k=0 α
k. Now the product on the right hand side of (3.3) is to be calculated

by the Thom diagonal ∆t : T (γG ⊗ U)→
∧p−1
k=0 T (γG ⊗ αk).

Lemma 7 of [20] gives that R = E∗CP∞G is complete at I, and

E∗(CP∞G × CP∞G ) ∼= R⊗̂R.

The comultiplication ∆ is induced by the map classifying the ⊗-multiplication of line

bundles:

µ : CP∞G × CP∞G → CP∞G ,
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i.e. for line bundles ξ = f ∗γG, ω = g∗γG, ξ ⊗ ω = (µ(f × g))∗.

Now we need to define the map ε : R = MU∗Z/pCP∞Z/p → E∗[Ĝ]̌ = MU∗Z/p[Ẑ/p]̌ .

This is done by choosing a basepoint ∗k in each connected component of

(CP∞G )G =
∐

αk∈Ẑ/p

CP∞.

ε is the induced map in cohomology of the G-equivariant map

∐
L∈Ĝ

∗L → G.

All of the above is documented in [20]. Our goal is to understand better the

algebraic structure of the ring MU∗Z/pCP∞Z/p. Now by Lemma 7 of [20], we have the

following:

(3.4) MU∗Z/pCP∞Z/p ∼= MU∗Z/p{{x0, x0x1, x0x1x2, . . .}}.

In (3.4) the terms on the right hand side are a flag basis of the complete universe U ,

and MU∗Z/p{{x0, x0x1, x0x1x2, . . .}} denotes{
∞∑
i=0

aix0x1 · · ·xi
∣∣∣∣ai ∈MU∗Z/p

}

The Borel cohomology

πZ/p∗ (F (EZ/p+,MU∗Z/pCP∞Z/p)→
∼=πZ/p∗ (F (EZ/p+,MUZ/p)

∗CP∞{e})

= πZ/p∗ (F (EZ/p+,MUZ/p))[[x]].

The elements xk are in MU∗[[u]]/([p]Fu)[[x0]], with MU∗[[u]]/([p]Fu) as in [21].

The xk are given by the relation xk = x0 +F [k]Fu, which corresponds to the final

relation of (3) in the definition of equivariant formal group laws above. Recall the

pullback diagram
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(MUZ/p)∗ //

��

MU∗[uk, u
−1
k , b

(i)
k |i > 0, k ∈ (Z/p)×]

φ

��
MU∗[[u]]/([p]Fu) ι //MU∗[[u]]/([p]Fu)[u−1].

The element φ(b
(i)
k uk) is the coefficient of xi in x +F [k]Fu, so we can use this to

compute the ring MU∗Z/p{{x0, x0x1, x0x1x2, . . .}} ∼= R. In particular, clearly we can

write xk ∈MU∗[[u]]/([p]Fu)[[x]] as a sum in the terms x = x0, x0x1, x0x1x2, . . . with

coefficients in MU∗Z/p, but by applying the obvious map

MU∗[uk, u
−1
k , b

(i)
j |i > 0, k ∈ (Z/p)×][[x]]→φ MU∗[[u]]/([p]Fu)[u−1][[x]],

we are able to write xk in terms of the elements uj, u
−1
j , b

(i)
j , and x = x0.

In particular, xk = x0 +F [k]Fu, so the coefficient ci ∈ MU∗[[u]]/([p]Fu) of xi0 in

the expansion of xk is φ(ukb
(i)
k ). Thus xk is the image under φ of the element

∞∑
i=0

ukb
(i)
k x

i,

where b
(0)
j = 1.

Theorem 11.2 of Greenlees [13] allows us to write

(3.5) ΦZ/pMU∗Z/pCP∞Z/p =

p−1∏
k=0

ΦZ/pMU∗Z/p[[xk]] =

p−1∏
k=0

ΦZ/pMU∗Z/p[[x+F [k]Fu]].

Now the elements b
(i)
j lend themselves the following description, also following

Greenlees [13]: form a flag basis for ΦZ/pMU∗Z/pCP (
⊕
∞ α

k)) for a fixed k. Here

“∞α
k” denotes the direct sum of infinitely many copies of the representation αk.

Then take the dual basis of ΦZ/p(MUZ/p)∗CP (
⊕
∞ α

k). This dual basis consists of

the elements b
(i)
k .

The equation (3.5) allows us to obtain R = MU∗Z/pCP∞Z/p as the pullback of the
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diagram

(3.6) R //

��

∏p−1
k=0MU∗[uj, u

−1
j , b

(i)
j |i > 0, j ∈ (Z/p)×][[xk]]

φ
��

MU∗[[u]]/([p]Fu)[[x]]
ψ

//
∏p−1

k=0MU∗[[u]]/([p]Fu)[u−1][[xk]].

Now we need to describe the maps φ and ψ. Certainly ψ(u) =
∏p−1

k=0 u, and

ψ(x) =
∏p−1

k=0(xk−F [k]Fu). The map φ =
∏p−1

j=0 φj, where φj(ukb
(i)
k ) is the coefficient

of (xj −F [j]Fu)i in an expansion of xj +F [k − j]Fu in terms of xj −F [j]Fu, and

φj(xj) = xj.

To complete the description of the equivariant formal group law corresponding

to equivariant complex cobordism, we must describe R⊗̂R and the coproduct R →

R⊗̂R.

R⊗̂R also has a description via a pullback diagram of rings:

(3.7)

R⊗̂R //

��

∏p−1
k=0

∏p−1
r=0 MU∗[uj, u

−1
j , b

(i)
j |i > 0, j ∈ (Z/p)×][[xk, yr]]

φ′

��

MU∗[[u]]/([p]Fu)[[x, y]]
ψ′

//
∏p−1

k=0

∏p−1
r=0 MU∗[[u]]/([p]Fu)[u−1][[xk, yr]].

ψ′ is the obvious map x 7→
∏p−1

k=0

∏p−1
r=0(xk −F [k]Fu), y 7→

∏p−1
k=0

∏p−1
r=0(yr −F [r]Fu),

u 7→
∏p−1

j=0

∏p−1
r=0 u. The map φ′ =

∏p−1
j=0

∏p−1
r=0 φ

′
jr, where φ′jr(xj) = xj, φ

′
jr(yr) = yr,

and φ′jr(ukb
(i)
k ) is the coefficient of (xj −F [j]Fu)i in an expansion of xj +F [k − j]Fu

in terms of xj −F [j]Fu.

To define the coproduct R→ R⊗̂R, it suffices to define maps from the top right,

bottom right, and bottom left of (3.6) to the corresponding rings in (3.7), compatible

with those diagrams. The map MU∗[[u]]/([p]Fu)[[x]] → MU∗[[u]]/([p]Fu)[[x, y]] is

determined by u 7→ u and x 7→ x+F y. The map

p−1∏
k=0

MU∗[[u]]/([p]Fu)[u−1][[xk]]→
p−1∏
k=0

p−1∏
r=0

MU∗[[u]]/([p]Fu)[u−1][[xk, yr]]
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is determined on the kth component by u 7→
∏

k1+k2=k u and

xk 7→
∏

k1+k2=k(xk1 +F yk2), and the other factors zero. By k1 + k2 = k we of course

mean k1 + k2 ≡ k( mod p). Finally, the map

p−1∏
k=0

MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈(Z/p)×][[xk]]

→
p−1∏
k=0

p−1∏
r=0

MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ (Z/p)×][[xk, yr]]

is determined by the kth component factor maps uj 7→
∏

k1+k2=k uj, b
(i)
j 7→

∏
k1+k2=k b

(i)
j ,

and xk 7→
∏

k1+k2=k(xk1 +F yk2). This completes our description of the equivariant

formal group law corresponding to MUZ/p.

3.3 The General Case

The description of the equivariant formal group law for MUZ/p in the previous

section followed immediately from Kriz’s papers [21] and [20]. It is not surprising,

then, that our description of MUG for G a finite abelian group in Section 2.2 allows

for an analagous description of the equivariant formal group laws in this case. We

adopt here the notation of Section 2.2.

To describe the formal group law for MUG, we need to describe the rings R

and R⊗̂R, the ideal I, the system of elements xL ∈ R for L ∈ Ĝ, the coproduct

∆ : R→ R⊗̂R, and the map ε : R→ E∗[Ĝ]̌ . It follows from [20] that

(3.8) R = MU∗GCP∞G ∼= MU∗G{{1, xL1 , xL1⊕L2 , . . .}},

where L1 ⊕ L2 ⊕ · · · is any splitting of the complete G-universe U . The elements

xL ∈ M̃U
2

GT (γG ⊗ L) are Thom classes, computed just as in [20], where γG is the

canonical line bundle on CP∞G . The ideal I is

(3.9) I =

∏
L∈Ĝ

xL

 ,
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where the product on the right is computed by the Thom diagonal just as in Sec-

tion 3.2. We define

(3.10) xL1⊕L2⊕···⊕Lm =
∏

xL1xL2 · · ·xLm ,

and now the right hand side of (3.8) is well-defined.

Now MU∗G is a split MU∗-module, and the splitting map MU → MUG induces

an isomorphism

(3.11) πG∗ (F (EG+,MU)) ∼= πG∗ (F (EG+,MUG)),

and it follows that

(3.12) πG∗ (F (EG+,MUG)∗CP∞G ) ∼= MU∗[[uL|L ∈ G∗]]/(uL +F uM = uLM)[[x]].

We are now able to give a better description of the elements xL. Clearly,

(3.13) x0 = x ∈MU∗[[uL|L ∈ G∗]]/(uL +F uM = uLM)[[x]],

while

(3.14) xL = x0 +F uL.

Theorem 11.2 of [13] gives

(3.15) ΦGMU∗GCP∞G ∼=
∏
L∈G∗

ΦGMU∗G[[xL]] =
∏
L∈G∗

ΦGMU∗G[[x+F uL]].

We now turn our attention to the ring R, seeking an explicit description. In fact,

following Theorem II.4 and (3.8), such a description is not difficult to obtain. Let

S = {H1 ( H2 ( · · · ( Hk} ∈ P (G), and recall that we may assume that there are

no intermediate subgroups between Hj−1 and Hj for all j. Then Γ(S) is the k-fold
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pullback of a diagram NS of the form

(3.16) Qk

φk−1

��
Qk−1

ψk−1 //

φk−2

��

Sk−1

Q2

φ1
��

··· // Sk−2

Q1

φ0
��

ψ1 // S1

Q0
ψ0 // S0.

Here

Qj =
∏
L∈H∗j

(AHj ,S)T̂Hj,S
/I∗Hj ,S

[[uL|L ∈ Rj]]/(uL +F uM = uLM)[[xL]];

Sj =
∏

L∈H∗j+1

(AHj ,S)T̂Hj,S
/I∗Hj ,S

[[uL|L ∈ Rj]]/(uL +F uM = uLM)[[xL]].

Qk is defined similarly to the rings Qj, also using the computations in the proof of

Theorem II.5. The maps of NS are determined by the maps of the diagram Γ(S),

together with the conditions

(3.17) xL 7→
∏

M≡L( mod Hj)

xM +F (uL − uM).

for the horizontal maps and

(3.18) xL 7→ xL

for the vertical maps. Taking the union of the diagrams NS over the various series

S gives a diagram Γ′, and R is the limit of Γ′, i.e.

(3.19) R = ho lim
←

Γ′S.
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Having computed R, we must compute R⊗̂R, though this is now fairly standard. Let

N ′S differ from the diagramNS only insofar as whenver we would adjoin [[xL]], instead

adjoin [[xL, yL]]. The maps are determined by the maps of NS and the corresponding

mappings for the elements yL. The union of the diagrams N ′S gives a diagram Γ′′, of

which R⊗̂R is the limit, so that

(3.20) R⊗̂R = ho lim
←

Γ′′′S .

Now the coproduct ∆ : R → R⊗̂R is not difficult to describe at the level of the

diagrams Γ′ and Γ′′. The corresponding map Γ′ → Γ′′ is determined by the identity

map Γ→ Γ, and the condition

(3.21) xL 7→
∏

MN≡L( mod Hj)

(xM +F yN)

for the maps Qj → Q′j and Sj−1 → S ′j−1.

Finally the map ε : R → E∗[Ĝ]̌ is the induced map in cohomology of the G-

equivariant map

(3.22)
∐
L∈Ĝ

∗L → G,

where ∗L is a chosen basepoint in the appropriate connected componenet of

(CP∞G )G =
∐
L∈Ĝ

CP∞.

This works exactly the same as for the case G = Z/p above. This completes our

description of the equivariant formal group law corresponding to the equivariant

complex cobordism spectrum MUG of a finite abelian group.

3.4 The Case G = Z/pn

There is intricate structure hiding beneath the surface of our description of the

equivariant formal group law for MUG in the previous section. To illucidate the
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discussion, and as a special case of Section 3.3, we now compute the equivariant

formal group law given by the complex orientation on MUZ/pn . Much of the structure

follows immediately from Kriz [20]. Namely,

(3.23) R = MU∗Z/pnCP∞Z/pn ∼= MU∗Z/pn{{1, xL1 , xL1xL2 , . . .}},

for L1 ⊕ L2 ⊕ · · · any splitting of the complete universe U . The ideal I is

(3.24) I =

( ∏
L∈Ẑ/pn

xL

)
,

where the elements xL are Thom classes, and the product computed by the Thom

diagonal as before. We define

(3.25) xL1⊕L2⊕···⊕Lm =
∏

xL1xL2 · · ·xLm ,

so the right hand side of (3.23) is now well-defined.

We want to understand better the structure of the ring R via the description of

(3.23). Just as for the case G = Z/p, the splitting map MU → MUZ/pn induces an

isomorphism

πZ/p
n

∗ (F (EZ/pn+,MU)) ∼= πZ/p
n

∗ (F (EZ/pn+,MUZ/pn)),

so that π
Z/pn
∗ (F (EZ/pn+,MUZ/pn)∗CP∞Z/pn) ∼= MU∗[[u]]/([pn]Fu)[[x]]. For

0 ≤ j ≤ pn−1, let xj := xαj be the Thom class in M̃U
2

Z/pnT (γZ/pn⊗αj) given as before,

where γZ/pn is the canonical line bundle on CP∞Z/pn . Thus the ideal I = (
∏pn−1

j=0 xj).

It is clear that the elements xj may be written as series in x0, x0x1, x0x1x2, . . . with

coefficients in MU∗Z/pn . We give a more useful description of the elements xj arising

from the diagram of Theorem II.13. Of course x0 = x ∈ MU∗[[u]]/([pn]Fu)[[x]], and

xj = x0 +F [j]Fu. Let Rk, Sk, 0 ≤ k ≤ n − 1, and Rn be as in Theorem II.13, and

refer to that theorem for notation. Then the element ujb
(i)
j of Rn maps to an element
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of Sn−1 that does not include the term u−1
[n−1], so this element really lives in Rn−1. For

0 < k < n, the resulting element of Rk maps to an element of Sk−1 which does not

include the term u−1
[k−1], so it really lives in Rk−1. This allows us to map the elements

ujb
(i)
j of Rn to R0 = MU∗[[u]]/([pn]Fu); call this map φ. Then there is an implied

map φ : MU∗[ujb
(i)
j |i > 0, 1 ≤ j ≤ pn − 1][[x]] → MU∗[[u]]/([pn]Fu)[[x]]. Since ujb

(i)
j

maps to the coefficient of xi in x+F [j]Fu, xj is the image under φ of the element

∞∑
i=0

ujb
(i)
j x

i,

just as was true for the case G = Z/p. We would also like a nice description of the

ring

R = MU∗Z/pn(CP∞Z/pn) = MU∗Z/pn{{U}}

as a product, as we had for the case G = Z/p. Greenlees’ Theorem 11.2 [13] gives us

the following:

(3.26)

ΦZ/p
n

MU∗Z/pn{{U}} =

pn−1∏
j=0

ΦZ/p
n

MU∗Z/pn [[xj]] =

pn−1∏
j=0

ΦZ/p
n

MU∗Z/pn [[x+F [j]Fu]].

Moreover, we obtain R as an n-fold pullback, using Theorem II.13. Let us recall

the notation of that theorem:

u[k] = [pk]Fu;

Rk = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, . . . , pk − 1}][[u[k]]]/([p

n−k]Fu[k]);

Sk = MU∗[uj, u
−1
j , b

(i)
j |i > 0, j ∈ {1, . . . , pk − 1}][[u[k]]]/([p

n−k]Fu[k])[u
−1
[k] ];

Rn = MU∗[uj, u
−1
j , b

(i)
j |i.0, j ∈ {1, . . . , pn − 1}].

Also, the map ψk : Rk → Sk is localization by inverting u[k], and the map φk :

Rk+1 → Sk is determined by the property of sending b
(i)
j uj to the coefficent of xi in
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x +F [j]Fu[k], and u[k+1] 7→ [p]Fu[k]. The map φn−1 : Rn → Sn−1 is defined similarly.

Recall then that MUZ/pn is the pullback of the diagram

(3.27) Rn

φn−1

��
Rn−1

ψn−1 //

φn−2

��

Sn−1

R2

φ1
��

··· // Sn−2

R1

φ0
��

ψ1 // S1

R0
ψ0 // S0.

The various powers of the Euler class which are invertible on this diagram allow

for certain product decompositions of the ring R = MU∗Z/pnCP∞Z/pn . Let Rn, Sk, Rk

stand for the cohomology rings now, rather than homology. Then R is the pullback

of the following diagram of rings:

(3.28) ∏
k∈(Z/pn)∗ R

n[[xk]]

φn−1

��∏
k∈(Z/pn−1)∗ Rn−1[[xk]]

ψn−1 //

···
��

∏
k∈(Z/pn)∗ Sn−1[[xk]]

∏
k∈(Z/p)∗ R1[[xk]]

φ0

��

ψ1 //
∏

k∈(Z/p2)∗ S1[[xk]]

R0[[x]]
ψ0//
∏

k∈(Z/p)∗ S0[[xk]].
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The horizontal maps, as implied, are induced by the maps ψk and the condition

xj 7→
∏

r≡j( mod pk)(xr +F [j − r]Fu[k]). The vertical maps are induced by the maps

φk and the condition xj 7→ xj for all j.

There is a similar description of R⊗̂R as a pullback:

(3.29)
∏

k,r∈(Z/pn)∗ R
n[[xk, yr]]

φn−1

��∏
k,r∈(Z/pn−1)∗ Rn−1[[xk, yr]]

ψn−1 //

···

++

∏
k,r∈(Z/pn)∗ Sn−1[[xk, yr]]

∏
k,r∈(Z/p)∗ R1[[xk, yr]]

φ0

��

ψ1 //
∏

k,r∈(Z/p2)∗ S1[[xk, yr]]

R0[[x, y]]
ψ0 //
∏

k,r∈(Z/p)∗ S0[[xk, yr]].

The maps are determined by the maps of (3.28) and the corresponding conditions

for yr. Namely, under the horizontal maps, yr 7→
∏

s≡r( mod pk)(ys +F [r − s]Fu[k]).

Under the vertical maps, yr 7→ yr.

It remains to specify the coproduct ∆ : R→ R⊗̂R on the terms of the diagrams

(3.28) and (3.29). The map
∏

k∈(Z/pj)∗ Rj[[xk]] →
∏

k,r∈(Z/pj)∗ Rj[[xk, yr]] is deter-

mined by the identity map on Rj and the condition xk 7→
∏

k1+k2=k(xk1 +F yk2),

where by k1 + k2 = k we of course mean k1 + k2 ≡ k( mod pj). The map on the top

right of the diagrams is defined similarly. The map

∏
k∈(Z/pj)∗

Sj−1[[xk]]→
∏

k,r∈(Z/pj)∗

Sj−1[[xk, yr]]

is determined by the identity map on Sj−1 and the condition

xk 7→
∏

k1+k2=k

xk1 +F yk2 .
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Finally, the map ε : R→ E∗[Ĝ]̌ is constructed just as in the general case. This com-

pletes our description of the equivariant formal group law corresponding to MUZ/pn .

3.5 Conclusion

We have given explicit algebraic descriptions of the equivariant complex cobor-

dism ring MUG and its corresponding equivariant formal group law for G a finite

abelian group. The corresponding description of MUZ/p by Kriz [21] was used by

Strickland [31] to give generators and relations for MUZ/2. The present work should

allow Strickland’s computations to be carried over for more general groups G. More-

over, the description of the equivariant formal group laws in Section 3.3 provide an

avenue of approach toward Greenlees’ Conjecture III.2. The resolution of Greenlees’

Conjecture could allow for a lexicon to be built up between the topology of equiv-

ariant stable spectra and the algebra of equivariant formal group laws, as was done

non-equivariantly following Quillen’s Theorem I.1.

There is also reason to believe that the Isotropy Separation Spectral Sequence used

in Section 2.2 to compute the equivariant complex cobordism ring can be applied to

the study of other important equivariant spectra. The RO(G)-graded coefficients of

the equivariant Eilenberg-MacLane spectra, for instance, are still unknown beyond

the case G = Z/pn, which case was resolved by Hu and Kriz [18]. The Isotropy

Separation Spectral Sequence could very well facilitate this computation over a finite

abelian group.

Other worthy computations include that of spectra constructed from real cobor-

dism MR, such as the spectrum Ω defined by Hill, Hopkins and Ravenel [16], and

discussed in Section 1.1. Hill, Hopkins, and Ravenel obtain their results without

computing explicitly the coefficients of Ω, and this computation may yet enhance
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the power of their methods.

In conclusion, the methods and results of this thesis clear the path for much

future research in and around equivariant stable homotopy theory, and it is the

author’s hope to continue this research program to the expansion of the empire of

mathematical knowledge.
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