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Abstract
The Rank Rigidity Theorem for Manifolds with No Focal Points

by
Jordan P. Watkins

Chair: Ralf J. Spatzier

We say that a Riemannian manifold M has rank M > k if every geodesic in M
admits at least k parallel Jacobi fields. The Rank Rigidity Theorem of Ballmann
and Burns-Spatzier, later generalized by Eberlein-Heber, states that a complete, irre-
ducible, simply connected Riemannian manifold M of rank k£ > 2 (the “higher rank”
assumption) whose isometry group I satisfies the condition that the I'-recurrent vec-
tors are dense in SM is a symmetric space of noncompact type. This includes, for
example, higher rank M which admit a finite volume quotient. We adapt the method
of Ballmann and Eberlein-Heber to prove a generalization of this theorem where the
manifold M is assumed only to have no focal points. We then use this theorem to
generalize to no focal points a result of Ballmann-Eberlein stating that for compact

manifolds of nonpositive curvature, rank is an invariant of the fundamental group.
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Chapter 1

Introduction

This thesis aims to generalize certain “geometric rigidity” results in the theory
of manifolds of nonpositive curvature by replacing the condition of nonpositive cur-
vature with the weaker condition that the manifold has “no focal points”. Before
we proceed, however, we would like to give a brief introduction to rigidity results
in geometry, and “rank rigidity” results in particular. This is accomplished in the
present chapter. Chapter [[I| gives a mathematical introduction to the material of
this thesis, Chapter [[T]] develops some necessary background and tools for manifolds
with no focal points, and our main theorems are proven in Chapters and [V] The

main results of this thesis have been published in [47].

1.1 Rigidity results in geometry

The term “rigidity result” has no technical meaning; examples serve to best il-
lustrate the idea. The canonical example of a rigidity result is Mostow’s celebrated

Rigidity Theorem, proved in 1968:

Mostow’s Rigidity Theorem ([37]). Let M and N be compact Riemannian man-
ifolds, each of dimension at least three, and with constant sectional curvature —1.
Suppose the fundamental groups myM and 7 N are isomorphic; then M and N are

1sometric.



In 1973 Prasad [41] generalized Mostow’s theorem to the case where M and N
have finite volume.

Mostow’s proof works by lifting a homotopy M — N to a map between the
“boundaries at infinity” of their universal covers, using arguments from geometry,
dynamics, and analysis to show that this map on boundaries is conformal, and then
arguing that such a map descends to an isometry M — N. This idea of looking at the
boundary of M is a crucial component of many proofs of geometric rigidity results,
including the main proof of this paper. We discuss this boundary for manifolds with
no focal points in section |3.3

If one thinks of a finite volume M equipped with a Riemmanian metric of constant
negative curvature, one may interpret Mostow’s result as saying that the metric on
M is “rigid” in the sense that there do not exist any other metrics on M also having
constant negative curvature. Note also that this result fails in dimension 2: The space
of constant-curvature —1 metrics on a surface of genus g > 2 is (6g — 6)-dimensional.

There is a large pool of rigidity results, including Mostow’s, that concern them-
selves with semisimple Lie groups and symmetric spaces. The reader unfamiliar with
the idea of semisimplicity may think of the Lie groups SL(n,R); these exhibit much
of the behavior of semisimple Lie groups in general. Some definitions: A semisimple
Lie group is said to be of noncompact type if it has no compact factors (i.e., no
nontrivial normal subgroup is compact). A symmetric space of noncompact type is
a quotient GG/K where G is a semisimple Lie group of noncompact type and K a
maximal compact subgroup of GG; there is a natural way to put a G-invariant met-
ric on G/K making it into a Riemannian manifold. The algebraic nature of these
manifolds makes them susceptible to a wide array of mathematical techniques, from

dynamics to algebraic geometry to number theory; they are extensively studied. We



sketch the necessary background in Section [2.2} the reader is encouraged to think
of SL(n,R)/SO(n,R) and SO(1,n)/SO(n) (which is isometric to H") as primary
examples.

Let us take a moment to rephrase Mostow’s result in terms of symmetric spaces.
It is well-known that the universal cover of a manifold of dimension n and constant
curvature —1 is the hyperbolic space H", and it is not difficult to show that H"
is isometric to the symmetric space SO(1,n)/SO(n). The manifolds M and N
of Mostow’s theorem, having dimensions m and n, respectively, have fundamental

groups m (M) C SO(1,m) and 7 (N) C SO(1,n). Hence we may write

M = m(M)\SO(1,m)/SO(m) and N = m (N)\SO(L,n)/SO(n),

which realizes M and N as quotients of symmetric spaces. (Such quotients are called
locally symmetric spaces.) It is natural in this context to wonder if Mostow’s rigidity
result applies to symmetric spaces coming from semisimple Lie groups other than
SO(1,n). This is indeed the case; the precise result, proved by Mostow in 1973, is

as follows:

Mostow’s Rigidity Theorem ([38]). Let G, G’ be connected semisimple Lie groups
of moncompact type and trivial center, and let T C G and IV C G be discrete,
cocompact subgroups. Assume I is irreducible and G is not isomorphic to SL(2,R).

Then any isomorphism m : I' — I extends to an isomorphism 7 : G — G'.

The condition that a semisimple group G be of noncompact type is equivalent to
the geometric condition that G/K have nonpositive curvature; if G is simple, then
this is equivalent to GG being noncompact. The condition that I' is irreducible is
mildly technical and outside the scope of this thesis; it is meant to eliminate lattices

like I'y x I'y C G X (G5, and is satisfied trivially when G is simple.



If K is a maximal compact subgroup of GG, then 7(K) is maximal compact in G,
so 7 descends to a map of locally symmetric spaces 7 : '\G/K — I"\G'/n(K), and
it isn’t hard to check that this map is an isometry. Thus the result above specializes
to Mostow’s original theorem in the case G = SO(1,n), G’ = SO(1,m) for n,m > 3.
Note that the condition that G not be isomorphic to SL(2,R) eliminates the 2-
dimensional counterexamples to Mostow’s theorem.

Mostow’s proof of the above result again makes critical use of the boundary of
the symmetric space G/K. In addition, it is divided into two cases: the case where
G/K has “rank one”, which is similar in spirit to the 1968 result, and the case where
it has “higher rank”, which requires new insight. In particular, in the higher rank
case Mostow makes use of a Tits building structure on the boundary of G/K; in the
proof of our main result, some aspects of this structure are captured by the “Tits
metric” on the boundary of our manifold, developed in section |3.4)

We give a geometric description of the rank of a symmetric space G/ K of noncom-
pact type, since this is the description that will be most useful to us later. Consider
totally geodesic, isometric embeddings f : R¥ — G//K. Such embeddings (or, equiv-
alently, their images) are called k-flats in G/K. The maximal &k such that G/K has
a k-flat is called the rank of G/K. (For more general Riemannian manifolds, this
definition of rank has to be modified; see section [2.1}) We remark that the rank of
G/K is equal to the R-rank of GG in the sense of algebraic groups.

G/K is called rank one if its rank is equal to 1, and higher rank otherwise. A
cornerstone result in the theory of higher rank symmetric spaces is Margulis’ super-
rigidity theorem, proved by Margulis in the early 70’s, which deals with extending
maps out of lattice subgroups I' of G' to maps defined on all of G. One statement of

a specific case of Margulis’ superrigidity theorem is as follows:



Margulis’ Superrigidity Theorem. Let G be a connected, higher rank semisimple
Lie group of noncompact type, and let I' be an irreducible lattice in G. Let H be a
simple, connected, noncompact real algebraic subgroup of GL(n,R), and suppose we
have a homomorphism w : I' — H such that w(I") is Zariski dense in H. Then m

extends to a homomorphism G — H.

The precise statement of Margulis’ theorem is somewhat more general than this;
see the book by Margulis [35] or by R.J. Zimmer [51] for a statement as well as a
proof of the general result. The Borel density theorem implies that if IV C H is a
lattice, then I is Zariski dense in H; from this and superrigidity, one may deduce
Mostow’s rigidity theorem in the special case that G' has higher rank. A second
astounding consequence of superrigidity (which takes a bit more work to show) is
Margulis’ Arithmeticity Theorem, which states that lattices I' in higher rank groups
G must be “arithmetic”, which very roughly means that they come from a nice
algebraic-type construction; again, see [35] or [51] for a precise statement and proof.

From Mostow’s theorem, one knows that a given subgroup I' can only be the
fundamental group of a unique locally symmetric space—said another way, Mostow
rigidity implies that there is at most one locally symmetric metric on the smooth
manifold I'\G/K (where G is semisimple of noncompact type). In the early 80’s

Gromov proved a stronger result:

Theorem. Let M be a nonpositively curved compact locally symmetric space whose
universal cover M does not split as a product. Then the symmetric metric is the only

nonpositively curved metric on M.

Eberlein [21] obtained the same result under the added assumption that M splits

as a product (but still without flat factors). We remark that Gromov’s proof again



relies heavily on various structural properties of the boundary of M at oo and its

1sometries.

1.2 Higher rank rigidity

To proceed, we require a more general definition of the rank of a Riemannian
manifold M. Let v € SM be a unit tangent vector; the rank of v is the dimension
of the space of parallel Jacobi fields along the geodesic v, through v. Note that if
o : RF — M is a totally geodesic isometric embedding, i.e., a k-flat in M, with
v tangent to the image o(R*), then variations of geodesics parallel along the flat
give rise to parallel Jacobi fields along ~,. Thus our notion of “rank of v” is an
infinitesimal version of the number “the largest k such that M has a k-flat through
v”. It’s possible to show that this agrees with our prior definition of rank in the case
G/K is a nonpositively curved symmetric space. The rank of M is then defined to
be the minimum of rank(v) over all v € SM.

In the mid-80’s, building on an analysis of higher rank manifolds of nonpositive
curvature carried out by Ballmann, Brin, Eberlein, and Spatzier in [5] and [6], Ball-
mann in [3] and Burns-Spatzier in [I12] and [11] independently (and with different

methods) proved the following higher rank rigidity theorem:

Rank Rigidity Theorem. Let M be a complete, simply connected, irreducible Rie-
mannian manifold of nonpositive curvature, rank k > 2, and curvature bounded be-
low; suppose also M admits a finite volume quotient. Then M is a locally symmetric

space of noncompact type.

The theorem was later generalized by Eberlein-Heber in [22]. They removed the
lower curvature bound, and also generalized the condition that M admit a finite

volume quotient to the condition that a dense set of geodesics in M be I'-recurrent;



they called this condition the “duality condition”, for reasons not discussed here.

Our main result is a generalization of the Higher Rank Rigidity Theorem aabove.
Before discussing it, however, we take a moment to survey two other “rank rigidity”
theorems inspired by the above result.

In 1991, Hamenstadt gave the following definition: A Riemannian manifold M has
higher hyperbolic rank if the sectional curvature of M is bounded above by —1, and
along every geodesic vy there is a Jacobi field J making sectional curvature —1 with
the geodesic (i.e. w(J(t),¥(t)) = —1 for all ¢, where k(v,w) denotes the sectional

curvature of the plane spanned by v, w). She then proved [29] the following result:

Theorem. A closed Riemannian manifold of higher hyperbolic rank is locally sym-

metric.

The analogue of hyperbolic rank for positive curvature is called spherical rank;
a Riemannian manifold M is said to have positive spherical rank if its sectional
curvature is bounded above by 1, and every geodesic v : [0, 7] — M has a conjugate
point at m. We remark that it follows from Rauch’s comparison theorem and the
curvature bound that no geodesic of M can have a conjugate point before 7.

Using this notion, Shankar, Spatzier, and Wilking in 2005 proved the following

[43]:

Theorem. Let M be a complete simply connected Riemannian manifold of positive

spherical rank. Then M 1is isometric to a compact rank one symmetric space.

Note that both the hyperbolic and spherical rigidity results, like the higher rank
rigidity result, assume both an upper curvature bound and also that geodesics satisfy
some extremal condition with respect to that bound. One might similarly ask for

rank-rigidity type theorems for manifolds that satisfy a lower curvature bound. Some



questions in this area are still open. However, Heintze and Spatzier-Strake [46] have
constructed (one-parameter families of ) compact manifolds M with higher rank and
nonnegative sectional curvature which are nonsymmetric, showing that the analog
of higher rank rigidity in nonpositive curvature fails.

In the positive direction, Constantine [I4] has shown the following:

Theorem. Let M be a compact rank one manifold with nonpositive sectional cur-
vature, and suppose that along every geodesic in M there is a parallel vector field
making sectional curvature —1 with the geodesic. If M is odd dimensional, or if M
is even dimensional and has sectional curvature k pinched as —A% < K < —\? with

AN > .93, then M has constant sectional curvature —1.

Note that although an upper curvature bound is assumed, the condition on

geodesics is not the extremal one implied by this bound.

1.3 Results of this thesis

Our aim in this thesis is to generalize the nonpositive curvature assumption of
Ballmann, Burns-Spatzier, and Eberlein-Heber’s result to a condition known as “no
focal points”. Precisely, M has no focal points if every Jacobi field J along a geodesic
v in M satisfying J(0) = 0 has ||J(¢)|| strictly increasing for ¢ > 0. We investigate
this definition more in Section[3.1} for the moment, we note that nonpositively curved
manifolds have no focal points, so our result implies the higher rank rigidity theorem

above. Specifically, Chapter proves the following:

Rank Rigidity Theorem. Let M be a complete, simply connected, irreducible Rie-
mannian manifold with no focal points and rank k > 2 with group of isometries T',
and suppose that the I'-recurrent vectors are dense in the unit tangent bundle SM.

Then M is a symmetric space of noncompact type.



When M admits a finite volume quotient, the ['-recurrent vectors are dense in M.

As a consequence we obtain the following corollary:

Corollary. Let N be a complete, finite volume, irreducible Riemannian manifold

with no focal points and rank k > 2; then N is locally symmetric.

The conditions of no focal points and density of I'-recurrent vectors pass nicely

to de Rham factors; because of this, we will also get a decomposition theorem:

Corollary. Let M be a complete, simply connected Riemannian manifold with no
focal points and with group of isometries I', and suppose that the I'-recurrent vectors

are dense in SM. Then M decomposes as a Riemannian product
M = FE,. x Mg x My x - x M,

where E, is a Fuclidean space (of dimension r), Mg is a symmetric space of non-
compact type and higher rank, and each factor M; for 1 < ¢ <[ is an irreducible

rank-one Riemannian manifold with no focal points.

In 1987, following the work of Prasad-Ragunathan [42], Ballmann and Eberlein
in [§ defined the rank of an abstract group, and used the Higher Rank Rigidity
Theorem in nonpositive curvature to show that, for nonpositively curved manifolds
of finite volume, the rank of the manifold is equal to the rank of the fundamental
group. Notice that Gromov’s result then follows as a simple corollary of this and
higher rank rigidity.

In Chapter , we generalize their proof to the case of no focal points (but now

adding in the assumption that the manifold is compact), obtaining the following:

Theorem. Let M be a complete, simply connected Riemannian manifold without

focal points, and let I' be a discrete, cocompact subgroup of isometries of M acting

freely and properly on M. Then rank(I') = rank(M).



As a corollary of this and the higher rank rigidity theorem, we find the following

generalization of Gromov’s theorem:

Corollary. The locally symmetric metric is the unique Riemannian metric of no focal

points on an irreducible, compact locally symmetric space of nonpositive curvature.

(In the above corollary, “irreducible” means that the universal cover of M does
not split as a product. However, we remark that if M has no flat factors, the results
of chapter |V|imply that if M splits as a product, then so does some finite cover of

The results of this thesis have been used by A. Zimmer [49] to show that compact
asymptotically harmonic manifolds with no focal points are either flat or a rank one
symmetric space of noncompact type. (Zimmer generalizes this result to other cases
in [50].) In addition, Ledrappier and Shu [34] have used these results to obtain an
entropy rigidity theorem for compact manifolds without focal points, showing that
the equality of various notions of entropy on such a manifold M implies that M is

locally symmetric.

1.4 A few questions

The Heintze and Spatzier-Strake counterexamples show that some additional hy-
potheses are needed in order to obtain a higher rank rigidity theorem. The most

obvious generalization suggested by our results might be:

Question 1.1. Let M be a closed irreducible Riemannian manifold with higher rank

and no conjugate points. Must M be locally symmetric?

No counterexamples are known, but a proof would probably stray heavily from

the methods of the current work. In particular, our proof relies heavily on the so-

10



called Flat Strip Theorem (see Section , which fails in general for manifolds with
no conjugate points, as shown by Burns in [10].

One might also ask whether it is possible to remove the assumption that I'-
recurrent vectors are dense in SM. Again, no counterexamples are known. However,
the methods of Ballmann, Burns-Spatzier, Eberlein-Heber, and this thesis all rely
heavily on analysing the dynamics of the geodesic flow on SM, and in particular,
make considerable use of recurrence. One expects that a totally new approach would
be required to tackle such a problem.

Another way to drop the curvature-type assumption might be to look at pertur-

bations of locally symmetric metrics, motivating the following question:

Question 1.2. Let M be a closed manifold, and let g; be a smooth one-parameter
family of metrics on M such that (M, go) is an irreducible nonpositively curved higher
rank locally symmetric space, and (M, g;) is higher rank for all t. Must it be the case

that each (M, g;) is locally symmetric?

Yet another avenue for generalization, and an active area of current research, is
to replace the Riemannian manifold M by a “nonpositively curved” length space X.
(One might assume X to be CAT(0), or perhaps simply that its distance function
is convex.) One then hopes that for an appropriate definition of “higher rank”, one
might classify higher rank nonpositively curved spaces X; for instance, Ballmann-
Buyalo [7] have conjectured that such an X is either locally a product, isometric to

a locally symmetric space, or isometric to a Euclidean building.
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Chapter II

Preliminaries

2.1 Geodesic flows

Let M be a Riemannian manifold. All Riemannian manifolds in this work are
assumed to be complete. We denote by T'M and SM the tangent and unit tangent
bundles of M, respectively, and by 7 the corresponding projection map. If v is a
unit tangent vector to a manifold M, we let ~, denote the (unique) geodesic with
(0) = v.

Central to our work is the geodesic flow on M, which is the flow ¢' : SM — SM

defined by
g'v=Fu(t).
In this section, we establish some basic properties of g*. First, a definition that is
central to our entire paper:
Definition II.1. If v € SM, the rank of v is the dimension of the space of parallel
Jacobi fields along ~,. The rank of M is the minimum of rank v over all v € SM.

2.1.1 The Sasaki metric

We wish to construct a natural Riemannian metric (the Sasaki metric) on TM.
We begin by noting the correspondence between paths in 7'M and vector fields along

curves in M. Let 0 : R — T'M be a (smooth) path. Then 7o ¢ is a path in M, and

12



for each t € R, o(t) is a tangent vector to M at w(co(t)). Thus o gives a vector field
along 7o 0. Conversely, a vector field along a curve in M may be lifted to a path in
TM.

With this in mind, let v € TM, and let X € T, TM. Choose a path o : (—¢,¢) —
TM such that ¢(0) = X; such a o gives rise to a vector field V,(t) along m o o. We

define the horizontal part KX € Ty, M of X to be
KX = (D;V,)(0),

where D, indicates the covariant derivative. One can check that K X does not depend
on the choice of path o.

The map K : T,TM — T, M is sometimes called the connector, and its kernel
is called the horizontal subspace at v. There is, likewise, a vertical subspace, given
by the kernel of the map dm : T, TM — T M, and it isn’t difficult to check that
the map (dr, K) : T,TM — Ty )M @ Tr(yM is an isomorphism.

For v € T,M, there is a unique vector v# in the horizontal subspace at v such
that dr(vf’) = v, and a unique vector v" in the vertical subspace at v such that
K(©") = v. The vectors v and vV are called the horizontal lift and vertical lift of

v, respectively.

Definition II.2. The Sasaki metric on T M, as an inner product on T, T'M, is given
by the pullback via (dm, K) of the inner product on 5y M @ Ty M determined by

the Riemannian metric.

In terms of the connector K and the map dm, we may write the Sasaki metric on
T, TM as

<X> Y>TM = <CZ7TX, dﬂY)M + <KXa KY)M

13



The restriction of the Sasaki metric on T'M to a Riemannian metric on the sub-
manifold SM is also called the Sasaki metric. In terms of the maps drm and K,

vectors in T,,T'M tangent to SM are characterized by the following property:
Proposition I1.3. Letv € SM. Then X € T,TM is tangent to SM iff (v, KX) = 0.

Proof. Let V (t) be a vector field along a path 7 in M such that the associated path
V(t) in TM is tangent to X. By construction V(0) = v has unit norm. Thus V(¢)

is tangent to SM at v iff
d
0= E’tzOHV(t)HZ = 2(V(0),V'(0)) = 2{v, KX).

]

It is of paramount importance to the theory of geodesic flows that the volume
form given by the Sasaki metric is preserved by the geodesic flow on SM. Before

establishing this, we must first discuss the relationship of the geodesic flow and Jacobi

fields.

2.1.2 Jacobi fields and dg*

Let V(s) be a vector field along a path 7 in M. As noted above, this vector field

corresponds to a path V(s) in TM; then d%f?(s) is an element of Ty (sT'M and

dr(£V(s)) = #(s)

K(£V(s) = V().

This allows us to write %‘7(3) as an element of T M @ Ts)M using the isomor-
phism (dr, K) discussed above.
We're interested in the behavior of the derivative dg' of the geodesic flow, and

hence we're interested in the behavior of such paths 17(3) under the geodesic flow.

14



We may define a variation of geodesics by
[(t,s) = exp(tV (s)).
In terms of I', the element of Ty M & T, M corresponding to %\7(3) is
(GSF(O, s), Ds0,I'(0, s))

More generally, the element of Ty oM ® TrqsM corresponding to the path s
0 '(t,s) in TM is

(8SF(t, s), D0 (¢, s))

Note that I'(0,s) = V(s), and that (s — I'(¢,s)), as a path in T'M, is the image
of the path V(s) under the geodesic flow g*. Thus we have established that, under
the identifications given by the maps (dmr, K), the derivative of the geodesic flow is

determined by
dg' (0,'(0,0), D,9,I'(0,0)) = (9,'(t,0), D;8,I'(¢,0)).

The field J(t) = 0,I'(t,0) along I'(¢,0) is a Jacobi field; furthermore, we have

D,o,I' = D;o,I' = J'(t). Hence the formula above reduces to the following:

Proposition I1.4. Let J be a Jacobi field along the geodesic ~v. Then, under the

identifications given by the maps (d¢, K),

dg'(7(0), J'(0)) = (J(t), J'(t))

Since there is a (unique) Jacobi field J along ~ satisfying J(0) = v; and J'(0) =
vy for any choice of vy,v9 € T),M, the above proposition completely describes the
derivative dg'. In the future, we will feel free to make the identification T, TM =

TrwyM @ TryM given by (dm, K) without comment.
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The connection between Jacobi fields and the geodesic flow is a major reason for
studying the rank of a Riemannian manifold. In particular, if v € SM is rank one,
there are no parallel Jacobi fields along v, and one hopes that one can glean from
this that the geodesic flow has some sort of “hyperbolic” behavior along g'v. An
example of this kind of reasoning can be seen in Chapter [V]

Conversely, if M has higher rank, one might hope that the parallel Jacobi fields
along an arbitrary geodesic v of rank k£ come from a totally geodesic isometric em-
bedding R¥ — M, and then use the geometric structure of these embedded flats
through every v € SM to say something about the structure of M. Indeed, this is
the beginning of a proof of higher rank rigidity; the embedded flats are constructed

for M complete and without focal points in section [4.1]

2.1.3 The contact form and the invariant metric

The manifold SM is equipped with a natural one-form « defined by
(X)) = (v,dr X).

(Those familiar with symplectic geometry will recognize this as the restriction to SM
of the pullback of the canonical one-form on 7*M by the isomorphism T'M — T*M
given by the Riemannian metric.)

Of course, there is also a one-form on T'M given by the same formula. However,

it is necessary to restrict to SM to obtain the following proposition:

Proposition I1.5. « is invariant under the geodesic flow on SM.
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Proof. We write vectors in T,,SM as Jacobi fields (J(t), J'(t)). Thus we may calculate

(") )u(J(0), J'(0)) = g ((9)+(J(0), J'(0)))
= OégtU(J(t>, J/(t))

= (g'v, J (1)),

so we reduce to the assertion that (g'v, J(t)) is constant. We have

%@tv, J(1)) = (Dug'v, J(1) + (g'v, J'(1)) =0,

where the first term vanishes since g'v is the tangent vector field to a geodesic, and

the second term vanishes by Proposition [[I.3] O

In fact, the one-form « is a contact form, which by definition means that the
(2n — 1)-form

aANdaA--Ndo=aA(da) "
is nonvanishing. To see this it helps to have the following nice formula for do:
Proposition I1.6. do(v,w) = (Kv, dn(w)) — (dr(v), Kw).

Proof. We establish this formula on 7'M, from which the formula on SM follows. Fix
veTM. Let Ey, ..., E, be vector fields on M, defined locally around 7 (v), such that
{E1(q), ..., En(q)} is an orthonormal frame for T, M for each ¢ near 7(v). Choose
local coordinates on T'M such that the point (z',... 2™ &', ... &) corresponds to
the vector £'E;(x!, ... 2"). (Here and throughout, we use the Einstein summation
convention.)

We denote by 97 and E)f the (local) vector fields on TM given by differentiating
in the direction of the z* and &' coordinates, respectively. Note that dw@f =0, and

hence a(8%) = 0.
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We use the formula
(%) da(X,Y) = XaY) - Ya(X) — o([X,Y])

to evaluate da on the fields & and . Since these are vector fields associated
to coordinates, all terms involving brackets are equal to zero; by our observation
above, all terms involving a(af ) are also zero. Thus we need concern ourselves with

computing the terms 07 (97) and afa(ﬁf). First of all, we have

ay(07) = (v, dm(97))
= <U’aj>

= §k(Ek(x1, e ,(L’n), 8j),
where 0; denotes the vector field on M given by the 27 coordinate. We then have

07, (07) = EoF (B (at, ... 1), 0;)
= §k81<Ek(x1, e ,ZL’n), @j>
= £k<Ek($1, e ,LL’n), Vaﬁ»

From this, our formula (x), and the fact that Vs,0; = Vg,0;, we find da(f, 97) = 0.

With regard to Of , we have
0f a, (0F) = (Ey(at,...,2"),0;).
Thus, we have computed da: it is the unique two-form satisfying

da(0F,0%) = (By(z!, ..., 2"™),0,);

i Y

da(F,85) = do(9F, 0%) = 0.

(R} 197

All that remains is to check that the two form given by (v, w) — (Kv,dr(w)) —
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(dm(v), Kw) satisfies the same equations, which follows immediately from the equa-

tions

drdf =0 K& = F,

drdF = 0, Ko =0.

Corollary 11.7. « s a contact form on SM.

Proof. We must show that o A (da) ") is nonvanishing at each v € SM. Fix such
a v. Extend v to an orthonormal basis v, wy, ..., w,—1 of Ty M. For each ¢, let wh
and w) be the horizontal and vertical lifts of w;, respectively; let v be the vertical
lift of v. It’s clear from Proposition that v, wH, and w), for 1 <i <n—1, are
all in T,SM. Furthermore, the previous proposition gives the following expressions

for da:

da(w]’, w}) = 6;

da(wf,wf) =da(w,wY) =0

It follows that
<a A (doz)“”‘”) (W wi w . wl wY ) =1,
and in particular that this form is nonvanishing. O]

In fact, the previous proof shows more: Notice that the vectors v, wH w) for 1 <
i < (n—1) form a Sasaki-orthonormal basis for 7,,SM. Since the form a A (da)""—1)

takes this basis to 1, it is the volume form associated to the Sasaki metric. But

since the geodesic flow leaves « invariant, it also leaves this form invariant. Thus
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we conclude that the volume associated to the Sasaki metric is invariant under the

geodesic flow.

2.2 Symmetric spaces

In this section we give a very brief overview of symmetric spaces. As we do not
require much from the theory of symmetric spaces other than the Berger-Simons
holonomy theorem (stated in Section , we do not attempt to develop this theory
here. The interested reader should see Helgason [30] or Kobayashi-Nomizu [33], the

standard references.

2.2.1 Definitions

We begin with the simplest definition of a symmetric space. Let M be a complete
Riemannian manifold and p € M. Fix a neighborhood U of 0 in 7,M such that
the restriction of exp, to U is a diffeomorphism onto its image. Then we get a

diffeomorphism o : exp, U — exp, U, called the local geodesic symmetry at p, by
o = exp, o(—id) o exp, .

Definition I1.8. A Riemannian manifold M is called locally symmetric, or is said
to be a locally symmetric space, if for each p € M, the local geodesic symmetry is an
isometry. M is called (globally) symmetric, or is said to be a symmetric space, if it

is locally symmetric and in addition each geodesic symmetry extends to an isometry

of M.

There is an apparent ambiguity in the first half of this definition: namely, one
might worry that it is possible that there be two neighborhoods U and V of 0 in
T, M such that exp, restricts to a diffeomorphism on both U and V', but the geodesic

symmetry is an isometry on exp, U and not on exp, V. In fact this cannot happen
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under the assumption that every point have a neighborhood for which the local
geodesic symmetry is an isometry.

Recall that for a Riemannian manifold there is a covariant derivative V taking
(p, q)-tensors to (p+1, q)-tensors determined by the Levi-Civita connection. We have

a second characterization of locally symmetric spaces as follows:

Proposition. M is locally symmetric iff VR = 0, where R is the Riemannian cur-

vature tensor of M.

Along these same lines, one can also show that if M is locally symmetric and
simply connected, then M is a symmetric space.

The above geometric definitions are convenient for their simplicity, but they do
not really give the complete picture of the idea of a symmetric space. We are in-
terested in nonpositively curved symmetric spaces; it turns out in fact that every
nonpositively curved symmetric space is given by an algebraic quotient G /K, where
(G is a semisimple real Lie group and K is a maximal compact subgroup, equipped
with a natural Riemannian metric for which the action of G'on G/ K is by isometries.

We defer the construction of this metric in the general case to Helgason [30].
However, we can carry out the construction for the special case SL(n,R)/SO(n,R)
without too much abstraction; we do this presently. For ease of notation we let
G = SL(n,R) and K = SO(n,R).

2.2.2 The symmetric space SL(n,R)/SO(n,R)

The Lie algebra g = sl(n,R) of SL(n,R) is the set of trace zero n x n matricies.

s[(n,R) has a natural bilinear form

B(X,Y) = tr(XY).
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and this form is nondegenerate; in fact, it is simple to see that it is positive definite
on the space p of trace zero symmetric matricies and negative definite on the space

t = s0(n,R) of skew-symmetric matricies. We note also, for later reference, that
B(X, [V, 7)) = B(X,Y], 2).

(This is easy to check.)

We let 7 : G — G/K be the projection map. Then ¢ is the kernel of dr, and since
g = P p, we see that dr identifies p with the tangent space to the coset 1K € G/K.
We denote the restriction of the form B to p by (-, )1x; it is an inner product on p.

G acts transitively on the left of G/K; we denote the action of g € G by Ly :
G/K — G/K. In particular, if & € K the map Ly fixes the coset 1K, and so its
derivative induces an automorphism dL; of the tangent space p.

To derive an explicit formula for this automorphism, let X € p; then ¢! K is a

curve through 1K with tangent vector X, and Lj takes this curve to the curve
ke K = (ke kN K;
differentiating at ¢ = 0, we see that
dLi(X) = kXEk™"

Note that since k € K = SO(n,R), the matrix kxXk~! is again in p; this is the reason
for introducing the factor of k1.
With this in mind, we may attempt to extend (-, -);x to a Riemannian metric on
G/K by defining, for g € G,
(dLyX,dLyY)grx = (X, Y )1k
whenever X,Y € p. Since dL, gives an isomorphism of the tangent spaces at 1K

and gk, this formula does indeed determine an inner product on the tangent space

22



at g K. However, there is a possible ambiguity in this definition: We must check that
if k € K our formula returns the original inner product on the coset kK = 1K. To

do this, fix XY € p and k € K and calculate:
(dLp X, dLpY )1 = tr((dLy X)*d L Y')
= tr(kX*k'RY R
=tr(X'Y) = (X, Y)ik.

Thus our inner product (-,-)sx is well-defined independent on the choice of coset
representative g, and so we get a Riemannian metric on GG/ K, and (by construction)
the left action of G is by isometries.

It is a fact of linear algebra that G = exp(p)K, and this allows us to write any

point gK as eX K, with X € p. Then the geodesic symmetry at 1K is the map
o1r €N K e*XK,

and one can check that this is indeed an isometry. Since G/K is homogeneous, the
geodesic symmetry at every point of G/K is then an isometry, i.e., G/K is in fact a

symmetric space in the sense of our first definition.

2.2.3 The curvature tensor of G/K

Our next goal is to explicitly compute the curvature tensor of G/K. To do
this, we note first that GG is a pseudo-Riemannian manifold with the left-invariant
metric determined by B, and this makes the projection dr : G — B into a pseudo-
Riemannian submersion (that is, dr is an isometry on (kerdr)t). G is equipped
with a Levi-Civita connection satisfying the usual properties and determined by the
Koszul formula.

In fact, the connections of G and G/K are related in a simple way. If X is a

vector field on G/K we denote by X the unique vector field on G such that X and
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X are m-related and X is everywhere orthogonal to the kernel of dr; we call X the
horizontal lift of X. In addition, given a tangent vector W to G, we define W* and
WY to be the unique orthogonal vectors such that W = W* + WV and dr(WV) = 0.

Let V be the connection on G and V the connection on G /K. It is not hard to

show, using the Koszul formula, that
(VxY,Z) = (VY. 2),

or, equivalently,
STV = (T
One can use this to obtain a formula for the curvature tensor R on G/K in terms of

the curvature tensor R on G:

O’Neill’s Formula. Let X,Y, V. W be horizontal fields on G. Then

(R(dr X, dnY)drV,daW) =(R(X,Y),V,W) — %([X, YV, [V, W]Y)

- i(qx, VI W) = (VY X W)

For us the advantage here is that %, and hence .fi, is easy to compute, again with
the Koszul formula. Let X,Y,Z be left-invariant vector fields on G. The Koszul

formula states
UVXY, Z) = X(Y, Z) + Y (Z,X) = Z(X,Y) — (X,[Y, Z)) + (Y, [Z, X]) + (Z,[X, Y]).
Since X, Y, Z are left invariant, X (Y, Z) = 0. Furthermore
(X, IY, Z))y = B(X,[Y, Z]) = B([X,Y], 2) = (X, Y], Z),
and by a similar computation
Y, 12, X]) = ([X,Y], 2).
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It follows immediately that

~ 1
VxY = g[X.Y].

It is now trivial to compute R straight from the definition. One finds that if X, Y, Z €

g, which we identify with the tangent space at the identity of G,
~ 1
mxywz—ﬂmﬂmﬂ

This, with O'Neill’s formula, allows us to write down the curvature form of G/K
at the coset 1K. Let XY, Z W € p; denote also by X,Y, Z, W the associated left-
invariant vector fields on G. Note then that since [p,p] C &, the brackets of these
vector fields are left-invariant vector fields coming from €, which means they are

vertical. Thus O’Neill’s formula says

(ROXY)Z,W) = (ROXY)Z, W) =3 (X YLV, W)= (X, 201 W)+ Y, 20,1, W)

and one repeatedly uses the fact that B([X,Y],Z) = B(X,[Y,Z]) as well as the

Jacobi identity to compute

Equivalently, we have

R(X,Y)Z = —[[X,Y],Z].

In particular, if X,Y are orthonormal, then
(RX. Y)Y, X) = —||[X,Y]|?

is the sectional curvature of the plane spanned by X and Y, so we see that G /K has
nonpositive curvature.
Moreover, we can investigate flats in G/K. Let b be an abelian subalgebra of p;

we know that for A, B € b, the sectional curvature of the plane spanned by A, B is
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zero. Consider the submanifold exp(h)K of G/K; we claim this submanifold is flat,
and so we must compute its curvature at an arbitrary point exp(C)K. Let A € b;
then

d
ALeyp(c)A = —
p(C) dt

d
= %L:O exp(C +tA)K,

exp(C) exp(tA)K

t=0

and this is tangent to exp(h). Thus dLex(c) maps b isometrically onto the tangent
space to exp(h) at exp(C)K, and it follows that all sectional curvatures of exp(h) at
this point are zero, and therefore that exp(h) is indeed flat.

Thus flats in G/K through the point 1K correspond to maximal abelian subal-
gebras of p. An example of such a subalgebra is the algebra b of diagonal trace zero
matricies; this has dimension (n — 1). Furthermore, for any k¥ € K the set k~'hk
is also an abelian subalgebra of p. Since any symmetric matrix can be orthogonally
diagonalized, we see that for every X € p there exists a k such that X € k~1hk;
geometrically, the hyperplane k~'hk integrates to an (n —1)-flat through the tangent
vector X. Since G/K is homogeneous, every tangent vector to G/ K is contained in

an (n — 1)-flat, and so we have shown:
Proposition. rank(SL(n,R)/SO(n,R)) =n — 1.

The argument above carries over to general semisimple Lie groups G and their
maximal compact subgroups K. The largest change that needs to be made is in
definition of the bilinear form B on g; in general this becomes the Killing form,
defined by

B(X,Y)=tr(ad XadY),

where ad X : g — g is the endomorphism Y — [X,Y]. The Killing form is nondegen-

erate if G is semisimple, negative definite on the lie algebra £ of K. The subspace p
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can then be defined to be the orthogonal complement to £ and is identified with the
tangent space to G /K. Just as above one obtains the formula R(X,Y) = —ad[X, Y]
for the curvature endomorphism, showing that G/K is nonpositively curved, and
that flats in G/ K correspond to maximal abelian subalgebras of p.

It is possible but slightly more complicated to give a description of the connection
on G/K; again, one should see the standard references [30], [33]. Mautner [36] gives

an explicit formula for the geodesic flow on G/ K:

Proposition. Let g € G, X € p. The geodesic (t) through dL,X at time t =0 is

V(t) = gexp(tX)K.

The main result of Mautner’s paper is that if G/K is higher rank, and T is a
lattice in G, then the geodesic flow on T'\G/ K is not ergodic; he also gives an explicit
description of the ergodic components of G. This involves algebraic machinery not

developed here, so we refer the reader to his paper for that result.

2.3 Holonomy and reducibility

In this section we discuss the holonomy group of a Riemannian manifold, the
deRham decomposition, and the Berger-Simons theorem. The main reference for the
material on holonomy and deRham decomposition is the book by Kobayashi-Nomizu
[32].

Let M be a complete orientable Riemannian manifold, and suppose 7 : [0, 1] — M
is a nullhomotopic piecewise-¢! curve with p := v(0) = v(1). Then parallel transport
around 7 defines an isometry P, : T,M — T,M. The set of all such P, forms a
subgroup of SO(n). One can show that this subgroup is closed, and hence is a Lie

subgroup of SO(n).
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Definition I1.9. The holonomy group of M at p is the subgroup of SO(n) consisting

of all P, as above.

The group defined above is sometimes called the restricted holonomy group to
distinguish it from the same construction with the assumption that the paths are
nullhomotopic removed. We shall not consider the latter group, and we continue to
use the slightly imprecise language “holonomy group” for the former.

If 0 :[0,1] — M is a piecewise-¢"' path with ¢(0) = p and o(1) = ¢, then o
defines an isometry P, : T,M — T,M by parallel transport. P, evidently defines
an isomorphism of the holonomy groups H, and H, of M at p and ¢ respectively;
in particular, we have P, ,-1 = P,P,P,-1, where ocyo~! denotes concatenation of
paths. For this reason, we often speak of the holonomy group of a connected manifold
M without reference to a particular point; we mean any of the groups H,, with the
understanding that they are all isomorphic (though not naturally).

By definition, the holonomy group H, acts on 7,M by isometries. It is easy to
check that if M = M, x M, is a (nontrivial) Riemannian product, then the holonomy
group leaves the factors of M; and M, invariant; in other words, for each p € M, the
subspaces T),M; and T), M, are proper, holonomy-invariant subspaces of 1), M. What
may be surprising is that the converse is also true, once we pass to the universal
cover of M.

To be precise, suppose the representation of H, on T),M is reducible and let W,
be a proper invariant subspace. For every ¢ € M the representation of H, on T, M is
similarly reducible, and we obtain an invariant subspace W, = P,W,, where o is any
path from p to g; since W), is invariant, it is easy to check that this is independent of
the choice of path. Thus reducibility of the holonomy group of M implies the exis-

tence of a whole family of subspaces W, related by the parallel transport isometries
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P,. With this in mind, we can now state the following decomposition theorem of de

Rham:

Theorem II1.10 (de Rham). Let M be a simply connected complete Riemannian
manifold, and suppose the holonomy group of M is reducible. Fix a family of sub-
spaces Wy, as above. Then M decomposes as a Riemannian product M = M; x Mo,

and for each p € M we have T,M, =W, and T,M; = WpL.

If M is an arbitrary Riemannian manifold, M its universal cover, then it is clear
that the holonomy group of p € M is isomorphic to the holonomy group of any lift
D E M of p, and similarly that the representations of these groups on 7, M and Tﬁﬁ
are isomorphic. Thus if M has reducible holonomy group, its universal cover splits
as a product whose factors are tangent to the invariant subspaces as in the above

theorem.

Definition II.11. A Riemmanian manifold is called irreducible if its holonomy group
is irreducible. Equivalently, a Riemannian manifold is irreducible if its universal cover

does not split as a (Riemannian) product.

As a consequence, any simply connected Riemannian manifold M splits as a
Riemannian product M = M; x --- X My where each M; is irreducible. If none of
the factors M; is equal to R, then M is said to have no flat factors or, equivalently,
no Fuclidean factors.

It is important to us that the decomposition above is essentially unique:

Theorem I1.12 (de Rham). Any simply connected Riemannian manifold M splits

as a Riemannian product

M:ETXMlx---ka,
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where B, is a Fuclidean space of dimension r and each M; is irreducible and non-flat.
The number r and the factors M; are unique up to order, in the following sense: any
isometry ¢ of M decomposes as ¢ = o', where o permutes the M; and ¢’ preserves

the factors of the decomposition, i.e.,
@' € Isom(E,) x Isom(M;) x -+ x Isom(My).

Note that it is important to lump the Euclidean factors together for the uniqueness
statement above. In particular, the decomposition E, = R x --- x R is not unique

in de Rham’s sense.

Definition I1.13. Let M = M; X - - - x M}, (as Riemannian manifolds). We say that

a subgroup I' of isometries of M preserves the factors of the decomposition if
I' C Isom(M;) x -+ x Isom(My).

In this case there exist obvious maps 7; : I' — Isom(M;), which we call the associated

projection maps.

The following corollaries are essentially restatements of the uniqueness property

above:

Corollary I1.14. Let I' be a group of isometries of M, and let
M=F,x M; x---x M,

be the de Rham decomposition of M. Then 1" has a finite index subgroup I'* preserving

the factors of the decomposition.

Corollary I1.15. Let I' be a group of isometries of N x L, and suppose N has no
flat factors. Then I' has a finite index subgroup I'* preserving the factors of the

decomposition.
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The first of these corollaries allows us to show that the property of I'-recurrent
vectors being dense in SM passes to de Rham factors when M has no focal points.
The proof involves some technical arguments from dynamics and is not particularly
enlightening to the current discussion, so we postpone it for the end of this section.

We remark that the notion of reducibility is crucial to any higher-rank rigidity
result, since reducible Riemannian manifolds are automatically of higher rank, which
follows from the fact that M and its universal cover M have the same rank. However,
we will use the holonomy group in an even more essential way, by making use of the

following theorem of Berger-Simons:

Berger-Simons Holonomy Theorem ([9], [44]). Let M be a complete irreducible
Riemannian manifold. If the holonomy group of M is not transitive, then M is

locally symmetric.

Berger originally proved this result by classifying all possible holonomy groups of
irreducible Riemannian manifolds; on non-symmetric manifolds, there are only five
families and two exceptional groups, and all act transitively. Simons later gave a
more direct proof of the theorem; his proof is quite algebraic, working with abstract
properties of curvature tensors. Recently, Olmos [39] has given a geometric proof of
the theorem that depends on so-called normal holonomy groups.

The Berger-Simons theorem was used crucially by Ballmann in his original proof
of the higher rank rigidity theorem, and we use it in the same way: Our goal will be
to show that any higher rank irreducible Riemannian manifold has a nontransitive

holonomy group.

2.4 TI'-recurrence on the de Rham factors

In this section we give a proof of the following:
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Proposition I1.16. Let M be a simply connected complete Riemannian manifold

with de Rham decomposition
M=F,x M x---x M.

Let T" be a subgroup of isometries of M such that I'-recurrent vectors are dense in SM,
and let T be a finite index subgroup of I' preserving the factors of the decomposition;
denote by m; : T* — Isom(M;) the corresponding projection for 1 < i < k. Then the

(m; 1) -recurrent vectors are dense in SM;.

The proof is in two steps: we show that I"*-recurrent vectors are dense in SM, and
then that this condition passes to the factors. The latter of these steps is considerably

easier, so we present it first:

Proposition I1.17. Let M = M; x M, let I' be a subgroup of isometries of M
preserving the factors of the decomposition, and suppose I'-recurrent vectors are dense
i SM. Letm; be the associated projection maps; then m;,['-recurrent vectors are dense
m M.
Proof. Let v € SM;. Lift v to a vector v € SM such that dm;v = v, where (by abuse
of notation) m; : M — M, is the projection. There exists a sequence v, € SM of
[-recurrent vectors converging to v. Let v,, = dm;v,,. Then it is clear that v, — v.
So we need only show v, is m;['-recurrent. Given n, we fix ¢,, € [' and t,, — o0

such that d¢,,g'™v, — v, (as m — oo). Then it is clear that m;(dd,,) gl v, — v, O

We know from Corollary that a subgroup I' of isometries of M has a fi-
nite index subgroup preserving the factors of the de Rham decomposition. Thus
Proposition [[I.16] is proved if we can show that whenever I'* C T is finite index and
['-recurrent vectors are dense, ['*-recurrent vectors are also dense.

Our proof uses a notion from dynamics that we avoid in the rest of the thesis:
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Definition I1.18. A vector v € SM is called I'-nonwandering (for the geodesic flow)
if for every neighborhood U of v and every T' > 0, there exists ¢ € [' and ¢ > T" such
that

dog'(U)NU # 0.
The set of I'-nonwandering vectors is denoted by Q(T").

It is clear that recurrent points are nonwandering and that the set of nonwandering

vectors is closed. In fact we have the following proposition:

Proposition I1.19. Let M be a complete Riemannian manifold, I' a group of isome-

tries of M. Then I'-recurrent vectors are dense in the set of I'-nonwandering vectors.

Proof. We give an argument from [17]. For each positive integer n, we let A,, be the

set of vectors v such that there exists ¢ > n and ¢ € I" with
. 1
d(depg'v,v) < —.
n

Here d is the Sasaki metric (although this proof works for any Z- or R-action on a
complete metric space). Clearly A, is open; we claim it is also dense in the set of
nonwandering vectors.

Let’s show this. Fix n, let w be nonwandering, and let B.(w) the e-ball about w.
We may assume € < 1/2n. By definition, there exists v € B.(w),t > n, and ¢ € I’

with deg'v € B.(w). In particular
d(deg'v,v) < 2 < 1/n,

so that v € A,,.
Since the set of nonwandering vectors is closed, it is in particular a complete
metric space, and the Baire category theorem implies that (] A,, is dense in the set

of nonwandering vectors. But [ A,, is just the set of recurrent vectors. O
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We now turn to the main focus: proving recurrence for a finite-index subgroup.

Our proof is again taken from Eberlein [19].

Lemma I1.20. Let A C T be a normal subgroup of I'. Let ¥ C SM denote the set

of A-recurrent vectors. Then Y is invariant under I'.

Proof. Let v € ¥ and ¢ € I'; we must show that d¢(v) is A-recurrent. Fix ¢, € A
and t, — oo realizing the recurrence for v—that is, such that di,g'"v — v.

Set a,, = ¢, € A. Then

dayg"dgv = (dpdi,dd™")g" ddu

= dodip,g'™v — dow.

Since recurrent vectors are dense in the set of nonwandering vectors, we have:

Corollary I1.21. Let A C T' be a normal subgroup of I'. Then Q(A) is invariant

under I.

Proposition 11.22. Let M be a complete Riemannian manifold, let I' be a subgroup
of isometries of M such that the I'-recurrent vectors are dense in SM, and let T'* be

a finite index subgroup of I'. Then the I'*-recurrent vectors are dense in SM.

Proof. Since I'* is finite index in I', there is a normal subgroup A C I'* also of finite
index in I'; and it suffices to show that every vector of SM is A-nonwandering.

Fix a I'-recurrent vector v and fix ¢, € I' and t,, — oo realizing the recurrence.
Since A is finite index, we may pass to a subsequence to assume that ¢, = a\, for

some fixed a € I', where A, € A. Recurrence for v becomes

dA\g'mv — o o,
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We show that a~'v is A-nonwandering. It follows from Corollary [IL.21] that v is

A-nonwandering; since Q(A) is closed and the set of [-recurrent vectors is dense, this

will finish the proof.
We set v, = d\,¢""v, so that v, — v. Fix an open neighborhood U of v, and

choose N so that v,, € U for n > N. Fix some T" > 0 and choose n > N so that

t, —txy > T. Then note that
dAd\y g Ny = v, € U,

which shows that v is nonwandering. O]
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Chapter III

Manifolds without focal points

3.1 Definitions and basic results

Let M be a complete Riemannian manifold, p a point of M, and v a geodesic
through p. Recall that a point g on + is said to be conjugate to p along ~ if there
exists a Jacobi field J along v equal to zero at both p and gq.

Two classical results show the importance of this condition. First, conjugate

points are related to singularities of the exponential map exp : T,M — M:

Proposition IIL.1. exp is a local diffeomorphism at v € T,M if and only if exp(v)

is mot conjugate to p along the geodesic exp(tv).

In fact, the dimension of the kernel of d exp is exactly the dimension of the space
of Jacobi fields J along exp(tv) equal to zero at both p and exp(v).

Second, fix p,q € M and a geodesic segment 7 from p to q. For s € (—e¢,€), let
os be path from p to ¢ such that oyp = v, and such that the map (s,t) — o5(¢)
is piecewise €. Say that v locally minimizes the length functional in the space of
paths from p to ¢ if for all such variations oy, the length functional taking a path to

its length has a local minimum at s = 0 (that is, at ). Then:

Proposition II1.2. v locally minimizes the length functional in the space of paths

from p to q if and only if no point of v (between p and q) is conjugate to p along .
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In its most general form this second result is known as the Morse Index Theorem,
which states that the dimension of the space of variations of paths for which ~ fails
to locally minimize the length functional is equal to the number of points between p
and ¢ conjugate to p along v, counting multiplicity.

With the power of the above results in mind, we generalize the idea of a conjugate
point in the following way. Let M be a Riemannian manifold, let N be a totally
geodesic submanifold of M, and let v be a geodesic of M with v(0) € N and such
that 4(0) € TVL(O)N . We consider variations of geodesics 7,(t) with vy = v and such
that for all s we have both both (1) 5(0) € N and (2) 45(0) € T, N.

Translating the conditions (1) and (2) into conditions on the Jacobi field of the

variation v,(t), we find that J satisfies the two conditions
J(0) € Tyo)N and J'(0) € Ty N.

(The second of these conditions makes use of the fact that N is totally geodesic; in
general, one has J'(0) + Syamma()(J(0)) € TVL(O)N , where S is the shape operator

of N.)

Definition II1.3. Let N be a totally geodesic submanifold of a Riemannian manifold
M, and let v be a geodesic with v(0) € N and #(0) € TWL(O)N. Let ¢ = v(a) be a
point on . Then ¢ is said to be a focal point of N (along ) if there exists a Jacobi
field J along v satisfying both (1) J(0) € TN and (2) J'(0) € TWL(O)N, and such
that J vanishes at q.

We will say that the totally geodesic submanifold N of M is focal point free in M
if for every geodesic v through N and orthogonal to N, N has no focal points along
v. Note that if N = {p} is a single point, then N has no focal points if and only if

p has no conjugate points along any geodesic through p.

37



Now, suppose N has a focal point at ¢ along some geodesic v and let J be a
Jacobi field as in the definition. Either J(0) = 0 or J(0) # 0. In the former case,
q is conjugate to v(0) along 7. In the latter case, we may consider the geodesic
o passing through v(0) with ¢(0) = J(0); then it is evident that the submanifold
L ={o(t) :t € R} also has a focal point at g along . This shows the equivalence of

the two conditions in the following definition:

Definition III.4. M is said to have no focal points if either of the two equivalent

conditions below hold:
1. Every totally geodesic submanifold N of M is focal point free in M; or

2. M has no conjugate points, and every geodesic v of M, considered as a totally

geodesic submanifold of M, is focal point free in M.

In particular, manifolds with no focal points have no conjugate points. We will
show below that manifolds of nonpositive curvature have no focal points. Gulliver
[28] shows that these inclusions are strict. On the other hand, many of the techniques
used to study manifolds of nonpositive curvature can be adapted (often with relative
ease) to the case of manifolds with no focal points; this thesis, as well as many of
the results it cites, are a case in point.

It will be helpful to have a few different restatements of the no focal points con-
dition. First, suppose v and o are geodesics intersecting orthogonally at p = v(a).
Then g = v(0) is a focal point for o along ~ iff there is a Jacobi field J along « such
that J(0) = 0 and (J(a),J'(a)) = 0. But this latter condition is equivalent to the

statement that £],_.[|J(¢)|| = 0. Thus we have the following;

Proposition II1.5. M has no focal points if and only if for every geodesic v and

every Jacobi field J along v with J(0) =0 has ||J(t)||" # 0 for all t # 0.
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The condition of having no focal points is often stated in terms of Proposition [[TI.5]
While this condition somewhat obscures the origin of the term “no focal points”, it
is often more technically useful than our definition. For instance, we can use this

condition to easily prove the following two propositions:

Proposition II1.6. Let M = N x L have no focal points. Then N and L have no

focal points.

Proof. 1t suffices to show N has no focal points. Let v be a geodesic in N, let J(t)
be a Jacobi field along v satisfying J(0) = 0, and suppose (J(a), J'(a)) = 0. Fix a
variation of geodesics ~,(t) with variation field J. By fixing a point ¢ € L, we may

lift v, to a variation 7, of geodesics in M, where

§S(t) = (’YS(t)aQ) € N x L.

The Jacobi field J of this variation then clearly satisfies .J(0) = 0 and (J(a), J'(a)) =

0, so that M has focal points. O

Proposition. Manifolds of nonpositive curvature have no focal points.

Proof. We use Proposition [[IL.5] Let M have nonpositive curvature. Then let J be

a Jacobi field and calculate
ITON" = 2(J (1), J'(t))" = 2(J (1), J"()) + 2| )|I*
= =2(J(t), R(J(t),5(t))3(t)) + 2/[ T ()|
Then note that the term (J(t), R(J(t),74(t))7(t)) is equal to the sectional curvature
of the plane spanned by 4(t) and J(¢) multiplied by some positive constant, and is
in particular nonpositive since M has nonpositive curvature. If now J(0) = 0 and J

is nonzero, the above equation implies ||.J(¢)]|” > 0, and hence ||J(¢)||' > 0, for all

t. O]
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The second extremely important restatement of the no focal points condition is
a generalization of Proposition Fix a totally geodesic submanifold N of M,
and let v~ N be the normal bundle to N in M. Denote by expx : v*N — M the

restriction of the exponential map exp : TM — M. Then we have the following:

Proposition II1.7. Let N be a totally geodesic submanifold of M. Then expy is
a local diffeomorphism at v € TPLN if and only if N does not have a focal point
at exp(v) along the geodesic exp(tv). In particular, N is focal point free in M if
and only if expy is a local diffeomorphism, and in this case expy : v*N — M is a

covering map.

The proof proceeds just as in the case for no conjugate points. We show one way
this property may be useful. If M is a (complete) Riemannian manifold, a function

f: M — R is called convex if its restriction to every geodesic is a convex function

R — R.

Proposition IIL.8. Let M be simply connected and without focal points, and let

p € M. Then the distance function d, : q¢ — d(p,q) is convex.

Proof. Let v be a geodesic in M. If p lies on +, the result is obvious, so assume
otherwise. We consider the function f(t) = d(p,~(t)) on [0, 1]; it suffices to show
that f has no local maximum in (0, 1).

Suppose to the contrary that f has a maximum at ¢t = 7 € (0,1). Then f'(7) = 0,
and in particular the geodesic through p and ~(7) is orthogonal to 7. On the other
hand, ¢ — d(p,7(t)) must achieve a global minimum for some ¢t = p, say, and we
see that the geodesic through p and ~(p) is also orthogonal to ~. Since exp# is a

diffeomorphism, this cannot happen. O

Corollary II1.9. If M is simply connected and without focal points, then for every
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p € M and every r > 0 the geodesic ball B,.(p) of radius r about p is convex.

Finally, we mention the following. If M is simply connected and nonpositively
curved, it is well-known that any finite-order isometry of M must fix a point of
M. The analogue of this fact for no focal points is easy to demonstrate and will be

important to us in the proof of Theorem [V.24}

Proposition II1.10. Let M be simply connected and without focal points, and let ¢

be a finite-order isometry of M. Then ¢ fixes a point of M.

Proof. Note that M is diffeomorphic to R™ since it has no conjugate points. Given a
subset A C M, we define the convez closure of A, denoted cc(A), to be the smallest
closed, convex subset of M containing A. We note that if ¢ is an isometry of M,
then ¢(cc(A)) = cc(p(A)), since ¢ preserves both convexity and closedness.

Since M has no focal points, the closed ball B,(p) of radius r about any point p
is convex. Thus, if A is bounded, so is cc(A).

Now fix p € M and consider the orbit S = {¢"(p)}. This is a bounded subset of
M since ¢ is finite order, and thus cc(S) is a compact convex subset of M that is
taken to itself by the action of ¢. The result now follows from Brouwer’s fixed point

theorem. ]

3.2 Divergence of geodesics

Throughout this section, M is a simply connected Riemannian manifold with no

focal points. We begin with a crucial definition.

Definition ITI.11. Let v,w € SM. Then v, w are called asymptotic if d(~,(t), Y (%))
is bounded as t — oo, and v, w are called parallel if v,w are asymptotic and also
—v, —w are asymptotic. We say 7,7V, are asymptotic or parallel when the same

holds for v, w.
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In section [3.3] we will use this notion to define a “boundary at infinity” of the
manifold M. In this section we state some needed results on manifolds with no focal
points. The main reference here is O’Sullivan’s paper!| [40].

First, we have the following two propositions, which often form a suitable replace-

ment for convexity of the function ¢ +— d(~(t),o(t)) for geodesics v, o:

Proposition II1.12 ([40] §1 Prop 2). Let v and o be distinct geodesics with v(0) =
a(0). Then for t > 0, both d(y(t),c) and d(y(t),o(t)) are strictly increasing and

tend to infinity as t — oo.

Proposition I11.13 ([40] §1 Prop 4). Let v and o be asymptotic geodesics; then both

d(v(t),o) and d(y(t),o(t)) are nonincreasing for t € R.
O’Sullivan also proves an existence and uniqueness result for asymptotic geodesics:

Proposition I11.14 (J40] §1 Prop 3). Let v be a geodesic; then for each p € M there

15 a unique geodesic through p and asymptotic to .

Finally, O’Sullivan also proves a flat strip theorem (this result was also obtained, via

a different method, by Eschenburg in [23]):

Flat Strip Theorem ([40] §2 Thm 1). If v and o are parallel geodesics, then vy and

o bound a flat strip; that is, there is an isometric immersion ¢ : [0,a] x R — M with
¢(0,1) =~(t) and ¢(a,t) = o(?).

We will also need the following result, which is due to Eberlein [I6]; a proof can also

be found in [23].

Proposition II1.15. Bounded Jacobi fields are parallel.

!Note that, as remarked by O’Sullivan himself, the relevant results in [40] are valid for all manifolds with no focal
points (rather than only those with a lower curvature bound), since the condition ||J(0)|| — oo for all nontrivial
initially vanishing Jacobi fields J is always satisfied for manifolds with no focal points, as shown by Goto [27].
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(We remark that the simple argument in [23] shows the apparently weaker result that
central Jacobi fields—that is, Jacobi fields which are both stable and unstable—are
parallel. The above proposition follows then from the fact that any Jacobi field along
7 bounded as t — oo is a stable field, which itself follows from Goto’s result [27] that
the length of any initially vanishing Jacobi field must go to co as t — 0.)

Finally, we have the following generalization of Proposition [[TL.12}

Proposition I11.16. Let p € M, let N be a totally geodesic submanifold of M
through p, and let v be a geodesic of M with v(0) = p. Assume 7y is not contained

in N; then d(~(t), N) is strictly increasing and tends to co as t — oo.

Proof. Let o, be the unique geodesic segment joining 7(t) to N and perpendicular
to IV; then (by a first variation argument) d(vy(t), N) = L(o;), where L(o;) gives the
length of oy. Thus if d(y(t), V) is not strictly increasing, then we have L'(o;) = 0 for
some t, and again a first variation argument establishes that then o, is perpendicular
to 7, which is a contradiction since exp : v+o, — M is a diffeomorphism.

This establishes that d(y(t), N) is strictly increasing. To show it is unbounded we

argue by contradiction. Suppose

lim d(y(t),N) = C < o0,

t—o0
and choose sequences t, — oo and a, € N such that d(y(t,), N) = d(v(t,), an)
and the sequence d(v(t,), a,) increases monotonically to C'. We let w,, be the unit
tangent vector at (0) pointing at a,; by passing to a subsequence, we may assume
wy, — w € Ty N.
We claim d(7(t),7,) < C for all ¢ > 0, contradicting Proposition [[IL.12] Fix a

time t > 0. For each n, there is a time s,, such that

d(y(t); Yon) = d(y(t); Y, (50))-
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The triangle inequality gives

sy <t+C.

Thus some subsequence of the points 7,, (s,) converges to a point 7, (s), and then

clearly d(v(t),vw(s)) < C, which establishes the result. O

3.3 The visual boundary

Again we assume M is a simply connected Riemannian manifold without focal
points. We define for M a visual boundary M (oo), the boundary of M at infinity,
a topological space whose points are equivalence classes of unit speed asymptotic
geodesics in M.

If n € M(o0), v € SM, and 7, is a member of the equivalence class 7, then we
say v (or v,) points at n. Alternatively, we may denote the equivalence class of the
geodesic v by v(c0), and if 7 is the inverse geodesic 7(t) = y(—t), we may denote
the equivalence class of 7 by vy(—00).

Proposition shows that for each p € M there is a natural bijection S,M =
M (c0) given by taking a unit tangent vector v to the equivalence class of ,. Thus
for each p we obtain a topology on M (co) from the topology on S,M; in fact, these
topologies (for various p) are all the same, which we now show.

Fix p,q € M and let ¢ : S,M — S,M be the map given by taking v € S, M to the
unique vector ¢(v) € S, M asymptotic to v. We wish to show ¢ is a homeomorphism,

and for this it suffices to show:
Lemma II1.17. The map ¢ : S,M — S,M is continuous.

Proof. Let v, € S,M with v, — v, and let w,,w € S;M be asymptotic to v,,v,

respectively. We must show w, — w. Suppose otherwise; then, passing to a subse-
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quence, we may assume w, — u # w. Fix t > 0. Choose n such that

AV, (1), 7u(t)) 4 (70, (1), 70 (1)) < d(p, q).

Then

d(u(t); Y () < d(9u(t); Yoo () + d(Vav, (£), 0, (1))

+ d(’Yvn (t)> 'Yv(t)) + d(75(), Y (t)) < 3d(p, q),

the second and fourth terms being bounded by d(p, q) by Proposition [[II.13] Since ¢

is arbitrary, this contradicts Proposition [[T[.12] O

We call the topology on M (oco) induced by the topology on any S,M as above
the wisual topology. In fact, the visual topology on M (o0) extends to a topology on

the visual compactification M = M U M (o00), called the cone topology.

Definition II1.18. For each v € SM and each € > 0, we define C(v,¢) C M to be
the set of those # € M such that the geodesic from 7(v) to # makes angle less than e
with v. We define the cone topology on M to be the topology generated by the sets

C(v,€) and the open sets of M.

We remark that the tangent space T, M to any point of M can also be viewed as a
Riemannian manifold, and it therefore has a visual compactification 7, M, equipped
with the cone topology. The exponential map exp,, : T, M — M then has an obvious

extension to a map exp, : T,M — M. The following result is due to Goto:

Theorem I11.19 ([26]). The cone topology on M = MUM (c0) is the unique topology

such that the map exp, : T,M — M is a homeomorphism for each p € M.

We will be defining a second topology on M (co0) presently, so we take a moment
to fix notation: If ¢, € M(o0) and we write (, — ¢, we always mean with respect

to the visual topology unless explicitly stated otherwise.
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If n,{ € M(o0) and p € M, then Z,(n, () is defined to be the angle at p between
v, and v, where v, v. € S,M point at 7, ¢, respectively.

We now define a metric £ on M (00), the angle metric, by

4(777 C) = Sup ZP(W? <)

peEM
We note that the metric topology determined by / is not in general equivalent to

the visual topology. However, we do have:

Proposition 111.20. The angle metric is lower semicontinuous. That is, if n, — 7

and (, — ¢ (in the visual topology), then

Z(n,¢) < liminf Z(n,, ().

Proof. Tt suffices to show that for all ¢ > 0 and all ¢ € M, we have for all but finitely

many n
éq(na C) —e< 4(7771, Cn)

Fixing ¢ € M and € > 0, since 1, — n and (,, — (, for all but finitely many n we

have
Zq(1,¢) < Zg(1m; Gn) + €,
and this implies the inequality above. O
We also take a moment to establish a few properties of the angle metric.

Proposition II1.21. The angle metric £ is complete.

Proof. For £ € M(oo), we denote by £(p) € S,M the vector pointing at . Let ¢,
be a Z-Cauchy sequence in M (oc). Then for each p the sequence (,(p) is Cauchy in
the metric Z,, and so has a limit ((p); by Lemma [[II.17] the asymptotic equivalence

class of ((p) is independent of p. We denote this class by (; it is now easy to check
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that ¢, — ¢ in the Z metric. (This follows from the fact that the sequences (,(p)

are Cauchy uniformly in p.) O

Lemma III.22. Let v € SM point at n € M(co), and let ( € M(oco). Then

Zy,w(n, Q) is a nondecreasing function of t.
Proof. This follows from Proposition and a simple first variation argument. [J

3.4 Asymptotic vectors, recurrence, and the angle metric

In this section we collect a number of technical lemmas. As a consequence we
derive Corollary which says that the angle between the endpoints of recurrect
vectors is measured correctly from any flat. (In nonpositive curvature, this follows
from a simple triangle-comparison argument.)

Our first lemma allows us to compare the behavior of the manifold at (possibly

distant) asymptotic vectors:

Lemma I11.23. Let v,w € SM be asymptotic. Then there exist sequences t, —

00, Uy, — v, and ¢, € ' such that
<d¢n © gtn)vn — w
as n — o0o.

Proof. First assume w is recurrent. Then we may choose s, — oo and ¢, € T' so
that (d¢, o g°")w — w. For each n let g, be the footpoint of g*~w, and let v, be the
vector with the same footpoint as v such that the geodesic through v,, intersects g,
at some time t,. Clearly t,, — co. We now make two claims: First, that v, — v and
second, that (d¢, o g")v, — w. Note that since v and w are asymptotic, Lemma

[IT22 gives

471'(1}) (Ua Un) < 4‘]71 (gtnvn7 gsnw>‘
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Figure 3.1: Lemma [[IT.23] fig. 1

So if we show that the right-hand side goes to zero, both our claims are verified.

On
On(m(W))

0.(d.)

d(n(v),m(w))

Pn(m(v))

Figure 3.2: Lemma [[T[.23] fig. 2
Consider the geodesic rays 7, 0, through the point ¢,(g,) satisfying
7.(0) = —d, (9" vy), ,(0) = —doy, (g w).

It suffices to show the angle between these rays goes to zero. Note s,,t, — 0co. We
claim that the distance between 7,(t) and o,(t) is bounded, independent of n, for
t < max{s,,t,}. To see this, first note that |s, —t,| < d(7(v), 7(w)) by the triangle

inequality. Suppose for example that s, > t,; then we find
d(on(Sn), Ta(sn)) < 2d(mv, Tw),
and Proposition shows that for 0 <t < s,
d(o,(t), (1)) < 2d(mv, Tw).
The same holds if ¢,, > s,. Hence for fixed ¢, for all but finitely many n the above
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inequality holds. It follows that 7,, and o, converge to asymptotic rays starting at
p. This establishes the theorem for recurrent vectors w.

We now do not assume w is recurrent; since recurrent vectors are dense in SM,
we may take a sequence w,, of recurrent vectors with w,, — w. For each m, there

are sequences Up ,, — U, typm,m — 00, and ¢, ,, € I' such that

(dp,m © gt"*m)vn,m — Wy,
An appropriate “diagonal” argument now proves the theorem. O]
As a corollary of the above proof we get the following:

Corollary II1.24. Let v € SM be recurrent and pointing at n € M(00); let ¢ €

M (o). Then
4(7% g) = tlinolo é’yv(t) (na C)
Proof. By Lemma [[I1.22] the limit exists. Let p = 7(v), and fix arbitrary ¢ € M.

Since v is recurrent, there exist t,, — oo and ¢,, € I' such that (d¢,, o g'")v — v. Let

pn be the footpoint of gi»v, and let 7, be the geodesic from ¢ to p,. Define

Uy, = g and V), = Fn(pn)-

Figure 3.3: Corollary [[IT.24]
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By the argument given in Lemma [[11.23] £, (v,,v},) — 0, and if we let ' € S,M

be the vector pointing at 7, then 4, (0) — v’. Thus

Lp, (G vn) 2 Zg(C,Am(0)) = Zg(C,m).-

Since ¢ was arbitrary, this proves the claim. O

In fact, the above corollary is true if v is merely asymptotic to a recurrent vector.

To prove this we will need a slight modification to Lemma[[T[.23] which is as follows:

Lemma II1.25. Let w be recurrent and v asymptotic to w. Then there exist se-
quences w, — w and Sy,t, — 0o such that g'~w, and g**v have the same footpoint
¢n for each n, and

Ly (g wy, g*rv) — 0.
Proof. First let s,, — 00, ¢, € I', be sequences such that
(dopp, 0 g° )w — w.

Define p = w(w),q = w(v), p, = 7(¢*"w), and ¢, = 7(¢g°*v). Let w, be the unit
tangent vector with footpoint p such that there exists ¢,, such that ¢g'»w,, has footpoint

Gn-

Figure 3.4: Lemma [[T[.25]
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Note that for all n

d(n(qn),p) < d(Pn(Gn); Pn(pn)) + d(Sn(pn); p)
< d(qn,pn) + K

<d(q,p) + K,

where K is some fixed constant. In particular, the points ¢, (g, ) all lie within bounded
distance of p, and hence within some compact set. Therefore, by passing to a subse-

quence, we may assume we have convergence of the following three sequences:

Tn 1= ¢n(Qn) — T
w), = (dgy 0 g™ )w, — '

vy, = (dey, 0 g° v — '
for some 7, w’,v’. Then by the argument in the proof of Lemma [II1.23

AV, (), 7w, (1)) < 2d(p, q)

for 0 <t < max{sp,t,}. It follows that (—w’) and (—v’) are asymptotic; since both

have footpoint r, we see w’ = v’'. This gives the lemma. H
We can now prove our previous claim:

Proposition I11.26. Let w € SM be recurrent, v asymptotic to w. Say v and w

both point at n € M(oc). Then for all ¢ € M(o0)

Z(n,¢) = lim Zy, (1, C).-

Proof. Fix € > 0. By Corollary [[IT.24] there exists a T such that
L’Yw(T) (777 C) > 4(77, C) — €.
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We write w’ = g7w and note that w’ is also recurrent and asymptotic to v. Let p be

the footpoint of w’. Choose by Lemma [[II.25] sequences w,, — w" and s,,t, — 00

such that

((*)) Loyy(s) (97" W, g™ 0) — 0.

To fix notation, let w, point at n,. Then for large n

L’YU(STL)<T]7 () 2 A’Y’U(STL)(T]TL7 C) — € by <*)

> Ly Q) — ¢ by Lemma [TE22
> Z,(n,¢) — 2 by definition of the visual topology
> /(n,¢) — 3¢ by construction of w’.

The key corollary of these results is:

Corollary I11.27. Let n be the endpoint of a recurrent vector w. Let F' be a flat at

q€ M, and v,v" € SgF with v pointing at n. Say v’ points at (; then

Z(n,¢) = £4(n, ).

In the next section we will establish the existence of plenty of flats; in section [4.2]
this corollary will be one of our primary tools when we analyze the structure of the

angle metric on M (00).

3.5 Discrete groups of isometries

In this section M will denote a complete simply connected Riemannian manifold
without focal points, and I" will be a discrete subgroup of isometries of M. We discuss

certain aspects of the action of I' on M. This material generalizes to no focal points
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some of the work of Chen-Eberlein in [13] and Eberlein in [I7], [I8], [19], and [20].
The generalization to no focal points of [13] was carried out by Druetta in [15]; the
other generalizations we give proceed exactly as in the nonpositive curvature case.
We give complete proofs for the reader’s convenience.

The material of this section will not be used until Chapter [V], so the reader

interested in only the proof of the higher rank rigidity theorem may safely skip it.

Definition II1.28. A Clifford translation of M is an isometry ¢ of M such that
d(p, #(p)) is constant over p € M. If I is a group of isometries of M, we denote by

C(T") the subset of I' consisting of Clifford translations.

We also denote by Z(I') the center of I', and if I'* C I', we let Zr(I'*) be the
centralizer of I'* in I

We now present several important theorems from Druetta’s work [15] on Clif-
ford translations in manifolds without focal points, which generalizes [13]. First a

definition:

Definition III1.29. If ¢ is an isometry of M, the associated vector field X4 is the

unique vector field on M such that exp,(Xy(p)) = ¢(p) for every p € M.
Theorem I11.30. ([15] Theorem 2.1) Write M = E, x M, where E, is Euclidean
and My has no flat factors. Let ¢ be an isometry of M. The following are equivalent:
1. ¢ is a Clifford translation.
2. ¢ is bounded, i.e., d(p,p(p)) is bounded over p € M.
3. The associated vector field X4 is parallel.

4. ¢ decomposes as (¢po, id), where ¢y is a translation of E, and id is the identity

on M.
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Theorem II1.31. ([15], Proposition 3.1 and Theorem 3.2) Let D be a subgroup
of Isom(M) such that D-recurrent vectors are dense in SM. Then the centralizer
Zisom(m) (D) consists of Clifford translations. If A is an abelian normal subgroup of

D, then A consists of Clifford translations.

In particular we note that abelian normal subgroups of I' force M to have flat
factors.

We also remark that, by Theorem , the group C(I") of Clifford translations
is an abelian normal subgroup of I'; thus if I'-recurrent vectors are dense in SM, the
above theorem shows that C'(I") is the unique maximal abelian normal subgroup of
I'. The following gives a partial converse as well as some further properties of C'(I")

(and some of its subgroups):

Theorem II1.32. ([15] Theorem 3.3) Suppose I' acts freely on M and I'-recurrent
vectors are dense in SM. Let A C T be an abelian normal subgroup. Then:

1. A= 7 for some k with 1 < s < dim(M);

2. M decomposes as M = R®* x N; and

3. M/T is foliated by compact totally geodesic flat submanifolds of dimension s,

and I' has a finite index normal subgroup with center of rank at least s.

In fact [15] shows that the decomposition M = R® x N is obtained as follows: The
vector fields X, associated to the Clifford transformations ¢ € C(I') determine an
s-dimensional distribution D on M which is involutive, and its integral submanifolds
form the R* factor. We will be interested in the subgroup I'y = Zr(C(T')), which by
Theorem is just the subgroup consisting of those elements of the form (v., )
where 7. is a Euclidean translation of E,. Since I'y centralizes C(I"), one sees that

I'y preserves the distribution D, and it follows that I'y preserves the factors of the
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decomposition M = RF x N.

Proposition II1.33. Suppose I' is a discrete group of isometries of M acting co-

compactly on M. Then Ty = Zp(C(I")) is finite index in T.

Proof. The proof follows the argument of Lemma 3 in Yau [48]. Each ¢ € T" acts on
C(T) by conjugation, a — ¢ 'ap. There is a natural distance function on C(T") given
by ||a|| = d(p, ap), which doesn’t depend on the point p as a is a Clifford translation,
and it is clear that the action of I' by conjugation preserves this metric. C(T") is
a discrete group of translations of a Euclidean space, so there can be only finitely

many such isometries. But if ¢, € I' give the same isometry, this says that
¢lap =Y~ ap
for all a € C(T'); in other words, ¢)~! centralizes C(T). O

This leads to the following generalization of a lemma in Eberlein [18]:

Lemma II1.34. Let I" be a discrete group of isometries of M such that I'-recurrent
vectors are dense in SM. Then I' admits a finite index subgroup Iy such that for

any finite index subgroup I'* of 'y, we have Z(I'*) = C(I™).

Proof. Our proof is the same as Eberlein’s. We let I'y be the centralizer Zr(C(I")),

which is finite index in I' by Proposition [[11.33, We have C'(I") C I'y, and
C(To) = C(I') € Z(Iy).

Now let I'* be a finite index subgroup of I'y. Then I'*-recurrent vectors are also

dense in SM, and so Theorem [I11.31] gives Z(I'*) C C(I'*). On the other hand,
C(I*) C C(Ty) NT* C Z(Ty) NT* C Z(I),
so C(I'*) = Z(I™). O
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The last result we need is a generalization of a result of Eberlein [20], which states
that if the discrete group I' acts freely and cocompactly on M then the dimension
of the Euclidean de Rham factor of M is equal to the rank of the maximal abelian
normal subgroup of I". The proof is exactly as in [20], and will take us some time,
since we first show that certain lemmas from nonpositive curvature carry over to
no focal points. (However, all our proofs are exactly the same as in nonpositive

curvature.) We begin by proving the following general lemma:

Lemma I11.35. Let M = M; x My, and let T be a discrete, cocompact subgroup
of isometries of M preserving the factors of the decomposition. Denote by m; : T :

Isom(M;) the projections, and assume w1 is discrete. Then ker my acts cocompactly

on MQ.

Proof. We construct a coarse compact fundamental domain for kerm;. Let F be
a compact fundamental domain for the action of I'; then 7 F' is a compact coarse
fundamental domain for the action of mI" on M;. We let H; C M; be any compact
coarse fundamental domain for mI" (for instance, set Hy; = m F).

Since m[" is discrete, it acts properly on Mj; hence the set of all a € 71" such
that aHy N mF # () is finite. We denote its elements by ay,...,a;, and we fix

by, ..., by € Isom(Ms) such that (a;,b;) € I for each i. Consider the compact set
Ky = (a7 by HYFU---U(a; ', b ) F.

We claim Hy x My C (ker ) Ks. To see this let (q1,q2) € Hy X Ms. There exists
(p1,p2) € F and some v € T such that y(p1,p2) = (q1,¢2). In particular, we have
p1 € (my) 'Hy Nm F, and this shows that v has the form v = (a; ', 7») for some

72 € Isom(Ms). But then
(qlqu) € (1,’}/2871)(@:1,171—1)1? g (keI‘7T1>K2,
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The following is Proposition 2.2 of [17], whose proof is quite general:

Proposition 111.36. Let M = M; X My, and let I be a cocompact subgroup of
1sometries of M preserving the factors. Suppose I'y = m[" and I's = m' are both

discrete. Then I' admits a finite index subgroup I'* splitting as I'* =17 x I'.

Proof. By Lemmal[[TI.35] ker mr; acts cocompactly on M; and ker 75 acts cocompactly
on M. It follows that kerm X kermy acts cocompactly on M; x Ms, and hence is

finite index in T'. m
The following generalizes [17], Theorem 4.1:

Lemma I11.37. Let M = M, x M,. Let I' be a discrete, cocompact subgroup of
isometries of M preserving the decomposition. Suppose that mol' is discrete. Then
either m ' is discrete or N = ker my contains nonidentity Clifford translations. Fi-

nally, if My is Fuclidean, then N contains nonidentity Clifford translation.

Proof. The proof is as in [I7]. Suppose 7" is not discrete, and let G = ;I be its
closure in Isom(My).

Clearly m; N is normal in 71" and hence also in G. We let GGy be the connected
component of the identity of G. Then Gy normalizes 71 N, and hence must centralize
m N since m N is discrete. In addition, we know from Lemma that m IV acts
cocompactly on M;. It follows from Theorem that G consists of Clifford
translations.

We are now going to decompose M using the Clifford translations in G into a
product M, x Mg x M,, where M, is Euclidean, and G, acts by translations on

M, and by the identity on the other factors. By analyzing the action of G on this
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decomposition, we will show that the projection of I' onto the second two factors
is discrete, and this will allow us to find Clifford translations in the kernel of this
projection.

We let D be the distribution given by

Dy, = span{Xy(p)|¢ € Go},

where Xy (p) is determined by exp,(X4(p)) = ¢(p). The vector fields X4 are parallel
by Theorem , and so (by the de Rham Theorem they determine a decom-
position M; = M, x Mg, where M,, the integral manifold of D, is Euclidean. Since
Gy is normal in G, every g € GG preserves the distribution D, and hence G preserves
the decomposition. Moreover, Gy acts as translations on M, and the identity on Mg,
as is clear from the definition of the vector fields X, and the fact that M, is totally
geodesic and Euclidean.

We let m3 : G — Isom(Mpz) be the projection; we claim 7m3(G) is discrete in
Isom(Mp). Let us establish this claim. Suppose we have a sequence ¢, = (v, Bn) €
G with 5, — id. We must show (3, is eventually constant. Fix g, € M,; for each n
there exists a translation 7,, € Gy such that «,, = T),«, fixes q,, and we define

(bn = (&nyﬁn) e d.

Fixing ¢z € Mg, it follows that gn(qa,qﬁ) — (Ga,qp) and thus, passing to a subse-
quence, we may assume ¢, converges to an isometry ¢ € G. In particular, 5,15;}
converges as (m,n) — oo to the identity of GG, and hence is in Gq for large m, n.
But Gy acts as the identity on Mg, which shows that 3, is constant for large n as
desired. This proves our claim that m3(G) is discrete.

We now write M = M, x Mg x My, and note that I' respects this decomposition.

We have projections m,, 73, and 7 from I' into the isometry groups of these factors.
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It follows from what we have just shown that 75(I") is discrete, and in particular that
mg(I") x my(I') is a discrete subgroup of isometries of Mz x Ms. Thus Lemma
shows that N* = ker(ms X 7r) is a cocompact subgroup of Isom(M,). In particular,
N* must contain translations, which then lift to Clifford translations of M.

Thus we have shown that either m;I" is discrete or N contains Clifford translations.
To prove the last claim, we suppose now that M, is Euclidean; we would like to show
that N contains Clifford translations. We have already shown this holds if m I is
not discrete, so we assume 71" is discrete. Then I' admits a finite index subgroup
[ splitting as

I =T% x T},

Moreover, M; /T'} is compact, so that I'f, and hence N, contains Clifford translations.

]

Corollary I11.38. Let M = M, x My have no flat factors, and suppose I' is a
discrete, cocompact subgroup of isometries of M. Suppose further that Isom(My) is

discrete. Then I' admits a finite index subgroup splitting as I'y x I's.

Proof. By the uniqueness of the de Rham decomposition, I" admits a finite index
subgroup I'* preserving the decomposition. Then 7™ is discrete since Isom(My) is,
and thus Lemma [[11.37 shows that mI'* is discrete (since Clifford translations of M

give rise to flat factors by Theorem [[I1.30). Then Proposition [I[I1.36| shows that I'*

admits a finite index subgroup that splits as a product. O

Recall that our goal is generalize Eberlein’s result that the rank of the maximal
abelian normal subgroup of M is the dimension of its Euclidean de Rham factor.
Eberlein’s proof relies on two crucial lemmas; the first is above. We prove the

second presently:
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Lemma II1.39. Let M = E, x M,, where E, is Euclidean and Ms has no flat
factors. Let T be a discrete subgroup of Isom(M). Suppose I'-recurrent vectors are

dense in SM; then moI' is discrete in Isom(Ms).

Proof. Our proof is the same as Eberlein’s [20]. Let A be the subgroup of Isom(M)
consisting of translations of £, and let G be the closure of I'A. As in [20], it follows
from the Zassenhaus lemma (see p. 146 of [1]) that Gy, the connected component of
the identity of G, is solvable, and so moGy is also solvable.

We claim that mGy is trivial, which we now show. Let A* be the last nonidentity
subgroup in the derived series for m9Gy. Then A* is abelian. In addition, note that
conjugation by an element of I' gives an automorphism of G since I' normalizes A;
such an automorphism must leave A* invariant, and hence A* is normalized by moI.
If N denotes the normalizer of A* in Isom(M,), it follows that N-recurrent vectors
are dense in SMjy, since N contains mel'. Theorem shows that A* consists
of Clifford translations, and then Theorem shows that A* = {id}. Hence
mGy = {id}.

We now complete the proof. Suppose ¢,, = (a,, 5,) is a sequence of elements of
I' with 8, — id. Let T,, be the translation of E, such that o, = a,,7T,, fixes 0 € E,.
Then gfgn = (ap, Bn) € G, and by passing to a subsequence we may assume that ggn
converges in G. We set &, = $n+15;1; then &, € Gy for large n. Since moGy is trivial,

Bn is constant for large n, and it follows that 3, = id for large n. m
The final lemma needed is a generalization of Lemma 5.1 in Eberlein’s [17]:

Lemma II1.40. Let M = R* x M, (where My may have flat factors). Suppose T
1s a discrete subgroup of isometries of M preserving the factors of the decomposition

and acting by translations on R*. Suppose also that the center Z(I') of I is contained
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in ker my. Then I'y = mol' is discrete.

Proof. The proof is as in [17]. Let G = I';. We first claim that for each 3 € Ty,
there exists a neighborhood Wj of the identity in G such that if £ € I'y N W, then &
commutes with /.

Let us establish this claim. Fix § € T's, and lift to an element ¢ = (a, ) € T.
Let 5, € I'; be an arbitrary sequence converging to the identity. We lift these to
elements ¢, = (ay,B,) € I'. Note that «,,, « are translations by assumption and

hence commute. It follows that

[¢na ¢] = ¢n¢¢;1¢71 = <1d7 [ﬂm 5]) € I'y,

and since (3, — id it follows that [¢,, ¢] — id. Since I is discrete, ¢,, and ¢ commute
for large n, and hence so do (3, and 3, which establishes the claim.

Second, we claim that if X € g, the Lie algebra of G, then ¢, = exp(tX) centralizes
I’y for all ¢.

We establish this claim: Let § € I's, and fix a neighborhood W as above. For
small ¢, say 0 < t < ¢, we have ¢, € Wj3. Fixing such a ¢, we choose a sequence
U, € I's converging to ¢,; then 1, commutes with § for all large n, and it follows by
continuity that ¢; does as well. Thus we have proven the claim for ¢t < €, and it is
evident that the claim follows in general.

We now prove the lemma. Let U be a neighborhood of zero in g such that
exp : U — V is a diffeomorphism, where V' is a neighborhood of the identity in G.
Suppose that g € I'y N V; then by the second claim above, § centralizes I's. But
then if we lift 8 to an element ¢ = («, 5) € T, then the fact that « is a translation
shows that ¢ is in the center of I', and hence, by assumption, that § = {id}. Thus

'y NV = {id} and it follows that G is zero-dimensional, i.e., that I'; is discrete. [
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Finally we may prove Eberlein’s main result from [20]:

Theorem II1.41. Let M be a closed Riemannian manifold without focal points,
and let I' be a discrete, cocompact subgroup of isometries of M acting freely. Then
the dimension of the Fuclidean de Rham factor of M equals the rank of the unique

maximal abelian normal subgroup of I'.

Proof. We remark that by the discussion following Theorem the group C(I")
of Clifford translations is the unique maximal abelian normal subgroup of I'. Our
proof proceeds as in [20].

Let M = E, x M,, where M, has no flat factors. If E, is trivial, then I' cannot
have a nontrivial abelian normal subgroup by Theorem [[I1.32] We therefore assume
E, is positive-dimensional. By Lemma [[II.39] mI" is discrete, and thus by Lemma
[M1.37, I' admits nonidentity Clifford translations.

We let Ty be the centralizer of C'(I') in I'. By Proposition I’y has finite
index in I'. Thus I'p-recurrent vectors are dense in SM; since Z(I'g) is an abelian
normal subgroup of Iy, it follows from Theorem that Z(I'y) consists of Clifford
translations. It follows that Z(I'yg) = C(I'g) = C(I).

By [[11.32] we know that M decomposes as M = R! x N, where C(T') & Z! acts
by translations on R'. Our goal is to show that N has no flat factors. The remarks
following Theorem show that I'y preserves the factors of this decomposition.
In addition, we see from this description that Clifford translations of M act as the
identity on V.

We let 7, my denote the projection maps associated to the decomposition M =
R* x N. Then it is clear from the fact that C(T') acts cocompactly by translations
on R¥ that oIy acts by translations on R¥. Moreover, since the center of I'y consists

of Clifford translations, we have mn(Z(Iy)) = {id}. It follows from Lemma [[11.40
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that w1 is discrete.

We now suppose N has a Euclidean de Rham factor, say N = E; x Ng. We
know wnI'y is discrete, cocompact, and preserves the decomposition Fs x Ng. By
Lemmal[[I1.39] the projection of mxT to Isom(Ng) is discrete. If follows from Lemma
that mnT'y contains nonidentity Clifford translations. However, if ¢, is such a
Clifford translation, then any lift ¢ of ¢o to Iy must be a Clifford translation, which
is a contradiction since Clifford translations act as the identity on N. Thus N has

no Euclidean de Rham factor, which completes the proof. O
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Chapter IV

Proof of the Rank Rigidity Theorem

4.1 Construction of flats

We repeat our standing assumption that M is a complete, simply connected,
irreducible Riemannian manifold of higher rank and no focal points.

For a vector v € SM, we let P(v) C SM be the set of vectors parallel to v, and we
let P, be the image of P(v) under the projection map 7 : SM — M. Thus, p € P,
iff there is a unit tangent vector w € T, M parallel to v. Our goal in this section will
be to show that if v is a regular vector of rank m, that is, v € R,,, then the set P, is
an m-flat (a totally geodesic isometrically embedded copy of R™). To this end, we
will first show that P(v) is a smooth submanifold of R,,.

We begin by recalling that if v € SM, there is a natural identification of T, 7T M
with the space of Jacobi fields along v,. In particular, the connection gives a decom-

position of T, T'M into horizontal and vertical subspaces
T, TM = TF(U)M D TW(U)M,

and we may identify an element (z,y) in the latter space with the unique Jacobi
field J along ~, satisfying J(0) = z, J'(0) = y. Under this identification, T,,SM is
identified with the space of Jacobi fields J such that J'(t) is orthogonal to 4,(t) for

all ¢.
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Define a distribution F on the bundle T'SM — SM by letting F(v) C T,SM be
the space of parallel Jacobi fields along ~,. The plan is to show that F is smooth
and integrable on R,,, and its integral manifold is exactly P(v). We note first that
F is continuous on R,,, since the limit of a sequence of parallel Jacobi fields is a

parallel Jacobi field, and the dimension of F is constant on R,,.
Lemma IV.1. F is smooth as a distribution on R,,.

Proof. For w € SM let Jy(w) denote the space of Jacobi fields J along 7, satisfying
J'(0) = 0. For each w € R,, and each t > 0, consider the quadratic form @}’ on

Jo(w) defined by
t

QUOCY) = [ (ROE A RO A
Since a Jacobi field J satisfying J'(0) = 0 is parallel iff R(J, %, )3 = 0 for all ¢, we
see that F(w) is exactly the intersections of the nullspaces of Q}’ over all ¢ > 0. In
fact, since the nullspace of )}’ is contained in the nullspace of Q¥ for s < t, there
is some 7" such that F(w) is exactly the nullspace of Q%. We define T'(w) to be the
infimum of such T’; then F(w) is exactly the nullspace of Q$(w).

We claim that the map w — T'(w) is upper semicontinuous on R,,. We prove this
by contradiction. Suppose w,, — w with w,, € R,,, and suppose that lim sup T'(w,,) >
T(w). Passing to a subsequence of the w,, we may find for each n a Jacobi field Y,,
along v, satisfying Y¥./(0) = 0 and such that Y,, is parallel along the segment of 7,
from —T'(w) to T'(w), but not along the segment from —7'(w,,) to T'(w,,).

We project Y,, onto the orthogonal complement to F(w,), and then normalize so
that ||Y,,(0)|| = 1. Clearly Y,, retains the properties stated above. Then, passing to

a further subsequence, we may assume Y,, — Y for some Jacobi field Y along 7,.

Then Y is parallel along the segment of v, from —7'(w) to T'(w). However, since F
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is continuous and Y,, is bounded away from F, Y cannot be parallel along ~,,. This
contradicts the choice of T'(w), and establishes our claim that w +— T'(w) is upper
semicontinuous.

To complete the proof, fix w € R,, and choose an open neighborhood U C R, of
w such that U is compact and contained in R,,. Since T'(w) is upper semicontinuous
it is bounded above by some constant T on U. But then the nullspace of the form
Q7 is exactly F(u) for all u € U; since Q%, depends smoothly on u and its nullspace

is m-dimensional on U, its nullspace, and hence F, is smooth on U. O

Our goal is to show that F is in fact integrable on R,,; the integral manifold
through v € R, will turn out to then be P(v), the set of vectors parallel to v. To
apply the Frobenius theorem, we will use the following lemma, which states that

curves tangent to F are exactly those curves consisting of parallel vectors:

Lemma IV.2. Let 0 : (—€,€) = R, be a curve in R,,; then o is tangent to F (for

all t) iff for any s,t € (—¢,€), the vectors o(s) and o(t) are parallel.

Proof. First let o : (—e€,¢) — R,, be a curve tangent to F. Consider the geodesic

variation ® : (—e, €) X (—00,00) — M determined by o:

@(57 t) = Yo(s) (t)

By construction and our identification of Jacobi fields with elements of TT'M, we
see that the variation field of ® along the curve -, is a Jacobi field corresponding
exactly to the element ¢ (s) € T,(T'M, and, by definition of F, is therefore parallel.
The curves s — ®(s,ty) are therefore all the same length L (as ¢, varies), and thus

for any s, s’ and all ¢
d(’YU(S) (t), ’Ya(s’)(t)) < L.

Thus (by definition) o(s) and o(s’) are parallel.
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Conversely, let o : (—e€,¢) — R, consist of parallel vectors and construct the
variation ® as before. We wish to show that the variation field J(t) of ® along v,
is parallel along 7, (), and for this it suffices, by Proposition , to show that it
is bounded.

Our assumption is that the geodesics v;(t) = I'(s, t) are all parallel (for varying s),
and thus for any s the function d(7o(t),vs(t)) is constant (by the flat strip theorem).

It follows that ||J(¢)|| = ||/(0)|| for all ¢, which gives the desired bound. O

Any curve o : (—¢,€) — R,, defines a vector field along the curve (in M) woo in the
obvious way. It follows from the above lemma (and the symmetry D;0;® = Ds0;®)
for variations ®) that if o is a curve in R, such that o(t) and o(s) are parallel for
any t, s, then the associated vector field along 7 o ¢ is a parallel vector field along
Too.

We also require the following observation. Suppose that p,q € M are connected
by a minimizing geodesic segment v : [0,a] — M, and let v € T,M. Then the
curve o : [0,a] — SM such that o(t) is the parallel transport of v along v to 7(t)
is a minimizing geodesic in the Sasaki metric. It follows from this and the flat strip
theorem that if v, w are parallel and connected by a unique minimizing geodesic in
SM, then this geodesic is given by parallel transport along the unique geodesic from

7(v) to m(w) in M and is everywhere tangent to JF.

Lemma IV.3. F is integrable as a distribution on R,,, and, if v € R,,, then the

integral manifold through v is an open subset of P(v).

Proof. To show integrability, we wish to show that [X, Y] is tangent to F for vector

fields X, Y tangent to F. If ¢, 1), are the flows of X, Y, respectively, then [X,Y], =
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7(0), where o is the curve

o(t) =v_40_ i i0i(v).

From Lemma we see that ¢(0) and o(t) are parallel for all small ¢, which, by
the other implication in Lemma [IV.2} shows that [X, Y], € F(v) as desired. So F is
integrable.

Now fix v € R,, and let @) be the integral manifold of F through v. By Lemma
Q C P(v). Let w € Q and let U be a normal neighborhood of w contained in
R (in the Sasaki metric); to complete the proof it suffices to show that UNP(v) C Q.
Take u € UNP(v). Then (by the observation preceding the lemma) the SM-geodesic
from w to u is contained in R,, and consists of vectors parallel to w, and hence to

v. Thus u € Q. H

For v € R,, it now follows that P(v) R, is a smooth m-dimensional submanifold
of R, and since the SM-geodesic between nearby points in R, is contained in P(v),
we see that P(v) is totally geodesic.

Consider the projection map 7 : P(v) — P,; its differential dr takes (X,0) €
F(v) € T,SM to X € Ty, )M. It follows that P, is a smooth m-dimensional sub-
manifold of M near those points p € M which are footpoints of vectors w € R,,
(and that 7 gives a local diffeomorphism of P(v) and P, near such vectors w). We
would like to extend this conclusion to the whole of P,, and for this we will make

use of Lemma [11.23]

Proposition IV.4. For every v € R,,, the set P, is a convexr m-dimensional smooth

submanifold of M.

Proof. Fix v € R,,. The flat strip theorem shows that P, contains the M-geodesic
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between any two of its points, i.e., is convex. So we must show that P, is an m-
dimensional smooth submanifold of M.

For u € Ry, we let Cc(u) C TryM be the intersection of the subspace 17, P,
with the e-ball in T, M. Since F is smooth and integrable the foliation P is
continuous with smooth leaves on R,,; it follows that we may fix ¢ > 0 and a

neighborhood U C R,, of v such that for u € U,
€XPrr(u) C.(u) = P, N Be(m(u)),

where for p € M we denote by B,(¢) the ball of radius e about p in M.
By the flat strip theorem, the above equation is preserved under the geodesic flow;

that is, for all ¢ and all uw € U we have
eXPr(gra) Ce(g't) = Pyt N Be((g'u)).

This equation is also clearly also preserved under isometries.

Now fix w € P(v); our goal is to show that P, is smooth near m(w). Choose by
Lemma sequences v, — v, t, — 00, and ¢, € I' such that (d¢, o g")v, — w.
We may assume v, € U for all n. For ease of notation, let w,, = (d¢, o g'")v,; then

for all n we have w,, € R,,, and
XDy Ce(Wn) = P, N Be(m(wy)).

By passing to a subsequence if necessary, we may assume the sequence of m-
dimensional subspaces dm(F(w,)) converges to a subspace W C Ty, M. Denote by

W, the e-ball in W. Then taking limits in the above equation we see that
eXPr(wy We € Py = P

To complete the proof, we note that since P, is convex (globally) and m-dimensional

near v, P, cannot contain an (m + 1)-ball, for then convexity would show that it
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contains an (m + 1)-ball near v. Thus if U’ C B.(w) is a normal neighborhood of w,
we must have

Py NU" = exp (W) N T,

w)

which shows that P, is a smooth m-dimensional submanifold of M near w and

completes the proof. O
Proposition IV.5. For every v € R,,, the set P, is an m-flat.

Proof. Let p = 7(v). Choose a neighborhood U of v in R,,, N T, P, such that for each
w € U, the geodesic v,, admits no nonzero parallel Jacobi field orthogonal to P,. We
claim P, = P, for all w € U.

To see this, recall that T),P, is the span of Y (0) for parallel Jacobi fields Y (¢)
along 7,. If Y is such a field, then the component Y1 of Y orthogonal to P, is
a bounded Jacobi field along ~,,, hence parallel, and therefore zero; it follows that
T,P, =T,P,. Since P, and P,, are totally geodesic, this gives P, = P,, as claimed.

But now take m linearly independent vectors in U; by the above we may extend

these to m independent and everywhere parallel vector fields on P,. Hence P, is

flat. 0
Corollary IV.6. For every v € SM, there exists a k-flat F' with v € Sy F.

Proof. Let v, be a sequence of regular vectors with v,, — v. Passing to a subsequence
if necessary, we may assume there is some m > k such that v, € R,, for all n. For
each n let W, be the m-dimensional subspace of Ty, )M such that exp(W,,) = P,,.
Passing to a further subsequence, we may assume W,, — W, where W is an m-
dimensional subspace of T7(,)M, and it is not difficult to see that exp W is an m-flat

through v. O
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4.2 The angle lemma, and an invariant set at oo

The goal of the present section is to establish that M (co) has a nonempty, proper,
closed, I'-invariant subset X. Our strategy is that of Ballmann [4] and Eberlein-Heber
[22]. In section we will use this set to define a nonconstant function f on SM,
the “angle from X7 function, which will be holonomy invariant, and this will show
that the holonomy group acts nontransitively on M.

Roughly speaking X will be the set of endpoints of vectors of maximum singularity
in SM; more precisely, in the language of symmetric spaces, it will turn out that X is
the set of vectors which lie on the one-dimensional faces of Weyl chambers. To “pick
out” these vectors from our manifold M, we will use the following characterization:

For each ( € M(oc0), we may look at the longest curve ((t) : [0,(()] — M(o0)

starting at ¢ and such that

Z4(C(t), C(s)) = [t — 5]

for every point ¢ € M; then ( is “maximally singular” (i.e., ¢ € X) if «(() (the
length of the longest such curve) is as large as possible. One may check that in the
case of a symmetric space this indeed picks out the one-dimensional faces of the Weyl
chambers.

To show that the set so defined is proper, we will show that it contains no regular
recurrent vectors; this is accomplished by demonstrating that every such path with
endpoint at a regular recurrent vector extends to a longer such path in a neighborhood
of that vector. For this we will need a technical lemma that appears here as Corollary
V.10l

We begin with the following lemma, which shows that regular geodesics have to

“bend” uniformly away from flats:
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Lemma IV.7. Let k = rank M, v € Ry, and let ( = v,(—00),n = Y,(c0). Then

there exists an € > 0 such that if F' is a k-flat in M with d(w(v), F) =1, then
Z(¢, F(00)) + £(n, F(0)) = e.

Proof. By contradiction. If the above inequality does not hold for any €, we can find

a sequence F), of k-flats satisfying d(m(v), F,,) = 1 and
£(G, Fn(00)) + £(n, Fu(o0)) < 1/n.

By passing to a subsequence, we may assume F,, — F for some flat F' satisfying
d(r(v), F) =1, and n,( € F(c0). In particular, F is foliated by geodesics parallel to

v, so that P(v) is at least (k + 1)-dimensional, contradicting v € Ry. O
This allows us to prove the following “Angle Lemma”:

Lemma IV.8. Let k = rank M. Let v € Ry be recurrent and suppose v points at

Ny € M(00). Then there exists A > 0 such that for all o < A, if n(t) is a path
n(t) - [0,a] = M(oo)

satisfying n(0) = ny and
Z(n(t),no) =t

for all t € [0, ], then n(t) € P,(o0) for allt € [0, .

Proof. Let p = m(v) be the footpoint of v and let £ = 7,(—o0). By Lemma we

may fix € > 0 such that if F' is a k-flat with d(p, F') = 1, then
(€, F(50)) + L, F(00)) > .

Choose § > 0 such that if w € S,M with Z,(v,w) < ¢ then w € Ry, and set

A= imin{d,e}. Fix a < A.
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For the sake of contradiction, suppose there exists a path n(t) : [0,a] — M (o)

as above, but for some time a < «

n(a) & Py(co).
For 0 < s < a, let n,(s) € S,M be the vector pointing at 7(s); since a < d, we have
n,(8) € Ry. Fixing more notation, let w = n,(a).
We claim 7y ¢ P,(c0). To see this, suppose 1y € P,(c0); then by convexity
P,(c0) contains the geodesic v,, and since 7, is contained in a unique k-flat, we

conclude P, = P,, which contradicts our assumption that n(a) ¢ P,(00).

It follows from Proposition that
d(7,(t), Py) — 00 as t — oc.

Since v is recurrent, we may fix t, — oo and ¢, € I' such that the sequence v, =
(dg,, o g'™)v converges to v. By the above we may also assume d(v,(¢,), P,) > 1 for
all n. Then, since P, depends continuously on u € Ry, there exists s, € [0,a] such

that

W Mp(Sn)

Yo(to)

Figure 4.1: Lemma [[V_§|

We define a sequence of flats F), by
Fn - gbn(Pnp(sn))'
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Notice that F, is indeed a flat, that d(F,,p) — 1, and that the geodesic y(_,,)

intersects F,, at time t,. By Proposition [[T[.16] we have
A(Y(—v) (1), F) < 1for 0 <t <ty

By passing to a subsequence, we may assume F,, — F for some k-flat F' with d(F, p) =
1, and taking the limit of the above inequality, we see that v(_,)(c0) € F(00). Thus
Lemma [[V.7] guarantees

£(no, F(0)) = €.

On the other hand, consider the sequence 7(s,). By passing to a further subse-
quence, we may assume ¢, (n(s,)) — p; since (by definition) ¢, (n(s,)) € F.(c0), we

have p € F(00). Then

€ < Z(ny, F(00)) < Z(no, 1)
< liminf Z(¢n(10), 9 (11(50))))

Y

= liminf Z(no,n(s,)) <a < a <
n—oo

N

where the inequality on the second line follows from Proposition [[I1.20. This is the

desired contradiction. O

As we did in section [3.4] we wish to extend this result not just to the k-flat F
containing the regular recurrent vector v, but to every k-flat containing 7, as an

endpoint at oo.

Proposition IV.9. Let v € Ry be recurrent and point at 1y, let A be as in Lemma
above, and let o« < A. Let F' be a k-flat with ny € F(o0), and suppose there
exists a path

n(t) : 0, ] = M(oo)
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with n(0) = ny and

Z(n(t),no) =t for all t € [0, ).
Then n(t) € F(oo) for allt € [0, q].

Proof. Fix q € F, and let , € S,F point at ng. Let p = 7(v), and let ¢ : S, F' — S,M
be the map such that w and ¢(w) are asymptotic. Denote by B (n,) the restriction
to I of the closed a-ball in the Z,-metric about 7,, and, similarly, denote by B*(v)
the restriction to P, of the closed a-ball in the Z,-metric about v. We will show that
¢ gives a homeomorphism B (n,) — Bl (v).

We first take a moment to note why this proves the proposition. We let n,(t) €
SpM be the vector pointing at 7(t). Lemma m tells us that n,(t) € Bl (v) for
t € [0,a]. Then since ¢! takes BL¥(v) into BL(n,), we see that n(t) € F(oo) for
such ¢.

So we've left to show ¢ gives such a homeomorphism. First, let’s see that ¢ takes

BE(n,) into B (v). Let w € BE(n,) and let
o [0,0] > B (n,)

be the Z,-geodesic with o(0) =7, and o(a) = w for some time a. Let
7 :[0,a] = M(o0)

be the path obtained by projecting o to M(oo). Then Corollary [[I1.27] guarantees
that & satisfies the hypotheses of Lemmal(lV.8| and so we conclude that &(t) € P,(00)
for all ¢, from which it follows that ¢ maps B (n,) into B (v) as claimed.

Now, note that for all w € B (n,) we have

éq(wa 77q) = ZP(QS(w)v U),

(6]



again by Corollary[[11.27, Therefore for each r € [0, a], ¢ gives an injective continuous
map of the sphere of radius r in B% (n,) to the sphere of radius r in BZ»(v); but any
injective continuous map of spheres is a homeomorphism, and it follows that ¢ gives

a homeomorphism of B (n,) and BL*(v) as claimed. O

Corollary IV.10. Let v € Ry, be recurrent and point at 19, let A be as in Lemma

[IV.8, and let o < A. Suppose we have a path
n(t) : [—a,a] = M(o0)
with n(0) = ny and
Z(n(t),n(0)) =t for all t.

Then for all g € M and all r,s € [—a, o

Proof. Choose two points ¢1, s € M. Then by Corollary [V .6 there are k-flats F, Fy
through ¢1, g2, respectively, with 1y € Fj(0c0) N Fy(o0). By Corollary the path
n(t) lifts to paths 771(15) Q Squl, 772(t) g quFg.

Fix r,s € [—a,a]. Then for ¢ € {1,2} we have

A0 (8): Yoo (1)) = 2tsin (£ (24, (n(r),m(5))) ).

Since d(Vp, (1) (1), Yooy (t)) and d(7y,(s)(t), Yia(s)(t)) are both bounded as t — oo, we
must have Z,, (11(r), m(s)) = Ly (m2(r),m2(s)). Thus Z,(n(r),n(s)) is independent

of ¢ € M, which gives the result. O

Proposition IV.11. M(oco) contains a nonempty proper closed I'-invariant subset.

Proof. For each § > 0 define X5 C M(o0) to be the set of all £ € M(oc0) such that
there exists a path

§(t) : [0,6] = M (o)
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with £(0) = ¢ and
Zy(&(1),€(s)) = |t — 5|
for all t,s € [0,6], and all ¢ € M.

Obviously X is I'-invariant. We claim it is closed. To this end, let &, € Xs with

&, — &, and choose associated paths
En(t) 2 [0, 8] — M (00).

By Arzela-Ascoli, some subsequence of these paths converges (pointwise, say) to a

path £(t), and this path satisfies

2,(E(1),€()) = Tim Z,(a(t),€n(s)) = [t — 5.

so £ € X5. Thus X5 is closed; it follows that X is compact.
We claim now that X is nonempty for some § > 0. To see this choose a recurrent

vector v € Ry, and say v points at 7. Let A be as in Lemma [[V.§] and let
n(t) : 0, Al = M (o)

be the projection to M (oco) of any geodesic segment of length A starting at v in S, P,.

Then by Corollary [I11.27] for all ¢ € [0, A]

Z(n(t),n) = Lp(n(t),n) =t.

Thus by Corollary [IV.10, Z,(n(s),n(t)) is independent of ¢ € M, and so in particular

for any such ¢
Zy(n(s),n(t)) = Lp(n(s),n(t)) = [t — s|.
So v e Xy4.

A few remarks about the relationships between the various X are necessary before

we proceed. First of all, notice that if §; < d5 then X, C X5, . Furthermore, for any
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0, we claim that ¢ € X iff £ € X, for all ¢ < §. One direction is clear. To see the

other, suppose ¢ € X, for a sequence ¢, — . Then there exist paths
En(t) 1 [0, €] = M (00)

satisfying the requisite equality, and again Arzela-Ascoli guarantees for some subse-

quence the existence of a pointwise limit
£(t) :[0,0] = M(o0)
which will again satisfy the requisite equality. Therefore, if we let
S = sup{d| X5 is nonempty }

then

Xp=[)Xs.
0<p

In particular, being a nested intersection of nonempty compact sets, Xz is nonempty.

We now show that § < w. To see this, note that § = 7 implies in particular that
there exist two points (,§ in M (co) such that the angle between ¢ and ¢ when seen
from any point is w. This implies that there exists a vector field Y on M such that
for any point ¢, Y(¢) points at ¢ and —Y (g) points at £&. The vector field YV is €™
by Theorem 1 (ii) in [23], and the flat strip theorem now shows that the vector field
Y is holonomy invariant, so that M is reducible. Thus § < 7.

We claim Xjp is the desired set. We have already shown it is closed, nonempty,
and [-invariant, so we have left to show that Xz # M (c0).

Fix a recurrent vector v € Ry; assume for the sake of contradiction that v € Xp.

Then there exists a path

n(t) - 0, 8] = M (o)
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with n(0) = n and Z,(n(t),n(s)) = |t — s| for all t,s € [0,5]. Let p = w(v) be the
footpoint of v, and let

np(t) [0, 8] = SpP,

be the lift of n(¢). Then n,(t) is a geodesic segment in S,P,. We may choose
0 < e < A, where A is as in Lemma [[V.§] so that 8+ ¢ < m. Thus we may extend

n,(t) to a geodesic

np(t) = [—€, B] = SpP,

and we may use this to extend 7(t). By Corollaries |[11.27| and [[V.10, we have for all

qge M

41](”@)7 T](S» = ‘t - S’,
and so n(—e€) € Xz, contradicting our choice of f. O
4.3 Completion of proof

We now fix a nonempty proper closed I'-invariant subset Z C M (oc) and define

a function f: SM — R by

f(v) = I(r»lglg éﬁ(v) (7@(00)7 C)

It is clear that f is I-invariant, and Lemma[[T1.22] gives that f is nondecreasing under
the geodesic flow (that is, f(g'v) > f(v)). We use the next four lemmas to prove that
f is continuous, invariant under the geodesic flow, constant on equivalence classes of

asymptotic vectors, and differentiable almost everywhere.
Lemma IV.12. f is continuous.

Proof. For each ¢ € M(00) define a function f. : SM — R by

fC(U) - éﬂ(v)(7v<oo)7 C)
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We will show that the family f. is equicontinuous at each v € SM, from which
continuity of f follows.
Fix v € SM and e > 0. There is a neighborhood U C SM of v and an a > 0 such

that
do(u, w) = d(74(0), 7(0)) + d(7u(a), yw(a))
is a metric on U giving the correct topology. Suppose w € U with d,(v, w) < e. For

¢ € Z, let Cr(v); Cr(w) be the vectors at m(v), 7(w), respectively, pointing at ¢. Then

|da(va <7r(v)) - da<wa Cﬂ(w))’ < dtZ(U: w) + da(Cﬂ(v% Cﬂ(w)) < 357

by the triangle inequality for d, for the first inequality, and Proposition for

the second. This gives the desired equicontinuity at v. O]

Lemma IV.13. Forv € SM, we have f(g'v) = f(v) for all t € R.

Proof. First assume v is recurrent. Fix ¢, — oo and ¢,, € I' so that d¢,g"v — v.
Then
f(ddng™v) = f(g"v)
and the sequence f(g'mv) is therefore an increasing sequence whose limit is f(v) and
all of whose terms are bounded below by f(v), so evidently f(g'"v) = f(v) for all n,
and it follows that f(g'v) = f(v) for all ¢t € R.
Now we generalize to arbitrary v. Fix ¢t > 0 and € > 0. By continuity of f and

the geodesic flow, we may choose d > 0 so that if u € SM is within § of v, then

|f(u) — f(v)] < eand |f(g'u) — f(g'v)] <e.

Then choose u recurrent within ¢ of v to see that

[ (g'v) = f)l < [£(g"0) = fg"u)| + [ £(g"u) — fu)| + [ f(u) — f(v)] < 2e.

Since € was chosen arbitrarily, f(g'v) = f(v). O
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Lemma IV.14. Let v,w € SM be arbitrary. If either v and w are asymptotic or

—v and —w are asymptotic, then f(v) = f(w).

Proof. 1f v and w are asymptotic, fix by Lemmal[[I[.23|¢, — oo, w, — w, and ¢,, € T,

such that (d¢, o g")w, — v. Then since f is continous,

f(w) =lim f(wy,) = lim f((dén © g™ )w,) = f(v).

On the other hand, if —v and —w are asymptotic, we may fix t, — —oo, w, — w,

and ¢,, € T, such that (d¢, o g )w, — v, and the exact same argument applies. [
Lemma IV.15. f s differentiable almost everywhere.

Proof. Fix v € SM; there is a neighborhood U of v and an a > 0 such that

da(u, w) = d(7(0),7(0)) + d(u(a), Y (a))

is a metric on U (giving the correct topology). Choose u,w € U, and let w' € Sy M

be asymptotic to w. Then

for some constant C'. But note that
do(u,w') = d(yu(a), v (a)) < d(vu(a), vw(a)) + d(yw(a), yur(a))
< d(vu(a), w(a)) + d(71(0), 7 (0)) = da(u, w),

by Proposition [[II.13] Therefore f is Lipschitz with respect to the metric d, on U,

and hence differentiable almost everywhere on U. O

From here on, the proof follows Ballmann [4], §IV.6, essentially exactly. We repeat

his steps below for convenience.
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We denote by W#(v), W*(v) € SM the weak stable and unstable manifolds
through v, respectively. Explicitly, W*(v) is the collection of those vectors asymp-
totic to v, and W"(v) the collection of those vectors w such that —w is asymptotic

to —v.
Lemma IV.16. T,W?*(v) + T,W*(v) contains the horizontal subspace of T,SM.

Proof. Following Ballmann, given w € TrM we let B (w) denote the covariant
derivative of the stable Jacobi field J along ~y, with J(0) = w. That is, BT (w) = J'(0)
where J is the unique Jacobi field with J(0) = w and J(¢) bounded as t — oo.
Similarly, B~ (w) is the covariant derivative of the unstable Jacobi field along ~,
with J(0) = w. In this notation,

T,W*(v) = {(w, B*(w))|w € SxyM} and T,W*"(v) = {(w, B~ (w))|w € SxyM}.
Both BT and B~ are symmetric (as is shown in Eschenburg-O’Sullivan [24]). We let

Ey = {w € Tﬂ.(v)M|B+(’w) = B_(w) = 0}

Since BT and B~ are symmetric, they map Ty(,) into the orthogonal complement
Eg of E.
The claim of the lemma is that any horizontal vector (u,0) € T,SM can be written
in the form
(u,0) = (w1, B (w1)) + (w2, B (w2)).
This immediately implies wy = u — wy, so we are reduced to solving the equation

—B~(u) = B"(w1) = B™(wy),

and for this it suffices to show the operator B* — B~ surjects onto E7-, and for this

it suffices to show that the restriction
BY - B :Ey - Ef

82



is injective. Assuming w € Ey, BT (w) = B~ (w) implies that the Jacobi field J with
J(0) = w and J'(0) = BT (w) = B~ (w) is both stable and unstable, hence bounded,

hence, by Proposition parallel; thus w € Ey and it follows that w = 0. O

Corollary IV.17. If ¢ is a piecewise smooth horizontal curve in SM then f oc is

constant.

Proof. Obviously it suffices to show the corollary for smooth curves ¢, so we assume
¢ is smooth. By Lemma[[V.15] f is differentiable on a set of full measure D. By the
previous lemma and Lemma [[V.14] if ¢ is a piecewise smooth horizontal curve such
that &(t) € D for almost all ¢, then fo¢ is constant (since df (¢(t)) = 0 whenever this
formula makes sense).

Our next goal is to approximate ¢ by suitable such curves ¢. Let [ be the length of
¢, and parametrize ¢ by arc length. Extend the vector field é(t) along ¢ to a smooth
horizontal unit vector field H in a neighborhood of ¢. Then there is some smaller
neighborhood U of ¢ which is foliated by the integral curves of H, and by Fubini
(since D NU has full measure in U), there exists a sequence of smooth horizontal
curves ¢, such that ¢.(t) € D for almost all ¢ € [0,1], and such that &, converges in
the %p-topology to c¢. Since f is constant on each curve ¢ by the argument in the

previous paragraph and f is continuous, we also have that f is constant on c. O]
Finally, an appeal to the Berger-Simons holonomy theorem proves the result:

Rank Rigidity Theorem. Let M be a complete irreducible Riemannian manifold
with no focal points and rank k > 2. Assume that the I'-recurrent geodesics are
dense in M, where I" is the isometry group of M. Then M is a symmetric space of

noncompact type.

Proof. By the previous corollary, the function f is invariant under the holonomy
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group of M. However, it is nonconstant. Thus the holonomy group of M is nontran-

sitive and the Berger-Simons holonomy theorem implies that M is symmetric.  [J

Corollary IV.18. Let M be a complete, simply connected Riemannian manifold
with no focal points and with group of isometries I', and suppose that the I'-recurrent

vectors are dense in SM. Then M decomposes as a Riemannian product
M =FE,. x Mg x My x - x M,

where E, is a BEuclidean space of dimension r, Mg is a symmetric space of noncom-
pact type, and each factor M; for 1 <1 <1 is a nonsymmetric irreducible rank-one

Riemannian manifold with no focal points.
Proof. Let
M=F, x N; X ---x Ny

be the de Rham decomposition of M. Proposition [I[I.16] shows that the Isom(N;)-
recurrent vectors are dense in N;, and [[II.6] shows that each NN; has no focal points.
Thus each higher rank N; is a symmetric space of noncompact type, and this gives

the corollary. O
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Chapter V

Fundamental Groups

In this section M is assumed to be a complete simply connected Riemannian
manifold without focal points, and I' a discrete, cocompact subgroup of isometries of
M. We will also assume that I" acts freely on M, so that M/I"is a closed Riemannian
manifold.

Following Prasad-Raghunathan [42] and Ballmann-Eberlein [§], define for each
nonnegative integer i the subset A;(I") of I" to be the set of those ¢ € I' such that
the centralizer Zr(¢) contains a finite index free abelian subgroup of rank no greater

than i. We sometimes denote A;(I") simply by A; when the group is understood.

Definition V.1 ([42]). »(T") is the minimum ¢ such that I" can be written as a finite
union of translates of A;,

['=¢1A;U---UgrA;,
for some ¢1,...,¢r €T,
Definition V.2 ([§]). The rank of T" is
rank(I") = max{r(I™) : I'" is a finite index subgroup of I'}.

Prasad-Ragunathan [42] show that (I") = rank(M) when M is a higher rank sym-

metric space; using this result, Ballmann-Eberlein [§] show that rank(T") = rank(M)
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when M has nonpositive curvature. In this section, we generalize their result to no

focal points:

Theorem. Let M be a complete, simply connected Riemannian manifold with no

focal points, and let I' be a discrete, cocompact subgroup of isometries of M acting

freely. Then rank(I') = rank(M).

This theorem is proved at the end of this chapter as Theorem [V.26] We make
some remarks on the plan of the proof. First, the Higher Rank Rigidity Theorem

proved earlier in this thesis guarantees that M has a de Rham decomposition
M= Mg x E, x My x -+ x M,

where Mg is a higher rank symmetric space, F, is r-dimensional Euclidean space,
and M; is a nonsymmetric rank one manifold of no focal points, for 1 <7 <.
We'd like to use this theorem to reduce to the rank one case. First of all, we have

the following result from Ballmann-Eberlein:
Theorem V.3 ([§], Prop 2.1). Let I' be an abstract group. Then:

1. If T is a finite index subgroup of I', then rankI'™* = rankI".

2. IfT' =11 x--- xT'y, then

r(I') = Z r(I';) and rank(I') = Z rank(I;).
i=1 =1
What does this mean in the context of our de Rham decomposition? We will show

that, in the case that the Euclidean factor is trivial, our group I' has a finite-index

subgroup I'* which splits as a product

F*:F,sXFlX"'XFl?
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where I'g and each I'; act cocompactly on the appropriate de Rham factor of M.
Then Prasad-Ragunathan have shown that rank(I's) = rank(Mg); thus Theorem
will allow us to reduce to computing the rank of I'; for ¢ > 1, i.e., the case where
M is a rank one manifold without focal points. In section [5.3| we will deal with the
Euclidean factor of M, making use of the results of section [3.5]

Our goal in the remainder of this section is to show, under the assumption M has
no flat factors, that I' admits a finite index subgroup I'* splitting as above. Then, in
sections and 5.2 we will show rank(I';) = 1 for the rank one factors. Finally, in
section [5.3] we return to the general case to deal with the Fuclidean part of M.

We begin with the following lemma:

Lemma V.4. Let M have no flat factors, and let I' be as above. Then M splits as
a Riemannian product M = Mg x My, where Mg is symmetric and My has discrete

1sometry group.

Proof. Let I denote the connected component of the isometry group of M. By The-
orem 3.3 of Druetta [15], I has no normal abelian subgroups. Then Proposition 3.3
of Farb-Weinberger [25] shows that [j is semisimple with finite center, and Proposi-
tion 3.1 of the same paper shows that M/T" has a finite cover which decomposes as
a Riemannian warped product
N x; B,

where N is locally symmetric of nonpositive curvature, and Isom(B) is discrete. We
claim that such a warped product must be trivial; this would show that M /T has a
finite cover which decomposes as a Riemannian product N x B, and thus M does as
well.

Thus it suffices to show that a nontrivial compact Riemannian warped product

must have focal points: Let N x; B be a Riemannian warped product, where f :
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B — R is the warping function. If f is not constant on B, there exists a geodesic
v in B such that f is not constant on . Let o be a unit speed geodesic in N. Since
{p} x B is totally geodesic in N x ;B for any p € N (as follows, for instance, from the
Koszul formula), the variation I'(s,t) = (o(s),v(t)) is a geodesic variation in N x s B.

It is then easy to see that the variation field J(t) = 9,I'(0, t) of this variation satisfies

J@)] = (2 (1)),
which is bounded but nonconstant, so that N Xy B must have focal points. O

Corollary guarantees that if M has no flat factors, then it admits a decom-
position
M = Mg x My X -+ x M,
where each of the M;,1 < ¢ < [, has rank one and discrete isometry group. Then,

by Lemmas [V.4] and [[T[.38], I" has a finite index subgroup I'* splitting as

["=T¢gxI; x---xI.

By the arguments above, to finish the proof in the case where M has no flat
factors, we need to show that rank(I') = 1 in the case where M is irreducible,
rank one, and has discrete isometry group. In section |5.2] we mimic the geometric
construction of Ballmann-Eberlein to carry this out. Before doing this, however, we
must first generalize a number of lemmas due to Ballmann [2] on rank one geodesics
in manifolds of nonpositive curvature to the no focal points case; this is the work of

the next section.

5.1 Rank one ['-periodic vectors.

The following series of lemmas generalizes the work of Ballmann in [2]. As in that

paper, we will be interested in geodesics v that are I'-periodic, i.e., such that there
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exists a ¢ € I' and some a € R with ¢ o y(t) = y(¢t + a) for all t. Such a geodesic
will be called azial, and ¢ will be called an axis of v with period a.

Recall the following notation from section [3.3f M = M U M (o0) is the visual
compactification of M, and C(v, e) C M is the cone about v of angle e. We are often

interested in the following condition:

Definition V.5. We say that a geodesic v bounds a flat half-strip of with c if there
exists an isometric immersion ® : R x [0,c¢) — M such that ®(¢,0) = y(¢), and that

~v bounds a flat half-plane if there exists such ® with ¢ = oo.

Note that if v bounds a flat half-strip, then ~ is higher rank. Note also that, in

marked contrast to the higher-rank case, the implications
~ bounds a flat half plane — v bounds a flat half strip — ~ is higher rank

are all strict. As a simple example, consider a negatively curved surface with a cusp;
we cut off the cusp at some finite distance and reduce the curvature smoothly to zero,
turning the cusp into a cylinder. Gluing such a surface to itself, we obtain a closed,
rank one manifold; any geodesic wrapping around the central cylinder is higher rank,
and in fact bounds a flat half strip, but does not bound a flat half plane. Letting
the width of the central cylinder go to zero shows that a higher rank geodesic 7 need
not bound a flat half-strip.

If p e M, g € M, we denote by Vpq the unit speed geodesic through p and ¢
with «(0) = p. Note that if v is a geodesic and t,, — oo, then v(¢,) — 7v(c0) in the
cone topology on M. Moreover, if p, € M and p, — ¢ € M(00), then for p € M
the geodesics v, converge to 7,¢. This follows from considering Tp—M and Theorem

[IT.19 More generally, we have the following lemma:
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Lemma V.6. Let p,p, € M with p, — p, and let x,,( € M with x, — . Then
Vpnan (0) = Ypc(0).

Proof. First pass to any convergent subsequence of 4, ., (0); say this subsequence
converges to ,¢(0), where £ € M(o0). Suppose for the sake of contradiction that

€ # (. Let ¢ = d(pc(1),7p¢(1)) > 0. By the remarks preceding the lemma, we may

choose n large enough so that each of

d(pnap)7 d(’}/pna:n(l%w/pf(l))? and d(men(l)”YPC(l))

is strictly smaller than ¢/3. Proposition [[11.12shows that d(v,, 4, (1), Vpz, (1)) < ¢/3,

and the triangle inequality gives the desired contradiction:

¢ = d(Ype(1), 1pe(1))

< d(Ype (1) Y (1)) + d(Vpaey (1) Ypnza (1)) + d(Vprae (1), (1))

<c.

]

Our next goal is to show that if v does not bound a flat half plane and there exist
geodesics 7, with 7, (—o00) — 7(c0) and ~,(c0) — y(c0), then in fact 7, — . The

following lemma, which generalizes [2] Lemma 2.1 (i), does most of our work:
Lemma V.7. Let v be a geodesic, and suppose there exist

such that d(y(0), Yp.q.) = ¢ > 0 for all k. Then vy is the boundary of a flat half-strip

of width c.

Proof. The idea is to show that the geodesic from p; to ¢x converges to a geodesic

parallel to 7, and use the flat strip theorem. However, in fact the geodesics 7,4,
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Figure 5.1: Lemma[V.7]

need not converge, so a slightly more technical argument is needed. For each k
let pr, G, be the points on ~ closest to py, gk, respectively. Let by(s) be a smooth
path with b,(0) = pr, br(1) = pk, and similarly let c¢x(s) be a smooth path with

cx(0) = Gk, cx(1) = qx. We may further choose by so that the angle

Zy(0) (Pr; br(s))

is an increasing function of s, and similarly for ¢;. Finally, let o 4(t) be the unit
speed geodesic through by(s) and cx(s), parameterized so that o40(0) = v(0), and
such that s — o0y 5(0) is a continuous path in M.

By hypothesis, d(ox1(0),7(0)) > ¢. Thus there exists s, with 0 < s, < 1 and
d(ok,s,(0),7(0)) = c. Passing to a subsequence, we may assume the geodesics oy s,
converge as k — 0o to a geodesic o with d(o(0),~(0)) = c.

Finally, any convergent subsequence of bg(sy), or of cx(sg), must converge to a
point on 7, or one of the endpoints of 7. However, Lemma [V.6 and the fact that
o # =, shows that the only possibility is bx(sx) — 7(—o0) and cx(sg) — v(00).
Another application of Lemma shows that o is parallel to v. The flat strip

theorem now gives the result. O

In particular, if v is rank one, it bounds no flat half strip of any width, so we

obtain the following generalization of [2] Lemma 2.1 (ii):
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Lemma V.8. Let v be rank one, and ¢ > 0. Then there exists € > 0 such that if
x € C(—%(0),¢), y € C(3(0),€), then there is a geodesic connecting x and y.
Furthermore, if o is a geodesic with o(—o0) € C(—%(0),€) and o(c0) € C(§(0),€),

then o does not bound a flat half plane, and d(v(0),0) < c.

Proof. By Lemma, there exists € > 0 such that d(7,,,7(0)) < cifp € C(—5(0),¢)N
M and ¢ € C(5(0),€) N M. We choose sequences p, — = and ¢, — y; then some
subsequence of 7,4, converges to a geodesic connecting z and y.

To prove the second part, note that all geodesics 7 with endpoints in C'(—%/(0), €)
and C(%(0), €) satisfy d(v(0),7) < ¢ by choice of e. However, if o bounds a flat half-
plane then there are geodesics 7,, with the same endpoints as ¢ but with 7,, — oo, a

contradiction. ]

As a corollary of the above, we see that indeed if 7y is rank one and ~,, is a sequence
of geodesics with v, (—00) — y(—00) and 7, (c0) — y(o0), then v, — 7.
Our next lemma is crucial, but technical. In preparation we state a lemma from

nonpositive curvature.

Lemma V.9. Let N be nonpositively curved, and let 7,0 be distinct asymptotic

geodesics of N, and suppose that
£(7(0),0(0)) + £(7(0),7(0)) = .
Then 1,0, and the geodesic segment from 7(0) to o(0) bound a flat half strip.

The standard proof of this lemma uses triangle comparison arguments, and we
do not know whether it generalizes to no focal points. In keeping with the spirit of
section |3.4] we attempt to replace it with a lemma that is somewhat less general and

depends on the use of recurrence.
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To see better the spirit of our generalization, suppose first that the geodesic ~
connecting 7 and ¢ above is axial for the isometry ¢, and suppose further that
o = ¢ o 7. Then the fact that o and 7 are asymptotic says that ¢ has a fixed point
¢ on M(o0) not equal to either of the endpoints of 7, and one might hope that the
above lemma tells us in this case that the flat strips between the various translates
o"t for n € Z “glue up” to show that ~ is the boundary of a flat half-plane F' with
¢ € F(00).

In fact this is true; however, we will need a similar result in the case that
is merely recurrent. Unfortunately there is then no single isometry ¢ realizing the
recurrence, but rather a sequence of isometries (¢,); correspondingly, we assume
that there is some x € M(o0) with ¢, (x) converging to somewhere other than the

endpoints of 7. The precise statement follows:

Lemma V.10. Let v be a recurrent geodesic, and suppose ¢, is a sequence of isome-
tries such that do,(¥(t,)) — ¥(0), where t, increases to oo. Further suppose that
there exists x,( € M(o0) with ¢,(x) — ¢, where  # y(o0) and ¢ # v(—o00). Then

v 1s the boundary of a flat half plane F, and ( € F(0).

Proof. For each s € R let 74 be the geodesic with 7,(0) = v(s) and 75(c0) = z, and
let o5 be the geodesic with 04(0) = v(s) and os(c0) = ¢. Fix ¢t > 0.

We first claim that for each € > 0, there exists an infinite subset L(¢) C N such
that for each N € L(e) there exists an infinite subset Ly(e) C N such that for
n € Ln(e),

d(TtN(t)aTtn(t)) 2 tn — tN — €.

Let us first show this claim.
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By passing to a subsequence, we may assume

(P (tn),7(0)) < €/3 and d(¢n7y, (1), 00(t)) < €/3

for all n > 1; the second inequality follows from recurrence of v, the fact that

¢n(z) — ¢, and Proposition |[11.13]

Assume for the sake of contradiction that our claim is false; then again by passing

to a subsequence, we may assume that for m >n > 1
(71, (1), 71,,, (1)) <t —tn — €.
From this and the previous inequality, we conclude that for m >n > 1

d(¢, " 00(t), 6, 00(t)) < tm —tn — €/3.

Choose [ such that le/3 > 2t + e. Then

-1

d(7(t1), (1) < d(v(t1), $1'7(0)) + d(&77(0), 61 oo (t) + Y d(9; o0 (t), &3100 (1))

=1

+d(¢; oo (t), ¢ 17(0)) + d(¢; 7(0), v (1))
-1

<ef3+t+ Y (ti—ti—€/3)+t+e/3
=1

<2t4+e—1le/3+t —t

<t —ty,

contradicting the fact that v is length minimizing. This proves our claim.

The next step of the proof is to show that for s > 0
d(oo(t), 05(t)) = s.

Fix such s. Note that d(oy(t),0s(t)) < s by Proposition [I11.13] Suppose for the sake
of contradiction that

d(oo(t),04(t)) = s — 3¢
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for some € > 0. Choose N € L(e) large enough such that

d(dnTiy (t),00(t)) < € and d(PpnTiy+s(t), 0s(t)) < €.

As before, that this can be done follows from recurrence of v, the fact that ¢, (z) — ¢,

and Proposition [I11.13] Then if n € Ly (e) with ¢, > tx + s, we find

d(7y (), 7, (1)) = d(OnTen (1), ON T, (1))
< d(onTiy(t), 00(t)) + d(oo(t), 05(1))
+ d(0s(t), ONTy+5(1)) + d(ONTey+5(0), ON T, (1))
<et(s—36) +e+ty— (tn+5)

= tn - tN — €,
contradicting the definitions of L(e), Ly(€). Hence

d(os(t), 00(t)) = s
as claimed. In fact, the above argument shows that for all r,s € R
d(o.(t),os(t)) = |r — s]|.

We now complete the proof. Lemma 2 in O’Sullivan [40] shows that the curves 6,
defined by 6,(s) = o4(t) are geodesics, and they are evidently parallel to 7. Thus the
flat strip theorem guarantees for each ¢ the existence of a flat F; containing ~ and
0;; since Fy is totally geodesic, it contains each of the geodesics og. (We remark, of

course, that all the F; coincide.) O

As indicated above, Lemma often works as a good enough replacement in
no focal points for Lemma [V.9] For our present purposes, we use it to generalize

Lemma 2.4 in [2] in the following two corollaries:
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Corollary V.11. Let vy be a recurrent geodesic, and suppose there exists x € M (o0)
such that 2 (z,v(00)) = € for all t, where 0 < e < m. Then v is the boundary of a

flat half-plane.

Proof. 1f ¢, is a sequence of isometries such that ¢,7(t,) — (0), for t,, — oo, one
sees that any accumulation point ¢ of ¢, (x) in M (co0) must satisfy Z.)(7(00),() = ¢,

and so the previous lemma applies. O]

Corollary V.12. Let ¢ be an isometry with axis vy and period a. Suppose B C M (o0)
is nonempty, compact, ¢(B) C B, and neither ~y(oco) nor v(—o0) is in B. Then v

bounds a flat half plane.

Proof. Take ¢, = ¢™ and t,, = na, along with the recurrent geodesic —v, in Lemma

V.14 O

This allows us to prove the following generalization of [2], Lemma 2.5, in exactly

the same manner as Ballmann:

Lemma V.13. Let ¢ be an isometry with rank one axis v and period a. Then for

all €,0 with 0 < e <7 and 0 < d <7, and all t € R, there exists s with

C(¥(s),6) € C(¥(t),€).

Proof. Suppose otherwise; then there exists such ¢, d, ¢ such that for all s the above

inclusion does not hold. In particular we may choose for each n a point z, with

20 € C(3(na), 0) 2 & C(3(2), 0).

Then if we set z,, = ¢~ "(2,), we have z,, € C(¥(0), ), and none of ,,, (z,,), ..., ¢"(z,)
is in C(y(t),¢€).

Thus if we let B be the set
B = {z € M(c0) N\ C(3(0),9) : 6"(x) & C(i(t),€) for all n},
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we see that B is nonempty (it contains any accumulation point of z,,) and satisfies the

other requirements of Corollary [V.12] so « is the boundary of a flat half plane. [

Finally, we obtain a generalization of (parts (i)-(iii) of) [2] Proposition 2.2, one of

the main results of that paper. Again, the proof is exactly as in [2].
Theorem V.14. Let ¢ be an isometry with axis v and period a. The following are
equivalent:

1. v is not the boundary of a flat half plane;

2. Given M-neighborhoods U of v(—o0) and V of v(c0), there exists N € N with

¢"(M —U)CV and ¢~ (M — V) C U whenever n > N; and

3. For any x € M(0c0) with x # ~(00), there exists a geodesic joining x and v(00),

and none of these geodesics are the boundary of a flat half plane.

Proof. (1 = 2) By Lemma we can find s € R with

C(=3(=s),7/2) S U, CG(s).7/2) C V.
If Na > 2s then for n > N

¢"(M —U) € ¢"(M — C(—(—s),7/2))

C C(i(s).m/2) €V,

and analogously for U and V' swapped.

(1 = 3) By Lemma we can find € > 0 such that for y € C(—%(0),¢€) there
exists a geodesic from y to y(oo0) which does not bound a flat half plane. But by (2)
we can find n such that ¢~"(z) € C(—%(0), €).

(2=1) and (3 = 1) are obvious (by checking the contrapositive). O
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We now consider the specific case where I' is a subgroup of isometries of M
satisfying the duality condition. Our proof is again a straightforward generalization

of Ballmann’s proof of Proposition 2.13 in [2].

Proposition V.15. Assume I'-recurrent vectors are dense in SM. If v is rank one
and U,V are neighborhoods of v(—o0) and y(00), then there exists an isometry ¢ € T

with rank one axis o, where o(—o0) € U and o(o0) € V.

Proof. Since I'-recurrent vectors are dense in SM, we may assume < is recurrent,
and take ¢, € T, t, — oo, such that d¢,¥(t,) — ¥(0). We define v,, = d¢,g"v.

Fix e > 0 and ¢ > 0 by Lemma We replace U and V' by U, = C(—v,e) NU
and V. = C(v,e) N V. Then for any = € U,y € V., there exists a unique rank one
geodesic joining z and y.

We claim that for sufficiently large n, ¢, has fixed points in U, V.. We first claim

¢ (V) C V. for large n.

n

We prove this claim by contradiction. Suppose x,, € V with ¢ (z,) ¢ V. By
passing to a subsequence, we may also assume that z,, converges (to an unnamed

point) and that ¢, '(z,) — z. Since z,, € V and v, — v we have
lim éw(vn)<vna mn) <,
from which we conclude

lim 2y, (7(00), ¢y, (2)) < €.

In addition, by construction we have

lim 2, 0)(7(00). 6 () > e.
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By Lemma [[T1.22] for 0 <t < ¢, we have

Z10)(7(00), 65 (2n)) < Ly (7(00), 8 (20)) < Lo (7(00), 67, ().

It follows from these equations that for all ¢

Ly (Y(00),2) = €.
Corollary shows that v bounds a flat half plane, which is a contradiction. Thus
o1 (V.) C V. for large n.
A similar argument shows that ¢, (UG) C U, for large n. We provide this argument
for completeness. The claim is shown by contradiction; we assume vy, € U, with
On(Yn) & U.. We may assume y,, — y by passing to a subsequence, and that ¢, (y,)

converges (to an unnamed point). Then we find

lim Z5,)(1(=00), yn) > €

while at the same time
lim 20y (7(—00), yn) < €

and again Lemma shows that
é'y(t)(’Y(_OO)7y) =€,

again contradicting Corollary

We have thus shown that ¢, has fixed points 7, € U, and (, € V,, and hence
must fix the geodesic o,, through these points. The only thing left to argue is that
¢, translates o, i.e., that ¢, does not fix o,, pointwise.

But note that d(¢,v(0),~(0)) — oo, while by our choice of € and ¢, d(o,,7(0)) is

uniformly bounded. Thus ¢, cannot fix ¢, pointwise for large n. m

Corollary V.16. Rank one I'-periodic vectors are dense in the set of rank one vec-

tors.
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5.2 The geometric construction.

Our goal in this subsection is to prove the following:

Theorem V.17. Let M have rank one, and let I" be a discrete subgroup of isometries

of M such that T'-recurrent vectors are dense in M. Then r(I') = 1.

Our method is simply to show that the Ballmann-Eberlein construction works
equally well in the setting of no focal points. With the work of section[5.1]in hand, our
proof is nearly identical to theirs, with some simple modifications. For completeness,
we present the details.

Define

By(I') = {¢ € I' : ¢ translates a rank one geodesic }.
Lemma V.18. B;(I") C Ay(I).

Proof. For ¢ € By(T") translating ~, the flat strip theorem guarantees that v is the
unique rank one geodesic translated by ¢. Thus every element of Zp(¢) leaves 7
invariant. Since I' is discrete, Zr(¢) must therefore contain an infinite cyclic group

of finite index. O]

We will show there exist elements ¢11, @12, Po1, oo € I' such that
(%) [' = ¢11 Bi1 U ¢y By Uthy) By U gy By,

which implies r(I') < 1, after which we will make a separate argument for equality.

As in Ballmann-Eberlein a point € M (o) is called hyperbolic if for any y # z
in M(00), there exists a rank one geodesic joining y to x. By Theorem , any
rank one axial geodesic has hyperbolic endpoints; thus Corollary implies that
the set of hyperbolic points is dense in the open set of M (c0) consisting of endpoints

of rank one vectors.
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The following generalizes Lemmas 3.5 and 3.6 in [§]:

Lemma V.19. Letp € M, let v € M(00) be hyperbolic, and let U* be a neighborhood
of x in M. Then there exists a neighborhood U of x in M and R > 0 with the
following property: For all u € U and v € M — U*, there is a unique rank one

geodesic o connecting u and v, and moreover d(p,o) < R.

Proof. The proof is identical to that of [§]. Fix ¢ € M — U*. Since x is hyperbolic
there exists a rank one geodesic v from z to ¢; then Lemma shows that there
exists a neighborhood V; of ¢ and U, of p such that any v € U, and v € V; can be
connected by a unique rank one geodesic o, and moreover that ¢ lies within some
bounded distance of v(0), and in particular, within some bounded distance R, of p.

Now, M — U* is compact, so we may cover it with finitely many of the Va,

M-U"CV,U---UV,.
Then U = U, N- - -NU,, satisfies the conclusion of the lemma with R = max{R,,}. O

We now generalize [§] Lemma 3.8:

Lemma V.20. Let x,y be distinct points in M (oco) with x hyperbolic, and suppose
U, and U, are neighborhoods of x and y, respectively. Then there exists an isometry
¢ €' with

o(M —U,) CU, and (M — U,) C U,.

Proof. Since z is hyperbolic, there is a rank one geodesic from x to y. By Proposition
there is therefore a I'-periodic geodesic with endpoints in U, and U,, and the

result now follows from Theorem [V.14] O

The following is an imperfect generalization of [§] Lemma 3.9 which suffices for

our purposes:
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Lemma V.21. Let x € M(co) be hyperbolic, U* € M a neighborhood of =, and
p € M. Then there exists a neighborhood U C M of x such that if ¢, is a sequence

of isometries with ¢,(p) — z € M(c0) — U*, then
sup Zg, (p)(p,u) = 0 as n — oo.
uelU

Proof. By Lemma there exists R > 0 and a neighborhood U C M of z such
that if o is a geodesic with endpoints in U and M — U* then d(p,o) < R.

Let z,, € U be an arbitrary sequence, and for each n let o,, be the geodesic through
x, with ¢,(0) = ¢,(p). Denote by b, be the point on o, closest to p, and let -, be
the geodesic through p with v, (0) = ¢, (p).

By construction d(p,b,) < R, and so we also have d(¢,*(p),®,'(b,)) < R. Tt

follows that any subsequential limit of ¢ ', is asymptotic to any subsequential

limit of ¢, 'v,. In particular

Low)(Dsn) = Lp(0,' (), 0y, () = 0,

from which the lemma follows. O
Finally we generalize [§] Lemma 3.10:

Lemma V.22. Fix p € M. Let x1, x5 be hyperbolic points in M(c0), and let Ay, As
be open subsets of M (co) that are 0-separated when viewed from p, i.e., Z,(ay,az) > 6
for all ay € Ay,a9 € Ay. Then there exist neighborhoods Vi of x1 and Vs of xo such

that for all ¢ € T', one of the four intersections ¢p(V;)NA; (fori,j € {1,2}) is empty.

Proof. The proof is identical to that of [§]. We begin by fixing disjoint neighborhoods
Wi of 21 and Wy of 4 in M, and let U, U; be neighborhoods of z1, 75 in M such

that U: C W,;. By Lemma , there exist neighborhoods U; € U} of x; such that
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for any sequence of isometries ¢, € I' with ¢, (p) — z € M(c0), we have

sup Zg, () (p, u) — 0.
uelU

We proceed by contradiction. Thus, we assume there exists a neighborhood basis
V™ of z; and a sequence ¢,, € I' such that for every n, the intersections ¢, (V;") N A;
are all nonempty. By passing to a subsequence, we may assume that V" C U; for
every n, and we may assume that both sequences {¢,(p)} and {¢.1(p)} converge,
say to y and z in M, respectively.

We claim first that y € M(oo). For suppose y € M; then, passing to a further
subsequence, we may assume the isometries ¢, converge to an isometry ¢ of M
(which need not be in I'). But then for any fixed neighborhood O of ¥ (x;), the sets
¢n (V") must all eventually lie in O, and in particular, they cannot intersect both the
0-separated sets A; and A,. This establishes the claim, and we remark that therefore
z € M(c0) as well.

Now, either z ¢ W, or z ¢ W,. Suppose for instance z ¢ W;. Then ¢, '(p) €

M — Uy for large n, and thus by construction

sup Zp(¢n(p), ¢n(u)) = sup Zy-1(, (p,u) — 0.

uely uely

It follows that ¢, (U;) is eventually contained in any open neighborhood of y, and in

particular, can not meet both A; and A,, which is the desired contradiction. O

Proposition V.23. If M is a rank one manifold without focal points and I' is a

discrete subgroup of isometries of M, then r(I") < 1.

Proof. The proof is identical to that of [§]. Fix p € M. Fix also distinct points
T1, T2, Y1, Y2 € M(00) such that xq, 9 are hyperbolic; finally, fix § > 0 and neighbor-
hoods C4, Cy of xq, x5 and Ay, Ay of y1,ys such that any two of these four neighbor-

hoods are d-separated when viewed from p. By making C7, Cy smaller if necessary,
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we may assume these satisfy the conclusion of Lemma relative to A;, Ay. Fi-
nally, we fix by Lemma neighborhoods Vi, Va of 1, x5 so that both (a) V; C C;
and (b) any point in V; is connected to any point in M — C; by a unique rank one

geodesic.

Using Lemma we may choose for each 7,j € {1,2} an element ¢;; € I" with
¢i;(M — A;) CV; and ¢! (M — Vi) C Aj.

See figure, where we have drawn lines for the ¢;j to indicate that ¢;; may be thought

of as translation of a rank one geodesic with endpoints in V; and A;.

Figure 5.2: Proposition [V.23|

We claim that

I'=¢1{' Bi U ¢1y B1 Ut By Uy, Bs.

To see this, let £ € I'. By construction, there is some i, j such that £(C;) N A;

Il
=

we fix this i, j for the remainder of the proof.

Consider the map ¢;;§; we have
$i;€(Cy) C ¢y(M — A;) CV; CV; CC;
from which it follows that ¢;;¢£ fixes a point v in V;. Similarly,

(ps6)"(M — C;) CE¢TA; C M — G,



so that (¢;;€)7!, and therefore also ¢;;€, has a fixed point u in M — C;. Tt follows
that ¢;;¢ fixes the unique rank one geodesic v from v to w.

We would like to show that in fact ¢;;§ translates the geodesic v and thus that
¢i;€ € B1(T). In fact, ¢;;¢ fixes no point of M. To see this, note that ¢;;£(C;) is a
proper subset of C;; but this is impossible if ¢;;¢ fixes any point of M, which is clear
by considering the action of ¢;;¢ on M (c0) as seen from the fixed point.

Thus we have shown that ¢;;§ translates a rank one geodesic, and it follows, as
claimed, that

= 611 B U éyy By Uty BrU by, By,

and hence that r(I') < 1. O

Theorem V.24. If M is a rank one manifold without focal points and I" is a discrete

cocompact subgroup of isometries of M, then r(I') = 1.

Proof. Again, the proof is as in [8]. In light of the previous result, we must show

r(I') # 0. Suppose otherwise; then there exist &, ...,& € [ with
['=&§AgU---&Ap.

We remark that Ag is the set of elements whose centralizer is finite. In particular,
any element of Ay has finite order and hence fixes a point of M by Proposition [[TL.10]

We wish to construct z1, 9, y1, y2 and neighborhoods C; of x; and A; of y; as in
the previous proof, but now satisfying the following property: for each j we should
have &;(Cy) N Ay = 0. To do this, first choose y;,y, and neighborhoods A, A so
that the complement of the union of the sets fj_l(Al) has nonempty interior; we may
then choose x1, xs in this interior and proceed as in the previous proof.

Then with ¢, as above, we have shown that ¢,,§; fixes no point of M. However,

we must have @7, € & Ay for some j, and then (¢1:£;)~! € Ay and hence has a fixed

105



point, which is a contradiction. O

5.3 Completion of the proof.

We complete the generalization of Ballmann-Eberlein’s Theorem on the rank of
the fundamental group in this section by dealing with the flat factors of M. We work
with Clifford translations; the necessary theory for these isometries, for manifolds
without focal points, was developed in section Our proofs in this section are

identical to the proof of Theorem 3.11 in [§].

Lemma V.25. Let M be a complete, simply connected Riemannian manifold with

no focal points and without flat factors, and let I' be a discrete, cocompact subgroup

of isometries of M. Then rank(I") = rank(M).
Proof. By Corollary [V.I8] M decomposes as
M = Mg x My X -+ x M,

where Mg is a symmetric space of noncompact type, and each M; is rank one and
nonsymmetric. By Lemma each M; has discrete isometry group. Then Lemma

shows that I' has a finite index subgroup I'* splitting as a product
["=T¢gxIx---xI.

Then Theorem shows that r(I';) = 1 for each ¢. In fact it follows from that
theorem that r(I'f) = 1 for any finite index subgroup I'f of T';, so that rank(T’;) = 1.
Meanwhile, Prasad-Raghunathan [42] have shown rank(I's) = rank(Mg), so that by

Theorem V.3

rank(I') = rank(I'*) = rank(I'g) + rank(I';) + - - - 4+ rank(I")

= rank(Mg) + | = rank(M).
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]

Theorem V.26. Let M be a complete, simply connected Riemannian manifold with
no focal points, and let I be a discrete, cocompact subgroup of isometries of M acting

freely. Then rank(I') = rank(M).

Proof. Write M = FE, x M, where M, has no flat factors E; is an s-dimensional
Euclidean space. By Lemma there is a finite index subgroup I'g of I' such that
for any finite index subgroup I'* C Iy, we have Z(I'*) = C(I'™).

We now fix such a finite index subgroup I'* C I'y. By Theorem , Z(I™)is a
free abelian group of rank s, i.e., E;/Z(I'*) is a flat s-torus.

We let mg : I'* — Isom(Fs) and m : I — Isom(Ms;) be the projections, and
denote the images by I'}, and I'5. Note that I'}; consists of translations of E, since
Z(T*) is a lattice of translations of E,. In addition, T'j is discrete by Lemma [[IL.39]

It follows from Lemma [V.25] that
rank(I'}) = rank(Ms) = rank(M) — s.

We claim that 7o (A;(T*)) = A;_,(T%), and moreover that A;(T*) = 7, ' (4;_s('3)).
To check these equalities, fix ¢ = (¢1,¢2) € I'*. Since I'}; is a group of translations,
it’s easy to see that

Ty (Zry(¢2)) = Zr(9),
and therefore that my : Zr(¢) — Zrs(¢2) is surjective with kernel Z(I'*). Moreover,
7y '(A) C T'* is abelian iff A C T is abelian. The claim now follows from the
definition of A;, noticing that Z(I'*) = C'(I'*) is a free abelian group of rank s.

One now sees easily that if {¢1,..., ¢} is a finite subset of I'*, then
l
I = ¢adi(I)
a=1
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if and only if
!

D = | ma(6) Aiu(T5).

a=1

In particular, it follows that r(I'*) = r(I';) +s. We conclude that

rank(I") = rank(I™) = rank(I';) + s = rank(M).
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