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Abstract

The Rank Rigidity Theorem for Manifolds with No Focal Points

by
Jordan P. Watkins

Chair: Ralf J. Spatzier

We say that a Riemannian manifold M has rankM ≥ k if every geodesic in M

admits at least k parallel Jacobi fields. The Rank Rigidity Theorem of Ballmann

and Burns-Spatzier, later generalized by Eberlein-Heber, states that a complete, irre-

ducible, simply connected Riemannian manifold M of rank k ≥ 2 (the “higher rank”

assumption) whose isometry group Γ satisfies the condition that the Γ-recurrent vec-

tors are dense in SM is a symmetric space of noncompact type. This includes, for

example, higher rank M which admit a finite volume quotient. We adapt the method

of Ballmann and Eberlein-Heber to prove a generalization of this theorem where the

manifold M is assumed only to have no focal points. We then use this theorem to

generalize to no focal points a result of Ballmann-Eberlein stating that for compact

manifolds of nonpositive curvature, rank is an invariant of the fundamental group.

vii



Chapter I

Introduction

This thesis aims to generalize certain “geometric rigidity” results in the theory

of manifolds of nonpositive curvature by replacing the condition of nonpositive cur-

vature with the weaker condition that the manifold has “no focal points”. Before

we proceed, however, we would like to give a brief introduction to rigidity results

in geometry, and “rank rigidity” results in particular. This is accomplished in the

present chapter. Chapter II gives a mathematical introduction to the material of

this thesis, Chapter III develops some necessary background and tools for manifolds

with no focal points, and our main theorems are proven in Chapters IV and V. The

main results of this thesis have been published in [47].

1.1 Rigidity results in geometry

The term “rigidity result” has no technical meaning; examples serve to best il-

lustrate the idea. The canonical example of a rigidity result is Mostow’s celebrated

Rigidity Theorem, proved in 1968:

Mostow’s Rigidity Theorem ([37]). Let M and N be compact Riemannian man-

ifolds, each of dimension at least three, and with constant sectional curvature −1.

Suppose the fundamental groups π1M and π1N are isomorphic; then M and N are

isometric.
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In 1973 Prasad [41] generalized Mostow’s theorem to the case where M and N

have finite volume.

Mostow’s proof works by lifting a homotopy M → N to a map between the

“boundaries at infinity” of their universal covers, using arguments from geometry,

dynamics, and analysis to show that this map on boundaries is conformal, and then

arguing that such a map descends to an isometry M → N . This idea of looking at the

boundary of M̃ is a crucial component of many proofs of geometric rigidity results,

including the main proof of this paper. We discuss this boundary for manifolds with

no focal points in section 3.3.

If one thinks of a finite volume M equipped with a Riemmanian metric of constant

negative curvature, one may interpret Mostow’s result as saying that the metric on

M is “rigid” in the sense that there do not exist any other metrics on M also having

constant negative curvature. Note also that this result fails in dimension 2: The space

of constant-curvature −1 metrics on a surface of genus g ≥ 2 is (6g−6)-dimensional.

There is a large pool of rigidity results, including Mostow’s, that concern them-

selves with semisimple Lie groups and symmetric spaces. The reader unfamiliar with

the idea of semisimplicity may think of the Lie groups SL(n,R); these exhibit much

of the behavior of semisimple Lie groups in general. Some definitions: A semisimple

Lie group is said to be of noncompact type if it has no compact factors (i.e., no

nontrivial normal subgroup is compact). A symmetric space of noncompact type is

a quotient G/K where G is a semisimple Lie group of noncompact type and K a

maximal compact subgroup of G; there is a natural way to put a G-invariant met-

ric on G/K making it into a Riemannian manifold. The algebraic nature of these

manifolds makes them susceptible to a wide array of mathematical techniques, from

dynamics to algebraic geometry to number theory; they are extensively studied. We
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sketch the necessary background in Section 2.2; the reader is encouraged to think

of SL(n,R)/SO(n,R) and SO(1, n)/SO(n) (which is isometric to Hn) as primary

examples.

Let us take a moment to rephrase Mostow’s result in terms of symmetric spaces.

It is well-known that the universal cover of a manifold of dimension n and constant

curvature −1 is the hyperbolic space Hn, and it is not difficult to show that Hn

is isometric to the symmetric space SO(1, n)/SO(n). The manifolds M and N

of Mostow’s theorem, having dimensions m and n, respectively, have fundamental

groups π1(M) ⊆ SO(1,m) and π1(N) ⊆ SO(1, n). Hence we may write

M = π1(M)\SO(1,m)/SO(m) and N = π1(N)\SO(1, n)/SO(n),

which realizes M and N as quotients of symmetric spaces. (Such quotients are called

locally symmetric spaces.) It is natural in this context to wonder if Mostow’s rigidity

result applies to symmetric spaces coming from semisimple Lie groups other than

SO(1, n). This is indeed the case; the precise result, proved by Mostow in 1973, is

as follows:

Mostow’s Rigidity Theorem ([38]). Let G,G′ be connected semisimple Lie groups

of noncompact type and trivial center, and let Γ ⊂ G and Γ′ ⊂ G be discrete,

cocompact subgroups. Assume Γ is irreducible and G is not isomorphic to SL(2,R).

Then any isomorphism π : Γ→ Γ′ extends to an isomorphism π : G→ G′.

The condition that a semisimple group G be of noncompact type is equivalent to

the geometric condition that G/K have nonpositive curvature; if G is simple, then

this is equivalent to G being noncompact. The condition that Γ is irreducible is

mildly technical and outside the scope of this thesis; it is meant to eliminate lattices

like Γ1 × Γ2 ⊂ G1 ×G2, and is satisfied trivially when G is simple.
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If K is a maximal compact subgroup of G, then π(K) is maximal compact in G′,

so π descends to a map of locally symmetric spaces π : Γ\G/K → Γ′\G′/π(K), and

it isn’t hard to check that this map is an isometry. Thus the result above specializes

to Mostow’s original theorem in the case G = SO(1, n), G′ = SO(1,m) for n,m ≥ 3.

Note that the condition that G not be isomorphic to SL(2,R) eliminates the 2-

dimensional counterexamples to Mostow’s theorem.

Mostow’s proof of the above result again makes critical use of the boundary of

the symmetric space G/K. In addition, it is divided into two cases: the case where

G/K has “rank one”, which is similar in spirit to the 1968 result, and the case where

it has “higher rank”, which requires new insight. In particular, in the higher rank

case Mostow makes use of a Tits building structure on the boundary of G/K; in the

proof of our main result, some aspects of this structure are captured by the “Tits

metric” on the boundary of our manifold, developed in section 3.4.

We give a geometric description of the rank of a symmetric space G/K of noncom-

pact type, since this is the description that will be most useful to us later. Consider

totally geodesic, isometric embeddings f : Rk ↪→ G/K. Such embeddings (or, equiv-

alently, their images) are called k-flats in G/K. The maximal k such that G/K has

a k-flat is called the rank of G/K. (For more general Riemannian manifolds, this

definition of rank has to be modified; see section 2.1.) We remark that the rank of

G/K is equal to the R-rank of G in the sense of algebraic groups.

G/K is called rank one if its rank is equal to 1, and higher rank otherwise. A

cornerstone result in the theory of higher rank symmetric spaces is Margulis’ super-

rigidity theorem, proved by Margulis in the early 70’s, which deals with extending

maps out of lattice subgroups Γ of G to maps defined on all of G. One statement of

a specific case of Margulis’ superrigidity theorem is as follows:
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Margulis’ Superrigidity Theorem. Let G be a connected, higher rank semisimple

Lie group of noncompact type, and let Γ be an irreducible lattice in G. Let H be a

simple, connected, noncompact real algebraic subgroup of GL(n,R), and suppose we

have a homomorphism π : Γ → H such that π(Γ) is Zariski dense in H. Then π

extends to a homomorphism G→ H.

The precise statement of Margulis’ theorem is somewhat more general than this;

see the book by Margulis [35] or by R.J. Zimmer [51] for a statement as well as a

proof of the general result. The Borel density theorem implies that if Γ′ ⊂ H is a

lattice, then Γ′ is Zariski dense in H; from this and superrigidity, one may deduce

Mostow’s rigidity theorem in the special case that G has higher rank. A second

astounding consequence of superrigidity (which takes a bit more work to show) is

Margulis’ Arithmeticity Theorem, which states that lattices Γ in higher rank groups

G must be “arithmetic”, which very roughly means that they come from a nice

algebraic-type construction; again, see [35] or [51] for a precise statement and proof.

From Mostow’s theorem, one knows that a given subgroup Γ can only be the

fundamental group of a unique locally symmetric space—said another way, Mostow

rigidity implies that there is at most one locally symmetric metric on the smooth

manifold Γ\G/K (where G is semisimple of noncompact type). In the early 80’s

Gromov proved a stronger result:

Theorem. Let M be a nonpositively curved compact locally symmetric space whose

universal cover M̃ does not split as a product. Then the symmetric metric is the only

nonpositively curved metric on M .

Eberlein [21] obtained the same result under the added assumption that M̃ splits

as a product (but still without flat factors). We remark that Gromov’s proof again

5



relies heavily on various structural properties of the boundary of M at ∞ and its

isometries.

1.2 Higher rank rigidity

To proceed, we require a more general definition of the rank of a Riemannian

manifold M . Let v ∈ SM be a unit tangent vector; the rank of v is the dimension

of the space of parallel Jacobi fields along the geodesic γv through v. Note that if

σ : Rk → M is a totally geodesic isometric embedding, i.e., a k-flat in M , with

v tangent to the image σ(Rk), then variations of geodesics parallel along the flat

give rise to parallel Jacobi fields along γv. Thus our notion of “rank of v” is an

infinitesimal version of the number “the largest k such that M has a k-flat through

v”. It’s possible to show that this agrees with our prior definition of rank in the case

G/K is a nonpositively curved symmetric space. The rank of M is then defined to

be the minimum of rank(v) over all v ∈ SM .

In the mid-80’s, building on an analysis of higher rank manifolds of nonpositive

curvature carried out by Ballmann, Brin, Eberlein, and Spatzier in [5] and [6], Ball-

mann in [3] and Burns-Spatzier in [12] and [11] independently (and with different

methods) proved the following higher rank rigidity theorem:

Rank Rigidity Theorem. Let M be a complete, simply connected, irreducible Rie-

mannian manifold of nonpositive curvature, rank k ≥ 2, and curvature bounded be-

low; suppose also M admits a finite volume quotient. Then M is a locally symmetric

space of noncompact type.

The theorem was later generalized by Eberlein-Heber in [22]. They removed the

lower curvature bound, and also generalized the condition that M admit a finite

volume quotient to the condition that a dense set of geodesics in M be Γ-recurrent;
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they called this condition the “duality condition”, for reasons not discussed here.

Our main result is a generalization of the Higher Rank Rigidity Theorem aabove.

Before discussing it, however, we take a moment to survey two other “rank rigidity”

theorems inspired by the above result.

In 1991, Hamenstädt gave the following definition: A Riemannian manifold M has

higher hyperbolic rank if the sectional curvature of M is bounded above by −1, and

along every geodesic γ there is a Jacobi field J making sectional curvature −1 with

the geodesic (i.e. κ(J(t), γ̇(t)) = −1 for all t, where κ(v, w) denotes the sectional

curvature of the plane spanned by v, w). She then proved [29] the following result:

Theorem. A closed Riemannian manifold of higher hyperbolic rank is locally sym-

metric.

The analogue of hyperbolic rank for positive curvature is called spherical rank ;

a Riemannian manifold M is said to have positive spherical rank if its sectional

curvature is bounded above by 1, and every geodesic γ : [0, π]→M has a conjugate

point at π. We remark that it follows from Rauch’s comparison theorem and the

curvature bound that no geodesic of M can have a conjugate point before π.

Using this notion, Shankar, Spatzier, and Wilking in 2005 proved the following

[43]:

Theorem. Let M be a complete simply connected Riemannian manifold of positive

spherical rank. Then M is isometric to a compact rank one symmetric space.

Note that both the hyperbolic and spherical rigidity results, like the higher rank

rigidity result, assume both an upper curvature bound and also that geodesics satisfy

some extremal condition with respect to that bound. One might similarly ask for

rank-rigidity type theorems for manifolds that satisfy a lower curvature bound. Some
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questions in this area are still open. However, Heintze and Spatzier-Strake [46] have

constructed (one-parameter families of) compact manifolds M with higher rank and

nonnegative sectional curvature which are nonsymmetric, showing that the analog

of higher rank rigidity in nonpositive curvature fails.

In the positive direction, Constantine [14] has shown the following:

Theorem. Let M be a compact rank one manifold with nonpositive sectional cur-

vature, and suppose that along every geodesic in M there is a parallel vector field

making sectional curvature −1 with the geodesic. If M is odd dimensional, or if M

is even dimensional and has sectional curvature κ pinched as −Λ2 < κ < −λ2 with

λ/Λ > .93, then M has constant sectional curvature −1.

Note that although an upper curvature bound is assumed, the condition on

geodesics is not the extremal one implied by this bound.

1.3 Results of this thesis

Our aim in this thesis is to generalize the nonpositive curvature assumption of

Ballmann, Burns-Spatzier, and Eberlein-Heber’s result to a condition known as “no

focal points”. Precisely, M has no focal points if every Jacobi field J along a geodesic

γ in M satisfying J(0) = 0 has ||J(t)|| strictly increasing for t > 0. We investigate

this definition more in Section 3.1; for the moment, we note that nonpositively curved

manifolds have no focal points, so our result implies the higher rank rigidity theorem

above. Specifically, Chapter IV proves the following:

Rank Rigidity Theorem. Let M be a complete, simply connected, irreducible Rie-

mannian manifold with no focal points and rank k ≥ 2 with group of isometries Γ,

and suppose that the Γ-recurrent vectors are dense in the unit tangent bundle SM .

Then M is a symmetric space of noncompact type.
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When M admits a finite volume quotient, the Γ-recurrent vectors are dense in M .

As a consequence we obtain the following corollary:

Corollary. Let N be a complete, finite volume, irreducible Riemannian manifold

with no focal points and rank k ≥ 2; then N is locally symmetric.

The conditions of no focal points and density of Γ-recurrent vectors pass nicely

to de Rham factors; because of this, we will also get a decomposition theorem:

Corollary. Let M be a complete, simply connected Riemannian manifold with no

focal points and with group of isometries Γ, and suppose that the Γ-recurrent vectors

are dense in SM . Then M decomposes as a Riemannian product

M = Er ×MS ×M1 × · ×Ml,

where Er is a Euclidean space (of dimension r), MS is a symmetric space of non-

compact type and higher rank, and each factor Mi for 1 ≤ i ≤ l is an irreducible

rank-one Riemannian manifold with no focal points.

In 1987, following the work of Prasad-Ragunathan [42], Ballmann and Eberlein

in [8] defined the rank of an abstract group, and used the Higher Rank Rigidity

Theorem in nonpositive curvature to show that, for nonpositively curved manifolds

of finite volume, the rank of the manifold is equal to the rank of the fundamental

group. Notice that Gromov’s result then follows as a simple corollary of this and

higher rank rigidity.

In Chapter V, we generalize their proof to the case of no focal points (but now

adding in the assumption that the manifold is compact), obtaining the following:

Theorem. Let M be a complete, simply connected Riemannian manifold without

focal points, and let Γ be a discrete, cocompact subgroup of isometries of M acting

freely and properly on M . Then rank(Γ) = rank(M).

9



As a corollary of this and the higher rank rigidity theorem, we find the following

generalization of Gromov’s theorem:

Corollary. The locally symmetric metric is the unique Riemannian metric of no focal

points on an irreducible, compact locally symmetric space of nonpositive curvature.

(In the above corollary, “irreducible” means that the universal cover of M does

not split as a product. However, we remark that if M has no flat factors, the results

of chapter V imply that if M̃ splits as a product, then so does some finite cover of

M .)

The results of this thesis have been used by A. Zimmer [49] to show that compact

asymptotically harmonic manifolds with no focal points are either flat or a rank one

symmetric space of noncompact type. (Zimmer generalizes this result to other cases

in [50].) In addition, Ledrappier and Shu [34] have used these results to obtain an

entropy rigidity theorem for compact manifolds without focal points, showing that

the equality of various notions of entropy on such a manifold M implies that M is

locally symmetric.

1.4 A few questions

The Heintze and Spatzier-Strake counterexamples show that some additional hy-

potheses are needed in order to obtain a higher rank rigidity theorem. The most

obvious generalization suggested by our results might be:

Question I.1. Let M be a closed irreducible Riemannian manifold with higher rank

and no conjugate points. Must M be locally symmetric?

No counterexamples are known, but a proof would probably stray heavily from

the methods of the current work. In particular, our proof relies heavily on the so-
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called Flat Strip Theorem (see Section 3.2), which fails in general for manifolds with

no conjugate points, as shown by Burns in [10].

One might also ask whether it is possible to remove the assumption that Γ-

recurrent vectors are dense in SM . Again, no counterexamples are known. However,

the methods of Ballmann, Burns-Spatzier, Eberlein-Heber, and this thesis all rely

heavily on analysing the dynamics of the geodesic flow on SM , and in particular,

make considerable use of recurrence. One expects that a totally new approach would

be required to tackle such a problem.

Another way to drop the curvature-type assumption might be to look at pertur-

bations of locally symmetric metrics, motivating the following question:

Question I.2. Let M be a closed manifold, and let gt be a smooth one-parameter

family of metrics on M such that (M, g0) is an irreducible nonpositively curved higher

rank locally symmetric space, and (M, gt) is higher rank for all t. Must it be the case

that each (M, gt) is locally symmetric?

Yet another avenue for generalization, and an active area of current research, is

to replace the Riemannian manifold M by a “nonpositively curved” length space X.

(One might assume X to be CAT (0), or perhaps simply that its distance function

is convex.) One then hopes that for an appropriate definition of “higher rank”, one

might classify higher rank nonpositively curved spaces X; for instance, Ballmann-

Buyalo [7] have conjectured that such an X is either locally a product, isometric to

a locally symmetric space, or isometric to a Euclidean building.
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Chapter II

Preliminaries

2.1 Geodesic flows

Let M be a Riemannian manifold. All Riemannian manifolds in this work are

assumed to be complete. We denote by TM and SM the tangent and unit tangent

bundles of M , respectively, and by π the corresponding projection map. If v is a

unit tangent vector to a manifold M , we let γv denote the (unique) geodesic with

γ̇v(0) = v.

Central to our work is the geodesic flow on M , which is the flow gt : SM → SM

defined by

gtv = γ̇v(t).

In this section, we establish some basic properties of gt. First, a definition that is

central to our entire paper:

Definition II.1. If v ∈ SM , the rank of v is the dimension of the space of parallel

Jacobi fields along γv. The rank of M is the minimum of rank v over all v ∈ SM .

2.1.1 The Sasaki metric

We wish to construct a natural Riemannian metric (the Sasaki metric) on TM .

We begin by noting the correspondence between paths in TM and vector fields along

curves in M . Let σ : R→ TM be a (smooth) path. Then π ◦ σ is a path in M , and
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for each t ∈ R, σ(t) is a tangent vector to M at π(σ(t)). Thus σ gives a vector field

along π ◦ σ. Conversely, a vector field along a curve in M may be lifted to a path in

TM .

With this in mind, let v ∈ TM , and let X ∈ TvTM . Choose a path σ : (−ε, ε)→

TM such that σ̇(0) = X; such a σ gives rise to a vector field Vσ(t) along π ◦ σ. We

define the horizontal part KX ∈ Tπ(v)M of X to be

KX = (DtVσ)(0),

where Dt indicates the covariant derivative. One can check that KX does not depend

on the choice of path σ.

The map K : TvTM → Tπ(v)M is sometimes called the connector, and its kernel

is called the horizontal subspace at v. There is, likewise, a vertical subspace, given

by the kernel of the map dπ : TvTM → Tπ(v)M , and it isn’t difficult to check that

the map (dπ,K) : TvTM → Tπ(v)M ⊕ Tπ(v)M is an isomorphism.

For v ∈ TpM , there is a unique vector vH in the horizontal subspace at v such

that dπ(vH) = v, and a unique vector vV in the vertical subspace at v such that

K(vV ) = v. The vectors vH and vV are called the horizontal lift and vertical lift of

v, respectively.

Definition II.2. The Sasaki metric on TM , as an inner product on TvTM , is given

by the pullback via (dπ,K) of the inner product on Tπ(v)M ⊕ Tπ(v)M determined by

the Riemannian metric.

In terms of the connector K and the map dπ, we may write the Sasaki metric on

TvTM as

〈X, Y 〉TM = 〈dπX, dπY 〉M + 〈KX,KY 〉M .
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The restriction of the Sasaki metric on TM to a Riemannian metric on the sub-

manifold SM is also called the Sasaki metric. In terms of the maps dπ and K,

vectors in TvTM tangent to SM are characterized by the following property:

Proposition II.3. Let v ∈ SM . Then X ∈ TvTM is tangent to SM iff 〈v,KX〉 = 0.

Proof. Let V (t) be a vector field along a path τ in M such that the associated path

Ṽ (t) in TM is tangent to X. By construction V (0) = v has unit norm. Thus Ṽ (t)

is tangent to SM at v iff

0 =
d

dt
|t=0||V (t)||2 = 2〈V (0), V ′(0)〉 = 2〈v,KX〉.

It is of paramount importance to the theory of geodesic flows that the volume

form given by the Sasaki metric is preserved by the geodesic flow on SM . Before

establishing this, we must first discuss the relationship of the geodesic flow and Jacobi

fields.

2.1.2 Jacobi fields and dgt

Let V (s) be a vector field along a path τ in M . As noted above, this vector field

corresponds to a path Ṽ (s) in TM ; then d
ds
Ṽ (s) is an element of TV (s)TM and

dπ
(
d
ds
Ṽ (s)

)
= τ̇(s)

K
(
d
ds
Ṽ (s)

)
= V ′(s).

This allows us to write d
ds
Ṽ (s) as an element of Tτ(s)M ⊕ Tτ(s)M using the isomor-

phism (dπ,K) discussed above.

We’re interested in the behavior of the derivative dgt of the geodesic flow, and

hence we’re interested in the behavior of such paths Ṽ (s) under the geodesic flow.
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We may define a variation of geodesics by

Γ(t, s) = exp(tV (s)).

In terms of Γ, the element of Tτ(s)M ⊕ Tτ(s)M corresponding to d
ds
Ṽ (s) is

(
∂sΓ(0, s), Ds∂tΓ(0, s)

)
.

More generally, the element of TΓ(t,s)M ⊕ TΓ(t,s)M corresponding to the path s 7→

∂tΓ(t, s) in TM is (
∂sΓ(t, s), Ds∂tΓ(t, s)

)
.

Note that Γ(0, s) = V (s), and that (s 7→ Γ(t, s)), as a path in TM , is the image

of the path V (s) under the geodesic flow gt. Thus we have established that, under

the identifications given by the maps (dπ,K), the derivative of the geodesic flow is

determined by

dgt
(
∂sΓ(0, 0), Ds∂tΓ(0, 0)

)
=
(
∂sΓ(t, 0), Ds∂tΓ(t, 0)

)
.

The field J(t) = ∂sΓ(t, 0) along Γ(t, 0) is a Jacobi field; furthermore, we have

Ds∂tΓ = Dt∂sΓ = J ′(t). Hence the formula above reduces to the following:

Proposition II.4. Let J be a Jacobi field along the geodesic γ. Then, under the

identifications given by the maps (dφ,K),

dgt
(
J(0), J ′(0)

)
=
(
J(t), J ′(t)

)
Since there is a (unique) Jacobi field J along γ satisfying J(0) = v1 and J ′(0) =

v2 for any choice of v1, v2 ∈ TpM , the above proposition completely describes the

derivative dgt. In the future, we will feel free to make the identification TvTM ∼=

Tπ(v)M ⊕ Tπ(v)M given by (dπ,K) without comment.
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The connection between Jacobi fields and the geodesic flow is a major reason for

studying the rank of a Riemannian manifold. In particular, if v ∈ SM is rank one,

there are no parallel Jacobi fields along v, and one hopes that one can glean from

this that the geodesic flow has some sort of “hyperbolic” behavior along gtv. An

example of this kind of reasoning can be seen in Chapter V.

Conversely, if M has higher rank, one might hope that the parallel Jacobi fields

along an arbitrary geodesic v of rank k come from a totally geodesic isometric em-

bedding Rk → M , and then use the geometric structure of these embedded flats

through every v ∈ SM to say something about the structure of M . Indeed, this is

the beginning of a proof of higher rank rigidity; the embedded flats are constructed

for M complete and without focal points in section 4.1.

2.1.3 The contact form and the invariant metric

The manifold SM is equipped with a natural one-form α defined by

αv(X) = 〈v, dπX〉.

(Those familiar with symplectic geometry will recognize this as the restriction to SM

of the pullback of the canonical one-form on T ∗M by the isomorphism TM → T ∗M

given by the Riemannian metric.)

Of course, there is also a one-form on TM given by the same formula. However,

it is necessary to restrict to SM to obtain the following proposition:

Proposition II.5. α is invariant under the geodesic flow on SM .
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Proof. We write vectors in TvSM as Jacobi fields (J(t), J ′(t)). Thus we may calculate

((gt)∗α)v
(
J(0), J ′(0)

)
= αgtv

(
(gt)∗(J(0), J ′(0))

)
= αgtv

(
J(t), J ′(t)

)
= 〈gtv, J(t)〉,

so we reduce to the assertion that 〈gtv, J(t)〉 is constant. We have

d

dt
〈gtv, J(t)〉 = 〈Dtg

tv, J(t)〉+ 〈gtv, J ′(t)〉 = 0,

where the first term vanishes since gtv is the tangent vector field to a geodesic, and

the second term vanishes by Proposition II.3.

In fact, the one-form α is a contact form, which by definition means that the

(2n− 1)-form

α ∧ dα ∧ · · · ∧ dα = α ∧ (dα)∧(n−1)

is nonvanishing. To see this it helps to have the following nice formula for dα:

Proposition II.6. dα(v, w) = 〈Kv, dπ(w)〉 − 〈dπ(v), Kw〉.

Proof. We establish this formula on TM , from which the formula on SM follows. Fix

v ∈ TM . Let E1, . . . , En be vector fields on M , defined locally around π(v), such that

{E1(q), . . . , En(q)} is an orthonormal frame for TqM for each q near π(v). Choose

local coordinates on TM such that the point (x1, . . . , xn, ξ1, . . . , ξn) corresponds to

the vector ξiEi(x
1, . . . , xn). (Here and throughout, we use the Einstein summation

convention.)

We denote by ∂xi and ∂ξi the (local) vector fields on TM given by differentiating

in the direction of the xi and ξi coordinates, respectively. Note that dπ∂ξi = 0, and

hence α(∂ξi ) = 0.
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We use the formula

(?) dα(X, Y ) = Xα(Y )− Y α(X)− α([X, Y ])

to evaluate dα on the fields ∂xi and ∂ξi . Since these are vector fields associated

to coordinates, all terms involving brackets are equal to zero; by our observation

above, all terms involving α(∂ξi ) are also zero. Thus we need concern ourselves with

computing the terms ∂xi α(∂xj ) and ∂ξi α(∂xj ). First of all, we have

αv(∂
x
j ) = 〈v, dπ(∂xj )〉

= 〈v, ∂j〉

= ξk〈Ek(x1, . . . , xn), ∂j〉,

where ∂j denotes the vector field on M given by the xj coordinate. We then have

∂xi αv(∂
x
j ) = ξk∂xi 〈Ek(x1, . . . , xn), ∂j〉

= ξk∂i〈Ek(x1, . . . , xn), ∂j〉

= ξk〈Ek(x1, . . . , xn),∇∂i∂j〉.

From this, our formula (?), and the fact that ∇∂i∂j = ∇∂j∂i, we find dα(∂xi , ∂
x
j ) = 0.

With regard to ∂ξi , we have

∂ξi αv(∂
x
j ) = 〈Ei(x1, . . . , xn), ∂j〉.

Thus, we have computed dα: it is the unique two-form satisfying

dα(∂ξi , ∂
x
j ) = 〈Ei(x1, . . . , xn), ∂j〉;

dα(∂ξi , ∂
ξ
j ) = dα(∂xi , ∂

x
j ) = 0.

All that remains is to check that the two form given by (v, w) 7→ 〈Kv, dπ(w)〉 −
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〈dπ(v), Kw〉 satisfies the same equations, which follows immediately from the equa-

tions

dπ∂ξi = 0 K∂ξi = Ei

dπ∂xi = ∂i K∂xi = 0.

Corollary II.7. α is a contact form on SM .

Proof. We must show that α∧ (dα)∧(n−1) is nonvanishing at each v ∈ SM . Fix such

a v. Extend v to an orthonormal basis v, w1, . . . , wn−1 of Tπ(v)M . For each i, let wHi

and wVi be the horizontal and vertical lifts of wi, respectively; let vH be the vertical

lift of v. It’s clear from Proposition II.3 that vH , wHi , and wVi , for 1 ≤ i ≤ n− 1, are

all in TvSM . Furthermore, the previous proposition gives the following expressions

for dα:

dα(wHi , w
V
j ) = δij

dα(wHi , w
H
j ) = dα(wVi , w

V
j ) = 0

dα(vH , wHj ) = dα(vH , wVj ) = 0.

It follows that

(
α ∧ (dα)∧(n−1)

)
(vH , wH1 , w

V
1 , . . . , w

H
n−1, w

V
n−1) = 1,

and in particular that this form is nonvanishing.

In fact, the previous proof shows more: Notice that the vectors vH , wHi , w
V
i for 1 ≤

i ≤ (n−1) form a Sasaki-orthonormal basis for TvSM . Since the form α∧ (dα)∧(n−1)

takes this basis to 1, it is the volume form associated to the Sasaki metric. But

since the geodesic flow leaves α invariant, it also leaves this form invariant. Thus
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we conclude that the volume associated to the Sasaki metric is invariant under the

geodesic flow.

2.2 Symmetric spaces

In this section we give a very brief overview of symmetric spaces. As we do not

require much from the theory of symmetric spaces other than the Berger-Simons

holonomy theorem (stated in Section 2.3), we do not attempt to develop this theory

here. The interested reader should see Helgason [30] or Kobayashi-Nomizu [33], the

standard references.

2.2.1 Definitions

We begin with the simplest definition of a symmetric space. Let M be a complete

Riemannian manifold and p ∈ M . Fix a neighborhood U of 0 in TpM such that

the restriction of expp to U is a diffeomorphism onto its image. Then we get a

diffeomorphism σ : expp U → expp U , called the local geodesic symmetry at p, by

σ = expp ◦(−id) ◦ exp−1
p .

Definition II.8. A Riemannian manifold M is called locally symmetric, or is said

to be a locally symmetric space, if for each p ∈M , the local geodesic symmetry is an

isometry. M is called (globally) symmetric, or is said to be a symmetric space, if it

is locally symmetric and in addition each geodesic symmetry extends to an isometry

of M .

There is an apparent ambiguity in the first half of this definition: namely, one

might worry that it is possible that there be two neighborhoods U and V of 0 in

TpM such that expp restricts to a diffeomorphism on both U and V , but the geodesic

symmetry is an isometry on expp U and not on expp V . In fact this cannot happen
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under the assumption that every point have a neighborhood for which the local

geodesic symmetry is an isometry.

Recall that for a Riemannian manifold there is a covariant derivative ∇ taking

(p, q)-tensors to (p+1, q)-tensors determined by the Levi-Civita connection. We have

a second characterization of locally symmetric spaces as follows:

Proposition. M is locally symmetric iff ∇R = 0, where R is the Riemannian cur-

vature tensor of M .

Along these same lines, one can also show that if M is locally symmetric and

simply connected, then M is a symmetric space.

The above geometric definitions are convenient for their simplicity, but they do

not really give the complete picture of the idea of a symmetric space. We are in-

terested in nonpositively curved symmetric spaces; it turns out in fact that every

nonpositively curved symmetric space is given by an algebraic quotient G/K, where

G is a semisimple real Lie group and K is a maximal compact subgroup, equipped

with a natural Riemannian metric for which the action of G on G/K is by isometries.

We defer the construction of this metric in the general case to Helgason [30].

However, we can carry out the construction for the special case SL(n,R)/SO(n,R)

without too much abstraction; we do this presently. For ease of notation we let

G = SL(n,R) and K = SO(n,R).

2.2.2 The symmetric space SL(n,R)/SO(n,R)

The Lie algebra g = sl(n,R) of SL(n,R) is the set of trace zero n× n matricies.

sl(n,R) has a natural bilinear form

B(X, Y ) = tr(XY ).
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and this form is nondegenerate; in fact, it is simple to see that it is positive definite

on the space p of trace zero symmetric matricies and negative definite on the space

k = so(n,R) of skew-symmetric matricies. We note also, for later reference, that

B(X, [Y, Z]) = B([X, Y ], Z).

(This is easy to check.)

We let π : G→ G/K be the projection map. Then k is the kernel of dπ, and since

g = k⊕p, we see that dπ identifies p with the tangent space to the coset 1K ∈ G/K.

We denote the restriction of the form B to p by 〈·, ·〉1K ; it is an inner product on p.

G acts transitively on the left of G/K; we denote the action of g ∈ G by Lg :

G/K → G/K. In particular, if k ∈ K the map Lk fixes the coset 1K, and so its

derivative induces an automorphism dLk of the tangent space p.

To derive an explicit formula for this automorphism, let X ∈ p; then etXK is a

curve through 1K with tangent vector X, and Lk takes this curve to the curve

ketXK = (ketXk−1)K;

differentiating at t = 0, we see that

dLk(X) = kXk−1.

Note that since k ∈ K = SO(n,R), the matrix kXk−1 is again in p; this is the reason

for introducing the factor of k−1.

With this in mind, we may attempt to extend 〈·, ·〉1K to a Riemannian metric on

G/K by defining, for g ∈ G,

〈dLgX, dLgY 〉gK = 〈X, Y 〉1K

whenever X, Y ∈ p. Since dLg gives an isomorphism of the tangent spaces at 1K

and gK, this formula does indeed determine an inner product on the tangent space
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at gK. However, there is a possible ambiguity in this definition: We must check that

if k ∈ K our formula returns the original inner product on the coset kK = 1K. To

do this, fix X, Y ∈ p and k ∈ K and calculate:

〈dLkX, dLkY 〉1K = tr((dLkX)∗dLkY )

= tr(kX∗k−1kY k−1)

= tr(X∗Y ) = 〈X, Y 〉1K .

Thus our inner product 〈·, ·〉gK is well-defined independent on the choice of coset

representative g, and so we get a Riemannian metric on G/K, and (by construction)

the left action of G is by isometries.

It is a fact of linear algebra that G = exp(p)K, and this allows us to write any

point gK as eXK, with X ∈ p. Then the geodesic symmetry at 1K is the map

σ1K : eXK 7→ e−XK,

and one can check that this is indeed an isometry. Since G/K is homogeneous, the

geodesic symmetry at every point of G/K is then an isometry, i.e., G/K is in fact a

symmetric space in the sense of our first definition.

2.2.3 The curvature tensor of G/K

Our next goal is to explicitly compute the curvature tensor of G/K. To do

this, we note first that G is a pseudo-Riemannian manifold with the left-invariant

metric determined by B, and this makes the projection dπ : G → B into a pseudo-

Riemannian submersion (that is, dπ is an isometry on (ker dπ)⊥). G is equipped

with a Levi-Civita connection satisfying the usual properties and determined by the

Koszul formula.

In fact, the connections of G and G/K are related in a simple way. If X is a

vector field on G/K we denote by X̃ the unique vector field on G such that X̃ and
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X are π-related and X̃ is everywhere orthogonal to the kernel of dπ; we call X̃ the

horizontal lift of X. In addition, given a tangent vector W to G, we define WH and

W V to be the unique orthogonal vectors such that W = WH+W V and dπ(W V) = 0.

Let ∇̃ be the connection on G and ∇ the connection on G/K. It is not hard to

show, using the Koszul formula, that

〈∇XY, Z〉 = 〈∇̃X̃ Ỹ , Z̃〉,

or, equivalently,

∇̃XY = (∇̃X̃ Ỹ )H.

One can use this to obtain a formula for the curvature tensor R on G/K in terms of

the curvature tensor R̃ on G:

O’Neill’s Formula. Let X, Y, V,W be horizontal fields on G. Then

〈R(dπX, dπY )dπV, dπW 〉 =〈R̃(X, Y ), V,W 〉 − 1

2
〈[X, Y ]V , [V,W ]V〉

− 1

4

(
〈[X, V ]V , [Y,W ]V〉 − 〈[Y, V ]V , [X,W ]V〉

)
For us the advantage here is that ∇̃, and hence R̃, is easy to compute, again with

the Koszul formula. Let X, Y, Z be left-invariant vector fields on G. The Koszul

formula states

2〈∇̃XY, Z〉 = X〈Y, Z〉+ Y 〈Z,X〉 −Z〈X, Y 〉 − 〈X, [Y, Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X, Y ]〉.

Since X, Y, Z are left invariant, X〈Y, Z〉 = 0. Furthermore

〈X, [Y, Z]〉g = B(X, [Y, Z]) = B([X, Y ], Z) = 〈[X, Y ], Z〉g

and by a similar computation

〈Y, [Z,X]〉 = 〈[X, Y ], Z〉.
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It follows immediately that

∇̃XY =
1

2
[X, Y ].

It is now trivial to compute R̃ straight from the definition. One finds that if X, Y, Z ∈

g, which we identify with the tangent space at the identity of G,

R̃(X, Y )Z = −1

4

[
[X, Y ], Z

]
This, with O’Neill’s formula, allows us to write down the curvature form of G/K

at the coset 1K. Let X, Y, Z,W ∈ p; denote also by X, Y, Z,W the associated left-

invariant vector fields on G. Note then that since [p, p] ⊆ k, the brackets of these

vector fields are left-invariant vector fields coming from k, which means they are

vertical. Thus O’Neill’s formula says

〈R(X, Y )Z,W 〉 = 〈R̃(X, Y )Z,W 〉−1

2
〈[X, Y ], [V,W ]〉−1

4
〈[X,Z], [Y,W ]〉+1

4
〈[Y, Z], [X,W ]〉

and one repeatedly uses the fact that B([X, Y ], Z) = B(X, [Y, Z]) as well as the

Jacobi identity to compute

〈R(X, Y )Z,W 〉 = −〈[X, Y ], [Z,W ]〉.

Equivalently, we have

R(X, Y )Z = −
[
[X, Y ], Z

]
.

In particular, if X, Y are orthonormal, then

〈R(X, Y )Y,X〉 = −||[X, Y ]||2

is the sectional curvature of the plane spanned by X and Y , so we see that G/K has

nonpositive curvature.

Moreover, we can investigate flats in G/K. Let h be an abelian subalgebra of p;

we know that for A,B ∈ h, the sectional curvature of the plane spanned by A,B is
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zero. Consider the submanifold exp(h)K of G/K; we claim this submanifold is flat,

and so we must compute its curvature at an arbitrary point exp(C)K. Let A ∈ h;

then

dLexp(C)A =
d

dt

∣∣∣
t=0

exp(C) exp(tA)K

=
d

dt

∣∣∣
t=0

exp(C + tA)K,

and this is tangent to exp(h). Thus dLexp(C) maps h isometrically onto the tangent

space to exp(h) at exp(C)K, and it follows that all sectional curvatures of exp(h) at

this point are zero, and therefore that exp(h) is indeed flat.

Thus flats in G/K through the point 1K correspond to maximal abelian subal-

gebras of p. An example of such a subalgebra is the algebra h of diagonal trace zero

matricies; this has dimension (n − 1). Furthermore, for any k ∈ K the set k−1hk

is also an abelian subalgebra of p. Since any symmetric matrix can be orthogonally

diagonalized, we see that for every X ∈ p there exists a k such that X ∈ k−1hk;

geometrically, the hyperplane k−1hk integrates to an (n−1)-flat through the tangent

vector X. Since G/K is homogeneous, every tangent vector to G/K is contained in

an (n− 1)-flat, and so we have shown:

Proposition. rank(SL(n,R)/SO(n,R)) = n− 1.

The argument above carries over to general semisimple Lie groups G and their

maximal compact subgroups K. The largest change that needs to be made is in

definition of the bilinear form B on g; in general this becomes the Killing form,

defined by

B(X, Y ) = tr(adX adY ),

where adX : g→ g is the endomorphism Y 7→ [X, Y ]. The Killing form is nondegen-

erate if G is semisimple, negative definite on the lie algebra k of K. The subspace p
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can then be defined to be the orthogonal complement to k and is identified with the

tangent space to G/K. Just as above one obtains the formula R(X, Y ) = − ad[X, Y ]

for the curvature endomorphism, showing that G/K is nonpositively curved, and

that flats in G/K correspond to maximal abelian subalgebras of p.

It is possible but slightly more complicated to give a description of the connection

on G/K; again, one should see the standard references [30], [33]. Mautner [36] gives

an explicit formula for the geodesic flow on G/K:

Proposition. Let g ∈ G,X ∈ p. The geodesic γ(t) through dLgX at time t = 0 is

γ(t) = g exp(tX)K.

The main result of Mautner’s paper is that if G/K is higher rank, and Γ is a

lattice in G, then the geodesic flow on Γ\G/K is not ergodic; he also gives an explicit

description of the ergodic components of G. This involves algebraic machinery not

developed here, so we refer the reader to his paper for that result.

2.3 Holonomy and reducibility

In this section we discuss the holonomy group of a Riemannian manifold, the

deRham decomposition, and the Berger-Simons theorem. The main reference for the

material on holonomy and deRham decomposition is the book by Kobayashi-Nomizu

[32].

Let M be a complete orientable Riemannian manifold, and suppose γ : [0, 1]→M

is a nullhomotopic piecewise-C 1 curve with p := γ(0) = γ(1). Then parallel transport

around γ defines an isometry Pγ : TpM → TpM . The set of all such Pγ forms a

subgroup of SO(n). One can show that this subgroup is closed, and hence is a Lie

subgroup of SO(n).
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Definition II.9. The holonomy group of M at p is the subgroup of SO(n) consisting

of all Pγ as above.

The group defined above is sometimes called the restricted holonomy group to

distinguish it from the same construction with the assumption that the paths are

nullhomotopic removed. We shall not consider the latter group, and we continue to

use the slightly imprecise language “holonomy group” for the former.

If σ : [0, 1] → M is a piecewise-C 1 path with σ(0) = p and σ(1) = q, then σ

defines an isometry Pσ : TpM → TqM by parallel transport. Pσ evidently defines

an isomorphism of the holonomy groups Hp and Hq of M at p and q respectively;

in particular, we have Pσγσ−1 = PσPγPσ−1 , where σγσ−1 denotes concatenation of

paths. For this reason, we often speak of the holonomy group of a connected manifold

M without reference to a particular point; we mean any of the groups Hp, with the

understanding that they are all isomorphic (though not naturally).

By definition, the holonomy group Hp acts on TpM by isometries. It is easy to

check that if M = M1×M2 is a (nontrivial) Riemannian product, then the holonomy

group leaves the factors of M1 and M2 invariant; in other words, for each p ∈M , the

subspaces TpM1 and TpM2 are proper, holonomy-invariant subspaces of TpM . What

may be surprising is that the converse is also true, once we pass to the universal

cover of M .

To be precise, suppose the representation of Hp on TpM is reducible and let Wp

be a proper invariant subspace. For every q ∈M the representation of Hq on TqM is

similarly reducible, and we obtain an invariant subspace Wq = PσWp, where σ is any

path from p to q; since Wp is invariant, it is easy to check that this is independent of

the choice of path. Thus reducibility of the holonomy group of M implies the exis-

tence of a whole family of subspaces Wq related by the parallel transport isometries
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Pσ. With this in mind, we can now state the following decomposition theorem of de

Rham:

Theorem II.10 (de Rham). Let M be a simply connected complete Riemannian

manifold, and suppose the holonomy group of M is reducible. Fix a family of sub-

spaces Wp as above. Then M decomposes as a Riemannian product M = M1 ×M2,

and for each p ∈M we have TpM1 = Wp and TpM2 = W⊥
p .

If M is an arbitrary Riemannian manifold, M̃ its universal cover, then it is clear

that the holonomy group of p ∈ M is isomorphic to the holonomy group of any lift

p̃ ∈ M̃ of p, and similarly that the representations of these groups on TpM and Tp̃M̃

are isomorphic. Thus if M has reducible holonomy group, its universal cover splits

as a product whose factors are tangent to the invariant subspaces as in the above

theorem.

Definition II.11. A Riemmanian manifold is called irreducible if its holonomy group

is irreducible. Equivalently, a Riemannian manifold is irreducible if its universal cover

does not split as a (Riemannian) product.

As a consequence, any simply connected Riemannian manifold M splits as a

Riemannian product M = M1 × · · · ×Mk where each Mi is irreducible. If none of

the factors Mi is equal to R, then M is said to have no flat factors or, equivalently,

no Euclidean factors.

It is important to us that the decomposition above is essentially unique:

Theorem II.12 (de Rham). Any simply connected Riemannian manifold M splits

as a Riemannian product

M = Er ×M1 × · · · ×Mk,
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where Er is a Euclidean space of dimension r and each Mi is irreducible and non-flat.

The number r and the factors Mi are unique up to order, in the following sense: any

isometry φ of M decomposes as φ = σφ′, where σ permutes the Mi and φ′ preserves

the factors of the decomposition, i.e.,

φ′ ∈ Isom(Er)× Isom(M1)× · · · × Isom(Mk).

Note that it is important to lump the Euclidean factors together for the uniqueness

statement above. In particular, the decomposition Er = R × · · · × R is not unique

in de Rham’s sense.

Definition II.13. Let M = M1×· · ·×Mk (as Riemannian manifolds). We say that

a subgroup Γ of isometries of M preserves the factors of the decomposition if

Γ ⊆ Isom(M1)× · · · × Isom(Mk).

In this case there exist obvious maps πi : Γ→ Isom(Mi), which we call the associated

projection maps.

The following corollaries are essentially restatements of the uniqueness property

above:

Corollary II.14. Let Γ be a group of isometries of M , and let

M = Er ×M1 × · · · ×Mk

be the de Rham decomposition of M . Then Γ has a finite index subgroup Γ∗ preserving

the factors of the decomposition.

Corollary II.15. Let Γ be a group of isometries of N × L, and suppose N has no

flat factors. Then Γ has a finite index subgroup Γ∗ preserving the factors of the

decomposition.
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The first of these corollaries allows us to show that the property of Γ-recurrent

vectors being dense in SM passes to de Rham factors when M has no focal points.

The proof involves some technical arguments from dynamics and is not particularly

enlightening to the current discussion, so we postpone it for the end of this section.

We remark that the notion of reducibility is crucial to any higher-rank rigidity

result, since reducible Riemannian manifolds are automatically of higher rank, which

follows from the fact that M and its universal cover M̃ have the same rank. However,

we will use the holonomy group in an even more essential way, by making use of the

following theorem of Berger-Simons:

Berger-Simons Holonomy Theorem ([9], [44]). Let M be a complete irreducible

Riemannian manifold. If the holonomy group of M is not transitive, then M is

locally symmetric.

Berger originally proved this result by classifying all possible holonomy groups of

irreducible Riemannian manifolds; on non-symmetric manifolds, there are only five

families and two exceptional groups, and all act transitively. Simons later gave a

more direct proof of the theorem; his proof is quite algebraic, working with abstract

properties of curvature tensors. Recently, Olmos [39] has given a geometric proof of

the theorem that depends on so-called normal holonomy groups.

The Berger-Simons theorem was used crucially by Ballmann in his original proof

of the higher rank rigidity theorem, and we use it in the same way: Our goal will be

to show that any higher rank irreducible Riemannian manifold has a nontransitive

holonomy group.

2.4 Γ-recurrence on the de Rham factors

In this section we give a proof of the following:
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Proposition II.16. Let M be a simply connected complete Riemannian manifold

with de Rham decomposition

M = Er ×M1 × · · · ×Mk.

Let Γ be a subgroup of isometries of M such that Γ-recurrent vectors are dense in SM ,

and let Γ∗ be a finite index subgroup of Γ preserving the factors of the decomposition;

denote by πi : Γ∗ → Isom(Mi) the corresponding projection for 1 ≤ i ≤ k. Then the

(πiΓ
∗)-recurrent vectors are dense in SMi.

The proof is in two steps: we show that Γ∗-recurrent vectors are dense in SM , and

then that this condition passes to the factors. The latter of these steps is considerably

easier, so we present it first:

Proposition II.17. Let M = M1 × M2, let Γ be a subgroup of isometries of M

preserving the factors of the decomposition, and suppose Γ-recurrent vectors are dense

in SM . Let πi be the associated projection maps; then πiΓ-recurrent vectors are dense

in Mi.

Proof. Let v ∈ SMi. Lift v to a vector ṽ ∈ SM such that dπiṽ = v, where (by abuse

of notation) πi : M → Mi is the projection. There exists a sequence ṽn ∈ SM of

Γ-recurrent vectors converging to ṽ. Let vn = dπiṽn. Then it is clear that vn → v.

So we need only show vn is πiΓ-recurrent. Given n, we fix φm ∈ Γ and tm → ∞

such that dφmg
tm ṽn → ṽn (as m→∞). Then it is clear that πi(dφm)gtmvn → vn.

We know from Corollary II.15 that a subgroup Γ of isometries of M has a fi-

nite index subgroup preserving the factors of the de Rham decomposition. Thus

Proposition II.16 is proved if we can show that whenever Γ∗ ⊆ Γ is finite index and

Γ-recurrent vectors are dense, Γ∗-recurrent vectors are also dense.

Our proof uses a notion from dynamics that we avoid in the rest of the thesis:
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Definition II.18. A vector v ∈ SM is called Γ-nonwandering (for the geodesic flow)

if for every neighborhood U of v and every T > 0, there exists φ ∈ Γ and t > T such

that

dφgt(U) ∩ U 6= ∅.

The set of Γ-nonwandering vectors is denoted by Ω(Γ).

It is clear that recurrent points are nonwandering and that the set of nonwandering

vectors is closed. In fact we have the following proposition:

Proposition II.19. Let M be a complete Riemannian manifold, Γ a group of isome-

tries of M . Then Γ-recurrent vectors are dense in the set of Γ-nonwandering vectors.

Proof. We give an argument from [17]. For each positive integer n, we let An be the

set of vectors v such that there exists t > n and φ ∈ Γ with

d(dφgtv, v) <
1

n
.

Here d is the Sasaki metric (although this proof works for any Z- or R-action on a

complete metric space). Clearly An is open; we claim it is also dense in the set of

nonwandering vectors.

Let’s show this. Fix n, let w be nonwandering, and let Bε(w) the ε-ball about w.

We may assume ε < 1/2n. By definition, there exists v ∈ Bε(w), t > n, and φ ∈ Γ

with dφgtv ∈ Bε(w). In particular

d(dφgtv, v) ≤ 2ε < 1/n,

so that v ∈ An.

Since the set of nonwandering vectors is closed, it is in particular a complete

metric space, and the Baire category theorem implies that
⋂
An is dense in the set

of nonwandering vectors. But
⋂
An is just the set of recurrent vectors.
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We now turn to the main focus: proving recurrence for a finite-index subgroup.

Our proof is again taken from Eberlein [19].

Lemma II.20. Let Λ ⊆ Γ be a normal subgroup of Γ. Let Σ ⊆ SM denote the set

of Λ-recurrent vectors. Then Σ is invariant under Γ.

Proof. Let v ∈ Σ and φ ∈ Γ; we must show that dφ(v) is Λ-recurrent. Fix ψn ∈ Λ

and tn →∞ realizing the recurrence for v—that is, such that dψng
tnv → v.

Set αn = φψnφ
−1 ∈ Λ. Then

dαng
tndφv = (dφdψndφ

−1)gtndφv

= dφdψng
tnv → dφv.

Since recurrent vectors are dense in the set of nonwandering vectors, we have:

Corollary II.21. Let Λ ⊆ Γ be a normal subgroup of Γ. Then Ω(Λ) is invariant

under Γ.

Proposition II.22. Let M be a complete Riemannian manifold, let Γ be a subgroup

of isometries of M such that the Γ-recurrent vectors are dense in SM , and let Γ∗ be

a finite index subgroup of Γ. Then the Γ∗-recurrent vectors are dense in SM .

Proof. Since Γ∗ is finite index in Γ, there is a normal subgroup Λ ⊆ Γ∗ also of finite

index in Γ, and it suffices to show that every vector of SM is Λ-nonwandering.

Fix a Γ-recurrent vector v and fix φn ∈ Γ and tn → ∞ realizing the recurrence.

Since Λ is finite index, we may pass to a subsequence to assume that φn = αλn for

some fixed α ∈ Γ, where λn ∈ Λ. Recurrence for v becomes

dλng
tnv → α−1v.
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We show that α−1v is Λ-nonwandering. It follows from Corollary II.21 that v is

Λ-nonwandering; since Ω(Λ) is closed and the set of Γ-recurrent vectors is dense, this

will finish the proof.

We set vn = dλng
tnv, so that vn → v. Fix an open neighborhood U of v, and

choose N so that vn ∈ U for n ≥ N . Fix some T > 0 and choose n ≥ N so that

tn − tN ≥ T . Then note that

dλndλ
−1
N gtn−tNvN = vn ∈ U,

which shows that v is nonwandering.
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Chapter III

Manifolds without focal points

3.1 Definitions and basic results

Let M be a complete Riemannian manifold, p a point of M , and γ a geodesic

through p. Recall that a point q on γ is said to be conjugate to p along γ if there

exists a Jacobi field J along γ equal to zero at both p and q.

Two classical results show the importance of this condition. First, conjugate

points are related to singularities of the exponential map exp : TpM →M :

Proposition III.1. exp is a local diffeomorphism at v ∈ TpM if and only if exp(v)

is not conjugate to p along the geodesic exp(tv).

In fact, the dimension of the kernel of d exp is exactly the dimension of the space

of Jacobi fields J along exp(tv) equal to zero at both p and exp(v).

Second, fix p, q ∈ M and a geodesic segment γ from p to q. For s ∈ (−ε, ε), let

σs be path from p to q such that σ0 = γ, and such that the map (s, t) 7→ σs(t)

is piecewise C 1. Say that γ locally minimizes the length functional in the space of

paths from p to q if for all such variations σs, the length functional taking a path to

its length has a local minimum at s = 0 (that is, at γ). Then:

Proposition III.2. γ locally minimizes the length functional in the space of paths

from p to q if and only if no point of γ (between p and q) is conjugate to p along γ.

36



In its most general form this second result is known as the Morse Index Theorem,

which states that the dimension of the space of variations of paths for which γ fails

to locally minimize the length functional is equal to the number of points between p

and q conjugate to p along γ, counting multiplicity.

With the power of the above results in mind, we generalize the idea of a conjugate

point in the following way. Let M be a Riemannian manifold, let N be a totally

geodesic submanifold of M , and let γ be a geodesic of M with γ(0) ∈ N and such

that γ̇(0) ∈ T⊥γ(0)N . We consider variations of geodesics γs(t) with γ0 = γ and such

that for all s we have both both (1) γs(0) ∈ N and (2) γ̇s(0) ∈ T⊥γ(0)N .

Translating the conditions (1) and (2) into conditions on the Jacobi field of the

variation γs(t), we find that J satisfies the two conditions

J(0) ∈ Tγ(0)N and J ′(0) ∈ T⊥γ(0)N.

(The second of these conditions makes use of the fact that N is totally geodesic; in

general, one has J ′(0) + S ˙gamma(0)(J(0)) ∈ T⊥γ(0)N , where S ˙γ(0) is the shape operator

of N .)

Definition III.3. Let N be a totally geodesic submanifold of a Riemannian manifold

M , and let γ be a geodesic with γ(0) ∈ N and γ̇(0) ∈ T⊥γ(0)N . Let q = γ(a) be a

point on γ. Then q is said to be a focal point of N (along γ) if there exists a Jacobi

field J along γ satisfying both (1) J(0) ∈ Tγ(0)N and (2) J ′(0) ∈ T⊥γ(0)N , and such

that J vanishes at q.

We will say that the totally geodesic submanifold N of M is focal point free in M

if for every geodesic γ through N and orthogonal to N , N has no focal points along

γ. Note that if N = {p} is a single point, then N has no focal points if and only if

p has no conjugate points along any geodesic through p.
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Now, suppose N has a focal point at q along some geodesic γ and let J be a

Jacobi field as in the definition. Either J(0) = 0 or J(0) 6= 0. In the former case,

q is conjugate to γ(0) along γ. In the latter case, we may consider the geodesic

σ passing through γ(0) with σ̇(0) = J(0); then it is evident that the submanifold

L = {σ(t) : t ∈ R} also has a focal point at q along γ. This shows the equivalence of

the two conditions in the following definition:

Definition III.4. M is said to have no focal points if either of the two equivalent

conditions below hold:

1. Every totally geodesic submanifold N of M is focal point free in M ; or

2. M has no conjugate points, and every geodesic γ of M , considered as a totally

geodesic submanifold of M , is focal point free in M .

In particular, manifolds with no focal points have no conjugate points. We will

show below that manifolds of nonpositive curvature have no focal points. Gulliver

[28] shows that these inclusions are strict. On the other hand, many of the techniques

used to study manifolds of nonpositive curvature can be adapted (often with relative

ease) to the case of manifolds with no focal points; this thesis, as well as many of

the results it cites, are a case in point.

It will be helpful to have a few different restatements of the no focal points con-

dition. First, suppose γ and σ are geodesics intersecting orthogonally at p = γ(a).

Then q = γ(0) is a focal point for σ along γ iff there is a Jacobi field J along γ such

that J(0) = 0 and 〈J(a), J ′(a)〉 = 0. But this latter condition is equivalent to the

statement that d
dt
|t=a||J(t)|| = 0. Thus we have the following:

Proposition III.5. M has no focal points if and only if for every geodesic γ and

every Jacobi field J along γ with J(0) = 0 has ||J(t)||′ 6= 0 for all t 6= 0.
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The condition of having no focal points is often stated in terms of Proposition III.5.

While this condition somewhat obscures the origin of the term “no focal points”, it

is often more technically useful than our definition. For instance, we can use this

condition to easily prove the following two propositions:

Proposition III.6. Let M = N × L have no focal points. Then N and L have no

focal points.

Proof. It suffices to show N has no focal points. Let γ be a geodesic in N , let J(t)

be a Jacobi field along γ satisfying J(0) = 0, and suppose 〈J(a), J ′(a)〉 = 0. Fix a

variation of geodesics γs(t) with variation field J . By fixing a point q ∈ L, we may

lift γs to a variation γ̃s of geodesics in M , where

γ̃s(t) = (γs(t), q) ∈ N × L.

The Jacobi field J̃ of this variation then clearly satisfies J̃(0) = 0 and 〈J̃(a), J̃ ′(a)〉 =

0, so that M has focal points.

Proposition. Manifolds of nonpositive curvature have no focal points.

Proof. We use Proposition III.5. Let M have nonpositive curvature. Then let J be

a Jacobi field and calculate

||J(t)||′′ = 2〈J(t), J ′(t)〉′ = 2〈J(t), J ′′(t)〉+ 2||J ′(t)||2

= −2〈J(t), R(J(t), γ̇(t))γ̇(t)〉+ 2||J ′(t)||2.

Then note that the term 〈J(t), R(J(t), γ̇(t))γ̇(t)〉 is equal to the sectional curvature

of the plane spanned by γ̇(t) and J(t) multiplied by some positive constant, and is

in particular nonpositive since M has nonpositive curvature. If now J(0) = 0 and J

is nonzero, the above equation implies ||J(t)||′′ > 0, and hence ||J(t)||′ > 0, for all

t.
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The second extremely important restatement of the no focal points condition is

a generalization of Proposition III.1. Fix a totally geodesic submanifold N of M ,

and let ν⊥N be the normal bundle to N in M . Denote by exp⊥N : ν⊥N → M the

restriction of the exponential map exp : TM →M . Then we have the following:

Proposition III.7. Let N be a totally geodesic submanifold of M . Then exp⊥N is

a local diffeomorphism at v ∈ T⊥p N if and only if N does not have a focal point

at exp(v) along the geodesic exp(tv). In particular, N is focal point free in M if

and only if exp⊥N is a local diffeomorphism, and in this case exp⊥N : ν⊥N → M is a

covering map.

The proof proceeds just as in the case for no conjugate points. We show one way

this property may be useful. If M is a (complete) Riemannian manifold, a function

f : M → R is called convex if its restriction to every geodesic is a convex function

R→ R.

Proposition III.8. Let M be simply connected and without focal points, and let

p ∈M . Then the distance function dp : q 7→ d(p, q) is convex.

Proof. Let γ be a geodesic in M . If p lies on γ, the result is obvious, so assume

otherwise. We consider the function f(t) = d(p, γ(t)) on [0, 1]; it suffices to show

that f has no local maximum in (0, 1).

Suppose to the contrary that f has a maximum at t = τ ∈ (0, 1). Then f ′(τ) = 0,

and in particular the geodesic through p and γ(τ) is orthogonal to γ. On the other

hand, t 7→ d(p, γ(t)) must achieve a global minimum for some t = ρ, say, and we

see that the geodesic through p and γ(ρ) is also orthogonal to γ. Since exp⊥γ is a

diffeomorphism, this cannot happen.

Corollary III.9. If M is simply connected and without focal points, then for every
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p ∈M and every r > 0 the geodesic ball Br(p) of radius r about p is convex.

Finally, we mention the following. If M is simply connected and nonpositively

curved, it is well-known that any finite-order isometry of M must fix a point of

M . The analogue of this fact for no focal points is easy to demonstrate and will be

important to us in the proof of Theorem V.24:

Proposition III.10. Let M be simply connected and without focal points, and let φ

be a finite-order isometry of M . Then φ fixes a point of M .

Proof. Note that M is diffeomorphic to Rn since it has no conjugate points. Given a

subset A ⊂M , we define the convex closure of A, denoted cc(A), to be the smallest

closed, convex subset of M containing A. We note that if φ is an isometry of M ,

then φ(cc(A)) = cc(φ(A)), since φ preserves both convexity and closedness.

Since M has no focal points, the closed ball Br(p) of radius r about any point p

is convex. Thus, if A is bounded, so is cc(A).

Now fix p ∈ M and consider the orbit S = {φn(p)}. This is a bounded subset of

M since φ is finite order, and thus cc(S) is a compact convex subset of M that is

taken to itself by the action of φ. The result now follows from Brouwer’s fixed point

theorem.

3.2 Divergence of geodesics

Throughout this section, M is a simply connected Riemannian manifold with no

focal points. We begin with a crucial definition.

Definition III.11. Let v, w ∈ SM . Then v, w are called asymptotic if d(γv(t), γw(t))

is bounded as t → ∞, and v, w are called parallel if v, w are asymptotic and also

−v,−w are asymptotic. We say γv, γw are asymptotic or parallel when the same

holds for v, w.
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In section 3.3, we will use this notion to define a “boundary at infinity” of the

manifold M . In this section we state some needed results on manifolds with no focal

points. The main reference here is O’Sullivan’s paper1 [40].

First, we have the following two propositions, which often form a suitable replace-

ment for convexity of the function t 7→ d(γ(t), σ(t)) for geodesics γ, σ:

Proposition III.12 ([40] §1 Prop 2). Let γ and σ be distinct geodesics with γ(0) =

σ(0). Then for t > 0, both d(γ(t), σ) and d(γ(t), σ(t)) are strictly increasing and

tend to infinity as t→∞.

Proposition III.13 ([40] §1 Prop 4). Let γ and σ be asymptotic geodesics; then both

d(γ(t), σ) and d(γ(t), σ(t)) are nonincreasing for t ∈ R.

O’Sullivan also proves an existence and uniqueness result for asymptotic geodesics:

Proposition III.14 ([40] §1 Prop 3). Let γ be a geodesic; then for each p ∈M there

is a unique geodesic through p and asymptotic to γ.

Finally, O’Sullivan also proves a flat strip theorem (this result was also obtained, via

a different method, by Eschenburg in [23]):

Flat Strip Theorem ([40] §2 Thm 1). If γ and σ are parallel geodesics, then γ and

σ bound a flat strip; that is, there is an isometric immersion φ : [0, a]×R→M with

φ(0, t) = γ(t) and φ(a, t) = σ(t).

We will also need the following result, which is due to Eberlein [16]; a proof can also

be found in [23].

Proposition III.15. Bounded Jacobi fields are parallel.

1Note that, as remarked by O’Sullivan himself, the relevant results in [40] are valid for all manifolds with no focal
points (rather than only those with a lower curvature bound), since the condition ||J(0)|| → ∞ for all nontrivial
initially vanishing Jacobi fields J is always satisfied for manifolds with no focal points, as shown by Goto [27].
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(We remark that the simple argument in [23] shows the apparently weaker result that

central Jacobi fields—that is, Jacobi fields which are both stable and unstable—are

parallel. The above proposition follows then from the fact that any Jacobi field along

γ bounded as t→∞ is a stable field, which itself follows from Goto’s result [27] that

the length of any initially vanishing Jacobi field must go to ∞ as t→∞.)

Finally, we have the following generalization of Proposition III.12:

Proposition III.16. Let p ∈ M , let N be a totally geodesic submanifold of M

through p, and let γ be a geodesic of M with γ(0) = p. Assume γ is not contained

in N ; then d(γ(t), N) is strictly increasing and tends to ∞ as t→∞.

Proof. Let σt be the unique geodesic segment joining γ(t) to N and perpendicular

to N ; then (by a first variation argument) d(γ(t), N) = L(σt), where L(σt) gives the

length of σt. Thus if d(γ(t), N) is not strictly increasing, then we have L′(σt) = 0 for

some t, and again a first variation argument establishes that then σt is perpendicular

to γ, which is a contradiction since exp : ν⊥σt →M is a diffeomorphism.

This establishes that d(γ(t), N) is strictly increasing. To show it is unbounded we

argue by contradiction. Suppose

lim
t→∞

d(γ(t), N) = C <∞,

and choose sequences tn → ∞ and an ∈ N such that d(γ(tn), N) = d(γ(tn), an)

and the sequence d(γ(tn), an) increases monotonically to C. We let wn be the unit

tangent vector at γ(0) pointing at an; by passing to a subsequence, we may assume

wn → w ∈ Tγ(0)N .

We claim d(γ(t), γw) ≤ C for all t ≥ 0, contradicting Proposition III.12. Fix a

time t ≥ 0. For each n, there is a time sn such that

d(γ(t), γwn) = d(γ(t), γwn(sn)).
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The triangle inequality gives

sn ≤ t+ C.

Thus some subsequence of the points γwn(sn) converges to a point γw(s), and then

clearly d(γ(t), γw(s)) ≤ C, which establishes the result.

3.3 The visual boundary

Again we assume M is a simply connected Riemannian manifold without focal

points. We define for M a visual boundary M(∞), the boundary of M at infinity,

a topological space whose points are equivalence classes of unit speed asymptotic

geodesics in M .

If η ∈ M(∞), v ∈ SM , and γv is a member of the equivalence class η, then we

say v (or γv) points at η. Alternatively, we may denote the equivalence class of the

geodesic γ by γ(∞), and if τ is the inverse geodesic τ(t) = γ(−t), we may denote

the equivalence class of τ by γ(−∞).

Proposition III.14 shows that for each p ∈M there is a natural bijection SpM ∼=

M(∞) given by taking a unit tangent vector v to the equivalence class of γv. Thus

for each p we obtain a topology on M(∞) from the topology on SpM ; in fact, these

topologies (for various p) are all the same, which we now show.

Fix p, q ∈M and let φ : SpM → SqM be the map given by taking v ∈ SpM to the

unique vector φ(v) ∈ SqM asymptotic to v. We wish to show φ is a homeomorphism,

and for this it suffices to show:

Lemma III.17. The map φ : SpM → SqM is continuous.

Proof. Let vn ∈ SpM with vn → v, and let wn, w ∈ SqM be asymptotic to vn, v,

respectively. We must show wn → w. Suppose otherwise; then, passing to a subse-
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quence, we may assume wn → u 6= w. Fix t ≥ 0. Choose n such that

d(γwn(t), γu(t)) + d(γvn(t), γv(t)) < d(p, q).

Then

d(γu(t), γw(t)) ≤ d(γu(t), γwn(t)) + d(γwn(t), γvn(t))

+ d(γvn(t), γv(t)) + d(γv(t), γw(t)) < 3d(p, q),

the second and fourth terms being bounded by d(p, q) by Proposition III.13. Since t

is arbitrary, this contradicts Proposition III.12.

We call the topology on M(∞) induced by the topology on any SpM as above

the visual topology. In fact, the visual topology on M(∞) extends to a topology on

the visual compactification M = M ∪M(∞), called the cone topology.

Definition III.18. For each v ∈ SM and each ε > 0, we define C(v, ε) ⊆ M to be

the set of those x ∈M such that the geodesic from π(v) to x makes angle less than ε

with v. We define the cone topology on M to be the topology generated by the sets

C(v, ε) and the open sets of M .

We remark that the tangent space TpM to any point of M can also be viewed as a

Riemannian manifold, and it therefore has a visual compactification TpM , equipped

with the cone topology. The exponential map expp : TpM →M then has an obvious

extension to a map expp : TpM →M . The following result is due to Goto:

Theorem III.19 ([26]). The cone topology on M = M∪M(∞) is the unique topology

such that the map expp : TpM →M is a homeomorphism for each p ∈M .

We will be defining a second topology on M(∞) presently, so we take a moment

to fix notation: If ζn, ζ ∈M(∞) and we write ζn → ζ, we always mean with respect

to the visual topology unless explicitly stated otherwise.
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If η, ζ ∈M(∞) and p ∈M , then ∠p(η, ζ) is defined to be the angle at p between

vη and vζ , where vη, vζ ∈ SpM point at η, ζ, respectively.

We now define a metric ∠ on M(∞), the angle metric, by

∠(η, ζ) = sup
p∈M

∠p(η, ζ).

We note that the metric topology determined by ∠ is not in general equivalent to

the visual topology. However, we do have:

Proposition III.20. The angle metric is lower semicontinuous. That is, if ηn → η

and ζn → ζ (in the visual topology), then

∠(η, ζ) ≤ lim inf ∠(ηn, ζn).

Proof. It suffices to show that for all ε > 0 and all q ∈M , we have for all but finitely

many n

∠q(η, ζ)− ε < ∠(ηn, ζn).

Fixing q ∈ M and ε > 0, since ηn → η and ζn → ζ, for all but finitely many n we

have

∠q(η, ζ) < ∠q(ηn, ζn) + ε,

and this implies the inequality above.

We also take a moment to establish a few properties of the angle metric.

Proposition III.21. The angle metric ∠ is complete.

Proof. For ξ ∈ M(∞), we denote by ξ(p) ∈ SpM the vector pointing at ξ. Let ζn

be a ∠-Cauchy sequence in M(∞). Then for each p the sequence ζn(p) is Cauchy in

the metric ∠p, and so has a limit ζ(p); by Lemma III.17, the asymptotic equivalence

class of ζ(p) is independent of p. We denote this class by ζ; it is now easy to check
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that ζn → ζ in the ∠ metric. (This follows from the fact that the sequences ζn(p)

are Cauchy uniformly in p.)

Lemma III.22. Let v ∈ SM point at η ∈ M(∞), and let ζ ∈ M(∞). Then

∠γv(t)(η, ζ) is a nondecreasing function of t.

Proof. This follows from Proposition III.13 and a simple first variation argument.

3.4 Asymptotic vectors, recurrence, and the angle metric

In this section we collect a number of technical lemmas. As a consequence we

derive Corollary III.27, which says that the angle between the endpoints of recurrect

vectors is measured correctly from any flat. (In nonpositive curvature, this follows

from a simple triangle-comparison argument.)

Our first lemma allows us to compare the behavior of the manifold at (possibly

distant) asymptotic vectors:

Lemma III.23. Let v, w ∈ SM be asymptotic. Then there exist sequences tn →

∞, vn → v, and φn ∈ Γ such that

(dφn ◦ gtn)vn → w

as n→∞.

Proof. First assume w is recurrent. Then we may choose sn → ∞ and φn ∈ Γ so

that (dφn ◦ gsn)w → w. For each n let qn be the footpoint of gsnw, and let vn be the

vector with the same footpoint as v such that the geodesic through vn intersects qn

at some time tn. Clearly tn →∞. We now make two claims: First, that vn → v and

second, that (dφn ◦ gtn)vn → w. Note that since v and w are asymptotic, Lemma

III.22 gives

∠π(v)(v, vn) ≤ ∠qn(gtnvn, g
snw).
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Figure 3.1: Lemma III.23, fig. 1

So if we show that the right-hand side goes to zero, both our claims are verified.

Figure 3.2: Lemma III.23, fig. 2

Consider the geodesic rays τn, σn through the point φn(qn) satisfying

τ̇n(0) = −dφn(gtnvn), σ̇n(0) = −dφn(gsnw).

It suffices to show the angle between these rays goes to zero. Note sn, tn →∞. We

claim that the distance between τn(t) and σn(t) is bounded, independent of n, for

t ≤ max{sn, tn}. To see this, first note that |sn− tn| ≤ d(π(v), π(w)) by the triangle

inequality. Suppose for example that sn ≥ tn; then we find

d(σn(sn), τn(sn)) ≤ 2d(πv, πw),

and Proposition III.12 shows that for 0 ≤ t ≤ sn,

d(σn(t), τn(t)) ≤ 2d(πv, πw).

The same holds if tn ≥ sn. Hence for fixed t, for all but finitely many n the above
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inequality holds. It follows that τn and σn converge to asymptotic rays starting at

p. This establishes the theorem for recurrent vectors w.

We now do not assume w is recurrent; since recurrent vectors are dense in SM ,

we may take a sequence wm of recurrent vectors with wm → w. For each m, there

are sequences vn,m → v, tn,m →∞, and φn,m ∈ Γ such that

(dφn,m ◦ gtn,m)vn,m → wm.

An appropriate “diagonal” argument now proves the theorem.

As a corollary of the above proof we get the following:

Corollary III.24. Let v ∈ SM be recurrent and pointing at η ∈ M(∞); let ζ ∈

M(∞). Then

∠(η, ζ) = lim
t→∞

∠γv(t)(η, ζ).

Proof. By Lemma III.22, the limit exists. Let p = π(v), and fix arbitrary q ∈ M .

Since v is recurrent, there exist tn →∞ and φn ∈ Γ such that (dφn ◦ gtn)v → v. Let

pn be the footpoint of gtnv, and let γn be the geodesic from q to pn. Define

vn = gtnv and v′n = γ̇n(pn).

Figure 3.3: Corollary III.24
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By the argument given in Lemma III.23, ∠pn(vn, v
′
n)→ 0, and if we let v′ ∈ SqM

be the vector pointing at η, then γ̇n(0)→ v′. Thus

∠pn(ζ, v′n) ≥ ∠q(ζ, γ̇n(0))→ ∠q(ζ, η).

Since q was arbitrary, this proves the claim.

In fact, the above corollary is true if v is merely asymptotic to a recurrent vector.

To prove this we will need a slight modification to Lemma III.23, which is as follows:

Lemma III.25. Let w be recurrent and v asymptotic to w. Then there exist se-

quences wn → w and sn, tn → ∞ such that gtnwn and gsnv have the same footpoint

qn for each n, and

∠qn(gtnwn, g
snv)→ 0.

Proof. First let sn →∞, φn ∈ Γ, be sequences such that

(dφn ◦ gsn)w → w.

Define p = π(w), q = π(v), pn = π(gsnw), and qn = π(gsnv). Let wn be the unit

tangent vector with footpoint p such that there exists tn such that gtnwn has footpoint

qn.

Figure 3.4: Lemma III.25
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Note that for all n

d(φn(qn), p) ≤ d(φn(qn), φn(pn)) + d(φn(pn), p)

≤ d(qn, pn) +K

≤ d(q, p) +K,

whereK is some fixed constant. In particular, the points φn(qn) all lie within bounded

distance of p, and hence within some compact set. Therefore, by passing to a subse-

quence, we may assume we have convergence of the following three sequences:

rn := φn(qn)→ r

w′n := (dφn ◦ gtn)wn → w′

v′n := (dφn ◦ gsn)v → v′

for some r, w′, v′. Then by the argument in the proof of Lemma III.23,

d(γ−w′n(t), γ−v′n(t)) ≤ 2d(p, q)

for 0 ≤ t ≤ max{sn, tn}. It follows that (−w′) and (−v′) are asymptotic; since both

have footpoint r, we see w′ = v′. This gives the lemma.

We can now prove our previous claim:

Proposition III.26. Let w ∈ SM be recurrent, v asymptotic to w. Say v and w

both point at η ∈M(∞). Then for all ζ ∈M(∞)

∠(η, ζ) = lim
t→∞

∠γv(t)(η, ζ).

Proof. Fix ε > 0. By Corollary III.24, there exists a T such that

∠γw(T )(η, ζ) ≥ ∠(η, ζ)− ε.
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We write w′ = gTw and note that w′ is also recurrent and asymptotic to v. Let p be

the footpoint of w′. Choose by Lemma III.25 sequences wn → w′ and sn, tn → ∞

such that

((*)) ∠γv(sn)(g
tnwn, g

snv)→ 0.

To fix notation, let wn point at ηn. Then for large n

∠γv(sn)(η, ζ) ≥ ∠γv(sn)(ηn, ζ)− ε by (*)

≥ ∠p(ηn, ζ)− ε by Lemma III.22

≥ ∠p(η, ζ)− 2ε by definition of the visual topology

≥ ∠(η, ζ)− 3ε by construction of w′.

The key corollary of these results is:

Corollary III.27. Let η be the endpoint of a recurrent vector w. Let F be a flat at

q ∈M , and v, v′ ∈ SqF with v pointing at η. Say v′ points at ζ; then

∠(η, ζ) = ∠q(η, ζ).

In the next section we will establish the existence of plenty of flats; in section 4.2,

this corollary will be one of our primary tools when we analyze the structure of the

angle metric on M(∞).

3.5 Discrete groups of isometries

In this section M will denote a complete simply connected Riemannian manifold

without focal points, and Γ will be a discrete subgroup of isometries of M . We discuss

certain aspects of the action of Γ on M . This material generalizes to no focal points
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some of the work of Chen-Eberlein in [13] and Eberlein in [17], [18], [19], and [20].

The generalization to no focal points of [13] was carried out by Druetta in [15]; the

other generalizations we give proceed exactly as in the nonpositive curvature case.

We give complete proofs for the reader’s convenience.

The material of this section will not be used until Chapter V, so the reader

interested in only the proof of the higher rank rigidity theorem may safely skip it.

Definition III.28. A Clifford translation of M is an isometry φ of M such that

d(p, φ(p)) is constant over p ∈ M . If Γ is a group of isometries of M , we denote by

C(Γ) the subset of Γ consisting of Clifford translations.

We also denote by Z(Γ) the center of Γ, and if Γ∗ ⊆ Γ, we let ZΓ(Γ∗) be the

centralizer of Γ∗ in Γ.

We now present several important theorems from Druetta’s work [15] on Clif-

ford translations in manifolds without focal points, which generalizes [13]. First a

definition:

Definition III.29. If φ is an isometry of M , the associated vector field Xφ is the

unique vector field on M such that expp(Xφ(p)) = φ(p) for every p ∈M .

Theorem III.30. ([15] Theorem 2.1) Write M = Er ×M1, where Er is Euclidean

and M1 has no flat factors. Let φ be an isometry of M . The following are equivalent:

1. φ is a Clifford translation.

2. φ is bounded, i.e., d(p, φ(p)) is bounded over p ∈M .

3. The associated vector field Xφ is parallel.

4. φ decomposes as (φ0, id), where φ0 is a translation of Er and id is the identity

on M1.
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Theorem III.31. ([15], Proposition 3.1 and Theorem 3.2) Let D be a subgroup

of Isom(M) such that D-recurrent vectors are dense in SM . Then the centralizer

ZIsom(M)(D) consists of Clifford translations. If A is an abelian normal subgroup of

D, then A consists of Clifford translations.

In particular we note that abelian normal subgroups of Γ force M to have flat

factors.

We also remark that, by Theorem III.30, the group C(Γ) of Clifford translations

is an abelian normal subgroup of Γ; thus if Γ-recurrent vectors are dense in SM , the

above theorem shows that C(Γ) is the unique maximal abelian normal subgroup of

Γ. The following gives a partial converse as well as some further properties of C(Γ)

(and some of its subgroups):

Theorem III.32. ([15] Theorem 3.3) Suppose Γ acts freely on M and Γ-recurrent

vectors are dense in SM . Let A ⊆ Γ be an abelian normal subgroup. Then:

1. A ∼= Zs for some k with 1 ≤ s ≤ dim(M);

2. M decomposes as M = Rs ×N ; and

3. M/Γ is foliated by compact totally geodesic flat submanifolds of dimension s,

and Γ has a finite index normal subgroup with center of rank at least s.

In fact [15] shows that the decomposition M = Rs×N is obtained as follows: The

vector fields Xa associated to the Clifford transformations a ∈ C(Γ) determine an

s-dimensional distribution D on M which is involutive, and its integral submanifolds

form the Rk factor. We will be interested in the subgroup Γ0 = ZΓ(C(Γ)), which by

Theorem III.30 is just the subgroup consisting of those elements of the form (γe, γ1)

where γe is a Euclidean translation of Er. Since Γ0 centralizes C(Γ), one sees that

Γ0 preserves the distribution D, and it follows that Γ0 preserves the factors of the

54



decomposition M = Rk ×N .

Proposition III.33. Suppose Γ is a discrete group of isometries of M acting co-

compactly on M . Then Γ0 = ZΓ(C(Γ)) is finite index in Γ.

Proof. The proof follows the argument of Lemma 3 in Yau [48]. Each φ ∈ Γ acts on

C(Γ) by conjugation, a 7→ φ−1aφ. There is a natural distance function on C(Γ) given

by ||a|| = d(p, ap), which doesn’t depend on the point p as a is a Clifford translation,

and it is clear that the action of Γ by conjugation preserves this metric. C(Γ) is

a discrete group of translations of a Euclidean space, so there can be only finitely

many such isometries. But if φ, ψ ∈ Γ give the same isometry, this says that

φ−1aφ = ψ−1aψ

for all a ∈ C(Γ); in other words, φψ−1 centralizes C(Γ).

This leads to the following generalization of a lemma in Eberlein [18]:

Lemma III.34. Let Γ be a discrete group of isometries of M such that Γ-recurrent

vectors are dense in SM . Then Γ admits a finite index subgroup Γ0 such that for

any finite index subgroup Γ∗ of Γ0, we have Z(Γ∗) = C(Γ∗).

Proof. Our proof is the same as Eberlein’s. We let Γ0 be the centralizer ZΓ(C(Γ)),

which is finite index in Γ by Proposition III.33. We have C(Γ) ⊆ Γ0, and

C(Γ0) = C(Γ) ⊆ Z(Γ0).

Now let Γ∗ be a finite index subgroup of Γ0. Then Γ∗-recurrent vectors are also

dense in SM , and so Theorem III.31 gives Z(Γ∗) ⊆ C(Γ∗). On the other hand,

C(Γ∗) ⊆ C(Γ0) ∩ Γ∗ ⊆ Z(Γ0) ∩ Γ∗ ⊆ Z(Γ∗),

so C(Γ∗) = Z(Γ∗).
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The last result we need is a generalization of a result of Eberlein [20], which states

that if the discrete group Γ acts freely and cocompactly on M then the dimension

of the Euclidean de Rham factor of M is equal to the rank of the maximal abelian

normal subgroup of Γ. The proof is exactly as in [20], and will take us some time,

since we first show that certain lemmas from nonpositive curvature carry over to

no focal points. (However, all our proofs are exactly the same as in nonpositive

curvature.) We begin by proving the following general lemma:

Lemma III.35. Let M = M1 ×M2, and let Γ be a discrete, cocompact subgroup

of isometries of M preserving the factors of the decomposition. Denote by πi : Γ :

Isom(Mi) the projections, and assume π1Γ is discrete. Then kerπ1 acts cocompactly

on M2.

Proof. We construct a coarse compact fundamental domain for kerπ1. Let F be

a compact fundamental domain for the action of Γ; then π1F is a compact coarse

fundamental domain for the action of π1Γ on M1. We let H1 ⊆ M1 be any compact

coarse fundamental domain for π1Γ (for instance, set H1 = π1F ).

Since π1Γ is discrete, it acts properly on M1; hence the set of all a ∈ π1Γ such

that aH1 ∩ π1F 6= ∅ is finite. We denote its elements by a1, . . . , ak, and we fix

b1, . . . , bk ∈ Isom(M2) such that (ai, bi) ∈ Γ for each i. Consider the compact set

K2 = (a−1
1 , b−1

1 )F ∪ · · · ∪ (a−1
k , b−1

k )F.

We claim H1 ×M2 ⊆ (kerπ1)K2. To see this let (q1, q2) ∈ H1 ×M2. There exists

(p1, p2) ∈ F and some γ ∈ Γ such that γ(p1, p2) = (q1, q2). In particular, we have

p1 ∈ (π1γ)−1H1 ∩ π1F , and this shows that γ has the form γ = (a−1
i , γ2) for some

γ2 ∈ Isom(M2). But then

(q1, q2) ∈ (1, γ2bi)(a
−1
i , b−1

i )F ⊆ (kerπ1)K2.
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The following is Proposition 2.2 of [17], whose proof is quite general:

Proposition III.36. Let M = M1 × M2, and let Γ be a cocompact subgroup of

isometries of M preserving the factors. Suppose Γ1 = π1Γ and Γ2 = π2Γ are both

discrete. Then Γ admits a finite index subgroup Γ∗ splitting as Γ∗ = Γ∗1 × Γ∗2.

Proof. By Lemma III.35, kerπ1 acts cocompactly on M1 and ker π2 acts cocompactly

on M2. It follows that kerπ1 × kerπ2 acts cocompactly on M1 ×M2, and hence is

finite index in Γ.

The following generalizes [17], Theorem 4.1:

Lemma III.37. Let M = M1 × M2. Let Γ be a discrete, cocompact subgroup of

isometries of M preserving the decomposition. Suppose that π2Γ is discrete. Then

either π1Γ is discrete or N = kerπ2 contains nonidentity Clifford translations. Fi-

nally, if M1 is Euclidean, then N contains nonidentity Clifford translation.

Proof. The proof is as in [17]. Suppose π1Γ is not discrete, and let G = π1Γ be its

closure in Isom(M1).

Clearly π1N is normal in π1Γ and hence also in G. We let G0 be the connected

component of the identity of G. Then G0 normalizes π1N , and hence must centralize

π1N since π1N is discrete. In addition, we know from Lemma III.35 that π1N acts

cocompactly on M1. It follows from Theorem III.31 that G0 consists of Clifford

translations.

We are now going to decompose M using the Clifford translations in G0 into a

product Mα × Mβ × M2, where Mα is Euclidean, and G0 acts by translations on

Mα and by the identity on the other factors. By analyzing the action of G on this
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decomposition, we will show that the projection of Γ onto the second two factors

is discrete, and this will allow us to find Clifford translations in the kernel of this

projection.

We let D be the distribution given by

Dp = span{Xφ(p)|φ ∈ G0},

where Xφ(p) is determined by expp(Xφ(p)) = φ(p). The vector fields Xφ are parallel

by Theorem III.30, and so (by the de Rham Theorem II.10) they determine a decom-

position M1 = Mα ×Mβ, where Mα, the integral manifold of D, is Euclidean. Since

G0 is normal in G, every g ∈ G preserves the distribution D, and hence G preserves

the decomposition. Moreover, G0 acts as translations on Mα and the identity on Mβ,

as is clear from the definition of the vector fields Xφ and the fact that Mα is totally

geodesic and Euclidean.

We let πβ : G → Isom(Mβ) be the projection; we claim πβ(G) is discrete in

Isom(Mβ). Let us establish this claim. Suppose we have a sequence φn = (αn, βn) ∈

G with βn → id. We must show βn is eventually constant. Fix qα ∈ Mα; for each n

there exists a translation Tn ∈ G0 such that α̃n = Tnαn fixes qα, and we define

φ̃n = (α̃n, βn) ∈ G.

Fixing qβ ∈ Mβ, it follows that φ̃n(qα, qβ) → (qα, qβ) and thus, passing to a subse-

quence, we may assume φ̃n converges to an isometry φ̃ ∈ G. In particular, φ̃nφ̃
−1
m

converges as (m,n) → ∞ to the identity of G, and hence is in G0 for large m,n.

But G0 acts as the identity on Mβ, which shows that βn is constant for large n as

desired. This proves our claim that πβ(G) is discrete.

We now write M = Mα×Mβ ×M2, and note that Γ respects this decomposition.

We have projections πα, πβ, and π2 from Γ into the isometry groups of these factors.
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It follows from what we have just shown that πβ(Γ) is discrete, and in particular that

πβ(Γ)× π2(Γ) is a discrete subgroup of isometries of Mβ ×M2. Thus Lemma III.35

shows that N∗ = ker(πβ × πΓ) is a cocompact subgroup of Isom(Mα). In particular,

N∗ must contain translations, which then lift to Clifford translations of M .

Thus we have shown that either π1Γ is discrete or N contains Clifford translations.

To prove the last claim, we suppose now that M1 is Euclidean; we would like to show

that N contains Clifford translations. We have already shown this holds if π1Γ is

not discrete, so we assume π1Γ is discrete. Then Γ admits a finite index subgroup

Γ∗ splitting as

Γ∗ = Γ∗1 × Γ∗2.

Moreover, M1/Γ
∗
1 is compact, so that Γ∗1, and hence N , contains Clifford translations.

Corollary III.38. Let M = M1 × M2 have no flat factors, and suppose Γ is a

discrete, cocompact subgroup of isometries of M . Suppose further that Isom(M2) is

discrete. Then Γ admits a finite index subgroup splitting as Γ1 × Γ2.

Proof. By the uniqueness of the de Rham decomposition, Γ admits a finite index

subgroup Γ∗ preserving the decomposition. Then π2Γ∗ is discrete since Isom(M2) is,

and thus Lemma III.37 shows that π1Γ∗ is discrete (since Clifford translations of M

give rise to flat factors by Theorem III.30). Then Proposition III.36 shows that Γ∗

admits a finite index subgroup that splits as a product.

Recall that our goal is generalize Eberlein’s result that the rank of the maximal

abelian normal subgroup of M is the dimension of its Euclidean de Rham factor.

Eberlein’s proof relies on two crucial lemmas; the first is III.37 above. We prove the

second presently:
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Lemma III.39. Let M = Er × M2, where Er is Euclidean and M2 has no flat

factors. Let Γ be a discrete subgroup of Isom(M). Suppose Γ-recurrent vectors are

dense in SM ; then π2Γ is discrete in Isom(M2).

Proof. Our proof is the same as Eberlein’s [20]. Let A be the subgroup of Isom(M)

consisting of translations of Er, and let G be the closure of ΓA. As in [20], it follows

from the Zassenhaus lemma (see p. 146 of [1]) that G0, the connected component of

the identity of G, is solvable, and so π2G0 is also solvable.

We claim that π2G0 is trivial, which we now show. Let A∗ be the last nonidentity

subgroup in the derived series for π2G0. Then A∗ is abelian. In addition, note that

conjugation by an element of Γ gives an automorphism of G0 since Γ normalizes A;

such an automorphism must leave A∗ invariant, and hence A∗ is normalized by π2Γ.

If N denotes the normalizer of A∗ in Isom(M2), it follows that N -recurrent vectors

are dense in SM2, since N contains π2Γ. Theorem III.31 shows that A∗ consists

of Clifford translations, and then Theorem III.30 shows that A∗ = {id}. Hence

π2G0 = {id}.

We now complete the proof. Suppose φn = (αn, βn) is a sequence of elements of

Γ with βn → id. Let Tn be the translation of Er such that α̃n = αnTn fixes 0 ∈ Er.

Then φ̃n = (α̃n, βn) ∈ G, and by passing to a subsequence we may assume that φ̃n

converges in G. We set ξn = φ̃n+1φ̃
−1
n ; then ξn ∈ G0 for large n. Since π2G0 is trivial,

βn is constant for large n, and it follows that βn = id for large n.

The final lemma needed is a generalization of Lemma 5.1 in Eberlein’s [17]:

Lemma III.40. Let M = Rk ×M2 (where M2 may have flat factors). Suppose Γ

is a discrete subgroup of isometries of M preserving the factors of the decomposition

and acting by translations on Rk. Suppose also that the center Z(Γ) of Γ is contained
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in kerπ2. Then Γ2 = π2Γ is discrete.

Proof. The proof is as in [17]. Let G = Γ2. We first claim that for each β ∈ Γ2,

there exists a neighborhood Wβ of the identity in G such that if ξ ∈ Γ2 ∩W , then ξ

commutes with β.

Let us establish this claim. Fix β ∈ Γ2, and lift to an element φ = (α, β) ∈ Γ.

Let βn ∈ Γ2 be an arbitrary sequence converging to the identity. We lift these to

elements φn = (αn, βn) ∈ Γ. Note that αn, α are translations by assumption and

hence commute. It follows that

[φn, φ] = φnφφ
−1
n φ−1 = (id, [βn, β]) ∈ Γ2,

and since βn → id it follows that [φn, φ]→ id. Since Γ is discrete, φn and φ commute

for large n, and hence so do βn and β, which establishes the claim.

Second, we claim that ifX ∈ g, the Lie algebra of G, then φt = exp(tX) centralizes

Γ2 for all t.

We establish this claim: Let β ∈ Γ2, and fix a neighborhood W as above. For

small t, say 0 ≤ t < ε, we have φt ∈ Wβ. Fixing such a t, we choose a sequence

ψn ∈ Γ2 converging to φt; then ψn commutes with β for all large n, and it follows by

continuity that φt does as well. Thus we have proven the claim for t < ε, and it is

evident that the claim follows in general.

We now prove the lemma. Let U be a neighborhood of zero in g such that

exp : U → V is a diffeomorphism, where V is a neighborhood of the identity in G.

Suppose that β ∈ Γ2 ∩ V ; then by the second claim above, β centralizes Γ2. But

then if we lift β to an element φ = (α, β) ∈ Γ, then the fact that α is a translation

shows that φ is in the center of Γ, and hence, by assumption, that β = {id}. Thus

Γ2 ∩ V = {id} and it follows that G is zero-dimensional, i.e., that Γ2 is discrete.
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Finally we may prove Eberlein’s main result from [20]:

Theorem III.41. Let M be a closed Riemannian manifold without focal points,

and let Γ be a discrete, cocompact subgroup of isometries of M acting freely. Then

the dimension of the Euclidean de Rham factor of M equals the rank of the unique

maximal abelian normal subgroup of Γ.

Proof. We remark that by the discussion following Theorem III.31, the group C(Γ)

of Clifford translations is the unique maximal abelian normal subgroup of Γ. Our

proof proceeds as in [20].

Let M = Er ×M2, where M2 has no flat factors. If Er is trivial, then Γ cannot

have a nontrivial abelian normal subgroup by Theorem III.32. We therefore assume

Er is positive-dimensional. By Lemma III.39, π2Γ is discrete, and thus by Lemma

III.37, Γ admits nonidentity Clifford translations.

We let Γ0 be the centralizer of C(Γ) in Γ. By Proposition III.33, Γ0 has finite

index in Γ. Thus Γ0-recurrent vectors are dense in SM ; since Z(Γ0) is an abelian

normal subgroup of Γ0, it follows from Theorem III.31 that Z(Γ0) consists of Clifford

translations. It follows that Z(Γ0) = C(Γ0) = C(Γ).

By III.32, we know that M decomposes as M = Rl × N , where C(Γ) ∼= Zl acts

by translations on Rl. Our goal is to show that N has no flat factors. The remarks

following Theorem III.32 show that Γ0 preserves the factors of this decomposition.

In addition, we see from this description that Clifford translations of M act as the

identity on N .

We let π0, πN denote the projection maps associated to the decomposition M =

Rk × N . Then it is clear from the fact that C(Γ) acts cocompactly by translations

on Rk that π0Γ0 acts by translations on Rk. Moreover, since the center of Γ0 consists

of Clifford translations, we have πN(Z(Γ0)) = {id}. It follows from Lemma III.40
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that πNΓ0 is discrete.

We now suppose N has a Euclidean de Rham factor, say N = Es × Nβ. We

know πNΓ0 is discrete, cocompact, and preserves the decomposition Es × Nβ. By

Lemma III.39, the projection of πNΓ0 to Isom(Nβ) is discrete. If follows from Lemma

III.37 that πNΓ0 contains nonidentity Clifford translations. However, if φ2 is such a

Clifford translation, then any lift φ of φ2 to Γ0 must be a Clifford translation, which

is a contradiction since Clifford translations act as the identity on N . Thus N has

no Euclidean de Rham factor, which completes the proof.
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Chapter IV

Proof of the Rank Rigidity Theorem

4.1 Construction of flats

We repeat our standing assumption that M is a complete, simply connected,

irreducible Riemannian manifold of higher rank and no focal points.

For a vector v ∈ SM , we let P(v) ⊆ SM be the set of vectors parallel to v, and we

let Pv be the image of P(v) under the projection map π : SM → M . Thus, p ∈ Pv

iff there is a unit tangent vector w ∈ TpM parallel to v. Our goal in this section will

be to show that if v is a regular vector of rank m, that is, v ∈ Rm, then the set Pv is

an m-flat (a totally geodesic isometrically embedded copy of Rm). To this end, we

will first show that P(v) is a smooth submanifold of Rm.

We begin by recalling that if v ∈ SM , there is a natural identification of TvTM

with the space of Jacobi fields along γv. In particular, the connection gives a decom-

position of TvTM into horizontal and vertical subspaces

TvTM ∼= Tπ(v)M ⊕ Tπ(v)M,

and we may identify an element (x, y) in the latter space with the unique Jacobi

field J along γv satisfying J(0) = x, J ′(0) = y. Under this identification, TvSM is

identified with the space of Jacobi fields J such that J ′(t) is orthogonal to γ̇v(t) for

all t.
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Define a distribution F on the bundle TSM → SM by letting F(v) ⊆ TvSM be

the space of parallel Jacobi fields along γv. The plan is to show that F is smooth

and integrable on Rm, and its integral manifold is exactly P(v). We note first that

F is continuous on Rm, since the limit of a sequence of parallel Jacobi fields is a

parallel Jacobi field, and the dimension of F is constant on Rm.

Lemma IV.1. F is smooth as a distribution on Rm.

Proof. For w ∈ SM let J0(w) denote the space of Jacobi fields J along γw satisfying

J ′(0) = 0. For each w ∈ Rm and each t > 0, consider the quadratic form Qw
t on

J0(w) defined by

Qw
t (X, Y ) =

∫ t

−t
〈R(X, γ̇w)γ̇w, R(Y, γ̇w)γ̇w〉dt.

Since a Jacobi field J satisfying J ′(0) = 0 is parallel iff R(J, γ̇w)γ̇w = 0 for all t, we

see that F(w) is exactly the intersections of the nullspaces of Qw
t over all t > 0. In

fact, since the nullspace of Qw
t is contained in the nullspace of Qw

s for s < t, there

is some T such that F(w) is exactly the nullspace of Qw
T . We define T (w) to be the

infimum of such T ; then F(w) is exactly the nullspace of Qw
T (w).

We claim that the map w 7→ T (w) is upper semicontinuous on Rm. We prove this

by contradiction. Suppose wn → w with wn ∈ Rm, and suppose that lim supT (wn) >

T (w). Passing to a subsequence of the wn, we may find for each n a Jacobi field Yn

along γwn satisfying Y ′n(0) = 0 and such that Yn is parallel along the segment of γwn

from −T (w) to T (w), but not along the segment from −T (wn) to T (wn).

We project Yn onto the orthogonal complement to F(wn), and then normalize so

that ||Yn(0)|| = 1. Clearly Yn retains the properties stated above. Then, passing to

a further subsequence, we may assume Yn → Y for some Jacobi field Y along γw.

Then Y is parallel along the segment of γw from −T (w) to T (w). However, since F
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is continuous and Yn is bounded away from F , Y cannot be parallel along γw. This

contradicts the choice of T (w), and establishes our claim that w 7→ T (w) is upper

semicontinuous.

To complete the proof, fix w ∈ Rm and choose an open neighborhood U ⊆ Rm of

w such that U is compact and contained in Rm. Since T (w) is upper semicontinuous

it is bounded above by some constant T0 on U . But then the nullspace of the form

Qu
T0

is exactly F(u) for all u ∈ U ; since Qu
T0

depends smoothly on u and its nullspace

is m-dimensional on U , its nullspace, and hence F , is smooth on U .

Our goal is to show that F is in fact integrable on Rm; the integral manifold

through v ∈ Rm will turn out to then be P(v), the set of vectors parallel to v. To

apply the Frobenius theorem, we will use the following lemma, which states that

curves tangent to F are exactly those curves consisting of parallel vectors:

Lemma IV.2. Let σ : (−ε, ε)→ Rm be a curve in Rm; then σ is tangent to F (for

all t) iff for any s, t ∈ (−ε, ε), the vectors σ(s) and σ(t) are parallel.

Proof. First let σ : (−ε, ε) → Rm be a curve tangent to F . Consider the geodesic

variation Φ : (−ε, ε)× (−∞,∞)→M determined by σ:

Φ(s, t) = γσ(s)(t).

By construction and our identification of Jacobi fields with elements of TTM , we

see that the variation field of Φ along the curve γσ(s) is a Jacobi field corresponding

exactly to the element σ̇(s) ∈ Tσ(s)TM , and, by definition of F , is therefore parallel.

The curves s 7→ Φ(s, t0) are therefore all the same length L (as t0 varies), and thus

for any s, s′ and all t

d(γσ(s)(t), γσ(s′)(t)) ≤ L.

Thus (by definition) σ(s) and σ(s′) are parallel.
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Conversely, let σ : (−ε, ε) → Rm consist of parallel vectors and construct the

variation Φ as before. We wish to show that the variation field J(t) of Φ along γσ(0)

is parallel along γσ(0), and for this it suffices, by Proposition III.15, to show that it

is bounded.

Our assumption is that the geodesics γs(t) = Γ(s, t) are all parallel (for varying s),

and thus for any s the function d(γ0(t), γs(t)) is constant (by the flat strip theorem).

It follows that ||J(t)|| = ||J(0)|| for all t, which gives the desired bound.

Any curve σ : (−ε, ε)→ Rm defines a vector field along the curve (inM) π◦σ in the

obvious way. It follows from the above lemma (and the symmetry Dt∂sΦ = Ds∂tΦ)

for variations Φ) that if σ is a curve in Rm such that σ(t) and σ(s) are parallel for

any t, s, then the associated vector field along π ◦ σ is a parallel vector field along

π ◦ σ.

We also require the following observation. Suppose that p, q ∈ M are connected

by a minimizing geodesic segment γ : [0, a] → M , and let v ∈ TpM . Then the

curve σ : [0, a] → SM such that σ(t) is the parallel transport of v along γ to γ(t)

is a minimizing geodesic in the Sasaki metric. It follows from this and the flat strip

theorem that if v, w are parallel and connected by a unique minimizing geodesic in

SM , then this geodesic is given by parallel transport along the unique geodesic from

π(v) to π(w) in M and is everywhere tangent to F .

Lemma IV.3. F is integrable as a distribution on Rm, and, if v ∈ Rm, then the

integral manifold through v is an open subset of P(v).

Proof. To show integrability, we wish to show that [X, Y ] is tangent to F for vector

fields X, Y tangent to F . If φt, ψs are the flows of X, Y , respectively, then [X, Y ]v =
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σ̇(0), where σ is the curve

σ(t) = ψ−
√
tφ−

√
tψ
√
tφ
√
t(v).

From Lemma IV.2 we see that σ(0) and σ(t) are parallel for all small t, which, by

the other implication in Lemma IV.2, shows that [X, Y ]v ∈ F(v) as desired. So F is

integrable.

Now fix v ∈ Rm and let Q be the integral manifold of F through v. By Lemma

IV.2, Q ⊆ P(v). Let w ∈ Q and let U be a normal neighborhood of w contained in

Rm (in the Sasaki metric); to complete the proof it suffices to show that U∩P(v) ⊆ Q.

Take u ∈ U∩P(v). Then (by the observation preceding the lemma) the SM -geodesic

from w to u is contained in Rm and consists of vectors parallel to w, and hence to

v. Thus u ∈ Q.

For v ∈ Rm it now follows that P(v)∩Rm is a smooth m-dimensional submanifold

ofRm, and since the SM -geodesic between nearby points inRm is contained in P(v),

we see that P(v) is totally geodesic.

Consider the projection map π : P(v) → Pv; its differential dπ takes (X, 0) ∈

F(v) ⊆ TvSM to X ∈ Tπ(v)M . It follows that Pv is a smooth m-dimensional sub-

manifold of M near those points p ∈ M which are footpoints of vectors w ∈ Rm

(and that π gives a local diffeomorphism of P(v) and Pv near such vectors w). We

would like to extend this conclusion to the whole of Pv, and for this we will make

use of Lemma III.23.

Proposition IV.4. For every v ∈ Rm, the set Pv is a convex m-dimensional smooth

submanifold of M .

Proof. Fix v ∈ Rm. The flat strip theorem shows that Pv contains the M -geodesic
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between any two of its points, i.e., is convex. So we must show that Pv is an m-

dimensional smooth submanifold of M .

For u ∈ Rm, we let Cε(u) ⊆ Tπ(u)M be the intersection of the subspace Tπ(u)Pu

with the ε-ball in Tπ(u)M . Since F is smooth and integrable the foliation P is

continuous with smooth leaves on Rm; it follows that we may fix ε > 0 and a

neighborhood U ⊆ Rm of v such that for u ∈ U ,

expπ(u) Cε(u) = Pu ∩Bε(π(u)),

where for p ∈M we denote by Bp(ε) the ball of radius ε about p in M .

By the flat strip theorem, the above equation is preserved under the geodesic flow;

that is, for all t and all u ∈ U we have

expπ(gtu)Cε(g
tu) = Pgtu ∩Bε(π(gtu)).

This equation is also clearly also preserved under isometries.

Now fix w ∈ P(v); our goal is to show that Pv is smooth near π(w). Choose by

Lemma III.23 sequences vn → v, tn → ∞, and φn ∈ Γ such that (dφn ◦ gtn)vn → w.

We may assume vn ∈ U for all n. For ease of notation, let wn = (dφn ◦ gtn)vn; then

for all n we have wn ∈ Rm, and

expπ(wn) Cε(wn) = Pwn ∩Bε(π(wn)).

By passing to a subsequence if necessary, we may assume the sequence of m-

dimensional subspaces dπ(F(wn)) converges to a subspace W ⊆ Tπ(w)M . Denote by

Wε the ε-ball in W . Then taking limits in the above equation we see that

expπ(w) Wε ⊆ Pw = Pv.

To complete the proof, we note that since Pv is convex (globally) andm-dimensional

near v, Pv cannot contain an (m + 1)-ball, for then convexity would show that it
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contains an (m+ 1)-ball near v. Thus if U ′ ⊆ Bε(w) is a normal neighborhood of w,

we must have

Pw ∩ U ′ = expπ(w)(Wε) ∩ U ′,

which shows that Pv is a smooth m-dimensional submanifold of M near w and

completes the proof.

Proposition IV.5. For every v ∈ Rm, the set Pv is an m-flat.

Proof. Let p = π(v). Choose a neighborhood U of v in Rm∩TpPv such that for each

w ∈ U , the geodesic γw admits no nonzero parallel Jacobi field orthogonal to Pv. We

claim Pw = Pv for all w ∈ U .

To see this, recall that TpPw is the span of Y (0) for parallel Jacobi fields Y (t)

along γw. If Y is such a field, then the component Y ⊥ of Y orthogonal to Pv is

a bounded Jacobi field along γw, hence parallel, and therefore zero; it follows that

TpPw = TpPv. Since Pv and Pw are totally geodesic, this gives Pv = Pw as claimed.

But now take m linearly independent vectors in U ; by the above we may extend

these to m independent and everywhere parallel vector fields on Pv. Hence Pv is

flat.

Corollary IV.6. For every v ∈ SM , there exists a k-flat F with v ∈ Sπ(v)F .

Proof. Let vn be a sequence of regular vectors with vn → v. Passing to a subsequence

if necessary, we may assume there is some m ≥ k such that vn ∈ Rm for all n. For

each n let Wn be the m-dimensional subspace of Tπ(vn)M such that exp(Wn) = Pvn .

Passing to a further subsequence, we may assume Wn → W , where W is an m-

dimensional subspace of Tπ(v)M , and it is not difficult to see that expW is an m-flat

through v.

70



4.2 The angle lemma, and an invariant set at ∞

The goal of the present section is to establish that M(∞) has a nonempty, proper,

closed, Γ-invariant subsetX. Our strategy is that of Ballmann [4] and Eberlein-Heber

[22]. In section 4.3 we will use this set to define a nonconstant function f on SM ,

the “angle from X” function, which will be holonomy invariant, and this will show

that the holonomy group acts nontransitively on M .

Roughly speaking X will be the set of endpoints of vectors of maximum singularity

in SM ; more precisely, in the language of symmetric spaces, it will turn out that X is

the set of vectors which lie on the one-dimensional faces of Weyl chambers. To “pick

out” these vectors from our manifold M , we will use the following characterization:

For each ζ ∈ M(∞), we may look at the longest curve ζ(t) : [0, α(ζ)] → M(∞)

starting at ζ and such that

∠q(ζ(t), ζ(s)) = |t− s|

for every point q ∈ M ; then ζ is “maximally singular” (i.e., ζ ∈ X) if α(ζ) (the

length of the longest such curve) is as large as possible. One may check that in the

case of a symmetric space this indeed picks out the one-dimensional faces of the Weyl

chambers.

To show that the set so defined is proper, we will show that it contains no regular

recurrent vectors; this is accomplished by demonstrating that every such path with

endpoint at a regular recurrent vector extends to a longer such path in a neighborhood

of that vector. For this we will need a technical lemma that appears here as Corollary

IV.10.

We begin with the following lemma, which shows that regular geodesics have to

“bend” uniformly away from flats:
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Lemma IV.7. Let k = rankM , v ∈ Rk, and let ζ = γv(−∞), η = γv(∞). Then

there exists an ε > 0 such that if F is a k-flat in M with d(π(v), F ) = 1, then

∠(ζ, F (∞)) + ∠(η, F (∞)) ≥ ε.

Proof. By contradiction. If the above inequality does not hold for any ε, we can find

a sequence Fn of k-flats satisfying d(π(v), Fn) = 1 and

∠(ζ, Fn(∞)) + ∠(η, Fn(∞)) < 1/n.

By passing to a subsequence, we may assume Fn → F for some flat F satisfying

d(π(v), F ) = 1, and η, ζ ∈ F (∞). In particular, F is foliated by geodesics parallel to

v, so that P(v) is at least (k + 1)-dimensional, contradicting v ∈ Rk.

This allows us to prove the following “Angle Lemma”:

Lemma IV.8. Let k = rankM . Let v ∈ Rk be recurrent and suppose v points at

η0 ∈M(∞). Then there exists A > 0 such that for all α ≤ A, if η(t) is a path

η(t) : [0, α]→M(∞)

satisfying η(0) = η0 and

∠(η(t), η0) = t

for all t ∈ [0, α], then η(t) ∈ Pv(∞) for all t ∈ [0, α].

Proof. Let p = π(v) be the footpoint of v and let ξ = γv(−∞). By Lemma IV.7 we

may fix ε > 0 such that if F is a k-flat with d(p, F ) = 1, then

∠(ξ, F (∞)) + ∠(η0, F (∞)) > ε.

Choose δ > 0 such that if w ∈ SpM with ∠p(v, w) < δ then w ∈ Rk, and set

A = 1
2

min{δ, ε}. Fix α ≤ A.

72



For the sake of contradiction, suppose there exists a path η(t) : [0, α] → M(∞)

as above, but for some time a ≤ α

η(a) /∈ Pv(∞).

For 0 ≤ s ≤ a, let ηp(s) ∈ SpM be the vector pointing at η(s); since α < δ, we have

ηp(s) ∈ Rk. Fixing more notation, let w = ηp(a).

We claim η0 /∈ Pw(∞). To see this, suppose η0 ∈ Pw(∞); then by convexity

Pw(∞) contains the geodesic γv, and since γv is contained in a unique k-flat, we

conclude Pw = Pv, which contradicts our assumption that η(a) /∈ Pv(∞).

It follows from Proposition III.16 that

d(γv(t), Pw)→∞ as t→∞.

Since v is recurrent, we may fix tn → ∞ and φn ∈ Γ such that the sequence vn =

(dφn ◦ gtn)v converges to v. By the above we may also assume d(γv(tn), Pw) ≥ 1 for

all n. Then, since Pu depends continuously on u ∈ Rk, there exists sn ∈ [0, a] such

that

d(γv(tn), Pηp(sn)) = 1.

Figure 4.1: Lemma IV.8

We define a sequence of flats Fn by

Fn = φn(Pηp(sn)).
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Notice that Fn is indeed a flat, that d(Fn, p) → 1, and that the geodesic γ(−vn)

intersects Fn at time tn. By Proposition III.16, we have

d(γ(−vn)(t), Fn) ≤ 1 for 0 ≤ t ≤ tn.

By passing to a subsequence, we may assume Fn → F for some k-flat F with d(F, p) =

1, and taking the limit of the above inequality, we see that γ(−v)(∞) ∈ F (∞). Thus

Lemma IV.7 guarantees

∠(η0, F (∞)) ≥ ε.

On the other hand, consider the sequence η(sn). By passing to a further subse-

quence, we may assume φn(η(sn))→ µ; since (by definition) φn(η(sn)) ∈ Fn(∞), we

have µ ∈ F (∞). Then

ε ≤ ∠(η0, F (∞)) ≤ ∠(η0, µ)

≤ lim inf
n→∞

∠(φn(η0), φn(η(sn))))

= lim inf
n→∞

∠(η0, η(sn)) ≤ a ≤ α ≤ ε

2
,

where the inequality on the second line follows from Proposition III.20. This is the

desired contradiction.

As we did in section 3.4, we wish to extend this result not just to the k-flat F

containing the regular recurrent vector v, but to every k-flat containing η0 as an

endpoint at ∞.

Proposition IV.9. Let v ∈ Rk be recurrent and point at η0, let A be as in Lemma

IV.8 above, and let α ≤ A. Let F be a k-flat with η0 ∈ F (∞), and suppose there

exists a path

η(t) : [0, α]→M(∞)
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with η(0) = η0 and

∠(η(t), η0) = t for all t ∈ [0, α].

Then η(t) ∈ F (∞) for all t ∈ [0, α].

Proof. Fix q ∈ F , and let ηq ∈ SqF point at η0. Let p = π(v), and let φ : SqF → SpM

be the map such that w and φ(w) are asymptotic. Denote by BF
α (ηq) the restriction

to F of the closed α-ball in the ∠q-metric about ηq, and, similarly, denote by BPv
α (v)

the restriction to Pv of the closed α-ball in the ∠p-metric about v. We will show that

φ gives a homeomorphism BF
α (ηq)→ BPv

α (v).

We first take a moment to note why this proves the proposition. We let ηp(t) ∈

SpM be the vector pointing at η(t). Lemma IV.8 tells us that ηp(t) ∈ BPv
α (v) for

t ∈ [0, α]. Then since φ−1 takes BPv
α (v) into BF

α (ηq), we see that η(t) ∈ F (∞) for

such t.

So we’ve left to show φ gives such a homeomorphism. First, let’s see that φ takes

BF
α (ηq) into BPv

α (v). Let w ∈ BF
α (ηq) and let

σ : [0, α]→ BF
α (ηq)

be the ∠q-geodesic with σ(0) = ηq and σ(a) = w for some time a. Let

σ̃ : [0, α]→M(∞)

be the path obtained by projecting σ to M(∞). Then Corollary III.27 guarantees

that σ̃ satisfies the hypotheses of Lemma IV.8, and so we conclude that σ̃(t) ∈ Pv(∞)

for all t, from which it follows that φ maps BF
α (ηq) into BPv

α (v) as claimed.

Now, note that for all w ∈ BF
α (ηq) we have

∠q(w, ηq) = ∠p(φ(w), v),
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again by Corollary III.27. Therefore for each r ∈ [0, α], φ gives an injective continuous

map of the sphere of radius r in BF
α (ηq) to the sphere of radius r in BPv

α (v); but any

injective continuous map of spheres is a homeomorphism, and it follows that φ gives

a homeomorphism of BF
α (ηq) and BPv

α (v) as claimed.

Corollary IV.10. Let v ∈ Rk be recurrent and point at η0, let A be as in Lemma

IV.8, and let α ≤ A. Suppose we have a path

η(t) : [−α, α]→M(∞)

with η(0) = η0 and

∠(η(t), η(0)) = t for all t.

Then for all q ∈M and all r, s ∈ [−α, α]

∠q(η(r), η(s)) = ∠(η(r), η(s)).

Proof. Choose two points q1, q2 ∈M . Then by Corollary IV.6 there are k-flats F1, F2

through q1, q2, respectively, with η0 ∈ F1(∞) ∩ F2(∞). By Corollary IV.9, the path

η(t) lifts to paths η1(t) ⊆ Sq1F1, η2(t) ⊆ Sq2F2.

Fix r, s ∈ [−α, α]. Then for i ∈ {1, 2} we have

d(γηi(r)(t), γηi(s)(t)) = 2t sin
(

1
2

(
∠qi(η(r), η(s))

))
.

Since d(γη1(r)(t), γη2(r)(t)) and d(γη1(s)(t), γη2(s)(t)) are both bounded as t → ∞, we

must have ∠q1(η1(r), η1(s)) = ∠q2(η2(r), η2(s)). Thus ∠q(η(r), η(s)) is independent

of q ∈M , which gives the result.

Proposition IV.11. M(∞) contains a nonempty proper closed Γ-invariant subset.

Proof. For each δ > 0 define Xδ ⊆ M(∞) to be the set of all ξ ∈ M(∞) such that

there exists a path

ξ(t) : [0, δ]→M(∞)
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with ξ(0) = ξ and

∠q(ξ(t), ξ(s)) = |t− s|

for all t, s ∈ [0, δ], and all q ∈M .

Obviously Xδ is Γ-invariant. We claim it is closed. To this end, let ξn ∈ Xδ with

ξn → ξ, and choose associated paths

ξn(t) : [0, δ]→M(∞).

By Arzela-Ascoli, some subsequence of these paths converges (pointwise, say) to a

path ξ(t), and this path satisfies

∠q(ξ(t), ξ(s)) = lim
n→∞

∠q(ξn(t), ξn(s)) = |t− s|,

so ξ ∈ Xδ. Thus Xδ is closed; it follows that Xδ is compact.

We claim now that Xδ is nonempty for some δ > 0. To see this choose a recurrent

vector v ∈ Rk, and say v points at η. Let A be as in Lemma IV.8, and let

η(t) : [0, A]→M(∞)

be the projection to M(∞) of any geodesic segment of length A starting at v in SpPv.

Then by Corollary III.27, for all t ∈ [0, A]

∠(η(t), η) = ∠p(η(t), η) = t.

Thus by Corollary IV.10, ∠q(η(s), η(t)) is independent of q ∈M , and so in particular

for any such q

∠q(η(s), η(t)) = ∠p(η(s), η(t)) = |t− s|.

So v ∈ XA.

A few remarks about the relationships between the various Xδ are necessary before

we proceed. First of all, notice that if δ1 < δ2 then Xδ2 ⊆ Xδ1 . Furthermore, for any
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δ, we claim that ξ ∈ Xδ iff ξ ∈ Xε for all ε < δ. One direction is clear. To see the

other, suppose ξ ∈ Xεn for a sequence εn → δ. Then there exist paths

ξn(t) : [0, εn]→M(∞)

satisfying the requisite equality, and again Arzela-Ascoli guarantees for some subse-

quence the existence of a pointwise limit

ξ(t) : [0, δ]→M(∞)

which will again satisfy the requisite equality. Therefore, if we let

β = sup{δ|Xδ is nonempty}

then

Xβ =
⋂
δ<β

Xδ.

In particular, being a nested intersection of nonempty compact sets, Xβ is nonempty.

We now show that β < π. To see this, note that β = π implies in particular that

there exist two points ζ, ξ in M(∞) such that the angle between ζ and ζ when seen

from any point is π. This implies that there exists a vector field Y on M such that

for any point q, Y (q) points at ζ and −Y (q) points at ξ. The vector field Y is C 1

by Theorem 1 (ii) in [23], and the flat strip theorem now shows that the vector field

Y is holonomy invariant, so that M is reducible. Thus β < π.

We claim Xβ is the desired set. We have already shown it is closed, nonempty,

and Γ-invariant, so we have left to show that Xβ 6= M(∞).

Fix a recurrent vector v ∈ Rk; assume for the sake of contradiction that v ∈ Xβ.

Then there exists a path

η(t) : [0, β]→M(∞)
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with η(0) = η and ∠q(η(t), η(s)) = |t − s| for all t, s ∈ [0, β]. Let p = π(v) be the

footpoint of v, and let

ηp(t) : [0, β]→ SpPv

be the lift of η(t). Then ηp(t) is a geodesic segment in SpPv. We may choose

0 < ε < A, where A is as in Lemma IV.8, so that β + ε < π. Thus we may extend

ηp(t) to a geodesic

ηp(t) : [−ε, β]→ SpPv,

and we may use this to extend η(t). By Corollaries III.27 and IV.10, we have for all

q ∈M

∠q(η(t), η(s)) = |t− s|,

and so η(−ε) ∈ Xβ+ε, contradicting our choice of β.

4.3 Completion of proof

We now fix a nonempty proper closed Γ-invariant subset Z ⊆ M(∞) and define

a function f : SM → R by

f(v) = min
ζ∈Z

∠π(v)(γv(∞), ζ).

It is clear that f is Γ-invariant, and Lemma III.22 gives that f is nondecreasing under

the geodesic flow (that is, f(gtv) ≥ f(v)). We use the next four lemmas to prove that

f is continuous, invariant under the geodesic flow, constant on equivalence classes of

asymptotic vectors, and differentiable almost everywhere.

Lemma IV.12. f is continuous.

Proof. For each ζ ∈M(∞) define a function fζ : SM → R by

fζ(v) = ∠π(v)(γv(∞), ζ).
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We will show that the family fζ is equicontinuous at each v ∈ SM , from which

continuity of f follows.

Fix v ∈ SM and ε > 0. There is a neighborhood U ⊆ SM of v and an a > 0 such

that

da(u,w) = d(γu(0), γw(0)) + d(γu(a), γw(a))

is a metric on U giving the correct topology. Suppose w ∈ U with da(v, w) < ε. For

ζ ∈ Z, let ζπ(v), ζπ(w) be the vectors at π(v), π(w), respectively, pointing at ζ. Then

|da(v, ζπ(v))− da(w, ζπ(w))| ≤ da(v, w) + da(ζπ(v), ζπ(w)) ≤ 3ε,

by the triangle inequality for da for the first inequality, and Proposition III.13 for

the second. This gives the desired equicontinuity at v.

Lemma IV.13. For v ∈ SM , we have f(gtv) = f(v) for all t ∈ R.

Proof. First assume v is recurrent. Fix tn → ∞ and φn ∈ Γ so that dφng
tnv → v.

Then

f(dφng
tnv) = f(gtnv)

and the sequence f(gtnv) is therefore an increasing sequence whose limit is f(v) and

all of whose terms are bounded below by f(v), so evidently f(gtnv) = f(v) for all n,

and it follows that f(gtv) = f(v) for all t ∈ R.

Now we generalize to arbitrary v. Fix t > 0 and ε > 0. By continuity of f and

the geodesic flow, we may choose δ > 0 so that if u ∈ SM is within δ of v, then

|f(u)− f(v)| < ε and |f(gtu)− f(gtv)| < ε.

Then choose u recurrent within δ of v to see that

|f(gtv)− f(v)| ≤ |f(gtv)− f(gtu)|+ |f(gtu)− f(u)|+ |f(u)− f(v)| < 2ε.

Since ε was chosen arbitrarily, f(gtv) = f(v).

80



Lemma IV.14. Let v, w ∈ SM be arbitrary. If either v and w are asymptotic or

−v and −w are asymptotic, then f(v) = f(w).

Proof. If v and w are asymptotic, fix by Lemma III.23 tn →∞, wn → w, and φn ∈ Γ,

such that (dφn ◦ gtn)wn → v. Then since f is continous,

f(w) = lim f(wn) = lim f((dφn ◦ gtn)wn) = f(v).

On the other hand, if −v and −w are asymptotic, we may fix tn → −∞, wn → w,

and φn ∈ Γ, such that (dφn ◦ gtn)wn → v, and the exact same argument applies.

Lemma IV.15. f is differentiable almost everywhere.

Proof. Fix v ∈ SM ; there is a neighborhood U of v and an a > 0 such that

da(u,w) = d(γu(0), γw(0)) + d(γu(a), γw(a))

is a metric on U (giving the correct topology). Choose u,w ∈ U , and let w′ ∈ Sπ(u)M

be asymptotic to w. Then

|f(u)− f(w)| = |f(u)− f(w′)| ≤ ∠π(u)(u,w
′) ≤ Cda(u,w

′),

for some constant C. But note that

da(u,w
′) = d(γu(a), γw′(a)) ≤ d(γu(a), γw(a)) + d(γw(a), γw′(a))

≤ d(γu(a), γw(a)) + d(γw(0), γw′(0)) = da(u,w),

by Proposition III.13. Therefore f is Lipschitz with respect to the metric da on U ,

and hence differentiable almost everywhere on U .

From here on, the proof follows Ballmann [4], §IV.6, essentially exactly. We repeat

his steps below for convenience.

81



We denote by W s(v),W u(v) ⊆ SM the weak stable and unstable manifolds

through v, respectively. Explicitly, W s(v) is the collection of those vectors asymp-

totic to v, and W u(v) the collection of those vectors w such that −w is asymptotic

to −v.

Lemma IV.16. TvW
s(v) + TvW

u(v) contains the horizontal subspace of TvSM .

Proof. Following Ballmann, given w ∈ Tπ(v)M we let B+(w) denote the covariant

derivative of the stable Jacobi field J along γv with J(0) = w. That is, B+(w) = J ′(0)

where J is the unique Jacobi field with J(0) = w and J(t) bounded as t → ∞.

Similarly, B−(w) is the covariant derivative of the unstable Jacobi field along γv

with J(0) = w. In this notation,

TvW
s(v) = {(w,B+(w))|w ∈ Sπ(v)M} and TvW

u(v) = {(w,B−(w))|w ∈ Sπ(v)M}.

Both B+ and B− are symmetric (as is shown in Eschenburg-O’Sullivan [24]). We let

E0 = {w ∈ Tπ(v)M |B+(w) = B−(w) = 0}.

Since B+ and B− are symmetric, they map Tπ(v) into the orthogonal complement

E⊥0 of E0.

The claim of the lemma is that any horizontal vector (u, 0) ∈ TvSM can be written

in the form

(u, 0) = (w1, B
+(w1)) + (w2, B

−(w2)).

This immediately implies w2 = u− w1, so we are reduced to solving the equation

−B−(u) = B+(w1)−B−(w1),

and for this it suffices to show the operator B+ −B− surjects onto E⊥0 , and for this

it suffices to show that the restriction

B+ −B− : E⊥0 → E⊥0
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is injective. Assuming w ∈ E⊥0 , B+(w) = B−(w) implies that the Jacobi field J with

J(0) = w and J ′(0) = B+(w) = B−(w) is both stable and unstable, hence bounded,

hence, by Proposition III.15, parallel; thus w ∈ E0 and it follows that w = 0.

Corollary IV.17. If c is a piecewise smooth horizontal curve in SM then f ◦ c is

constant.

Proof. Obviously it suffices to show the corollary for smooth curves c, so we assume

c is smooth. By Lemma IV.15, f is differentiable on a set of full measure D. By the

previous lemma and Lemma IV.14, if c̃ is a piecewise smooth horizontal curve such

that c̃(t) ∈ D for almost all t, then f ◦ c̃ is constant (since df( ˙̃c(t)) = 0 whenever this

formula makes sense).

Our next goal is to approximate c by suitable such curves c̃. Let l be the length of

c, and parametrize c by arc length. Extend the vector field ċ(t) along c to a smooth

horizontal unit vector field H in a neighborhood of c. Then there is some smaller

neighborhood U of c which is foliated by the integral curves of H, and by Fubini

(since D ∩ U has full measure in U), there exists a sequence of smooth horizontal

curves c̃r such that ˙̃cr(t) ∈ D for almost all t ∈ [0, l], and such that c̃r converges in

the C0-topology to c. Since f is constant on each curve c̃t by the argument in the

previous paragraph and f is continuous, we also have that f is constant on c.

Finally, an appeal to the Berger-Simons holonomy theorem proves the result:

Rank Rigidity Theorem. Let M be a complete irreducible Riemannian manifold

with no focal points and rank k ≥ 2. Assume that the Γ-recurrent geodesics are

dense in M , where Γ is the isometry group of M . Then M is a symmetric space of

noncompact type.

Proof. By the previous corollary, the function f is invariant under the holonomy
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group of M . However, it is nonconstant. Thus the holonomy group of M is nontran-

sitive and the Berger-Simons holonomy theorem implies that M is symmetric.

Corollary IV.18. Let M be a complete, simply connected Riemannian manifold

with no focal points and with group of isometries Γ, and suppose that the Γ-recurrent

vectors are dense in SM . Then M decomposes as a Riemannian product

M = Er ×MS ×M1 × · ×Ml,

where Er is a Euclidean space of dimension r, MS is a symmetric space of noncom-

pact type, and each factor Mi for 1 ≤ i ≤ l is a nonsymmetric irreducible rank-one

Riemannian manifold with no focal points.

Proof. Let

M = Er ×N1 × · · · ×Ns

be the de Rham decomposition of M . Proposition II.16 shows that the Isom(Ni)-

recurrent vectors are dense in Ni, and III.6 shows that each Ni has no focal points.

Thus each higher rank Ni is a symmetric space of noncompact type, and this gives

the corollary.
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Chapter V

Fundamental Groups

In this section M is assumed to be a complete simply connected Riemannian

manifold without focal points, and Γ a discrete, cocompact subgroup of isometries of

M . We will also assume that Γ acts freely on M , so that M/Γ is a closed Riemannian

manifold.

Following Prasad-Raghunathan [42] and Ballmann-Eberlein [8], define for each

nonnegative integer i the subset Ai(Γ) of Γ to be the set of those φ ∈ Γ such that

the centralizer ZΓ(φ) contains a finite index free abelian subgroup of rank no greater

than i. We sometimes denote Ai(Γ) simply by Ai when the group is understood.

Definition V.1 ([42]). r(Γ) is the minimum i such that Γ can be written as a finite

union of translates of Ai,

Γ = φ1Ai ∪ · · · ∪ φkAi,

for some φ1, . . . , φk ∈ Γ.

Definition V.2 ([8]). The rank of Γ is

rank(Γ) = max{r(Γ∗) : Γ∗ is a finite index subgroup of Γ}.

Prasad-Ragunathan [42] show that r(Γ) = rank(M) when M is a higher rank sym-

metric space; using this result, Ballmann-Eberlein [8] show that rank(Γ) = rank(M)
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when M has nonpositive curvature. In this section, we generalize their result to no

focal points:

Theorem. Let M be a complete, simply connected Riemannian manifold with no

focal points, and let Γ be a discrete, cocompact subgroup of isometries of M acting

freely. Then rank(Γ) = rank(M).

This theorem is proved at the end of this chapter as Theorem V.26. We make

some remarks on the plan of the proof. First, the Higher Rank Rigidity Theorem

proved earlier in this thesis guarantees that M has a de Rham decomposition

M = MS × Er ×M1 × · · · ×Ml,

where MS is a higher rank symmetric space, Er is r-dimensional Euclidean space,

and Mi is a nonsymmetric rank one manifold of no focal points, for 1 ≤ i ≤ l.

We’d like to use this theorem to reduce to the rank one case. First of all, we have

the following result from Ballmann-Eberlein:

Theorem V.3 ([8], Prop 2.1). Let Γ be an abstract group. Then:

1. If Γ∗ is a finite index subgroup of Γ, then rank Γ∗ = rank Γ.

2. If Γ = Γ1 × · · · × Γk, then

r(Γ) =
k∑
i=1

r(Γi) and rank(Γ) =
k∑
i=1

rank(Γi).

What does this mean in the context of our de Rham decomposition? We will show

that, in the case that the Euclidean factor is trivial, our group Γ has a finite-index

subgroup Γ∗ which splits as a product

Γ∗ = ΓS × Γ1 × · · · × Γl,
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where ΓS and each Γi act cocompactly on the appropriate de Rham factor of M .

Then Prasad-Ragunathan have shown that rank(ΓS) = rank(MS); thus Theorem

V.3 will allow us to reduce to computing the rank of Γi for i ≥ 1, i.e., the case where

M is a rank one manifold without focal points. In section 5.3 we will deal with the

Euclidean factor of M , making use of the results of section 3.5.

Our goal in the remainder of this section is to show, under the assumption M has

no flat factors, that Γ admits a finite index subgroup Γ∗ splitting as above. Then, in

sections 5.1 and 5.2, we will show rank(Γi) = 1 for the rank one factors. Finally, in

section 5.3, we return to the general case to deal with the Euclidean part of M .

We begin with the following lemma:

Lemma V.4. Let M have no flat factors, and let Γ be as above. Then M splits as

a Riemannian product M = MS ×M1, where MS is symmetric and M1 has discrete

isometry group.

Proof. Let I0 denote the connected component of the isometry group of M . By The-

orem 3.3 of Druetta [15], Γ has no normal abelian subgroups. Then Proposition 3.3

of Farb-Weinberger [25] shows that I0 is semisimple with finite center, and Proposi-

tion 3.1 of the same paper shows that M/Γ has a finite cover which decomposes as

a Riemannian warped product

N ×f B,

where N is locally symmetric of nonpositive curvature, and Isom(B) is discrete. We

claim that such a warped product must be trivial; this would show that M/Γ has a

finite cover which decomposes as a Riemannian product N ×B, and thus M does as

well.

Thus it suffices to show that a nontrivial compact Riemannian warped product

must have focal points: Let N ×f B be a Riemannian warped product, where f :
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B → R>0 is the warping function. If f is not constant on B, there exists a geodesic

γ in B such that f is not constant on γ. Let σ be a unit speed geodesic in N . Since

{p}×B is totally geodesic in N×fB for any p ∈ N (as follows, for instance, from the

Koszul formula), the variation Γ(s, t) = (σ(s), γ(t)) is a geodesic variation in N×fB.

It is then easy to see that the variation field J(t) = ∂sΓ(0, t) of this variation satisfies

||J(t)|| = f(γ(t)),

which is bounded but nonconstant, so that N ×f B must have focal points.

Corollary IV.18 guarantees that if M has no flat factors, then it admits a decom-

position

M = MS ×M1 × · · · ×Ml,

where each of the Mi, 1 ≤ i ≤ l, has rank one and discrete isometry group. Then,

by Lemmas V.4 and III.38, Γ has a finite index subgroup Γ∗ splitting as

Γ∗ = ΓS × Γ1 × · · · × Γl.

By the arguments above, to finish the proof in the case where M has no flat

factors, we need to show that rank(Γ) = 1 in the case where M is irreducible,

rank one, and has discrete isometry group. In section 5.2 we mimic the geometric

construction of Ballmann-Eberlein to carry this out. Before doing this, however, we

must first generalize a number of lemmas due to Ballmann [2] on rank one geodesics

in manifolds of nonpositive curvature to the no focal points case; this is the work of

the next section.

5.1 Rank one Γ-periodic vectors.

The following series of lemmas generalizes the work of Ballmann in [2]. As in that

paper, we will be interested in geodesics γ that are Γ-periodic, i.e., such that there
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exists a φ ∈ Γ and some a ∈ R with φ ◦ γ(t) = γ(t + a) for all t. Such a geodesic γ

will be called axial, and φ will be called an axis of γ with period a.

Recall the following notation from section 3.3: M = M ∪ M(∞) is the visual

compactification of M , and C(v, ε) ⊆M is the cone about v of angle ε. We are often

interested in the following condition:

Definition V.5. We say that a geodesic γ bounds a flat half-strip of with c if there

exists an isometric immersion Φ : R× [0, c)→M such that Φ(t, 0) = γ(t), and that

γ bounds a flat half-plane if there exists such Φ with c =∞.

Note that if γ bounds a flat half-strip, then γ is higher rank. Note also that, in

marked contrast to the higher-rank case, the implications

γ bounds a flat half plane → γ bounds a flat half strip → γ is higher rank

are all strict. As a simple example, consider a negatively curved surface with a cusp;

we cut off the cusp at some finite distance and reduce the curvature smoothly to zero,

turning the cusp into a cylinder. Gluing such a surface to itself, we obtain a closed,

rank one manifold; any geodesic wrapping around the central cylinder is higher rank,

and in fact bounds a flat half strip, but does not bound a flat half plane. Letting

the width of the central cylinder go to zero shows that a higher rank geodesic γ need

not bound a flat half-strip.

If p ∈ M , q ∈ M , we denote by γpq the unit speed geodesic through p and q

with γ(0) = p. Note that if γ is a geodesic and tn → ∞, then γ(tn) → γ(∞) in the

cone topology on M . Moreover, if pn ∈ M and pn → ζ ∈ M(∞), then for p ∈ M

the geodesics γppn converge to γpζ . This follows from considering TpM and Theorem

III.19. More generally, we have the following lemma:
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Lemma V.6. Let p, pn ∈ M with pn → p, and let xn, ζ ∈ M with xn → ζ. Then

γ̇pnxn(0)→ γ̇pζ(0).

Proof. First pass to any convergent subsequence of γ̇pnxn(0); say this subsequence

converges to γ̇pξ(0), where ξ ∈ M(∞). Suppose for the sake of contradiction that

ξ 6= ζ. Let c = d(γpζ(1), γpξ(1)) > 0. By the remarks preceding the lemma, we may

choose n large enough so that each of

d(pn, p), d(γpnxn(1), γpξ(1)), and d(γpxn(1), γpζ(1))

is strictly smaller than c/3. Proposition III.12 shows that d(γpnxn(1), γpxn(1)) < c/3,

and the triangle inequality gives the desired contradiction:

c = d(γpζ(1), γpξ(1))

≤ d(γpζ(1), γpxn(1)) + d(γpxn(1), γpnxn(1)) + d(γpnxn(1), γpξ(1))

< c.

Our next goal is to show that if γ does not bound a flat half plane and there exist

geodesics γn with γn(−∞) → γ(∞) and γn(∞) → γ(∞), then in fact γn → γ. The

following lemma, which generalizes [2] Lemma 2.1 (i), does most of our work:

Lemma V.7. Let γ be a geodesic, and suppose there exist

pk ∈ C(−γ̇(0), 1/k) ∩M qk ∈ C(γ̇(0), 1/k) ∩M

such that d(γ(0), γpkqk) ≥ c > 0 for all k. Then γ is the boundary of a flat half-strip

of width c.

Proof. The idea is to show that the geodesic from pk to qk converges to a geodesic

parallel to γ, and use the flat strip theorem. However, in fact the geodesics γpkqk
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Figure 5.1: Lemma V.7

need not converge, so a slightly more technical argument is needed. For each k

let p̃k, q̃k be the points on γ closest to pk, qk, respectively. Let bk(s) be a smooth

path with bk(0) = p̃k, bk(1) = pk, and similarly let ck(s) be a smooth path with

ck(0) = q̃k, ck(1) = qk. We may further choose bk so that the angle

∠γ(0)(p̃k, bk(s))

is an increasing function of s, and similarly for ck. Finally, let σk,s(t) be the unit

speed geodesic through bk(s) and ck(s), parameterized so that σk,0(0) = γ(0), and

such that s 7→ σk,s(0) is a continuous path in M .

By hypothesis, d(σk,1(0), γ(0)) ≥ c. Thus there exists sk with 0 < sk ≤ 1 and

d(σk,sk(0), γ(0)) = c. Passing to a subsequence, we may assume the geodesics σk,sk

converge as k →∞ to a geodesic σ with d(σ(0), γ(0)) = c.

Finally, any convergent subsequence of bk(sk), or of ck(sk), must converge to a

point on γ, or one of the endpoints of γ. However, Lemma V.6, and the fact that

σ 6= γ, shows that the only possibility is bk(sk) → γ(−∞) and ck(sk) → γ(∞).

Another application of Lemma V.6 shows that σ is parallel to γ. The flat strip

theorem now gives the result.

In particular, if γ is rank one, it bounds no flat half strip of any width, so we

obtain the following generalization of [2] Lemma 2.1 (ii):

91



Lemma V.8. Let γ be rank one, and c > 0. Then there exists ε > 0 such that if

x ∈ C(−γ̇(0), ε), y ∈ C(γ̇(0), ε), then there is a geodesic connecting x and y.

Furthermore, if σ is a geodesic with σ(−∞) ∈ C(−γ̇(0), ε) and σ(∞) ∈ C(γ̇(0), ε),

then σ does not bound a flat half plane, and d(γ(0), σ) ≤ c.

Proof. By Lemma V.7, there exists ε > 0 such that d(γpq, γ(0)) ≤ c if p ∈ C(−γ̇(0), ε)∩

M and q ∈ C(γ̇(0), ε) ∩M . We choose sequences pn → x and qn → y; then some

subsequence of γpnqn converges to a geodesic connecting x and y.

To prove the second part, note that all geodesics τ with endpoints in C(−γ̇(0), ε)

and C(γ̇(0), ε) satisfy d(γ(0), τ) ≤ c by choice of ε. However, if σ bounds a flat half-

plane then there are geodesics τn with the same endpoints as σ but with τn →∞, a

contradiction.

As a corollary of the above, we see that indeed if γ is rank one and γn is a sequence

of geodesics with γn(−∞)→ γ(−∞) and γn(∞)→ γ(∞), then γn → γ.

Our next lemma is crucial, but technical. In preparation we state a lemma from

nonpositive curvature.

Lemma V.9. Let N be nonpositively curved, and let τ, σ be distinct asymptotic

geodesics of N , and suppose that

∠(τ̇(0), σ(0)) + ∠(τ̇(0), γ(0)) = π.

Then τ, σ, and the geodesic segment from τ(0) to σ(0) bound a flat half strip.

The standard proof of this lemma uses triangle comparison arguments, and we

do not know whether it generalizes to no focal points. In keeping with the spirit of

section 3.4, we attempt to replace it with a lemma that is somewhat less general and

depends on the use of recurrence.
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To see better the spirit of our generalization, suppose first that the geodesic γ

connecting τ and σ above is axial for the isometry φ, and suppose further that

σ = φ ◦ τ . Then the fact that σ and τ are asymptotic says that φ has a fixed point

ζ on M(∞) not equal to either of the endpoints of γ, and one might hope that the

above lemma tells us in this case that the flat strips between the various translates

φnτ for n ∈ Z “glue up” to show that γ is the boundary of a flat half-plane F with

ζ ∈ F (∞).

In fact this is true; however, we will need a similar result in the case that γ

is merely recurrent. Unfortunately there is then no single isometry φ realizing the

recurrence, but rather a sequence of isometries (φn); correspondingly, we assume

that there is some x ∈ M(∞) with φn(x) converging to somewhere other than the

endpoints of γ. The precise statement follows:

Lemma V.10. Let γ be a recurrent geodesic, and suppose φn is a sequence of isome-

tries such that dφn(γ̇(tn)) → γ̇(0), where tn increases to ∞. Further suppose that

there exists x, ζ ∈ M(∞) with φn(x) → ζ, where ζ 6= γ(∞) and ζ 6= γ(−∞). Then

γ is the boundary of a flat half plane F , and ζ ∈ F (∞).

Proof. For each s ∈ R let τs be the geodesic with τs(0) = γ(s) and τs(∞) = x, and

let σs be the geodesic with σs(0) = γ(s) and σs(∞) = ζ. Fix t > 0.

We first claim that for each ε > 0, there exists an infinite subset L(ε) ⊆ N such

that for each N ∈ L(ε) there exists an infinite subset LN(ε) ⊆ N such that for

n ∈ LN(ε),

d(τtN (t), τtn(t)) ≥ tn − tN − ε.

Let us first show this claim.

93



By passing to a subsequence, we may assume

d(φnγ(tn), γ(0)) < ε/3 and d(φnτtn(t), σ0(t)) < ε/3

for all n ≥ 1; the second inequality follows from recurrence of γ, the fact that

φn(x)→ ζ, and Proposition III.13.

Assume for the sake of contradiction that our claim is false; then again by passing

to a subsequence, we may assume that for m > n ≥ 1

d(τtn(t), τtm(t)) < tm − tn − ε.

From this and the previous inequality, we conclude that for m > n ≥ 1

d(φ−1
n σ0(t), φ−1

m σ0(t)) < tm − tn − ε/3.

Choose l such that lε/3 > 2t+ ε. Then

d(γ(t1), γ(tl)) ≤ d(γ(t1), φ−1
1 γ(0)) + d(φ−1

1 γ(0), φ−1
1 σ0(t)) +

l−1∑
i=1

d(φ−1
i σ0(t), φ−1

i+1σ0(t))

+ d(φ−1
l σ0(t), φ−1

l γ(0)) + d(φ−1
l γ(0), γ(tl))

< ε/3 + t+
l−1∑
i=1

(ti+1 − ti − ε/3) + t+ ε/3

≤ 2t+ ε− lε/3 + tl − t1

< tl − t1,

contradicting the fact that γ is length minimizing. This proves our claim.

The next step of the proof is to show that for s > 0

d(σ0(t), σs(t)) = s.

Fix such s. Note that d(σ0(t), σs(t)) ≤ s by Proposition III.13. Suppose for the sake

of contradiction that

d(σ0(t), σs(t)) = s− 3ε
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for some ε > 0. Choose N ∈ L(ε) large enough such that

d(φNτtN (t), σ0(t)) < ε and d(φNτtN+s(t), σs(t)) < ε.

As before, that this can be done follows from recurrence of γ, the fact that φn(x)→ ζ,

and Proposition III.13. Then if n ∈ LN(ε) with tn > tN + s, we find

d(τtN (t), τtn(t)) = d(φNτtN (t), φNτtn(t))

≤ d(φNτtN (t), σ0(t)) + d(σ0(t), σs(t))

+ d(σs(t), φNτtN+s(t)) + d(φNτtN+s(t), φNτtn(t))

< ε+ (s− 3ε) + ε+ tn − (tN + s)

= tn − tN − ε,

contradicting the definitions of L(ε), LN(ε). Hence

d(σs(t), σ0(t)) = s

as claimed. In fact, the above argument shows that for all r, s ∈ R

d(σr(t), σs(t)) = |r − s|.

We now complete the proof. Lemma 2 in O’Sullivan [40] shows that the curves θt

defined by θt(s) = σs(t) are geodesics, and they are evidently parallel to γ. Thus the

flat strip theorem guarantees for each t the existence of a flat Ft containing γ and

θt; since Ft is totally geodesic, it contains each of the geodesics σs. (We remark, of

course, that all the Ft coincide.)

As indicated above, Lemma V.10 often works as a good enough replacement in

no focal points for Lemma V.9. For our present purposes, we use it to generalize

Lemma 2.4 in [2] in the following two corollaries:
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Corollary V.11. Let γ be a recurrent geodesic, and suppose there exists x ∈M(∞)

such that ∠γ(t)(x, γ(∞)) = ε for all t, where 0 < ε < π. Then γ is the boundary of a

flat half-plane.

Proof. If φn is a sequence of isometries such that φnγ̇(tn) → γ̇(0), for tn → ∞, one

sees that any accumulation point ζ of φn(x) in M(∞) must satisfy ∠γ(0)(γ(∞), ζ) = ε,

and so the previous lemma applies.

Corollary V.12. Let φ be an isometry with axis γ and period a. Suppose B ⊆M(∞)

is nonempty, compact, φ(B) ⊆ B, and neither γ(∞) nor γ(−∞) is in B. Then γ

bounds a flat half plane.

Proof. Take φn = φn and tn = na, along with the recurrent geodesic −γ, in Lemma

V.10.

This allows us to prove the following generalization of [2], Lemma 2.5, in exactly

the same manner as Ballmann:

Lemma V.13. Let φ be an isometry with rank one axis γ and period a. Then for

all ε, δ with 0 < ε < π and 0 < δ < π, and all t ∈ R, there exists s with

C(γ̇(s), δ) ⊆ C(γ̇(t), ε).

Proof. Suppose otherwise; then there exists such ε, δ, t such that for all s the above

inclusion does not hold. In particular we may choose for each n a point zn with

zn ∈ C(γ̇(na), δ) zn /∈ C(γ̇(t), ε).

Then if we set xn = φ−n(zn), we have xn ∈ C(γ̇(0), δ), and none of xn, φ(xn), . . . , φn(xn)

is in C(γ̇(t), ε).

Thus if we let B be the set

B = {x ∈M(∞) ∩ C(γ̇(0), δ) : φn(x) /∈ C(γ̇(t), ε) for all n},
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we see that B is nonempty (it contains any accumulation point of xn) and satisfies the

other requirements of Corollary V.12, so γ is the boundary of a flat half plane.

Finally, we obtain a generalization of (parts (i)-(iii) of) [2] Proposition 2.2, one of

the main results of that paper. Again, the proof is exactly as in [2].

Theorem V.14. Let φ be an isometry with axis γ and period a. The following are

equivalent:

1. γ is not the boundary of a flat half plane;

2. Given M-neighborhoods U of γ(−∞) and V of γ(∞), there exists N ∈ N with

φn(M − U) ⊆ V and φ−n(M − V ) ⊆ U whenever n ≥ N ; and

3. For any x ∈M(∞) with x 6= γ(∞), there exists a geodesic joining x and γ(∞),

and none of these geodesics are the boundary of a flat half plane.

Proof. (1⇒ 2) By Lemma V.13 we can find s ∈ R with

C(−γ̇(−s), π/2) ⊆ U, C(γ̇(s), π/2) ⊆ V.

If Na > 2s then for n ≥ N

φn(M − U) ⊆ φn(M − C(−γ̇(−s), π/2))

⊆ C(γ̇(s), π/2) ⊆ V,

and analogously for U and V swapped.

(1 ⇒ 3) By Lemma V.8 we can find ε > 0 such that for y ∈ C(−γ̇(0), ε) there

exists a geodesic from y to γ(∞) which does not bound a flat half plane. But by (2)

we can find n such that φ−n(x) ∈ C(−γ̇(0), ε).

(2⇒ 1) and (3⇒ 1) are obvious (by checking the contrapositive).
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We now consider the specific case where Γ is a subgroup of isometries of M

satisfying the duality condition. Our proof is again a straightforward generalization

of Ballmann’s proof of Proposition 2.13 in [2].

Proposition V.15. Assume Γ-recurrent vectors are dense in SM . If γ is rank one

and U, V are neighborhoods of γ(−∞) and γ(∞), then there exists an isometry φ ∈ Γ

with rank one axis σ, where σ(−∞) ∈ U and σ(∞) ∈ V .

Proof. Since Γ-recurrent vectors are dense in SM , we may assume γ is recurrent,

and take φn ∈ Γ, tn →∞, such that dφnγ̇(tn)→ γ̇(0). We define vn = dφng
tnv.

Fix ε > 0 and c > 0 by Lemma V.8. We replace U and V by Uε = C(−v, ε) ∩ U

and Vε = C(v, ε) ∩ V . Then for any x ∈ Uε, y ∈ Vε, there exists a unique rank one

geodesic joining x and y.

We claim that for sufficiently large n, φn has fixed points in Uε, Vε. We first claim

φ−1
n (V ε) ⊆ Vε for large n.

We prove this claim by contradiction. Suppose xn ∈ V with φ−1
n (xn) /∈ V . By

passing to a subsequence, we may also assume that xn converges (to an unnamed

point) and that φ−1
n (xn)→ x. Since xn ∈ V and vn → v we have

lim∠π(vn)(vn, xn) ≤ ε,

from which we conclude

lim∠γ(tn)(γ(∞), φ−1
n (xn)) ≤ ε.

In addition, by construction we have

lim∠γ(0)(γ(∞), φ−1
n (xn) ≥ ε.
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By Lemma III.22, for 0 ≤ t ≤ tn we have

∠γ(0)(γ(∞), φ−1
n (xn)) ≤ ∠γ(t)(γ(∞), φ−1

n (xn)) ≤ ∠γ(tn)(γ(∞), φ−1
n (xn)).

It follows from these equations that for all t

∠γ(t)(γ(∞), x) = ε.

Corollary V.11 shows that γ bounds a flat half plane, which is a contradiction. Thus

φ−1
n (V ε) ⊆ Vε for large n.

A similar argument shows that φn(U ε) ⊆ Uε for large n. We provide this argument

for completeness. The claim is shown by contradiction; we assume yn ∈ U ε with

φn(yn) /∈ Uε. We may assume yn → y by passing to a subsequence, and that φn(yn)

converges (to an unnamed point). Then we find

lim∠γ(tn)(γ(−∞), yn) ≥ ε

while at the same time

lim∠γ(0)(γ(−∞), yn) ≤ ε

and again Lemma III.22 shows that

∠γ(t)(γ(−∞), y) = ε,

again contradicting Corollary V.11.

We have thus shown that φn has fixed points ηn ∈ Uε and ζn ∈ Vε, and hence

must fix the geodesic σn through these points. The only thing left to argue is that

φn translates σn, i.e., that φn does not fix σn pointwise.

But note that d(φnγ(0), γ(0))→∞, while by our choice of ε and c, d(σn, γ(0)) is

uniformly bounded. Thus φn cannot fix σn pointwise for large n.

Corollary V.16. Rank one Γ-periodic vectors are dense in the set of rank one vec-

tors.
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5.2 The geometric construction.

Our goal in this subsection is to prove the following:

Theorem V.17. Let M have rank one, and let Γ be a discrete subgroup of isometries

of M such that Γ-recurrent vectors are dense in M . Then r(Γ) = 1.

Our method is simply to show that the Ballmann-Eberlein construction works

equally well in the setting of no focal points. With the work of section 5.1 in hand, our

proof is nearly identical to theirs, with some simple modifications. For completeness,

we present the details.

Define

B1(Γ) = {φ ∈ Γ : φ translates a rank one geodesic }.

Lemma V.18. B1(Γ) ⊆ A1(Γ).

Proof. For φ ∈ B1(Γ) translating γ, the flat strip theorem guarantees that γ is the

unique rank one geodesic translated by φ. Thus every element of ZΓ(φ) leaves γ

invariant. Since Γ is discrete, ZΓ(φ) must therefore contain an infinite cyclic group

of finite index.

We will show there exist elements φ11, φ12, φ21, φ22 ∈ Γ such that

(?) Γ = φ−1
11 B1 ∪ φ−1

12 B1 ∪ ψ−1
21 B1 ∪ ψ−1

22 B2,

which implies r(Γ) ≤ 1, after which we will make a separate argument for equality.

As in Ballmann-Eberlein a point x ∈ M(∞) is called hyperbolic if for any y 6= x

in M(∞), there exists a rank one geodesic joining y to x. By Theorem V.14, any

rank one axial geodesic has hyperbolic endpoints; thus Corollary V.16 implies that

the set of hyperbolic points is dense in the open set of M(∞) consisting of endpoints

of rank one vectors.
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The following generalizes Lemmas 3.5 and 3.6 in [8]:

Lemma V.19. Let p ∈M , let x ∈M(∞) be hyperbolic, and let U∗ be a neighborhood

of x in M . Then there exists a neighborhood U of x in M and R > 0 with the

following property: For all u ∈ U and v ∈ M − U∗, there is a unique rank one

geodesic σ connecting u and v, and moreover d(p, σ) ≤ R.

Proof. The proof is identical to that of [8]. Fix q ∈ M − U∗. Since x is hyperbolic

there exists a rank one geodesic γ from x to q; then Lemma V.8 shows that there

exists a neighborhood Vq of q and Uq of p such that any u ∈ Uq and v ∈ Vq can be

connected by a unique rank one geodesic σ, and moreover that σ lies within some

bounded distance of γ(0), and in particular, within some bounded distance Rq of p.

Now, M − U∗ is compact, so we may cover it with finitely many of the Vq,

M − U∗ ⊆ Vq1 ∪ · · · ∪ Vqk .

Then U = Uq1∩· · ·∩Uqk satisfies the conclusion of the lemma withR = max{Rqi}.

We now generalize [8] Lemma 3.8:

Lemma V.20. Let x, y be distinct points in M(∞) with x hyperbolic, and suppose

Ux and Uy are neighborhoods of x and y, respectively. Then there exists an isometry

φ ∈ Γ with

φ(M − Ux) ⊆ Uy and φ−1(M − Uy) ⊆ Ux.

Proof. Since x is hyperbolic, there is a rank one geodesic from x to y. By Proposition

V.15 there is therefore a Γ-periodic geodesic with endpoints in Ux and Uy, and the

result now follows from Theorem V.14.

The following is an imperfect generalization of [8] Lemma 3.9 which suffices for

our purposes:
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Lemma V.21. Let x ∈ M(∞) be hyperbolic, U∗ ⊆ M a neighborhood of x, and

p ∈ M . Then there exists a neighborhood U ⊆ M of x such that if φn is a sequence

of isometries with φn(p)→ z ∈M(∞)− U∗, then

sup
u∈U

∠φn(p)(p, u)→ 0 as n→∞.

Proof. By Lemma V.19 there exists R > 0 and a neighborhood U ⊆ M of x such

that if σ is a geodesic with endpoints in U and M − U∗ then d(p, σ) ≤ R.

Let xn ∈ U be an arbitrary sequence, and for each n let σn be the geodesic through

xn with σn(0) = φn(p). Denote by bn be the point on σn closest to p, and let γn be

the geodesic through p with γn(0) = φn(p).

By construction d(p, bn) ≤ R, and so we also have d(φ−1
n (p), φ−1

n (bn)) ≤ R. It

follows that any subsequential limit of φ−1
n σn is asymptotic to any subsequential

limit of φ−1
n γn. In particular

∠φn(p)(p, xn) = ∠p(φ
−1
n (p), φ−1

n (xn))→ 0,

from which the lemma follows.

Finally we generalize [8] Lemma 3.10:

Lemma V.22. Fix p ∈M . Let x1, x2 be hyperbolic points in M(∞), and let A1, A2

be open subsets of M(∞) that are δ-separated when viewed from p, i.e., ∠p(a1, a2) ≥ δ

for all a1 ∈ A1, a2 ∈ A2. Then there exist neighborhoods V1 of x1 and V2 of x2 such

that for all φ ∈ Γ, one of the four intersections φ(Vi)∩Aj (for i, j ∈ {1, 2}) is empty.

Proof. The proof is identical to that of [8]. We begin by fixing disjoint neighborhoods

W1 of x1 and W2 of x2 in M , and let U∗1 , U
∗
2 be neighborhoods of x1, x2 in M such

that U
∗
i ⊆ Wi. By Lemma V.21, there exist neighborhoods Ui ∈ U∗i of xi such that
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for any sequence of isometries φn ∈ Γ with φn(p)→ z ∈M(∞), we have

sup
u∈U

∠φn(p)(p, u)→ 0.

We proceed by contradiction. Thus, we assume there exists a neighborhood basis

V n
i of xi and a sequence φn ∈ Γ such that for every n, the intersections φn(V n

i )∩Aj

are all nonempty. By passing to a subsequence, we may assume that V n
i ⊆ Ui for

every n, and we may assume that both sequences {φn(p)} and {φ−1
n (p)} converge,

say to y and z in M , respectively.

We claim first that y ∈ M(∞). For suppose y ∈ M ; then, passing to a further

subsequence, we may assume the isometries φn converge to an isometry ψ of M

(which need not be in Γ). But then for any fixed neighborhood O of ψ(x1), the sets

φn(V n
1 ) must all eventually lie in O, and in particular, they cannot intersect both the

δ-separated sets A1 and A2. This establishes the claim, and we remark that therefore

z ∈M(∞) as well.

Now, either z /∈ W1 or z /∈ W2. Suppose for instance z /∈ W1. Then φ−1
n (p) ∈

M − U∗1 for large n, and thus by construction

sup
u∈U1

∠p(φn(p), φn(u)) = sup
u∈U1

∠φ−1
n (p)(p, u)→ 0.

It follows that φn(U1) is eventually contained in any open neighborhood of y, and in

particular, can not meet both A1 and A2, which is the desired contradiction.

Proposition V.23. If M is a rank one manifold without focal points and Γ is a

discrete subgroup of isometries of M , then r(Γ) ≤ 1.

Proof. The proof is identical to that of [8]. Fix p ∈ M . Fix also distinct points

x1, x2, y1, y2 ∈M(∞) such that x1, x2 are hyperbolic; finally, fix δ > 0 and neighbor-

hoods C1, C2 of x1, x2 and A1, A2 of y1, y2 such that any two of these four neighbor-

hoods are δ-separated when viewed from p. By making C1, C2 smaller if necessary,
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we may assume these satisfy the conclusion of Lemma V.22 relative to A1, A2. Fi-

nally, we fix by Lemma V.19 neighborhoods V1, V2 of x1, x2 so that both (a) V i ⊆ Ci

and (b) any point in Vi is connected to any point in M − Ci by a unique rank one

geodesic.

Using Lemma V.20, we may choose for each i, j ∈ {1, 2} an element φij ∈ Γ with

φij(M − Aj) ⊆ Vi and φ−1
ij (M − Vi) ⊆ Aj.

See figure, where we have drawn lines for the φij to indicate that φij may be thought

of as translation of a rank one geodesic with endpoints in Vi and Aj.

Figure 5.2: Proposition V.23

We claim that

Γ = φ−1
11 B1 ∪ φ−1

12 B1 ∪ ψ−1
21 B1 ∪ ψ−1

22 B2.

To see this, let ξ ∈ Γ. By construction, there is some i, j such that ξ(Ci) ∩ Aj = ∅;

we fix this i, j for the remainder of the proof.

Consider the map φijξ; we have

φijξ(Ci) ⊆ φij(M − Aj) ⊆ Vi ⊆ V i ⊆ Ci

from which it follows that φijξ fixes a point v in Vi. Similarly,

(φijξ)
−1(M − Ci) ⊆ ξ−1Aj ⊆M − Ci,
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so that (φijξ)
−1, and therefore also φijξ, has a fixed point u in M − Ci. It follows

that φijξ fixes the unique rank one geodesic γ from v to u.

We would like to show that in fact φijξ translates the geodesic γ and thus that

φijξ ∈ B1(Γ). In fact, φijξ fixes no point of M . To see this, note that φijξ(Ci) is a

proper subset of Ci; but this is impossible if φijξ fixes any point of M , which is clear

by considering the action of φijξ on M(∞) as seen from the fixed point.

Thus we have shown that φijξ translates a rank one geodesic, and it follows, as

claimed, that

Γ = φ−1
11 B1 ∪ φ−1

12 B1 ∪ ψ−1
21 B1 ∪ ψ−1

22 B2,

and hence that r(Γ) ≤ 1.

Theorem V.24. If M is a rank one manifold without focal points and Γ is a discrete

cocompact subgroup of isometries of M , then r(Γ) = 1.

Proof. Again, the proof is as in [8]. In light of the previous result, we must show

r(Γ) 6= 0. Suppose otherwise; then there exist ξ1, . . . , ξk ∈ Γ with

Γ = ξ1A0 ∪ · · · ξkA0.

We remark that A0 is the set of elements whose centralizer is finite. In particular,

any element of A0 has finite order and hence fixes a point of M by Proposition III.10.

We wish to construct x1, x2, y1, y2 and neighborhoods Ci of xi and Ai of yi as in

the previous proof, but now satisfying the following property: for each j we should

have ξj(C1) ∩ A1 = ∅. To do this, first choose y1, y2 and neighborhoods A1, A2 so

that the complement of the union of the sets ξ−1
j (A1) has nonempty interior; we may

then choose x1, x2 in this interior and proceed as in the previous proof.

Then with φ11 as above, we have shown that φ11ξj fixes no point of M . However,

we must have φ−1
11 ∈ ξjA0 for some j, and then (φ11ξj)

−1 ∈ A0 and hence has a fixed
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point, which is a contradiction.

5.3 Completion of the proof.

We complete the generalization of Ballmann-Eberlein’s Theorem on the rank of

the fundamental group in this section by dealing with the flat factors of M . We work

with Clifford translations; the necessary theory for these isometries, for manifolds

without focal points, was developed in section 3.5. Our proofs in this section are

identical to the proof of Theorem 3.11 in [8].

Lemma V.25. Let M be a complete, simply connected Riemannian manifold with

no focal points and without flat factors, and let Γ be a discrete, cocompact subgroup

of isometries of M . Then rank(Γ) = rank(M).

Proof. By Corollary IV.18, M decomposes as

M = MS ×M1 × · · · ×Ml,

where MS is a symmetric space of noncompact type, and each Mi is rank one and

nonsymmetric. By Lemma V.4, each Mi has discrete isometry group. Then Lemma

III.38 shows that Γ has a finite index subgroup Γ∗ splitting as a product

Γ∗ = ΓS × Γ1 × · · · × Γl.

Then Theorem V.24 shows that r(Γi) = 1 for each i. In fact it follows from that

theorem that r(Γ∗i ) = 1 for any finite index subgroup Γ∗i of Γi, so that rank(Γi) = 1.

Meanwhile, Prasad-Raghunathan [42] have shown rank(Γs) = rank(MS), so that by

Theorem V.3

rank(Γ) = rank(Γ∗) = rank(ΓS) + rank(Γ1) + · · ·+ rank(Γl)

= rank(MS) + l = rank(M).
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Theorem V.26. Let M be a complete, simply connected Riemannian manifold with

no focal points, and let Γ be a discrete, cocompact subgroup of isometries of M acting

freely. Then rank(Γ) = rank(M).

Proof. Write M = Es × M2 where M2 has no flat factors Es is an s-dimensional

Euclidean space. By Lemma III.34 there is a finite index subgroup Γ0 of Γ such that

for any finite index subgroup Γ∗ ⊆ Γ0, we have Z(Γ∗) = C(Γ∗).

We now fix such a finite index subgroup Γ∗ ⊆ Γ0. By Theorem III.41, Z(Γ∗) is a

free abelian group of rank s, i.e., Es/Z(Γ∗) is a flat s-torus.

We let πE : Γ∗ → Isom(Es) and π2 : Γ∗ → Isom(M2) be the projections, and

denote the images by Γ∗E and Γ∗2. Note that Γ∗E consists of translations of Es since

Z(Γ∗) is a lattice of translations of Es. In addition, Γ∗2 is discrete by Lemma III.39.

It follows from Lemma V.25 that

rank(Γ∗2) = rank(M2) = rank(M)− s.

We claim that π2(Ai(Γ
∗)) = Ai−s(Γ

∗
2), and moreover that Ai(Γ

∗) = π−1
2 (Ai−s(Γ

∗
2)).

To check these equalities, fix φ = (φ1, φ2) ∈ Γ∗. Since Γ∗E is a group of translations,

it’s easy to see that

π−1
2 (ZΓ∗2

(φ2)) = ZΓ(φ),

and therefore that π2 : ZΓ(φ) → ZΓ∗2
(φ2) is surjective with kernel Z(Γ∗). Moreover,

π−1
2 (A) ⊆ Γ∗ is abelian iff A ⊆ Γ∗2 is abelian. The claim now follows from the

definition of Ai, noticing that Z(Γ∗) = C(Γ∗) is a free abelian group of rank s.

One now sees easily that if {φ1, . . . , φl} is a finite subset of Γ∗, then

Γ∗ =
l⋃

α=1

φαAi(Γ
∗)

107



if and only if

Γ∗2 =
l⋃

α=1

π2(φα)Ai−s(Γ
∗
2).

In particular, it follows that r(Γ∗) = r(Γ∗2) + s. We conclude that

rank(Γ) = rank(Γ∗) = rank(Γ∗2) + s = rank(M).
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