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CHAPTER I

Introduction

This thesis is divided into two parts that describe the main experimental thrusts

making up this dissertation. The first is centered around the development of a THz

time-domain spectrometer optimized for high frequency operation in the 5-8 THz

range and in the second half we describe how this system is applied, in addition

to other methods, to study the optical properties of a magneto-dielectric composite

made up of ferroelectric Strontium Titanate (STO) inclusions inside a host of anti-

ferromagnetic Nickel Oxide (NiO) which holds promise for bulk negative refraction.

Terahertz time-domain spectroscopy has become a popular tool for imaging appli-

cations and spectroscopic study of plasmonic based metamaterials, negative refrac-

tion, explosives and more traditional condensed matter investigations of character-

istic vibrational and magnetic modes in the far-infrared wavelength range. [1] The

popularity of this technique stems in part due to the wide availability of ultrafast

Ti:sapphire based laser systems with which a THz emitter and detector pair can be

combined. The accessibility, high signal-to-noise ratio (SNR) and ability to measure

the time evolution of the field, thereby receiving double the information–amplitude

and phase–have made this technique competitive with conventional Fourier Trans-

form Infrared Spectroscopy (FTIR) methods. [2] Unfortunately, one of the main

drawbacks of this approach is that the spectral sensitivity is typically limited to fre-
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quencies below 6 THz, which leaves many interesting phenomena at high frequencies

out of reach. [3, 4] In spectroscopic measurements additional losses are usually intro-

duced due to the sample under investigation (reflection or transmission losses) and

due to optics in the THz beam path, which reduces the available bandwidth further.

[5] Taking these requirements into account and in part being motivated by some of

our earlier measurements that lacked the necessary high-frequency signal, we have

developed a system based on optical rectification and electro-optic sampling in Gal-

lium Phosphide (GaP) capable of measurements in the range of 0.5 to 8 THz, driven

by a 50 fs Ti:sapphire oscillator laser. The dispersion of the refractive index due to

an infrared active phonon allows to achieve collinear phase matching between the

near infrared pump beam and the generated THz pulse. The conversion efficiency is

optimized at 5-8 THz, where typical systems tail off. The capability of the system

is demonstrated by a spectroscopic reflectance measurement of a well-characterized

material and by comparing the system to a commercially available photoconductive

(PC) emitter. We show that our system has a factor of ∼ 30 improvement to power

conversion efficiency at 7 THz in comparison to the PC emitter which is designed for

high power, broadband operation. On the theoretical side, we describe the emission,

propagation and detection of THz pulses in the system in a unified framework taking

into account the filtering that is introduced due to diffraction both inside the gener-

ating crystal and due to apertures of the collimating/focusing optics. We find that,

in the absence of nonlinear saturation effects, the optimum high frequency generation

occurs when the optical excitation beam is focused to a spot size equal to or smaller

than the terahertz wavelength. We also measure and discuss the power scalability

of this technique which has the potential to produce THz powers up to 20 µW by

scaling up the pump power at similar operating conditions.

We employ a THz-TDS system in addition to FTIR and scanning electron mi-

croscopy (SEM) in the second half of this dissertation work to study the NiO-STO
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composite ceramic system. This particular structure and the idea behind the project

fits into the broad area of surface polariton photonics also known as plasmonics, for

which we now give a brief overview. [6, 7] The name plasmonics is derived from the

fact that metals are typically used in such applications for which the electromag-

netic wave solutions are in the form of coupled electron plasma and light oscillations

known as plasmon-polaritons. The central and most appealing feature of plasmonics

is that the localization or restriction of the metal in one or more dimensions allows

it to sustain electromagnetic radiation that is confined to the surface/interface such

that the energy is also confined, leading to the name surface polaritons. In order

to sustain localized surface modes, the material must contain a frequency region of

negative electric permittivity, which for metals occurs below the plasma frequency in

the visible wavelength range. Since the region of negative permittivity is the only

requirement, [8] other types of materials may be used to accomplish the same effect.

For example, ionic crystals contain vibrational resonances that induce negative re-

gions of electric permittivity in the far-infrared range in which case the surface effects

are due to phonon-polaritons. [9] Irrespective of the material used, the dispersion

relation or natural frequencies of the surface polariton excitations are dependent on

the geometric structure and may be engineered in a wide region of negative per-

mittivity. Due to the recent advancements in material processing and fabrication

techniques such as electron beam lithography, focused ion beam milling and special-

ized 3D self-assembly approaches, [10] it is possible to structure the interfaces with

nanometer precision so that the electromagnetic energy may be controlled, guided

and localized well below the wavelength of light for various applications which leads

to nano-scale, sub-diffraction-limited operation. The virtue of nano-scale design is

driven of course by the computing and electronics industries where the miniatur-

ization of functional components and devices is key. Some of the hottest areas of

plasmonics today include: nano-waveguiding [11], surface enhanced fluorescence and
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Raman scattering which allows detection of single molecules, [6, 12] chemical and

biological sensing which uses the fact that the surface-plasmon frequency depends

on the surrounding environment, [12] nonlinear optical material engineering where

the localization of intensity leads to enhanced nonlinear interactions, [6, 7] plasmonic

absorption enhancement in solar photo-voltaic devices [13] and meta-materials for

negative refraction and super-resolution imaging [6, 9, 14].

Our work fits into the meta-material sub-field of plasmonics which may be re-

garded as an independent field due to its popularity and wide range of research. [14]

However, because plasmonics typically describes the underlying physics of metama-

terial device operation and because the composites we fabricated rely on plasmonic

(surface phonon-polariton) resonances of the inclusions, here we emphasize the um-

brella plasmonics aspect.

Metamaterials are engineered electromagnetic media made up of scattering sub-

units that collectively serve to create a desirable electromagnetic property difficult

to find or achieve in natural substances. The size of the unit cell is significantly

smaller than the wavelength of light so that an effective, homogeneous material is

seen by the light. The building blocks or unit cells are typically made up of resonant

plasmonic metal structures as discussed above that are designed to produce tunable

effective electric and magnetic permeabilities in the composite medium. The original

motivation of this research was to implement a double negative (where the electric

permittivity ε < 0 and magnetic permeability µ < 0) substance as postulated by

Veselago more than forty years ago [15] thereby yielding an effective negative index

of refraction which is not known to exist in any natural substance in the infrared

and visible wavelength ranges. A negative-index medium (NIM) possesses many

interesting reversed properties from a scientific point of view: negative refraction at

an interface between a positive and a negative index medium, reversed Doppler shift,

reversed Cerenkov cone and reversed energy flow relative to phase velocity [15]. From
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the applications point of view, the most appealing feature of NIMs is their ability

to produce super-resolution lenses–that is, lenses not limited by the fundamental

diffraction limit which restricts the minimum focal spot to a size comparable to the

wavelength of light [16]. Due to the fact that it is easier to produce unit cell structures

with micron-sized geometry, metamaterials have found active use in THz technology

for the design of absorbers, switching and modulation devices where the wavelength

of light is one the order of 100 µm. [17]

Despite the numerous advances toward the production of metamaterial NIMs there

remain significant obstacles. The most popular and groundbreaking design of meta-

NIM was done by Smith and co-workers [18] which relied on a combination of split

ring resonators (SRR) and metal wires arranged in a cubic lattice. The SRRs are

resonant circuits that produced loop currents responsible for negative µ, whereas the

metal wires served as the dilute plasma material with negative ε. However, the mate-

rial operated at 5 GHz which is significantly lower than the visible frequencies where

NIMs are sought and was composed of a finite number of layers which does not re-

sult in a truly bulk medium. As a result, the focus of researchers has shifted toward

correcting these two shortcomings. [19] Soon after, there followed a down-scaled meta-

material at higher terahertz frequencies, [20] however, this was a 2D planar structure.

The most recent and sophisticated advances have yielded either multilayer, but still

2D structures at visible wavelengths [21] or nearly 3D NIMs at telecommunication

wavelengths [22], with both approaches requiring significant efforts at microfabrica-

tion. As mentioned above, at terahertz frequencies metamaterial development is also

a vibrant research area because of the numerous applications in this spectral range,

[17] however, structural design is also typically limited to two dimensions due to the

challenges in fabrication. [10]

The second part of this thesis involves the fabrication and study of a composite

ceramic metamaterial with the ultimate goal of producing a bulk NIM in the terahertz
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frequency range. Unlike the SRRs that have been used to achieve the magnetic

response by Smith et. al., [18] we chose to use the magnetic resonance of a natural

substance with the antiferromagnets being the best candidates known to have strong

magnetic-dipole active resonances in the terahertz frequency range [18]. Even though

antiferromagnetic resonance (AFMR) phenomena typically have narrow linewidths,

it is possible to tune the location of the resonance using temperature and pressure

dependence. The material chosen for this purpose is Nickel Oxide (NiO) which has an

AFRM at 1 THz and serves as the magnetically active host matrix. The advantage

of this approach is that we obtain a three-dimensional magnetic system as a starting

point compared to the finite layer arrays of SRRs. In order to attain negative electric

permittivity, the magnetic NiO host is doped with resonant plasmonic inclusions of

Strontium Titanate (STO). STO is not a typical plasmonic material because it is

not a metal, however the large TO-LO splitting of the infrared-active vibrational

mode provides a wide region of negative electric permittivity from 20 to 500 cm−1

which accomplishes the same effect with regard to surface mode behavior as metal

structures at near infrared wavelengths. The NiO/STO material combination has

been fabricated and studied previously [23], however, the proposed interpretation for

the effective optical constants was based on weighted averaging of bulk properties as

opposed to plasmonic properties. Moreover, no investigation of the resulting effective

refractive index was made. It will be shown in the present thesis that geometry-

dependent effects of the STO inclusions play a crucial role in determining the effective

surface-polariton resonant behavior in the effective composite, the understanding and

control of which is key for the design of successful, bulk metamaterials at terahertz

frequencies.

The mixtures with low fractions of STO (0-15%) were measured in transmission

and reflection geometries in the range of 10-600 cm−1. Based on the transmission

measurements, the antiferromagnetic resonance of bulk NiO was observed in the ce-
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ramic mixtures in the temperature range of 5-295 K and its temperature dependence

was found to agree with the values in the literature of bulk NiO. The magnetic per-

meability was measured although the oscillator strength of the magnetic mode was

not found to be sufficient for negative permeability to occur at room temperature.

Pronounced narrowing of the linewidth at 50 K and below makes it possible, in princi-

ple, for the permeability to turn negative over a narrow frequency range significantly

smaller than one wavenumber around 1 THz, although precise experimental determi-

nation of the linewidth with resolution of 0.1 cm−1 or better requires further careful

investigation.

The dielectric properties of the composite were measured and were found to be

determined by surface mode resonances that depend on the shape of STO inclusions.

The spectral features can be described well using the framework of the Clausius-

Mosotti (CM) theory, taking into account the particle distribution and clustering.

The observed reflectance displays a characteristic small-size, surface-mode splitting

of the original bulk inclusion resonance into a range of modes in the region of negative

permittivity of bulk STO. The three dominant features observed in all samples are:

1) a low frequency, temperature dependent peak at ∼ 20-100 cm−1 corresponding

approximately to the bulk TO soft mode of STO which indicates the onset of a dis-

tributed absorption band of the composite, 2) a mode at ∼ 260 cm−1 which is the

dipolar surface plasmon (Fröhlich resonance) of the nearly spherical, single-particle

STO inclusions in the quasi-static limit and 3) a broad feature in between the TO and

LO frequencies of the bulk STO phonon-polariton which corresponds to clustering and

a distribution of particle shapes. The above three features can be interpreted within

the framework of vibrational modes of ionic, finite-size STO particles in contrast to

the well known phonon-polaritons of infinite crystals. Clustering effects are found

to be significant and as a first order approximation clusters are viewed as effective

single particle ellipsoids. Inter-particle interactions are included in the mean-field
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sense, through the local field effect of the CM approximation. Feature (3) of the

transmission and reflection data can be described statistically as a continuous distri-

bution of ellipsoids corresponding to STO particle agglomerates and irregular single

particles of varying shapes. The observation of continuous and single-particle features

suggests the possibility of engineering ceramics to have desired bulk spectral features

such as the strong dielectric resonances required for negative refraction although the

particular spherical particle resonance that we see is far-removed from the magnetic

behavior of NiO.

A detailed discussion of the above phenomena is organized into three chapters.

Chapter two will provide the experimental background and techniques used in col-

lecting the data, including the optical sources, the methods of ultrafast THz gener-

ation/detection and the ceramic fabrication technique. Chapter three will describe

the high-frequency terahertz time-domain system, taking into account difference fre-

quency generation, electro-optic sampling and propagative diffraction effects; as well

as the performance evaluation of the emitter. Chapter four will present the experi-

mental data and theoretical background of the composite NiO-STO project. Lastly,

we will outline the strengths of the present findings and possible future research di-

rections in chapter five.
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CHAPTER II

Experimental Aspects

2.1 Introduction

Ultrafast time-resolved techniques have become popular and widespread over the

past several decades due to the availability of stable optical sources of pulsed pi-

cosecond and femtosecond coherent radiation and the numerous applications in the

areas of materials research, fundamental science and industrial uses such as metrology

and micro-machining where these sources are being used. [24, 25] The present work

is focused on applying ultrafast technology for investigating new photonic materials

and fundamental optical properties that occur on short time scales with oscillation

frequencies in the visible and infrared wavelength ranges. Some examples of the

physics under investigation include nonlinear optics, negative refraction and plas-

monics where in all cases the unusual properties of light inside matter are utilized

or engineered with an eye toward applications such as high resolution imaging, spa-

tially localized light enhancement or the production of coherent radiation in hitherto

unattainable frequency ranges. The emphasis of the ultrafast technique is to observe

these phenomena in the time-domain. [26] The ultra-short burst of energy from the

laser serves as a pump to impulsively excite a dynamical process such as the oscil-

lating vibration of a crystal lattice or a surge current in a biased semiconductor.

Following the excitation, it is possible to observe the evolution of the dynamics in
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time by gating the process with a second pulse, known as the probe, at precisely

controlled time-delays with femtosecond resolution. This technique is known in the

ultrafast community as pump-probe; and an important component of it which al-

lows extension of the spectral range of investigation from the visible to the infrared

wavelength range is terahertz time-domain spectroscopy (THz-TDS). [1] The idea is

to use the ultrafast visible pump pulse for exciting rapidly decaying currents inside

either a nonlinear or a photoconducting medium, known as the THz emitter, which

produces free-space coherent THz radiation. The emitted THz pulse, which is typ-

ically single-cycle and contains a broad spectrum of frequencies, now serves as the

pump for studying dynamics in a different frequency range or for imaging applica-

tions. However, unlike incoherent blackbody sources of far-infrared radiation, this

technique retains its time-domain character since the visible probe pulse is still capa-

ble of gating the THz transient thereby measuring directly the free-space terahertz

electric field. In this chapter we will review the optical sources that were used in

experiments as well as give an overview of the components of the THz time-domain

system. A number of experiments were performed at cryogenic temperatures which

involved the addition of a cryostat in the propagation path of THz pulses. Finally a

big component of the NiO-STO composite work was the fabrication of ceramics and

their characterization which will also be presented.

2.2 Optical sources

The ultrafast optical source used in this experiment is a commercial model (Tsunami,

Spectra-Physics) titanium-doped sapphire (Ti:sapphire) mode-locked laser in combi-

nation with a commercial solid-state pump laser (Millenia Vs, Spectra-Physics) based

on the neodymium yttrium vanadate (Nd:YVO4) gain medium. The Nd:YVO4 out-

put is frequency doubled by non-critically phase matched (temperature dependent)

lithium triborate (LBO) crystal which provides a green pump input for the Ti:sapphire
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Figure 2.1: Beam path for Tsunami models 3960 and 3941 femtosecond configura-
tions. Taken from [27].

at 532 nm. The Tsunami has a ten-mirror folded cavity design as shown in Fig. 2.1

with a standard set of optics that allows operation in the range of 720-850 nm. A pair

of prisms which disperse the light in the cavity in combination with a slit are used

for wavelength and pulse width tunability in addition to compensating for group-

velocity dispersion (GVD) within the cavity. An acousto-optic modulator ensures

mode-locked operation at 82 MHz with an output pulse width of ∼50 fs at optimal

conditions. Since the lasing range of the Ti:sapphire crystal is 690-1080 nm, different

sets of optics are available for extending the output range. The system is capable of

being purged with dry nitrogen for eliminating water vapor absorption lines although

we have not found it necessary to use this capability in the standard wavelength

range. The Millenia pump laser operates at up to 5.5 W which yields an optimal

Tsunami output of 800 mW of average pulsed power. For inelastic Raman scatter-

ing experiments which were done for material characterization, an Argon-ion laser

(Beamlok 2060, Spectra-Physics) was used which produces continuous-wave output

at a number of lines in the blue-to-green wavelength range, with the dominant lines
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being: 457.9, 476.5, 488.0, 514.5, 528.7 nm. In order to extend the spectral range

for scattering experiments, the Argon-ion was also used as a pump for a home-built

continuous-wave Ti:sapphire based cavity with a birefringent-filter which provides

wavelength tunability in the near-infrared range at 750-840 nm. Raman scattering

was measured using one of two spectrometers: Dilor XY (HORIBA, Ltd.) or the

SPEX 1404 (Horiba, Ltd.). [28] Raman scattering was done on powdered samples,

where selection rules were not important and a standard 90◦ collection geometry was

employed. [29]

2.3 Terahertz time-domain

The detailed schematic diagram of the THz system is shown in Fig 2.2. The

output from the Ti:sapphire laser first makes a double pass through a pair of SF10

flint glass prisms which are used to pre-compensate for the positive group-velocity

dispersion (GVD) of the optics further down in the optical path. The prism on the

right can be adjusted into and out of the optical path and the prism separation length

is fixed to match the total amount of GVD, [25, 30, 31] which in our case is 75 cm.

The most dispersive optical elements of the set-up are housed in the optical isolator

(OI), which contains a Terbium Gallium Garnet (TGG) Faraday rotation crystal

and two Glan-Taylor calcite polarizers, and in the cryostat which contains a pair of

plastic (TOPAS COC) windows. Following the splitting of the beam into pump and

probe, the amount of dispersion in each path must be approximately equal in order

to achieve optimal compensation. Due to the presence of higher order terms in the

dispersion effect which cannot be compensated, it is desirable to keep the number

of dispersive optical components at a minimum. The optical isolator is used for

preventing reflections from going back into the laser cavity which affects the state of

mode-locking. With careful alignment of optics further down the path it is possible

to avoid the use of the optical isolator. Following the beam-sampler, the majority of
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Figure 2.2: Schematic diagram of the terahertz optical set-up. Dashed lines indicate
removable components. The abbreviations are: OI–optical isolator, λ/2–
half-wave plate; λ/4–quarter-wave plate; BS–85% pump, 15% probe beam
sampler; FM–flip mirror; L1–25 cm focal length plano-convex lens; L2–
25 cm focal length plano-convex lens; L3–7.5 cm focal length bi-convex
lens; IR–iris; P–high extinction polarizer; PM–90 ◦ off-axis parabolic mir-
ror with effective focal length of: 1) 101.6 mm 2) 25.4 mm 3) 101.6 mm
4) 101.6 mm 5) 101.6 mm 6) 50.8 mm; NLE: nonlinear crystal emit-
ter; T-SED–Tera-SED; HRF-Si–near-infrared high-reflection coated sili-
con dichroic filter; ITO–indium-tin-oxide coated glass slide; EO–electro-
optic crystal; WP–Wollaston prism; BD–balanced photo-detector.
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the beam (85%) is sent to the delay stage as the “pump” and the rest goes to the

rapid scanner as the “probe”. The function of the delay stage and the rapid scanner is

to create an optical path difference between pump and probe which translates into a

time difference of ∆t = ∆d/c where c is the speed of light. Thus by scanning the path

difference and performing sequential sampling measurements, it is possible to map

out the time evolution of the measured process at the detector. The rapid scanner is

implemented using a mini-shaker (Bruel & Kjaer 4810) with a mounted retro-reflector

driven by a high-current amplifier at 1-5 Hz. This design is used for measuring

the signal in real-time during the alignment process, however it is not optimal for

precise measurement. For this purpose, the slow linear delay stage (Aerotech, Inc.) is

used which scans one point at a time with a prescribed integration time and 0.5 µm

resolution. On the pump path, there are two options for the THz emission process–

the photoconductive emitter or the nonlinear crystal with the choice being made

by adjusting the flip mirror. The photoconductive emitter is used in a backward

geometry such that the emitted THz radiation is collected from the same side as

the incident optical illumination. There are two choices for the photoconductive

(PC) emitter: a commercial Tera-SED (Gigaoptics, GmbH) or a custom made single

transmission line dipole antenna fabricated on low temperature grown GaAs (LT-

GaAs). These choices and their operating principles will be discussed in the next

section. An indium-tin-oxide coated glass slide (resistivity of < 5 Ω/in2) serves as

the dichroic filter for transmitting the near-infrared beam and reflecting the emitted

THz beam. For the nonlinear emitter, either a slab of (110)-oriented GaP or (110)-

oriented ZnTe is used in a collinear phase-matched configuration. Two parabolic

mirrors (either PM1/PM3 or PM2/PM3) guide the THz beam toward the sample

which may be cooled down to T = 5 K using Janis STVP-400 liquid helium flow

cryostat. The sample can be measured either in reflection or transmission geometries,

with both paths shown in the schematic, although it cannot be done simultaneously.
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Dashed lines indicate the optical components that may be removed for implementing

the various configurations. In the case of reflection, the THz beam is steered toward

the electro-optic (EO) detection crystal using PM5/PM6, whereas for transmission

PM4/ITO/PM6 accomplish the same effect. For each fixed position of the delay stage,

the THz electric field is measured using EO detection as will be reviewed in the next

section, which is implemented either in GaP or ZnTe nonlinear crystals similarly

to the case of THz emission. The field is measured by nonlinear mixing of the THz

pulse with the near-infrared probe beam which travel collinearly and are both focused

onto the detection crystal. In order to achieve the collinear propagation, a high-

reflection coated silicon substrate dichroic filter (SS-HRFZ-SI, Tydex Optics) is used

to reflect the near-IR beam at 15◦ angle of incidence with better than 95% reflectance

and simultaneously transmit the THz beam. A high-extinction polarizer is used

prior to HRF-Si which is necessary for high-sensitivity, polarization dependent EO

detection. The electro-optic effect in the crystal induces phase retardation between

the orthogonal polarization components of the probe beam which is proportional to

the terahertz electric field. A π/2 phase shift is introduced by the quarter-wave plate

which is a necessary bias point such that the difference in intensities is linear. [32,

33] The beam goes through the Wollaston prism which separates the two orthogonal

polarization states, each of which is directed into a separate photodiode of the Nirvana

(0901, New Focus, Inc.) detector for balanced detection. Thus the difference signal

of the two diodes is proportional to the terahertz electric field that we are measuring.

The signal from the photo-detector is used as an input into a lock-in for phase-sensitive

detection which results in electric-field sensitivity on the order of 10000:1 relative to

the noise floor. As discussed in Wahlstrand’s thesis, [34] phase sensitive detection

requires the signal be tagged or modulated at a particular frequency such that noise

at all other frequencies may be filtered out. For this purpose, we modulate the bias

voltage of the PC emitter at 15 KHz or we use an optical chopper at 2 KHz in the
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case of nonlinear generation. Finally, the data is routed to a personal computer for

automated data collection and retrieval.

2.4 Terahertz generation

As discussed in the experimental layout, the system employs two types of emit-

ters: photoconductive and nonlinear. They have different physical origins, but the

same effect of producing oscillating currents that act like radiating antennas of THz

radiation. We review the two different approaches below.

2.4.1 Photoconductive emission

Photoconductive emission operates according to the principle of the Auston switch

[35]. An incident pulse of energy ~ω that is above the band gap energy of the semi-

conductor illuminates the surface and produces free carriers. The surface of the

semiconductor is biased with an applied electric field by fabricating a pair of trans-

mission lines with a spacing on the order of 10-100 µm. The applied field accelerates

the freed carriers which causes a transient current lasting for several picoseconds, with

the exact duration being determined by factors such as the duration of the incident

pulse, carrier recombination and collision times. The resulting oscillating current will

act as a Hertzian dipole antenna emitting terahertz radiation into free space. This

radiation is then collected and guided by various optics as described in the previous

section. If we assume that the dimension of the excitation source is smaller that the

wavelength, then in the far-field the electric field is described by [36],

E(r, θ, t) =
le

4πε0c2r

∂j(t)

∂t
sin θ (2.1)

where j(t) is the current in the dipole, le the effective length of the dipole, ε0 the

permittivity of free space, c the speed of light and θ the angle relative to the dipole
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axis. If we consider a finite surface area being illuminated by the incident beam, then

we can express the photocurrent density as

j(t) = en(t)v(t) = σ(t)Ein(t), (2.2)

where e is the electron charge, n the surface charge density, v the charge velocity, σ the

conductivity and Ein(t) the internal electric field. Here we have considered only one

type of carrier to simplify the discussion, although in general electrons and holes will

be generated. The internal field will be made up of two parts, the bias field and the

opposing field due to the separated charges or current which will tend to screen out

the bias field [37]. With respect to the properties of the illuminated photoconductor

the generated THz field will be determined by the following dynamics,

E(t) ∝ e[n(t)
dv

dt
+ v(t)

dn

dt
]. (2.3)

The carrier density will be primarily determined by the incident pulse intensity

whereas the velocity will be proportional to the internal field in the semiconductor.

If we consider the linear regime of low excitation densities such that the screening

effect can be neglected then the velocity of the carriers can be expressed simply in

terms of the Drude model [38, 39],

dv(t)

dt
= −v(t)

τcol
+

e

m
Eb (2.4)

where Eb is the bias field that drives the electrons and τcol is the collision time.

This equation can be solved easily for v(t). Now consider an impulse of magnitude

Ioptδ(t)dt that excites a finite number of carriers, where Iopt is the optical intensity.
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The resulting photocurrent will be,

jδ(t) = en(t)v(t) =
e(1−R)(Ioptdt)

~ω
exp(−t/τrel)

τcol
m

(1− exp(−t/τcol))Eb (2.5)

where we have also taken into account the carrier relaxation rate, τrel, and R is the

reflectivity of the semiconductor. Thus the final photocurrent in terms of the incident

intensity and the response times of the photoswitch is [37, 39]

j(t) =
e(1−R)

~ω

∞∫
0

Iopt(t
′) exp(−t′/τrel)

τcol
m

(1− exp(−t′/τcol))Ebdt′. (2.6)

It is always desirable to have fast oscillations in the photoconductor such that the

emitted pulse will have as broad of a frequency spectrum as possible. Based on the

analysis of Eq. 2.6, the upper bound on the frequency spectrum of the pulse will

be set primarily by the incident pulse duration which determines the initial spike in

the THz transient and to a lesser degree by the relaxation/collision times which will

affect the more gradual evolution of the current that happens afterward.

We have used two different photoconductive emitters in this work as shown in Figs.

2.3 and 2.4. The first is an emitter with a 5 µm dipole spacing fabricated on a ∼1.5

µm epitaxially grown layer of LT-GaAs on top of semi-insulating GaAs (SI-GaAs)

substrate. The low temperature growth of GaAs reduces the carrier lifetime from ∼50

ps to ∼1 ps as measured by time-resolved reflectance, which improves the operation

of the photoconductor for THz applications. The point dipole antenna does not

couple out radiation easily to free space because of the high index mismatch between

GaAs and air which leads to a critical angle on the order of 15◦. For this reason,

high-resistivity silicon dome lens is attached to the emitter in order to collimate the

radiation. The leads of the transmission lines are wire-bonded to contacts such that

bias voltage may be applied which is typically 10 V. This produces an electric bias
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Figure 2.3: Images of the dipole LT-GaAs emitter pattern.
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field in the dipole of 20 KV/cm, which is close to the breakdown voltage of the

dielectric. The high bias field is important for accelerating the carriers and leads to

a linear relationship with the emitted THz field.

The second photoconductive emitter is the Tera-SED (Gigaoptics, GmbH) which

is a commercial device designed to produce high output power and a broad frequency

spectrum. The principle of operation is the same as with the single dipole, except

that an array of such lines is fabricated with 5 µm spacing. Every other line is

blocked so that the adjacent currents do not flow in opposite directions as shown

in Fig. 2.4. This design allows for a uniform bias field throughout the active area

and a more efficient, large-aperture generation. [37, 42] Unlike in the single dipole

case, the excitation area is much larger and could extend to several millimeters. The

generated terahertz waves are nearly planar so that it is significantly easier to couple

out the radiation into free space at normal incidence and a dome lens is not required.

Average terahertz powers of 100 µW have been generated from this emitter with 800

mW of average incident power from the Ti:sapphire laser oscillator. [42]

2.4.2 Nonlinear emission

The nonlinear emission of THz pulses is a result of the difference frequency mixing

of the frequency components of the optical pulse in the nonlinear medium which

induces nonlinear polarization, PNL and results in oscillating currents that emit THz

radiation. For a 50 fs pulse centered at ω0 = 2πc/800 nm the frequency bandwidth is

∆ω/2π ∼ 10 THz. If we neglect the diffraction of the optical pulse and take all of the

near-infrared frequency components to be collinear then the nonlinear polarization in

the medium as a function of distance z is,

PNL(Ω, z) = ε0χ
(2)(Ω)

ω0+∆ω/2∫
ω0−∆ω/2

E(ω + Ω)eik1(ω+Ω)E∗(ω)e−ik2(ω)dω

= ε0χ
(2)(Ω)eiΩz/vgIopt(Ω)

(2.7)
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Figure 2.4: Illumination side image (top) and schematic (bottom) of the Tera-SED
emitter. Taken from [41].
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where χ(2) is the nonlinear susceptibility, E(ω) are the frequency components of the

optical pulse, vg is the optical group velocity and Iopt(Ω) is the frequency spectrum of

the optical pulse envelope. The second equality follows from the fact that ∆ω � ω0

and k1(ω + Ω) − k2(ω) ≈ Ω dk
dω
|ω0 = Ω/vg. Thus the near-infrared pulse induces a

propagating nonlinear polarization that travels with the group velocity of the pulse

and acts as a source of THz waves. From this we will see that for optimum conversion

efficiency the velocity of the pulse must match the velocity of the THz wave such

that constructive interference can occur. Assuming that the pump does not get

depleted, the terahertz field that is generated will be governed by the single vector

wave equation, [43]

∇×∇× E(Ω)− n2(Ω)Ω2

c2
E(Ω) = µ0Ω2PNL(Ω) (2.8)

where the nonlinear polarization acts as the driving term at the terahertz frequency.

This problem has been solved generally for the case of plane-waves in a slab of ma-

terial, taking into account multiple-reflections and backward propagating waves. [44,

45] However, in practice it is important to focus the pump beam tightly into the non-

linear crystal which allows enhancement of the incident intensity and the resulting

THz emission. For this reason, the plane approximation is not appropriate since the

optical source is often comparable to or smaller than the THz wavelength. The prob-

lem of difference frequency generation in a nonlinear slab, taking into account the

size dependence of the optical beam has been solved in [46] using a Green-function

formalism. The configuration of the generation set-up is shown in Fig. 2.5 and the

optical pulse is incident from the bottom. Based on the above discussion the induced

polarization density is given by,

PNL(Ω,K; z) = x̂2ε0χ
(2)If (Ω)Is(K) exp[(ik0ng − 2α)(z +D)], (2.9)
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Figure 2.5: Three layer geometry with polarization source in medium with index n3.
Taken from [46].

where k0 = Ω/c, α is the field absorption coefficient of the optical pulse, Is(K) =

exp (−K2σ2
0/4) is the K-space intensity profile of the beam (normalized so that the

total power is independent of the spot size), and If (Ω) = I0

√
πτ0 exp (−Ω2τ 2

0 /4) is

the optical intensity envelope. The spot size σ0 and pulse duration τ0 are the 1/e

half-widths. The polarization density in Fourier space is defined by PNL(r, t) =
∞∫
0

dΩ
2π

∫
dK

(2π)2
PNL(Ω,K) exp(iK ·R), where r = xx̂+ yŷ + zẑ = R + zẑ.

The solution for the x̂-component of the electric field generated at the exit of the

slab is,

x̂ · E(Ω,K) =
ik20
w3
χ(2)(Ω)If (Ω)Is(K)[L+(Ω, K)

× (1
2
Cs − 1

2
Cs cos 2φ+ w1w3

2v1v3
Cp + w1w3

2v1v3
Cp cos 2φ)

+ exp(2iw3D)L−(Ω, K)

× (1
2
rs32C

s − 1
2
rs32C

s cos 2φ+ w1w3

2v1v3
rp32C

p + w1w3

2v1v3
rp32C

p cos 2φ)]

(2.10)

where

L±(Ω, K) =
exp (ik0ngD − 2αD)− exp [±iw3D]

[ik0ng − 2α∓ iw3]
(2.11)

are the phase matching factors, vi = nik0, wi = (v2
i −K2)1/2, rsij, r

p
ij are the reflection

coefficients and Cs, Cp are the Fabry-Perot factors for the s- and p-polarization

states as defined in [46]. Although the solution is quite complicated, we will see in

Chapter 3 that in the phase matched configuration it simplifies considerably. In actual

experiments, the angles are small and the beam propagates close to the optical axis.
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Due to the critical angle losses, the non-paraxial components of the THz wave do not

reach the detector because they cannot couple to free space from the emitter. For

this reason, the K ≈ 0 approximation in the amplitude factors gives very accurate

results. However, in the phase factors L±(Ω, K) the full K-dependence must be taken

into account so that the internal diffraction effects may be included.

2.5 Terahertz detection

The two detection techniques employed–photoconductive and EO-sampling–are

the reverse versions of the generation methods. In the photoconductive case, the

dipole antenna of Fig. 2.3 is used without the bias field in order to detect the prop-

agating THz field. The current in the photoswitch will be generated when the probe

pulse gates the dipole gap thereby generating free carriers and the acceleration field is

provided by the incident THz pulse. Thus the analysis of Eq. 2.6 applies except that

v(t) will be a function of ETHz(t) instead of Eb. In order to simulate the detected j(t),

Eq. 2.4 will have to be solved for some prescribed function of the incident ETHz(t).

In the case of EO-sampling, it is easiest to understand the detection concept in

terms of the static electro-optic effect. The application of a DC field in an electro-optic

crystal produces a change in the refractive index. For (1 1 0)-oriented zinc-blende

crystals which includes the GaP and ZnTe slabs that were used, the largest EO effect

occurs for the DC field being applied parallel to (1 1̄ 0) direction in which case the

directions (1 1̄
√

2) and (1̄ 1
√

2) at 45◦ to the DC field develop the largest difference

in the refractive index. [45] Let x̂, ŷ be the (1 1̄
√

2) and (1̄ 1
√

2), respectively. The

induced phase difference between these axes is,

Γ =
2πl

λo
n3
or41EDC (2.12)

where l is the length of the EO crystal, λo is the visible wavelength, no is the visible
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refractive index, r41 is the coefficient of the electro-optic tensor and EDC is the applied

field. Thus the induced phase difference is proportional to the applied electric field.

If the optical probe beam is also polarized along (1 1̄ 0) then after passing through

the EO crystal and λ/4-plate with slow and fast axes aligned along x̂, ŷ the field

components of the probe are,

Ex = a0 cos(kz − ωt− Γ/2)

Ey = a0 cos(kz − ωt+ Γ/2 + π/2)
(2.13)

which describes an elliptical state of polarization with principal axes given by

a = a0(1 + Γ/2)

b = a0(1− Γ/2).
(2.14)

The Wollaston prism is oriented with its axes at 45◦ relative to x̂, ŷ. It follows that

the difference signal between the photodiodes is,

S = Ia − Ib =
|a|2

2
− |b|

2

2
= |a0|2Γ. (2.15)

We see that the measured signal with balanced detection S ∝ Ioptχ
(2)EDC is propor-

tional to the applied DC field. In the experiment, the DC field will be the incident

THz pulse that we are measuring which is much slower compared to optical frequen-

cies. In the full analysis the velocity mismatch between the optical group velocity and

the THz phase velocity must also be included. We have considered the DC response

whereas in fact at every displacement of the delay stage the measurement will be

made up of a spectral contribution of THz frequencies each of which experiences a

slightly different phase mismatch with respect to the optical pulse. The final result

is, [47]
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S(τ) ∝
+∞∫
−∞

ETHz(Ω)f(Ω) exp(−iΩτ)dΩ, (2.16)

where

f(Ω) = Iopt(Ω)χ(2)(Ω)
[exp(iΩ(n(Ω)− ng)l/c)− 1

iΩ(n(Ω)− ng)l/c

]
(2.17)

where the last term in f(Ω) is the phase matching factor as seen earlier in the emission

derivation.

2.6 Ceramic fabrication

The composites of Nickel Oxide and Strontium Titanate are made into ceramics

from commercially available powders. The four different types of powders are: 1)

Nickel (II) Oxide, green, -325 mesh, average size of particle ∼ 5 µm (Sigma Aldrich,

399523) 2) Nickel (II) Oxide, nanopowder, less than 50 nm (Sigma Aldrich, 637130)

3) Strontium Titanate, classified as 5 µm but average size based on SEM of ∼ 800

nm (Sigma Aldrich, 396141) 4) Strontium Titanate, nanopowder, less than 100 nm

(Sigma Aldrich, 517011). The theoretical density of STO is 4.81 g/mL and the density

of NiO is 6.67 g/mL. These values were used in order to obtain the proper mixing

fraction by volume. Thus, the 85% NiO-15% STO mixture was weighed at 88.7%

NiO-11.3% STO by mass. We show in Figs. 2.6 and 2.7 the starting, large-grain

powders of STO and NiO, respectively.

The procedure for the ceramic preparation is as follows. Mixing: 1) The powders

are mixed in a plastic container with aluminum balls, filled with isopropanol and

sealed. 2) Set to mill at ∼ 60 revolutions per minute for 24 hours in order to achieve

uniform mixing. 3) Extracted into a beaker from the plastic container used for ball

milling with a combination of isopropanol and sieve for filtering out the aluminum

balls. 4) The beaker is covered and set to dry for at least half a day in an oven at
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Figure 2.6: Strontium Titanate powder, large grain size.

Figure 2.7: Nickel Oxide powder, large grain size.
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Figure 2.8: XRD results for the sintered 95% NiO-5% SrTiO3 composite.

100◦C. 5) The dried and mixed powder is scraped out of the beaker, ground with

mortar and pestle, and collected into a vial. Pressing: 1) A mixture of stearic acid

and acetone is used to lubricate the die before pressing. 2) 1.5 g of mixed powder is

measured, placed into a 0.5 inch diameter die and pressed at 1650 pounds. 3) The

crucible is lined with NiO powder and the pressed sample is placed on top in order to

avoid contact with the crucible. Sintering: 4) The crucible with the pressed sample is

placed into a furnace and ramped from room temperature to 1450◦C in 290 minutes.

5) 60 minutes at 1450◦C 6) Furnace is shut off and cooled for over 8 hours back to

room temperature.

As a last step, the sintered samples are polished in a succession of paper grit sizes

from 400 to 1200 followed by 3 µm diamond paste, 1 µm diamond paste and 0.06 µm

silica slurry as the final polishing step.

We have evaluated the resulting composites for compatibility with x-ray diffrac-
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tion and Raman scattering. Since it is important to retain the two pure phases in

the ceramic we must confirm that no chemical reaction takes place between NiO and

STO during sintering. Fig. 2.8 shows the x-ray diffraction (XRD) pattern of the 95-5

composite which confirms the two pure phases. No change in the lattice parameter

occurs and we do not see additional lines. The relative intensity of the lines con-

firms the mixing fraction. Raman scattering produces similar results at higher STO

concentrations as will be shown in Chapter 4. These results agree with the original

findings in [23].

Next, we evaluate the free surface and bulk properties of the composite using

SEM. Figs. 2.9-2.11 show a free, as-fired surface of the 95-5 composite in the vicinity

of a fracture as well as a magnified version of a void. The small grains are STO

inclusions which are slightly less than 1 µm on average and the large grains are NiO

on the order of 5 µm. In the 1000x version, we see the fine STO powder scattered

over the surface as well as large clusters of STO within the voids in the magnified

images.

The optically polished surface is shown in Figs. 2.12-2.14 and is more represen-

tative of the bulk. The surface roughness is on the order of several nanometers in

the flat areas. The images show some white, powdered streaks which is the residue

of the final polishing compound made up of 60 nm silica slurry. There are some deep

pits which correspond to pores between the grains as well as shallow pits which could

be due to chipping of the inclusion grains on polishing. The total volume of the pits

agrees approximately with the theoretical estimate of porosity of 5-10% based on

sample density. The darker regions represent the STO inclusions which make up 5%

of the volume. The average distance between the inclusions agrees with the theoreti-

cal estimate based on Eq. B.1 as is discussed in Appendix B and Chapter 4. Based

on the images, we estimate the STO inclusion size in the bulk of 2-3 µm in the 95-5

composite which is larger than the starting particles due to clustering.
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Figure 2.9: 95% NiO-5% SrTiO3 (large grains) at 1000x magnification of a free surface
after sintering.
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Figure 2.10: 95% NiO-5% SrTiO3 (large grains) at 5000x magnification inside a void
of free surface.
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Figure 2.11: 95% NiO-5% SrTiO3 (large grains) at 5000x magnification, acid-etched.
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Figure 2.12: 95% NiO-5% SrTiO3 (large grains) at 1000x magnification, optically
polished surface.
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Figure 2.13: 95% NiO-5% SrTiO3 (large grains) at 2500x magnification, optically
polished surface.
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Figure 2.14: 95% NiO-5% SrTiO3 (large grains) at 5000x magnification, optically
polished surface.
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CHAPTER III

GaP based terahertz time-domain spectrometer

optimized for the 5-8 THz range

3.1 Introduction

In this chapter we present a technique of using GaP to generate terahertz pulses

via optical rectification in a collinear phase-matched configuration relying on the dis-

persion of the refractive index. The GaP-based time-domain system operates up to 8

THz and is especially well suited at high frequencies, where it has high signal-to-noise

ratio and power conversion efficiency ∼ 30 times greater than those of commercial

photoconductive emitters. These characteristics are demonstrated in measurements

of ZnTe in the reflection geometry. We also discuss the power output and describe

theoretically the observed THz field generation by nonlinear mixing, the field’s free

space propagation and its detection.

3.2 Motivation

Terahertz time-domain spectroscopy (THz-TDS) has become a popular tool for

materials research. [1] Its popularity stems from the widespread availability of Ti:

sapphire lasers with which a THz time domain emitter and detector pair can be

coupled. The convenience of this approach, its high signal-to-noise ratio (SNR) and
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ability to measure the time evolution of the field have made it competitive with

conventional FTIR techniques. [2] Unfortunately, one of the main drawbacks of THz-

TDS is that the spectral response is typically limited to frequencies below 6 THz.

[3, 4] This leaves many interesting phenomena at higher frequencies out of reach.

In spectroscopic studies there is often a minimum dynamic range requirement for

overcoming losses, which decreases the usable bandwidth further [5] and renders some

thin generator/detector layer wideband approaches untenable. [48]

In the past several years, a few methods have been shown to be effective in tackling

this problem. These include photoconductive (PC) systems based on low-temperature

GaAs, driven by 15 fs Ti:sapphire oscillators, [49] four-wave mixing in self-induced

plasma driven by amplified kHz systems [50] and phase-matched nonlinear generation

using GaSe, [51] the organic crystal DAST [52] and other electro-optic (EO) materials.

[45] However, these approaches are not in widespread use due to the added cost of

special laser systems (e.g., having 15 fs pulse width or additional laser amplifiers),

the difficulty in working with organics and procuring properly grown PC materials

[53] or the presence of gaps in the generated spectrum. As a result, spectroscopic

measurements using THz-TDS in the 5-10 THz range and above are still hard to

achieve.

3.3 Conceptual idea and data

Here we present a THz-TDS system based on optical rectification in GaP driven

by a 50 fs Ti:sapphire laser oscillator. The dispersion of the refractive index due to

the infrared-active phonon in GaP allows for collinear phase matching over a wide

frequency range, from 0.5 to 8 THz. [54, 55] Free-space EO sampling [45] is used

in a second crystal of GaP for detecting the field-resolved signal generated by the

emitter. The phase matching condition in collinear processes involving the nonlinear

susceptibility χ(2), where a THz wave interacts with two waves within the bandwidth
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Figure 3.1: Refractive index of GaP in (a) the THz regime and (b) group index in
the near-infrared.

of an ultrafast optical pulse, is ng ≈ nTHz, where nTHz is the THz refractive index

and ng is the group index in the visible. [54, 55, 56] The behavior of the permittivity

of GaP below 10 THz is defined by the coupling to the transverse optical mode at

11 THz. Fig. 3.1 shows the refractive index of GaP below the phonon resonance

and in the range ~ωL =1.35-1.65 eV (920-750 nm) corresponding to the Ti:sapphire

laser [57]. As illustrated in the figure, for a given excitation frequency ωL, phase

matching is exactly met at the frequency ΩM in the THz range. Moreover, since the

coherence length Lc = πc/(ΩTHz|ng − nTHz|) [56] is at least several hundred microns

within the band, phase matching in GaP is nearly satisfied over the entire range, up

to 8 THz. This, combined with a high nonlinear coefficient [4] and transparency at

visible wavelengths, lays the groundwork for attaining significant power conversion

efficiencies.

The laser system we employed is a mode-locked Ti:sapphire oscillator producing

800 mW of average power at the repetition rate of 82 MHz. The beam is split

into separate pump and probe pulse trains and a delay stage is used for mapping the

subpicosecond time evolution of the THz pulses. At the point of generation, a 400-µm-

38



Figure 3.2: Temporal signal and associated amplitude spectrum for GaP generation
(400 µm thick crystal) and EO detection (340 µm thick crystal) using
60-fs laser pulses.
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thick single-crystal semi-insulating (110) GaP slab (MTI Corp.) is illuminated with 60

fs pulses in a beam initially having average powers up to 370 mW before being reduced

to half this value due to modulation by an optical chopper. The THz pulses are

generated in the transmission geometry by difference-frequency mixing of the near-IR

beam with itself. The pump beam is focused to a 45-µm-diameter spot onto the GaP

sample, and THz radiation is collected and focused onto the sample or the reference

reflector by two parabolic mirrors, the first of which is f/1, which allows collection

at a wide emission angle. A second set of parabolic mirrors is used to re-image

the THz beam from the sample/reference position onto the detection crystal. The

entire THz beam path is enclosed and purged with dry nitrogen to avoid water-vapor

absorption. We employed EO detection for probing the THz pulses using a second

340-µm-thick, (110) GaP slab and 20 mW of incident probe power. A commercial

dual-diode photodetector (Nirvana, New Focus Inc.) with an auto-balancing feature

was used to help avoid drift between channels over extended scanning times as it

detects the orthogonal polarizations transmitted through the GaP EO-sensing crystal.

The probe power reaching each channel was 1.4 mW, after being cut-down with irises

for eliminating noise, which yields an optimal, near shot-noise-limited signal that was

recorded using a lock-in amplifier.

A typical time-domain signal and the associated frequency spectrum are shown

in Fig. 3.2, where three scans acquired using a 300-ms time constant were averaged.

The frequency response corresponding to ~ωL = 1.51 eV shows a peak at ΩM = 6.2

THz and, noticeably, it extends to 7.5 THz. The dynamic range is 2000:1 in time-

domain and 400:1 in frequency domain at 6-7 THz, [58] where the response of typical

systems tails off. This is one of the highest signals reported in this frequency range.

For our conditions, the shot noise limit set by the photodetector is 2.2 µV/
√

Hz and

the measured noise is 3.1 µV/
√

Hz, which is 40% above the shot noise floor. Some

prominent features in Fig. 3.2 include chirp and a discernible beating in the time
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domain. The frequency spectrum is oscillatory and fades at 8 THz.

3.4 Simulation

To interpret the data we must consider THz emission, free space propagation

from the emitter to the detector, and EO sampling response in a single framework.

Difference frequency generation in a slab of nonlinear material has been treated by

Côté et al. [46] taking into account the spot dependence of the optical beam. The

problem amounts to adding up the emitted THz field from every point along the

length of the crystal due to the pump-induced nonlinear polarization source, which

propagates in the ẑ direction. At a given z, its spatial Fourier transform can be

expressed as PNL(Ω,K) = x̂2ε0χ
(2)(Ω)If (Ω)Is(K) exp (ik0ngz − 2αz), where Ω is the

THz frequency, k0 = Ω/c = 2π/λTHz, α is the field absorption coefficient of the

optical pulse, Is(K) = exp (−K2σ2
0/4) is the K-space intensity profile of the beam

(normalized so that the total power is independent of the spot size), and If (Ω) =

I0

√
πτ0 exp (−Ω2τ 2

0 /4) is the optical intensity envelope. The spot size σ0 and pulse

duration τ0 are the 1/e half-widths. Let E(Ω,R) =
∫

dK
(2π)2

E(Ω,K) exp(iK · R) be

the x̂-polarized THz electric field at the slab exit (z = d), where R = (x, y) and d is

the thickness of the slab. Following Ref. 46, its Fourier transform is

E(Ω,K) = T (Ω,K)
ik2

0

w(K)

exp (ik0ngd− 2αd)− exp [iw(K)d]

[ik0ng − 2α− iw(K)]
χ(2)(Ω)If (Ω)Is(K)

(3.1)

where w(K) =
√

(k0nTHz)2 −K2 and T (Ω,K) is a linear combination of s- and p-

polarization transmission coefficients at the exit interface. Eq. 3.1 is a simplified

version of the full solution, [46] which excludes the backward propagating wave (of

a much smaller amplitude) and multiple reflections, which we avoid by using a short

temporal window.

We model the pulse propagation by considering a single lens that collects the emit-
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ted radiation and refocuses it onto the EO sampling crystal. It is known from Abbe’s

theory of imaging that the limited aperture of the lens serves as a low-pass spatial

frequency filter, with the cut-off in the paraxial approximation, ignoring aberrations,

given by Kc = k0 tan θ, where θ is the collection half angle of the first lens (f/1, 25.4

mm diameter, θ = 26.6◦). [46, 59] Thus, the THz field in the detection crystal is

a magnified replica of the emitted field, which has passed through a low-pass filter.

The THz field is detected on the optical axis yielding

Emeas(Ω) =
f(Ω)

M

2π∫
0

dϕ

Kc∫
0

KdK

(2π)2
E(Ω,K), (3.2)

where M is the magnification and f(Ω) is the EO sampling response based on Eq.

62 of Ref. 47.

For a qualitative understanding, we can consider the dominant axial component of

the solution, E(Ω, 0), which is represented by two pulses–propagating with velocities

c/ng and c/nTHz. For a fixed crystal length, the two pulses become mismatched in

a time τ = (nTHz − ng)d/c ∼ 210 − 230 fs. This causes modulation in frequency

away from ΩM with a dip at 4.5 THz reflecting the greatest phase mismatch. Due to

the monotonically increasing nTHz we observe chirp, which is experienced by one of

the two pulses contributing to the solution. The detection mechanism has a similar

phase matching response thereby enhancing the frequency oscillations. Finally, it is

important to account for the dispersive nature of χ(2)(Ω) for GaP which significantly

modifies the frequency spectrum due to its resonant minimum at 8 THz, [60] which is

responsible for the upper bandwidth limit in our data. For a fixed optical power, it is

possible to enhance Emeas(Ω) by tighter pump focusing until σ0 ∼ λTHz after which

point the signal saturates due to internal and aperture diffraction. [61] This allows

for a significant enhancement of the higher frequencies of the spectrum for which the

saturation transition occurs for smaller σ0. In Fig. 3.3 we compare the measured
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Figure 3.3: Simulation of THz generation, mirror aperture diffraction, and EO sam-
pling. The simulation parameters were ~ωL = 1.51 eV, σ0 = 20 µm,
τ0 = 65 fs, d = 400 µm, and a 340-µm-thick detection crystal. Top inset:
Coherence length. Bottom inset: Simulation as a function of excitation
energy, ~ωL.
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Figure 3.4: Reflectance of ZnTe (45◦ angle of incidence, s-polarization) compared
with calculations using harmonic oscillator parameters from Refs. 62 and
63.

signal with the simulation based on Eq. 3.2 using experimental parameters. The

peak at 6.2 THz is lower than that predicted by the simulation, which could be due

to imaging errors (e.g., aberrations, misalignment) or the presence of other nonlinear

effects. In the insets, we include the dependence of the signal on the excitation energy,

~ωL, which provides some bandwidth tunability, and the coherence length function

Lc, which is a good predictor of the signal profile for a fixed crystal thickness.

3.5 Evaluation of performance

To test our system, we performed first a spectroscopic measurement on ZnTe at

room temperature. The reflectance, together with calculations based on a harmonic-
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oscillator fit to the experimental data, [62] are shown in Fig. 3.4. The value for

the linewidth γ/2π = 0.032 THz was taken from Ref. 63. The main feature in the

reflectance is due to the reststrahlen band, with the TO-phonon at 5.3 THz. The

oscillations in the data below 6 THz are not random noise, but are caused mainly

by multiple reflections within the emitter/detector crystals. These can be avoided

either by using a shorter time window (at the expense of resolution) or by matching

the emitter/detector to a substrate that would delay reflections. In addition, we note

that the most prominent water vapor lines are also visible in the experimental data

(e. g., 4.52, 5.1, 6.08, 6.25, 6.84 THz). [64] The available bandwidth and high SNR

allows reflectance measurements up to 7.2 THz, in good agreement with previous

work.

As a second test, we compared our system’s signal to that of a PC emitter un-

der similar conditions. Here, we used a commercial device (TeraSED3, GigaOptics,

GmbH) designed for high bandwidth and high average power performance, with a

rated output of 54 µW at optimal conditions. [42, 65] This particular structure

employs an interdigitated array pattern fabricated on semi-insulting GaAs with a

spacing of 5 µm between electrodes. A bias field of 30 KV/cm was applied and the

excitation laser beam was focused to a 90-µm-diameter spot. The emitted radiation

was collected in the backward geometry (from the front, illuminated face of the PC

emitter) in order to minimize losses in the GaAs substrate. This yields a greater than

two times emitted-field improvement above 5 THz. The incident power used for both

methods was 250 mW before chopping. There was a ∼ 10% difference in the THz

spot size on the detector between the two generation methods, due to different optics

that were employed, and for which the data was corrected. The amplitude spectra for

identical detection conditions are plotted in Fig. 3.5. The power from the TeraSED

was measured at 2 µW using EO sampling in a 50-µm-thick (110) ZnTe plate. Based

on a previous pyroelectric detector measurement, [42] the power for our conditions
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Figure 3.5: Ratio of GaP to TeraSED signals as a function of frequency. Inset: Un-
corrected amplitude spectra, as measured in the EO detector.
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is 4 µW. This gives for GaP a power estimate of 0.2 µW, obtained by integrating

|EGaP (Ω)|2 and |ETeraSED(Ω)|2, after correcting for the response of the 340 µm GaP

detector. Even though the total GaP power is ∼ 7% that of the TeraSED emitter,

the efficiency of the former improves considerably at high frequencies. Specifically,

the GaP source has a higher signal above 5.5 THz, and the field is 5.5 times higher

at 7 THz, yielding a factor of 30 improvement to power conversion efficiency. It is

worth noting that the amplitudes shown in the inset of Fig. 3.5 are fields modified

by the response of the detector, whereas the ratio of the two is quite accurate due

to similar experimental conditions. The signal merges with the noise at ∼ 7.5 THz

due to the vanishing χ(2)(Ω) for GaP and TO-phonon absorption for GaAs, [65, 49]

both occurring at 8 THz. The GaP-to-TeraSED ratio in the main plot is shown up to

7.1 THz, beyond which point the uncertainty becomes significant. Simulations show

that the ratio can be made even higher by using thicker GaP or by tuning ~ωL. More

importantly, PC generation operates near its threshold in terms of peak excitation

power, bias field and dissipation. On the other hand, the power output from GaP

is expected to scale with excitation power, and GaP has been applied successfully

to this end in fiber laser systems possessing up to 14 W of pump power. [66] The

THz power can be scaled up by increasing either the incident pump intensity or the

active area of the generation crystal at a fixed pump intensity. The more efficient

former case leads to a quadratic increase in the THz power, [67] but is limited by

the multi-photon saturation threshold of the nonlinear medium. Using the available

power and tighter focusing, we were able to increase the peak pump intensity by a

factor of ∼ 20 from the above experimental value. We find a sub-quadratic increase

in the THz pulse energy with an average exponent of 1.54 in the pump peak intensity

range of 10 to 200 GW/cm2 (fluence of 0.3 to 6.5 mJ/cm2). Based on these values,

we estimate an output from GaP of 20 µW for a pump power of 5 W for otherwise

identical conditions. Further increase in intensity may be limited by the damage
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threshold of the crystal. Under similar operational conditions, the latter has been

measured to be 4.3 mJ/cm2. [68]

3.6 Summary

In summary, we have shown that GaP-based generation and detection of THz

pulses can be used as a THz-TDS spectrometer optimized for high frequency op-

eration, in the 5-8 THz range. We anticipate this system to be useful with 50 fs

Ti:sapphire oscillator lasers as well as for scaling to higher peak and average powers.
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CHAPTER IV

Nickel Oxide–Strontium Titanate Ceramics

4.1 Introduction

This chapter focuses on the NiO-SrTiO3 ceramics made of sintered nano-to-micron

sized grains of each constituent. The original motivation for this research was to in-

vestigate the feasibility of constructing a bulk metamaterial NIM in the THz range.

As is known from Veselago’s famous paper [1], a negative index material must have

Re{ε}, Re{µ} < 0 over some frequency range and unfortunately there are no known

natural substances that satisfy this property, although there is no fundamental reason

to make this impossible. However, there are many substances that possess magnetic

and electric behavior individually which induce regions of either negative permittivity

or negative permeability–such as for example in metals below the plasma frequency

for the electric case and ferromagnets in the magnetic case. Most approaches to de-

velop NIMs have focused on using artificial materials (meta-materials) composed of

arrays of metallic structures engineered to have sharp magnetic and electric responses

in the same frequency range in order to make n < 0 [14]. The first and best known

such structure was an array of split ring resonators (SRRs) and metal wires, which

was experimentally verified to possess negative refractive index in the microwave re-

gion [18]. The SRRs provided the magnetic resonance to drive effective permeability

negative, whereas the metal wires provided the negative electric permittivity. How-
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ever, this metamaterial operated at low frequencies and was not a true bulk structure,

due to the finite number of layers in the design. In order to improve its operation

it is important to reduce it to nanometer dimensions in order to operate at visible

frequencies which has proved challenging, but doable for 2D structures. [19] However,

the design of 3D metamaterials at either terahertz or visible frequencies has proved

even more challenging due to the existing limitations in the fabrication methods.

For this reason, the interests of various researchers are shifting toward alternative ap-

proaches of designing and controlling 3D structures such as nanoparticle self-assembly

and improvements to conventional lithographic techniques. [10] Another important

requirement in this context is to understand the complex optical behavior in random,

truly 3D metamaterials which are typically based on plasmonic properties.

The individual constituents that make up the composite in this project are known

to possess electric and magnetic resonances in the far-infrared frequency range and the

simple idea proposed previously [23] was to obtain a homogeneous random medium

that would possess the combined properties of both constituents. Thus if the inter-

actions were turned off and simple volume averaging of bulk properties applied, this

composite would possess negative refractive index. Based on our measurements us-

ing THz-TDS and FTIR spectroscopy, the interaction picture turned out to be more

complicated with the spectral features being dominated by surface phonon-polaritons

of the nano-sized STO inclusions which define the dielectric behavior. The magnetic

resonance of the NiO was also measured in the composite and was found to have an

effect in a very narrow frequency region–a small fraction of one wavenumber–such that

a precise determination of the magnetic permeability presents technical challenges in

itself. Thus our attention has shifted mainly to understanding the dielectric proper-

ties of the composites, on which this chapter is focused. The ability to control the

effective dielectric properties through the geometry of the STO inclusions is critical

for designing a successful bulk NIM using the ceramic approach. The observation of
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single-particle dipolar surface-plasmon resonance (Fröhlich mode) as will be shown

for the present composite makes it possible to achieve controlled resonances in the

effective dielectric constant which is an important step forward. The second half of

the job is to obtain the desired magnetic behavior, and it will be shown that NiO

behaves nearly as a bulk material in the composite due to the fact that it is present

at large volume fractions. Based on transmission measurements, we show that the

oscillator strength of the AFMR of NiO as measured at room temperature is not likely

to produce negative permeability, with the critical factor being the temperature de-

pendent linewidth of the magnetic resonance. However, other antiferromagnets with

more pronounced magnetic-dipole active resonances may be used in place of NiO as

will be discussed in the concluding chapter.

In what follows we will describe the resonant behavior of the individual constituent

materials and how they are formed into composites which has been described in

greater detail in the experimental section. This will be followed by the reflectance and

transmission data taken with THz-TDS and FTIR techniques, for several classes of

ceramics involving different sizes of particles. The data will be interpreted within the

context of several effective medium theories. The Clausius-Mosotti equation forms the

framework for going from the characteristics of individual, finite sized ionic scatterers

to forming an effective medium which is dominated by individual effects at low filling

fractions. The appearance of dominant low frequency and high frequency modes leads

to the interpretation of two distinct inclusion sizes–one being due to individual STO

particles and a larger effective mean size for clusters of STO particles. The clusters are

treated as single unit, larger particles and interactions between particles is accounted

for through the local field of the Clausius-Mosotti approach. The variation of shape

and size in the agglomerate clusters is treated as a distribution of ellipsoids. Finally,

the dependence of the surface modes on the size of the inclusion is discussed and

related to the data.
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Figure 4.1: Real and imaginary part of the electric permittivity of Nickel Oxide in
the far-infrared range at room temperature.

4.2 Nickel Oxide

Nickel Oxide, which in micro- and nano-particle form is one of the two constituents,

is an antiferromagnetic insulator with a transition temperature of TN = 522 K [69].

Above the Néel temperature, NiO crystallizes in a cubic, rock-salt (NaCl) crystal

structure with two atoms per primitive unit-cell [70, 71]. Below the Néel temperature,

the antiferromagnetic ordering does not significantly distort the structure to have

an effect on the vibrational properties and thus the crystal is considered of quasi-

NaCl type. The dielectric properties are determined by the infrared-active, triply

degenerate optical mode at 400 cm−1. The optical constants have been measured

at room temperature in the spectral region from 250 cm−1 to 3000 cm−1 and a two-

oscillator model has been found to give the best fit [71]. The real and imaginary parts

of the electric permittivity are shown in Fig. 4.1.

In order to confirm the purity of the NiO nanoparticles, we measured Raman

scattering with the 5145-Å line of an Argon-ion laser serving as the exciting source.
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Figure 4.2: Raman spectrum of NiO powder (-325 mesh) taken at room temperature.
The incident power is 10 mW at 5145-Å.

The results agree closely with the data available in the literature [72] and are shown

in Fig. 4.2.

Due to its magnetic properties, NiO also possesses a magnetic-dipole active anti-

ferromagnetic resonance (AFMR) in the THz range which is temperature dependent

and occurs at approximately 1 THz [73]. The transmission of nano- and large-grained

ceramics was measured using THz-TDS as shown in Fig. 4.3, with the behavior

matching quite well with previous studies. The resolution of this particular mea-

surement was ∼1 cm−1 as determined by the length of the temporal window of the

scan. Other measurements with improved resolution show significant narrowing of

the linewidth to less than 0.5 cm−1 at T = 50 K. Based on these measurements, the

µ(ω) at room temperature is shown in Fig. 4.4 with the linewidth FWHM of 1.2

cm−1. At low temperatures only an upper bound on the linewidth is known and thus

the low temperature value of µ(ω) is indeterminate although it is expected that it

would show significant enhancement due to the narrowing. In principle, THz-TDS is
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Figure 4.3: Transmission of the large grain NiO ceramic taken at (a) T = 50 K
showing the AFMR and (b) showing the temperature dependence.

Figure 4.4: An oscillator fit of the magnetic permeability of ceramic NiO (1.85 mm
thickness) based on transmission measurement at T = 300 K.
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well positioned to do a high resolution measurement with precision of less than 0.1

cm−1 for temporal scans of 400 ps. This is an interesting future research direction

as it would complement the far-infrared measurements available currently in the lit-

erature all of which are inconclusive due limitations in the resolution [73]. Since the

magnetic behavior occurs in a very narrow frequency range, the location of which is

known, we will assume in what follows that µ = 1 and concentrate on the dielectric

properties.

4.3 Strontium Titanate

Strontium Titanate (STO) is a ferroelectric crystal (of ABO3 type) with a cubic

perovskite structure above 110 K which renders it optically isotropic. It has five

atoms per unit cell leading to four triply degenerate optical modes, three of which are

infrared active [74]. The signature behavior of such ferroelectrics is the high value of

electric permittivity which depends on temperature according to the Curie-Weiss law

[75, Ch. 13],

ε0 ∝ 1/(T − TC) (4.1)

where ε0 is the static dielectric constant. The extrapolated Curie temperature is

TC ' 40 K although STO is an incipient ferroelectric which means that it never actu-

ally undergoes a ferroelectric transition and the Curie-Weiss dependence only applies

for T > 50 K [76]. In close connection to the Curie-Weiss law is the temperature de-

pendent behavior of the lowest frequency vibrational mode known as the ”soft mode”

which decreases in frequency as the temperature is lowered. In ideal circumstances,

the ferroelectric transition occurs at the Curie point temperature when the soft mode

frequency vanishes and the resulting lack of restoring force on the lattice leads to a

displacement of the ions and the creation of a permanent dipole moment within the
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Figure 4.5: The figure shows a plot of the square of the frequency of the zone-center
transverse optic mode against temperature. The solid line is a linear re-
gression line through the points and gives a Curie temperature of 32±5 K.
The other line represents the reciprocal of the dielectric constant. Taken
from [77].

unit cell. The temperature dependence of the low frequency mode follows [77],

ωTO1 ∝ (T − TC) (4.2)

where ωTO1 is the lowest frequency transverse optical phonon. The connection be-

tween Eqs. 4.1 and 4.2 is established through the Lyddane-Sachs-Teller relation,

assuming that the higher frequency modes do not depend significantly on tempera-

ture. We show temperature dependence of the soft mode in SrTiO3 in Fig. 4.5.

The real and imaginary parts of the dielectric constant have been measured at low

temperatures [78] and are shown in Fig 4.6 for two temperature points. As seen from

the figure, the values of the dielectric constant on resonance reach tens of thousands

which is two orders of magnitude above the typical values in ionic dielectrics as seen,

for example, in Fig 4.1 for Nickel Oxide. No magnetic behavior is known for SrTiO3

and so the magnetic permeability is taken as µ = 1. The purity of the constituent

material was once again confirmed using Raman scattering measurements. A typical
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Figure 4.6: The real and imaginary parts of the dielectric constant of SrTiO3 for (a)
T = 130 K and (b) T = 300 K.

fingerprint spectrum which agrees with previous data in the literature [74] is shown

in Fig. 4.7. The Raman scattering was taken with 5145-Å argon-ion laser line.

It is worth noting that the above properties have been described for bulk SrTiO3,

whereas in the composite SrTiO3 will be present in localized, nano-particle form as

inclusions. Thus the phonon-polariton modes of the bulk will be transformed into

vibrational modes of finite crystals as will be discussed in the following sections.

4.4 Ceramics

The above constituents are mixed in powder form in desired proportions where

SrTiO3 serves as the inclusion and makes up a small fraction of the total, from 0 to

15% by volume. The mixed powder is ball milled for 24 hours in order to minimize

clustering and achieve uniform mixing. The fabrication of ceramics is achieved by

cold pressing the mixture into 1-2 cm discs and sintering at 1400 ◦C. A scanning

electron microscope image of a 95% NiO-5% SrTiO3 (95-5) sample is shown in Fig.

4.8, where the larger particles are NiO grains and the smaller ones are SrTiO3. One

can see a number of well separated SrTiO3 inclusions as well as clusters of SrTiO3
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Figure 4.7: Raman spectrum of SrTiO3 powder taken at room temperature. The
incident power is 19 mW at 5145-Å.

that tend to form larger aggregates of varying geometries.

Raman data was taken on a 50-50 ceramic composite in which the features of STO

and NiO are seen (Fig. 4.9) as superimposed on each other.

Three different types of composites were fabricated involving the nano-sized and

micron-sized variations of the constituent grains. The particle sizes for NiO were

nearly spherical ∼800 nm diameter for the regular size grains and less than 100 nm

diameter for the nano particles. For the Nickel Oxide, the standard grains were on

the order of 5 µm and less than 50 nm for the nano-particles. The three different

types of ceramic samples were: nano-NiO/STO, nano-NiO/nano-STO, NiO/STO. In

all samples, STO was present in small concentrations as the inclusion. The different

grain sizes were used to evaluate the effect on inclusion clustering and correlations in

the case when the large NiO particles tended to form channels for the smaller inclusion

grains. These aspects will be discussed later in detail in the context of infrared data

analysis and effective medium theories.
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Figure 4.8: SEM image of a 95% NiO-5% SrTiO3 ceramic composite with an optically
polished surface. The starting NiO is -325 mesh and the starting SrTiO3

is ∼800 nm diameter.

Figure 4.9: Raman spectrum of 50% NiO-50% SrTiO3 composite ceramic. The inci-
dent power is 40 mW at 5145-Å.
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4.4.1 Simple model for the effective optical constants

Our composite is a randomly distributed mixture of two phases with dielectric

constants εi, µi representing the STO inclusion and εh, µh representing the NiO host.

As discussed above we will assume that µi = µh = 1 so that the magnetic properties

need not be considered. If we assume that the the scale over which ε(r) varies is small

compared to the wavelength of light then we can say that the effective parameter εeff

exists which describes the composite medium. As a first order approximation, we can

take the effective dielectric constant to be the weighted average of the constituent

phases,

εeff = fεi + (1− f)εh (4.3)

where f is the volume fraction of the inclusion. In this case εeff becomes as shown

in Fig. 4.10 for mixtures of varying mixing fraction at T= 20 K. The two dominant

features are the STO TO1 soft mode at 30 cm−1 and the TO phonon of NiO at 400

cm−1. In addition, the weaker TO2 and TO3 modes of STO are visible. Now that

the effective dielectric constant is known, it is possible to model the reflectance of the

sample at normal incidence,

R =

∣∣∣∣∣n− 1

n+ 1

∣∣∣∣∣
2

(4.4)

where n =
√
εµ is the refractive index. A simulation of the reflectance for the effective

medium of Fig. 4.10 is shown in Fig. 4.11. Each of the IR modes contributes a

reststrahlen region of high reflection in the spectrum. In the 30-100 cm−1 region

of the f=0.15 sample we see a region of nearly perfect reflectance corresponding to

the region of negative permittivity. This is the frequency range where the index of

refraction is expected to turn negative at ∼ 35 cm−1 where the magnetic resonance

occurs [73] according to weighted average mixing.
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Figure 4.10: Effective dielectric constant using Eq. 1.3 for f=0.15 and f=0.0004 at T
= 20 K.

Figure 4.11: Simulation of reflectance using Eq. 1.4 for f=0.15 and f=0.0004 at T= 20
K.
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Figure 4.12: Measured ceramic reflectance at 80 K. The arrows indicate the prominent
modes in the spectrum. The value of the 85-15 data was shifted up by
0.1 along the y-axis for clarity.

4.5 Data

A Fourier Transform Infrared (FTIR) spectrometer was used to measure far-

infrared reflectance in the range 10-650 cm−1. The spectra for the 95-5, 90-10 and

85-15 samples are shown in Fig. 4.12 at T= 80 K and in Fig. 4.13 at T= 295 K. Fig.

4.14 shows the detailed temperature dependence of the 85-15 sample. Based on this

set of data we do not see the expected region of negative permittivity in the compos-

ite as required for negative refraction which would manifest itself in the reststrahlen

region as seen in Fig. 4.11. For the 95-5 sample, the reflection shows virtually no

difference compared to the pure NiO, also in contrast with the simulation. Thus we

have embarked on investigating the interaction effects that lead to the effective optical

constants we observe.

There are four prominent modes seen in the data and marked with arrows in Fig.

4.12. In the order of increasing frequency they are: 1) A temperature dependent

feature in the range 50-100 cm−1 that decreases in frequency on lowering the tem-

perature and appears to behave similarly to the bulk STO soft mode. However, it is

considerably broadened in the composite, appears at lower frequencies (90 cm−1 at
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Figure 4.13: Measured ceramic reflectance at 295 K. The value of the 85-15 data was
shifted up by 0.1 along the y-axis for clarity.
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Figure 4.14: Temperature dependence of the reflectance of the 85-15 composite.

64



room temperature in bulk STO versus 75 cm−1 for the 85-15 sample), and is depen-

dent on the inclusion concentration (90 cm−1 in bulk, 84 cm−1 in the 90-10, 75 cm−1

in 85-15 at room temperature). 2) A feature at 172 cm−1 which we ascribe to the

bulk TO2 mode of STO. 3) A feature at ∼260 cm−1 that does not correspond to any

bulk modes of the constituents and is therefore a new collective mode. This is the

confined soft mode of the nearly spherical STO nano-particles known as the Fröhlich

mode which will be discussed in the analytical section. 4) A broad feature between

400-600 cm−1 corresponding to the reststrahlen region of NiO. Finally, we see a broad

increase in reflection in between (1) and (3) corresponding to 50-300 cm−1 which is

also a nano-particle feature.

Comparing the data with the reflectance simulation of Fig. 4.11 based on the

simple proportional mixing rule, we see a correspondence between features (1), (2), (4)

of the data and the peaks in the simulation. The soft mode at 90 cm−1 is significantly

stronger in the simulation and its position does not depend on the mixing fraction.

The features (2) and (4) are almost identical with the simulation. Neither the Fröhlich

mode (feature (3)) nor the broad increase in reflection from 50-300 cm−1 are visible

in the simulation due to the fact that they are finite-size particle modes.

4.6 Clausius-Mosotti equation

So far in our interpretation of the data in Figs. 4.12-4.14 we have considered only

the simplest case of weighted averaging which results in a resonant feature in the

composite at the bulk STO soft mode frequency of 90 cm−1 at room temperature. We

also know based on the discussion in Appendix A, that this case represents a spectral

bound on the resonant features of an arbitrary ionic-inclusion composite at low filling

fractions, where the electrostatic resonances can occur anywhere in the region of

negative permittivity of εi/εh, between 90 and ∼500 cm−1 at room temperature for

the STO/NiO combination. Let us now consider the most realistic geometry of our
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Figure 4.15: Schematic diagram of the simple cubic lattice used in the derivation of
the Clausius-Mosotti relation, with Eint as the applied field. Taken from
[82].

mixtures which is the case of well distributed, nearly spherical STO particles present

at less than 15% volume fractions in the NiO host. The particle sizes are 0.5-1 µm for

the large STO grains and less than 100 nm for the nano-grains, which renders them

significantly smaller than the wavelength of light up to ∼300 cm−1. This is the domain

of the quasi-static geometry based on the Clausius-Mosotti equation [82, 85]. The

Clausius-Mosotti equation relates the polarizability of individual dipoles dispersed in

space in the presence of an applied field to the polarization and macroscopic fields

of the effective solid. The traditional derivation is done for the geometry of a cubic

lattice although the framework can be applied to random/uncorrelated systems [86,

87, 88]. We proceed with the traditional derivation first. As in the case of previous

geometries considered, the approach we will take in deriving the effective dielectric

constant of the current structure will be a microscopic calculation of the fields in all of

space, under given approximations, and then taking the average to obtain εeff = <D>
<E>

.

Consider a cubic lattice of small dielectric spheres which are approximated as perfect

dipoles suspended in free space in the presence of an applied field Eint. Later, the

derivation will be modified to add polarizable background material. The points of
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polarizability α are arranged at positions r = Ri corresponding to a simple cubic

lattice extending to infinity as shown in Fig. 4.15. The local field at each site will

induce a dipole pi = αE(Ri), where E(Ri) = Eloc is the same at all sites by symmetry

and Eloc is yet unspecified. The solution for the field E(r) in all of space is a function

of the applied field and the surrounding dipoles,

E(r) = Eint +
∑
i

E(pi, r−Ri), (4.5)

where the sum extends over all Ri and E(p, r) is the electric field of a dipole located

at the origin,

E(p, r) = −∇(
p · r

4πε0r2
) (4.6)

=
3(p · r)r− r2p

4πε0r5
, (4.7)

where Eq. 4.7 is valid for r > 0 [85, Ch. 4]. Similarly, p(r) is a function of the dipoles

located at all lattice sites,

p(r) =
∑
i

αE(Ri)δ(r−Ri). (4.8)

We may find the local field by evaluating Eq. 4.5 at the origin,

Eloc = E(0) = Eint +
∑
i

′

E(αEloc,−Ri), (4.9)

where the prime denotes exclusion of the site R = 0 in the sum. We may evaluate Eq.

4.9 by considering the ẑ component of the local field Eloc = E(0) within an expanding

shell,

Eloc · ẑ = Eint · ẑ +
αEloc
4πε0

∑
i

′ 3z2
i − r2

i

r5
i

= Eint · ẑ +
αEloc
4πε0

∑
i

′ 2z2
i − x2

i − y2
i

r5
i

. (4.10)
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Since the x, y, z directions are equivalent due to the symmetry of the lattice and the

shell, we get ∑
i

′ x2
i

r5
i

=
∑
i

′ y2
i

r5
i

=
∑
i

′ z2
i

r5
i

,

and the sum of Eq. 4.10 evaluates to zero. The same logic applies to the x̂, ŷ

components of Eloc. From this we get the exciting local field at each dipole site,

Eloc = E(0) = Eint. (4.11)

The sum of all the surrounding dipoles vanishes due to symmetry of the lattice so

that the local field is just the applied field. The complete solution for E(r), p(r) for

all r in terms of the applied Eint is:

E(r) = Eloc +
∑
i

E(αEloc, r−Ri), (4.12)

p(r) =
∑
i

αElocδ(r−Ri), (4.13)

Eloc = Eint. (4.14)

Now that the microscopic fields have been derived, we must implement the averaging

procedure in order to relate the average macroscopic fields to the effective dielectric

constant. The volume average over a spherical cavity centered at the origin for the

dipole moment per unit volume is,

< P > =
1

V

∫
V

d3rp(r) =
1

V

∑
i

pi = nαEloc (4.15)

where n is the number of points per unit volume. In order to calculate < E >, we

will employ a general result for the integral of the electric field due to an arbitrary
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charge distribution within a spherical volume [85, Ch. 4],

∫
V

E(r)d3r = −pin
3ε0

(4.16)

where pin is the internal electric dipole moment with respect to the center of the

sphere. Applying this result to Eq. 4.12 we have,

< E >= Eloc −
1

3ε0
nαEloc = Eloc −

1

3ε0
< P > . (4.17)

The above result represents the famous Lorentz relation for the local field in a dense

medium, and is known as the “first solve/then average” method due to Lorentz [87]

since we first derived a microscopic solution for the fields and then averaged to obtain

the macroscopic quantities. The second known derivation, also due to Lorentz, is the

“first average/then solve” problem which relies on a fictitious cavity that mathemati-

cally separates the near and far contributions of dipoles to the local field [75, Ch. 13].

The first derivation is more rigorous, whereas the second has the advantage of treating

finite-sized objects. By eliminating Eloc from Eqs. 4.15, 4.17 to obtain an expression

for ε − 1 = χ = 1
ε0
<P>
<E>

and then solving for nα we arrive at the Clausius-Mosotti

(CM) relation,

εeff − 1

εeff + 2
=
nα

3ε0
, (4.18)

which connects the macroscopic dielectric constant to the density and polarizability

of the inclusion. We can simply extend the above derivation by considering a mixture

made up of several phases of inclusions of different polarizabilities, as for the ionic

crystal NaCl, for example, where each of the Na+ and Cl− ions has a simple cubic

symmetry. In this case, Eq. 4.15 is modified to < P > =
∑

i niαiEloc, where i
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designates the atom type. Thus, the multi-phase CM relation becomes,

εeff − 1

εeff + 2
=

1

3ε0

∑
j

njαj. (4.19)

4.7 Examples of geometries

If we consider a mixture made up of two phases, εi(ω) for the STO inclusion and

εh(ω) for the NiO host, then the effective dielectric constant for a dilute mixture is

described by the Maxwell-Garnett (MG) formula, as shown in Appendix B, which is

an extension of the CM relation given by Eq. 4.19 with the added property of having

finite-size inclusions as opposed to point dipoles,

εeff = εh +

1
3

∑
i

fi(εi − εh)
3∑

k=1

εh
εh+Nik(εi−εh)

1− 1
3

∑
i

fi(εi − εh)
3∑

k=1

Nik
εh+Nik(εi−εh)

. (4.20)

This relation takes into account the general ellipsoid geometry of inclusion for which

the sphere is a special case. The ellipticity is described by the depolarization factor

Nik, where i corresponds to the inclusion phase and k being one of the principal axes.

For the case of a sphere: Ni1 = Ni2 = Ni3 = 1/3. The main assumption in Eq.

4.20 regarding the size of inclusions is the quasi-static approximation. Moreover, as

discussed in Appendix B, this relation holds either for a cubic lattice or for uncor-

related distribution of inclusions in which case the local field at any inclusion site is

identical. Thus clustering effects may not be included unless the clusters are dense

and may be regarded as single particles. The shape of the particle determines the

exact electrostatic resonance behavior within the region of negative permittivity of

the inclusion (see Appendix A).

To show how the electrostatic resonances of the inclusions affect the absorption

spectra in the effective mixture we will consider several different inclusion geometries–
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Figure 4.16: Simulation of the effective dielectric constant of a 90-10 mixture of NiO-
SrTiO3 containing spherical inclusions for (a) T = 295 K and (b) T =
80 K.

sphere, ellipsoid, and a distribution of ellipsoids–all of which are incorporated in Eq.

4.20. First we consider a 90-10 mixture of single phase spherical inclusions, with the

results for the effective dielectric constant and reflectance using the generalized MG

formula shown in Figs. 4.16 and 4.17.

Despite having a significant fraction of STO, the mixture no longer shows a res-

onance at the bulk TO1 frequency of the inclusion. Instead, the resonance shifts to

260 cm−1 corresponding to εi(ω0) = −εh(2 + f)/(1− f) ≈ −2εh in the limit of small

f , which is the electrostatic resonance of a sphere in a dielectric host background

also known as the dipolar surface plasmon, excited by a uniform electric field. The

frequency ω0 where this condition is satisfied is the the Fröhlich resonance frequency.

A perturbation expansion of Eq. 4.20 in orders of fi gives (fi � 1),

εeff ≈ εh +
1

3

∑
i

fi(εi − εh)
3∑

k=1

εh
εh +Nik(εi − εh)

. (4.21)

71



Figure 4.17: Simulation of reflectance of a 90-10 mixture of NiO-SrTiO3 containing
spherical inclusions for (a) T = 295 K and (b) T = 80 K.
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Figure 4.18: Simulation of the effective dielectric constant of a 90-10 mixture of NiO-
SrTiO3 containing ellipsoidal inclusions having axial ratio of 11.5 : 2.3 : 1
for (a) T = 295 K and (b) T = 80 K.

Thus the behavior of a dilute CM-type of mixture is dominated by the resonance

of individual inclusions. We see a dominant feature in the reflectance data at ∼260

cm−1 corresponding to the spherical resonance. This provides an explanation of the

feature (3) in our data of Figs. 4.12, 4.14 which could not be understood using

simple volume averaged mixing. We note that this feature had not been observed in

previous measurements of an identical ceramic mixture [23] due to the fact that the

composites contained 50% of inclusion by volume which we believe interferes with

the single particle effect. As noted above, the CM approximation is only valid for

dilute mixtures, otherwise clustering dominates and the inclusion/host phases may

no longer be distinguished.

For the case of ellipsoidal inclusions, the poles now depend on the depolarization

factors, Nk, with the resonance condition being εi(ω0) = −(1/Nk − 1)εh. When the

orientation is averaged, an ellipsoid contributes three modes corresponding to the
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Figure 4.19: Simulation of the reflectance of a 90-10 mixture of NiO-SrTiO3 contain-
ing ellipsoidal inclusions having axial ratio of 11.5 : 2.3 : 1 for (a) T =
295 K and (b) T = 80 K.
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Figure 4.20: Comparison of measured transmission as a function of temperature of
a 90-10 mixture of NiO-SrTiO3 for (a) large particle NiO host, 470 µm
sample thickness and (b) nano-particle NiO, 405 µm sample thickness

three principal axes, as seen in Figs. 4.18, 4.19 which show the effective properties of

a mixture with ellipsoidal inclusions having axial ratio of 11.5:2.3:1. In addition to the

NiO mode at 400 cm−1 and TO2, TO4 modes of STO, we see strong peaks at ∼100,

240, 340 cm−1 due to the ellipsoid. In fact, each of the TO modes of STO splits into

three peaks, although the splittings of the TO2 and TO4 are significantly weaker. The

modes of the ellipsoid are determined solely by the geometry; the orientation with

respect to the incident field determines the relative intensity. For the case of highly

elongated, needle-like inclusions, Nk → 0 and εi(ω0)→∞ which shifts the resonance

toward the bulk TO frequency. Thus a possible explanation for the dominant feature

(1) in Figs. 4.12-4.14 is the formation of needle-like channels of STO inclusions. Such

behavior has been observed previously for needle-like composites [98] and the concept

of elongated chains has been called upon to explain the presence of unusually large

absorption at the bulk TO frequency of MgO smoke and other ionic powders [99, 100,

101]. It was determined later that clustering was responsible for the absorption at the

ωT frequency [102], however, no consensus was reached with regard to the importance

of chains [101, 103]. Due to the presence of larger NiO grains in our samples (see
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Fig. 2.11) which could serve as a matrix for the formation of nano-channels of the

smaller STO grains along the grain boundaries, we investigated this problem further

by fabricating composites containing nano-particle (<100 nm) NiO host. This should

in principle remove any bias toward the macroscopic preponderance of STO channels

or needle-like inclusions. The transmission data up to 85 cm−1 in the region of the

bulk mode is shown in Fig. 4.20 for a range of temperatures for both nano-NiO host

and micron-sized NiO. The transmittance is lower for the nano-NiO sample which

could be due to the difference in the density of the synthesized nano-particles as

compared to the bulk or differences in porosity, both of which would affect the STO

inclusion volume fraction. However, the roll-off in transmission and the shifting of

the absorption edge toward low frequency with temperature is quite similar which

suggests that the bulk STO feature at the soft mode frequency is present in both

samples independently of the NiO grain size. If the low frequency mode depended

on the presence of channels due to large NiO grains, then the transmission should

have stayed flat at ∼0.3 in Fig. 4.20 (b). For this reason we do not think that the

needle effect is significant in our samples. Since the starting inclusion geometry of

the constituent particles is nearly spherical, for which the resonance is far removed

from the bulk TO frequency, we must look to particle clustering to explain the strong

feature in the reflectance range of 20-100 cm−1.

We now consider a uniform distribution of ellipsoidal inclusions of varying axial

ratios. As discussed previously, we can approximate dense clusters of STO inclusions

as larger ellipsoids of a given ellipticity. Since the distribution, geometry and orienta-

tion of the clusters is random, we consider a uniform distribution of ellipsoids [104].

We assume a large number of different dense clusters or elongated particles, each

corresponding to a fixed ellipsoid geometry, which in sum add to the total inclusion

fraction. For a fine enough distribution, the sum over i in Eq. 4.20 is transformed
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Figure 4.21: Simulation of the effective dielectric constant of a 90-10 distributed el-
lipsoid mixture of NiO-SrTiO3 for (a) T = 295 K and (b) T = 80 K.

into an integral,

∑
i

fi →
1∫

0

dNx

1−Nx∫
0

dNy fi(Nx, Ny, 1−Nx −Ny), (4.22)

where fi(Nx, Ny, 1 − Nx − Ny) is the probability density for an ellipsoid of dielec-

tric constant εi having depolarization factors {Nx, Ny, 1 − Nx − Ny}. The current

framework does not allow intermixing of particles with different dielectric constants

within the same dense cluster that is approximated as an ellipsoid. Thus if there are

particles or clusters present having different dielectric constants, εi, they will have an

associated fi that must be integrated separately. For the case of a continuous distri-

bution, fi(Nx, Ny, 1 − Nx − Ny) = fi/2 [105]. The results for the effective dielectric

constant and reflectance of a distributed composite are shown in Figs. 4.21 and 4.22.

The main feature that we see is a broad absorption band in between the TO and

LO frequencies of the bulk STO soft mode, corresponding to the region of negative
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Figure 4.22: Simulation of the reflectance of the 90-10 distributed ellipsoid mixture
of NiO-SrTiO3 for (a) T = 295 K and (b) T = 80 K.
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permittivity of the inclusion. The TO frequency is temperature dependent and thus

the rising edge moves from 90 cm−1 at T= 295 K to 50 cm−1 for T= 80 K. In both

cases the absorption band tails off at ∼550 cm−1, which is the nearly temperature

independent LO frequency. Thus for a uniform distribution we see a continuum of

poles allowed by the Bergman spectral representation as is intuitively obvious for a

random mixture. Even though the details of each particular pole will be different

for our sample containing clusters of spheres as opposed to ellipsoids, the band is

expected to be filled nevertheless with a continuous distribution. Finally, we see a

peak in the real part of the dielectric constant at the TO frequency. However, this is

not the bulk TO mode, which has transformed into a wide band, but an indication

of where the band starts. From Kramers-Kronig analysis, a rise in absorption at the

TO frequency of the Im{ε} will be associated with a peak in the Re{ε}. Thus in the

reflectance simulation we see a temperature dependent peak at the bulk TO frequency

indicating the onset of the absorption band. We also see complementary information

in the transmission data of Fig. 4.20 which shows the onset of asymmetric absorption.

4.8 Comparison of data and simulation

In order to obtain a fit with the reflectance data, we combine the features of

ellipsoidal distribution and the isolated spherical resonance as described above. We

assume that the total inclusion fraction is made up of two dominant terms, f =

fe+fs, one corresponding to ellipsoidal inclusions which result from inclusion particle

clustering or from unusually elongated single particles and the fraction of inclusions

that are nearly spherical. We use the following probability density in the extended

MG formula,

fi(Nx, Ny, 1−Nx −Ny) =
fe
2

+ fsδ
2(Nx −

1

3
, Ny −

1

3
). (4.23)
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Table 4.1: Best fit inclusion fractions for NiO-SrTiO3 composites with inclusion vol-
ume up to 15%.

f fe fs

0.05 0.0475 0.0025
0.1 0.095 0.005
0.15 0.1425 0.0075

For now we ignore the dependences of fe and fs on the inclusion concentration

and take the spherical inclusion fraction as 1
20

th of the total inclusion volume at all

concentrations. The best fit parameters under these assumptions for data of varying

inclusion concentration are shown in Table 4.1.

In Figs. 4.23-4.25 we show the reflectance simulations using the parameters of

Table 4.1 for T=80 K, T=295 K, and the temperature dependence of the 85-15

sample, respectively. These simulations are in comparison to the data of Figs. 4.12-

4.14. We see good agreement in regard to the presence of all observed spectral features

(1)-(4) as discussed in Section 4.5. The fit for the 90-10 concentration is closest to the

simulation, whereas the 95-5 and 85-15 show some deviations in the low frequency

region. The spherical resonance in the simulation has a narrower linewidth which

results in the more pronounced peak in the reflectance, which we ascribe to broadening

due to deviations of the fe fraction of the inclusion particles from spherical shape.

Lastly, we show the measured electric permittivity of the 85-15 composites containing

nano- and micron-sized NiO host in Fig. 4.26 compared to the simulation of Fig. 4.27.

The measured values are obtained from the transmission measurement data in Fig.

4.20. The values of εeff ∼ 25−40 in this frequency range amount to a large reduction

compared to weighted average mixing of Eq. 4.3, which predicts ε ≈ 400 in the same

frequency range at 20 K (Fig. 4.10). The reduction in the effective permittivity by one

order of magnitude further supports our model which describes the transformation

of the bulk soft mode into a distributed feature at higher frequencies leading to the

reduction of the static effective dielectric constant.
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Figure 4.23: Simulation of reflectance of the NiO-SrTiO3 mixture for different inclu-
sion concentrations at T= 80 K using best fit fe, fs. Part (a) shows the
full scale and (b) enlarges the low frequency behavior.

Figure 4.24: Simulation of reflectance of the NiO-SrTiO3 mixture for different inclu-
sion concentrations at T= 295 K using best fit fe, fs.
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Figure 4.25: Simulation of reflectance of the 85-15 NiO-SrTiO3 mixture as a function
of temperature using best fit fe, fs.
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Figure 4.26: Real and imaginary parts of the dielectric constant as measured for the
85-15 NiO-SrTiO3 mixtures as a function of temperature for (a) large
particle NiO host and (b) nano-particle NiO

Figure 4.27: Simulation of the dielectric constant of the 85-15 NiO-SrTiO3 mixture
as a function of temperature using best fit fe, fs.
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Now we discuss some of the discrepancies between the data and model. With

regard to the low frequency feature (1) in the data of Figs 4.12-4.14, we see for the case

of the 95-5 composite that the peak is barely visible, but makes a significant increase

when the inclusion concentration goes up to 10%. In the simulation the increase of the

low frequency mode as a function of inclusion fraction happens uniformly within the 0-

15% range, in contrast to the measurement. We suspect this discrepancy is a result of

not including the dependence of fs/fe on total inclusion fraction. The low frequency

feature which is described by the onset of the ellipsoidal distribution is dependent

on the presence of clusters. However, for low enough inclusion concentrations, we

expect less clustering and thus the inclusion type of nearly spherical geometry will

be more prevalent. For this reason, at low inclusion concentrations the low frequency

peak will tend to decrease for two reasons: 1) the disappearance of clusters and 2)

the general decrease in the inclusion concentration. The Fröhlich mode, on the other

hand, will decrease only as a function of decreasing inclusion fraction. Thus we expect

a stronger decrease in the low-frequency mode as compared to the Fröhlich mode at

low concentrations.

For the high values of inclusion, we see a noticeable dependence of the low fre-

quency peak position on the inclusion concentration which becomes especially clear

for the 85-15 data at T= 295 K where the peak appears at 75 cm−1 as compared to 84

cm−1 for the 90-10 sample. Since the frequency of this feature, corresponding to the

onset of the TO-LO absorption band occurs at the TO soft mode frequency of STO,

its dependence on the inclusion fraction as well as the shifting to frequencies below

the TO soft mode is difficult to explain within the current framework. Continuing

with the previous line of thinking, if at low inclusion fractions ellipsoidal clusters tend

to disappear then at high inclusion fractions they should get larger and become more

prevalent. In order to understand this behavior, we need to consider the dependence

of the geometrical resonance on particle size, which requires us to take into account
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retardation effects.

4.9 Inclusion size dependence

So far the underlying assumption for all effective properties has been the quasi-

static approximation of particle radius a � λ. However, at high enough inclusion

concentrations we expect to see this assumption break down as more aggregation

of STO particles begins to take place. In this section we abandon the electrostatic

approximation and consider the full set of Maxwell equations in order to understand

the behavior of particles with sizes comparable to the wavelength of light.

If we consider an infinite ionic solid, with the dielectric constant as given in Eq.

A.2, then any allowed electric or magnetic field F(r) must be a solution in all of

space to the full set of four Maxwell equations. If we assume exp(−iωt) dependence,

then the two curl equations ∇× E = iω
c
H, ∇×H = −iω

c
E lead to the vector wave

equation,

∇× (∇× F)− (ω2ε/c2)F = 0, (4.24)

where F represents either the electric or magnetic field. For the case of an infinite

solid geometry, the general solution for any field component is satisfied by plane

waves of the form ∼ exp(ik · r− iωt) which must be one of two types–longitudinal or

transverse–which follows from ∇·D = 0. The longitudinal plane waves can only exist

for ε = 0 and have all their fields parallel to the propagation vector. The transverse

plane waves have field components perpendicular to the direction of propagation and

must satisfy the dispersion relation,

k2 = ε(ω/c)2, (4.25)

where c is the speed of light. This is the well known phonon-polariton of an infinite

solid which has the combined properties of lattice vibration and electromagnetic wave
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[75, 106].

An analogous solution exists for finite-sized particles, although the frequencies of

oscillation and the form of the solution will now depend on the specific geometry.

We consider the general problem of a finite-sized spherical particle of radius a and

dielectric constant εi(ω) given by Eq. A.2 embedded in a dielectric host εh which

is assumed constant. The solution taking into account retardation for an arbitrary

dielectric function has been given by Mie [92, 107, 108, 109]. Due to the spherical

geometry, plane waves are no longer the modes of the problem. The fields must again

satisfy the full set of four Maxwell equations as well as Eq. 4.24. Three independent

and complete vector solutions to Eq. 4.24 for arbitrary εi can be constructed from

the solutions of the corresponding scalar equation,

∇2ψ + k2ψ = 0, (4.26)

which are

ψlm = zl(kr)Ylm(θ, φ), l = 1, 2, ..; m = 0,±1, ..,±l, (4.27)

where zl(kr) stands for the spherical Bessel function jl(kr) inside the sphere, or the

Hankel function hl(kr) which applies outside of the sphere. The Ylm are the usual

spherical harmonics. The three solutions of Eq. 4.24 are:

Llm = ∇ψlm, (4.28)

Mlm = ∇× (rψlm) = Llm × r, (4.29)

Nlm = k−1∇×Mlm, (4.30)

which are also related by Mlm = k−1∇×Nlm. The full solution again separates into

longitudinal and transverse parts. The longitudinal solution is E = AlmLlm which
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satisfies ∇ × E = 0 and exists only for ε(ωL) = 0 corresponding to the longitudinal

natural frequency. The fields F for r > a are all zero and H = 0 everywhere. Inside

the sphere, the electric field is arbitrary and determined by the initial conditions,

with the restriction that the boundary conditions for the tangential and normal field

components must be satisfied at r = a, which leads to the requirement that jl(ka) = 0

from which the allowed spatial frequencies kn can be determined. This solution is not

observed experimentally since it does not couple to external fields.

For the case of transverse solutions, k is given by ki =
√
εi(ω)ω/c for r < a

and ko =
√
εhω/c for r > a. The transverse modes split into two independent

components–the transverse-electric (TE), E = BlmMlm and the transverse-magnetic

(TM), E = ClmNlm. The associated magnetic fields are found from H = (c/iω)∇×E.

Both the TE and the TM modes satisfy ∇·E = 0, which characterizes the transverse

solution. Thus for each pair of l,m we have two unknowns inside and outside of the

sphere: Bi
lm,Bo

lm for the TE modes and Ci
lm,Co

lm for the TM modes. These unknowns

may be found by imposing the continuity conditions at r = a, where it is sufficient

to consider just the tangential field components. For the TE case we get,

Bi
lmjl(kia) = Bo

lmhl(koa) (4.31)

Bi
lm

√
εi(ω)[kiajl(kia)]′/kia = Bo

lm

√
εh[koahl(koa)]′/koa (4.32)

where the prime denotes differentiation with respect to the argument, ka. By setting

the determinant for the system of Eqs. 4.31, 4.32 equal to zero we obtain,

jl(kia)[koahl(koa)]′ − hl(koa)[kiajl(kia)]′ = 0, (4.33)

which is the characteristic equation for the TE phonon-polaritons of a sphere. This

equation yields the natural frequencies of oscillation for which non-trivial field solu-
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tions exist without an applied external field.

Similarly for the TM case, we obtain the two equations for the coefficients Ci
lm,

Co
lm from the boundary conditions at r = a,

Ci
lm

√
εi(ω)jl(kia) = Co

lm

√
εhhl(koa) (4.34)

Ci
lm[kiajl(kia)]′/kia = Co

lm[koahl(koa)]′/koa (4.35)

from which follows the characteristic equation for the TM resonances,

εhhl(koa)[kiajl(kia)]′ − εi(ω)jl(kia)[koahl(koa)]′ = 0. (4.36)

To relate this to the quasi-static derivation of Section 4.7.1, we can take Eqs. 4.33,

4.36 in the limit kia, koa << 1. We use the Hankel and Bessel function approximations

for small arguments: jl(x) ∼ xl, hl(x) ∼ x−(l+1). In this approximation, there are no

solutions for the TE case and the TM case becomes,

εi(ω) = −εh(l + 1)/l, l = 1, 2, 3... (4.37)

Thus we see resonances corresponding to the multipolar order of the field solutions,

which are known as surface modes because the field profiles for the higher order

terms are confined to the surface of the sphere. The l = 0 term corresponding to the

monopole is absent due to the absence of net charge inside. The dipolar case yields

εi(ω) = −2εh which is the condition we derived using the electrostatic approximation

and is the single particle feature that we observe in reflectance at ∼260 cm−1. The

higher order resonances also exist, however, in the case of a constant external field

they will not be excited.

For the general case of arbitrary sphere size [109], Eqs 4.33 and 4.36 describe

three types of resonances: low frequency modes (LFM) which occur at ω < ωT ,
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surface modes (SM) in the range of negative permittivity, ωT < ω < ωL, and high

frequency modes (HFM) at ω > ωL. The LFM and HFM are bulk modes that vanish

for small sphere size. In the limit kia, koa << 1, the LFM mode frequencies approach

ωLFM → ωT whereas the frequencies of the HFM modes diverge ωHFM →∞. As the

particle size increases all three types of modes shift to low frequencies and become

mixed. Thus the three strict frequency ranges for LFM, SM, HFM apply only in the

small particle limit.

In order to understand how these resonances enter the parameters observed in

a typical experiment such as absorption and scattering, we must add an excitation

field, which in this case is an incident plane wave [91, 108]. The incident plane wave is

decomposed into spherical vector harmonics to match the geometry of the problem,

and the continuity conditions at r = a allow solution for the full set of incident,

internal and scattered fields. Then using Poynting’s theorem it is possible to solve

for the amount of power that is taken from the incident wave by absorption and

scattering, with total extinction being the sum of the two. In terms of the powers,

Pabs, Psca, Pext, one can define the corresponding coefficients σs = Psca/(πa
2Iinc),

σa = Pabs/(πa
2Iinc) and σe = Pext/(πa

2Iinc), where Iinc is the incident intensity in the

plane wave. The final expressions for the cross sections of scattering, extinction and

absorption are given by,

σs =
2

(koR)2

∞∑
l=1

(2l + 1)(|al|2 + |bl|2) (4.38)

σe = − 2

(koR)2

∞∑
l=1

(2l + 1)Re(|al|+ |bl|) (4.39)

σa = σe − σs. (4.40)

They are expressed in terms of al and bl which are the Mie coefficients of the scattered
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Figure 4.28: The coefficients of (a) absorption and (b) extinction for a spherical in-
clusion of SrTiO3 of varying radius embedded in NiO host at T= 295
K. The dielectric constant of NiO is taken to be real which is a good
approximation up to 350 cm−1.

field for the Mlm and Nlm, respectively, and are given by

al = − jl(kia)[koajl(koa)]′ − jl(koa)[kiajl(kia)]′

jl(kia)[koahl(koa)]′ − hl(koa)[kiajl(kia)]′
(4.41)

bl = − εhjl(koa)[kiajl(kia)]′ − εi(ω)jl(kia)[koajl(koa)]′

εhhl(koa)[kiajl(kia)]′ − εi(ω)jl(kia)[koahl(koa)]′
. (4.42)

We plot the absorption and extinction coefficient for an STO sphere of different

radii embedded in NiO in Fig. 4.28. For a radius of 0.4 µm which is approximately

the mean size of the individual particles, the spectrum is dominated by the dipolar

surface mode, with all of the power being lost to absorption inside the the sphere.

As the particle size increases, the mode shifts toward lower frequencies and broadens.

There is another peak that appears at ∼90 cm−1 for the 1 µm radius, increasing and

shifting to lower frequencies with increasing particle size. This is the LFM bulk mode

discussed above. Finally, a big fraction of the energy goes into scattering, which in

the composite medium will differ from the behavior of individual particles due to

interference.

90



The main size-dependent property that relates to our data is that with increasing

particle or cluster size we expect to see additional bulk modes at or below the TO

soft-mode frequency for a given temperature. We will also see the entire band between

the TO and LO frequencies of the STO soft mode shift down in frequency. We believe

we observe this behavior in the 15% in reflection of Fig. 4.13, where the low frequency

feature shows dependence on inclusion concentration. For larger inclusion fractions,

the STO particles form large clusters on the order of 2 µm (effective volume radius as

compared to Fig. 4.28) which lead to the downshifting of the spectrum and possible

appearance of bulk modes.

4.10 Summary

We have conducted detailed measurements and developed a model to describe the

nano-particle behavior of STO inclusions embedded in NiO, in ceramic composites.

The spectral features are dominated by the vibrational surface polaritons of the in-

clusion in a broad region of negative permittivity. Specifically, we see two dominant

features: the Fröhlich mode at 260 cm−1 due to the nearly spherically shaped in-

clusions as well as a broad band in between the temperature dependent soft mode

frequency and up to 500 cm−1. At the onset of this band, we see a characteristic re-

flectance feature at low frequencies which is temperature dependent. The broadening

and up-shifting of the bulk soft mode into a wide band leads to a drastic reduction

in the values of static permittivity of the composite as measured at low frequencies

as well as the vanishing of the reststrahlen region in reflection. Based on the analysis

of inclusion fraction, it is possible to identify the effect of clustering and information

about cluster size from the optical spectral features. The Fröhlich mode represents

a well defined single-particle geometric resonance of the otherwise random compos-

ite which opens the way for structural engineering of ceramics for attaining desired

spectral characteristics.
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CHAPTER V

Conclusion

As is customary in the concluding chapter, we will present unique features and

strengths of the findings of this dissertation as well as pose new questions that may be

answered in future investigations. After having worked for a long time in a particular

direction, one often discovers that the answers that were found are small in comparison

to the number of additional questions that spring up on the basis of newly gained

understanding. This was also true in this case and the findings of the previous chapters

suggest new questions and research directions.

In the process of this dissertation we have found a method to extend the limited

bandwidth of THz-TDS spectroscopy which often stops at frequencies below 5 THz,

thereby limiting the range of investigation and the choices of materials that may be

studied. The optimization of the time-domain spectrometer in the 5-8 THz range

was motivated in large part by the interesting materials that we found that were

outside of our previously accessible measurement range. As was mentioned before in

the section on the NiO-STO composites where data was presented on the magnetic

AFMR resonance of NiO, THz-TDS has unique advantages compared to incoherent

measurement methods first because it allows measurement of both amplitude and

phase which leads to the full optical constants directly as shown in Fig. 4.30 as

opposed to performing a fit to the reflection or transmission data which relies on an
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assumed model for the optical constants such as the single harmonic oscillator model.

In FTIR studies, the approach to accomplish the same goal would be to employ

Kramers-Kronig analysis for obtaining the phase information which is related to the

amplitude, however this approach requires measurement in very wide frequency ranges

and the joining of multiple data sets which is difficult to do in practice. Thus the direct

extraction of the optical constants from the amplitude and phase information without

making model assumptions is quite useful. The second advantage is in the resolution

of the instrument which, in principle, is limited only by the temporal window of the

scan. In practice, increasing temporal window will extend the duration of the scan

and thus introduce additional noise which will eventually overwhelm the signal. In

the case of FTIR, the resolution of the frequency domain measurement will depend on

the mirror retardation of the interferometer in which case noise will also increase with

resolution. In the end, the resolution of both methods will be limited by SNR and in

this regard THz-TDS is known to have a significant advantage at lower frequencies.

The bound on the resolution of data in Fig. 4.3 was determined by the 30 ps time

window of the scan. By extending the temporal window to ∼ 60 ps, we were able to

see pronounced narrowing of the AFMR of NiO. Fig. 5.1 shows the transmission of

1.85 mm pure NiO ceramic at two temperature points with the higher resolution.

Although the narrowing is significant with temperature, and the width of the T =

50 K data may be limited by the temporal resolution of the instrument which in

this case is ∼ 0.6 cm−1, it is unlikely that the value of µ would become stronger

by greater than two orders of magnitude so that the magnetic permeability could

attain negative values as is required based on the harmonic oscillator fit of Fig. 4.4.

Regardless of the final answer to this question, the ultimate sharpness of the linewidth

of the NiO AFMR is a fundamental question that would be interesting to investigate

in its own right. However, with regard to the goal of searching for naturally occurring

negative refraction there are other material candidates in the group of transition-
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Figure 5.1: Transmission of the nano-grain NiO ceramic 1.85 mm thick taken at two
temperature points. The temporal window of the scan is 55 ps.
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metal fluorides that possess even stronger magnetic-dipole active spin wave resonances

in the far-infrared range, the most promising of which to our knowledge is Cobalt

Fluoride (CoF2). An early far-infrared [110] study using FTIR technique measured

the reflection of CoF2 in the range of 100-300 cm−1 as is reproduced in Fig. 5.2.

The most noteworthy feature of this measurement is that the dip in reflectance

corresponding to the magnetic mode occurs in the reststrahlen region of the vibra-

tional mode of CoF2 where the permittivity is negative to begin with as was pointed

out by the author of the paper almost twenty years prior to Pendry’s proposal of the

perfect lens [16] that instigated the intensive research in this area and led to the even-

tual understanding of negative refraction. However, at the time of this measurement

the understanding did not exist and the exact value of the magnetic permeability was

not determined. Based on a fit to this data, the oscillator strength of the magnetic

mode at 210 cm−1 is significantly larger in comparison to the NiO AFMR resonance

which makes this an appealing candidate especially taking into account the fact that

a composite material would not need to be fabricated for the sake of the electric

permittivity. The THz time-domain technique, which is capable of scanning in the

required frequency range, would also be advantageous for resolving the linewidth of

this mode at lower temperatures.

With regard to the dielectric properties of STO composites, it was shown that the

single-particle Fröhlich mode stands out in an otherwise arbitrary composite due to

the fact that the initial inclusion geometry was nearly spherical. Although the spher-

ical mode was far-removed from any magnetic behavior of NiO, it may be possible to

engineer the spectral features of such composites to match the magnetic resonances

of other materials, such as CoF2, for instance. According to [110] CoF2 also has a low

frequency magnon at 40 cm−1 as well as a two-magnon magnetic-dipole resonance at

120 cm−1. Thus, with a more careful fabrication of ceramics that emphasize elon-

gated shapes of inclusion, it would be possible to shift the Fröhlich resonance to lower
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Figure 5.2: Observation of the magnetic dipole infrared active exciton in CoF2 at
(210±1) cm−1. The magnetic field vector H is directed parallel to the
optical axis c of the crystal, the electric field vector E is perpendicular to
it. The left ordinate scale corresponds to the spectrum measured at 300
K, the right scale to that at 15 K. Angle of incidence α =40◦ , resolution
1.5 cm−1. Taken from [110].
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frequencies in order to overlap the magnetic features. There are a number of other

antiferromagnets that may be used in place of NiO, with a good starting-point com-

pilation in connection to NIM given in [111]. With regard to the dielectric resonance,

it was found that only a small fraction of the total inclusion concentration, 1/20-th of

the total, was responsible for the single particle resonance due to the strong clustering

and interaction effects that resulted in a dominant wide band across the entire region

of negative permittivity. With the engineering of ceramics or more careful selection

of initial powder shape it may be possible to focus the spectral features into much

narrower regions.

Finally, as a suggestion for an alternative metamaterial application, the reverse

case of interpreting the topology and information about the internal statistical order

may be done for resonant composites based on simple reflectance and transmittance

measurements. There were a number of geometry and statistical features that we

obtained from the experiments. Namely, that the fraction of interacting STO particles

that lead to the broad absorption band relative to the isolated inclusions that cause

the single particle feature is on the order of 20:1. Information regarding the statistical

deviation from spherical shape of the starting inclusion particles is contained in the

width of the Fröhlich mode. We derived information about the mean STO cluster

size being on the order of 2 µm (effective volume radius) based on SEM images as

well as the spectral behavior of the low frequency onset of the absorption band which

depends on the particle size through the total inclusion fraction. Such information

may be especially relevant in studying fracture formation and stress resistance that

may depend on the homogeneity of the composite. Inclusions of resonant particles

such as STO may be added to composites and mixtures intended for entirely different

applications as an indicator for optical testing purposes.
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APPENDIX A

Effective medium theories

In the current section we cover several important aspects regarding composites of

arbitrary microstructure with an emphasis on resonant ionic inclusions at low filling

fractions. Without using any information about the specific arrangement of inclusions

we show that a general mixture will have: 1) Upper and lower bounds for the effective

dielectric constant with the exact dielectric value being determined by geometry. In

the case of resonant inclusions, these bounds transform into bounds in frequency

within which the effective resonance must occur. 2) A general representation for

the effective dielectric function in terms of electrostatic resonance states, called the

Bergman spectral representation. The specific geometry will determine the location

of the poles and, as a result, the excitation frequencies of the composite within the

region of negative permittivity as is the case for plasmonic structures. In Section 4.6

and Appendix B we will consider a more specific geometry based on the generalized

Clausius-Mosotti equation which will behave within the limits of the general rules.

A.1 Bounds for arbitrary mixtures

The averaging approach that we used earlier (Eq. 4.3) is the simplest way of

approximating an effective medium which also corresponds to an exact solution of
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Figure A.1: Two component structure with layers (a) parallel and (b) perpendicular
to the electric field.

the well known geometry of a stack of thin films parallel to the electric field in the

quasi-static approximation [79, 80]. Consider two cases as shown in Fig. A.1 where

the electric field is oriented either (a) parallel or (b) perpendicular to the compo-

nent layers. This geometry is analogous to the problem of parallel-plate capacitors

where the measurable effective capacitance can be used as the physical basis to de-

fine the effective dielectric constant [81]. It is assumed here that the scale of the

structure is smaller than the wavelength of light as well as skin depths inside the

component materials, such that the full set of Maxwell equations reduces to electro-

statics. In the parallel case, E(r) = E is uniform throughout and D(r) = ε(r)E,

whereas in the perpendicular case, D(r) = D is uniform and E(r) = D/ε(r). Thus,

the fields of the system are known exactly and it is possible to calculate the averages

< E(r) >, < D(r) > by using ε(r) = εi or εh and the corresponding volume frac-

tions of each component. This results in the effective dielectric constant defined by

εeff = < D(r) >/< E(r) > for the two configurations as follows,

ε‖ = fεi + (1− f)εh

1
ε⊥

= f
εi

+ (1−f)
εh

(A.1)

In the case of a highly contrasting mixture where εi >> εh, case (a) will assume

the properties of the inclusion in proportion to the volume fraction, whereas case
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(b) will be resistant to acquire the high dielectric value of the inclusion even for

high volume fractions. This is because in the parallel configuration there will be

minimum screening (depolarization field) in the highly polarizable inclusion, but the

perpendicular case will experience maximum screening such that the electric field

inside the inclusion is reduced thereby diminishing the effect of the inclusion on the

average dielectric constant [82, 79].

Because case (a) represents minimum screening and case (b) maximum screening,

one can imagine that most randomly structured composites will fall somewhere in

between. Indeed, Eq. A.1 represents two extreme bounds on the effective dielectric

constant of a mixture with arbitrary topology, known as the Wiener bounds [80, 83].

The component dielectric constants may be complex as long as the effective medium

is well defined, in which case Eq. A.1 results in a bounded region in the complex

plane. Thus, if the dielectric properties of the inclusion and host are known, one

can find a range of values within which the effective dielectric constant must lie. If

the exact volume fractions are known, the allowed range is reduced significantly. By

adding additional information regarding the microstructure, such as the presence of

isotropy, it is possible to narrow this range even more with stricter bounds [80, 83].

If we consider resonant inclusions of STO inside NiO for the two extreme ge-

ometries of Eq. A.1, we can get a sense of the range of behavior within which our

composite must fall. We take a 10% volume fraction of STO inclusions inside NiO

at room temperature. In the parallel case, the situation is as expected with weighted

average mixing, but in the perpendicular case the location of STO soft mode shifts

up in frequency to 480 cm−1 in addition to experiencing a reduction in magnitude.

This is due to the fact that the poles of the effective dielectric function are altered in

case (b), as seen in Eq. A.1. To simplify the analysis, we consider an ionic inclusion
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Figure A.2: Effective dielectric constant for the parallel and perpendicular thin-film
configurations of the 90-10 mixture.

with a single infrared mode which has a dielectric function of the form [75, Ch. 10],

εi(ω) = ε∞ + (ε0 − ε∞)
ωT

2

(ωT 2 − ω2)
(A.2)

where ωT , ωL are the zone-center transverse, longitudinal optical frequencies, respec-

tively, and ε0, ε∞ are the static and electronic contributions to the dielectric constant.

The four quantities are related by the Lyddane-Sachs-Teller relation, ωL
2ε∞ = ωT

2ε0.

We take the host medium, εh, to be constant. Then Eq A.1 becomes,

ε‖ = [fε∞ + (1− f)εh] + f(ε0 − ε∞) ωT
2

(ωT 2−ω2)

ε⊥ = εh
f
εh
εi

+(1−f)

(A.3)
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The pole of ε‖ remains unchanged at ω‖ = ωT and for ε⊥ the new pole becomes,

ω⊥ = ωT

√
ε0 + εhf/(1− f)

ε∞ + εhf/(1− f)
, (A.4)

which is restricted to the region, ωT ≤ ω⊥ ≤ ωL. In the limit f → 0, ω⊥ =

ωT
√
ε0/ε∞ = ωL. Thus the inclusion vibrational TO mode shifts toward the LO

frequency for low mixing fractions as seen in Fig. A.2. For the case of SrTiO3, which

has three active infrared modes, the situation does not change significantly due to

the fact the the soft mode is dominant.

A.2 The Bergman spectral representation

A more general way to understand the shifting of poles is to consider a composite

of arbitrary geometry of which the above structures are special cases. The dielectric

constant of an arbitrary effective medium can be represented in terms of a spectrum

of electrostatic resonances that depend on the microgeometry and appear as poles

in the effective dielectric function [81, 84]. Using the Bergman representation, the

dielectric constant of an arbitrary mixture can be expressed as,

εeff = εh(1−
∑
n

Fn
s− sn

) (A.5)

where

s =
εh

εh − εi
, 0 ≤ sn < 1, 0 ≤ Fn < 1. (A.6)

This expression results from the fact that for a given composite microgeometry there

exists a set of non-vanishing potentials φn that solve the Laplace equation with the

corresponding boundary conditions. Since the electric field associated with these

states is non-zero for a zero external field, the solutions are known as electrostatic

resonances. Moreover, these resonant states form a complete and orthogonal set
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of functions that can be used to describe an arbitrary electric field E(r) inside the

composite. Since εeff =< ε(r)E(r) > / < E(r) >, there exists a general expansion

of the effective dielectric constant in terms of these resonances once the necessary

averaging has been applied. The structural information particular to the composite,

including the filling fraction, determines the values of Fn, sn. The poles of εeff can

only occur for negative values of εi/εh and are thus dispersive (non-zero frequency)

phenomena. The values of the poles determine the natural frequencies of the system

through the dependence of the component dielectric constant on frequency. Here, we

are not concerned with the theory of electrostatic resonances of arbitrary composites,

which we leave to the references, but our interest is mainly in pointing out that such

resonances exist, that they depend on the geometry, and that they are responsible for

the general representation of the dielectric function as given by Eqs. A.5 and A.6. In

Chapter 4 and Appendix B, we will deal in detail with the electrostatic resonances

of specific geometries, such as the sphere and the ellipsoid, which are present in our

samples and ultimately determine the resonant spectral features that we see.

For now we consider again the frequency dependent form of the dielectric constant

of an ionic inclusion with a single vibrational mode as given by Eq. A.2. If such an

inclusion is mixed in an arbitrary fashion into a host material with a static dielectric

constant, εh, then the resonant frequencies must satisfy the pole condition of Eq. A.5,

εi(ωn) = −εh(1/sn − 1), (A.7)

which is satisfied only for negative values of εi(ω). Thus for any type of system the

resonance region will occur between ωT ≤ ωn < ωL. The specific locations within

this range will be determined by the geometry. We have already presented several

special cases of the Bergman spectral representation in Fig A.1 and have solved for

the resonant spectra. The parallel and perpendicular thin-film configurations, which
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correspond to extreme bounds of the dielectric constant, also represent the extremes

of pole behavior for the case of an ionic inclusion present at low filling fractions. The

parallel layers will be associated with a resonance at the transverse-optical frequency

whereas the perpendicular configuration of maximal field screening will shift the ionic

resonance toward the longitudinal-optical frequency. Other features which occur in

the middle of this range such as the surface modes of a spherical dielectric inclusion

will be dealt with in Chapter 4.
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APPENDIX B

The Maxwell-Garnett formula

In Section 4.6, the CM relation was derived which constructs a continuous, macro-

scopic medium out of a suspension of point dipoles. The density, n, and polarizability,

α are the building blocks used to derive the macroscopic < E >, < P > and the di-

electric constant, εeff , for an arbitrary applied field. The symmetry of the medium

eliminates interaction between the dipoles such that any one of them is excited by

Eloc = Eint. In the macroscopic sense, each of the dipoles contributes a depolarizing

”self-field” coming from within the dipole, which follows from Eq. 4.16, that results

in a smaller < E > compared to Eint as seen from Eq. 4.17 [82, 87]. The CM

equation has been experimentally confirmed and used to estimate the polarizabilities

of atoms and ions from measurements of the refractive index of crystals, liquids and

gases. Note, that the noncrystalline substances do not have cubic symmetry which

has been assumed during the derivation of the local field, but the Lorentz relation

is expected to hold as well for uncorrelated systems [86], [88, Ch. 2] where the sur-

rounding particle interactions tend to average to zero at any inclusion site. Note also

that the Lorentz field has been derived for point dipoles, whereas the atoms making

up the solid have finite sizes and are relatively close-packed such that the far-field

requirement for the applicability of the dipole approximation is not satisfied in gen-
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eral. However, if the atoms or ions are assumed to be perfectly spherical then the

electric potential outside of the sphere, within the statics approximation, is described

solely by the point dipole potential and the atom behaves like a dipole at arbitrary

separations. We will treat this problem in more detail in this section. Thus the main

corrections to the CM equation will come from the removal of symmetry of either

the lattice or the inclusion geometry which will lead to more complicated local ex-

citing fields and higher multipole interactions. These problems have been studied

theoretically for the case of ionic crystals with up to octupole order corrections and

for finite-sized spherical metal inclusions in different lattice types and the agreement

with the basic CM relation has been found quite accurate [89, 90]. Moreover, in the

case of uncorrelated systems of inclusions, even irregularly shaped particles are not

expected to cause significant deviations from CM results as long as the quasi-static

approximation applies and the inclusions are well separated from each other such that

the dipole fields are the dominant terms in the expansion.

In this section we will consider media with finite-sized, dilute systems of inclu-

sions that are significantly smaller than the wavelength of light. First let us consider

a medium with spherical inclusions of radius a, and volume fraction, f , mixed into

a uniform host material. Assuming that the inclusions are well distributed, the vol-

ume taken by one particle is (4/3)πa3/f and the average inter-particle separation

normalized by the radius of the particle can be estimated by:

Savg =
[(4/3)πa3/f ]1/3

a
= (

4π

3f
)1/3. (B.1)

Thus for an inclusion volume fraction of f = 0.1, Savg = 3.5 radii, if the particles are

uniformly distributed.

Now we will derive the εeff for a medium with finite-sized spherical inclusions.

Consider a sphere in free space, of dielectric constant εi, in a static electric field, E0,
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Figure B.1: Schematic of a sphere of dielectric constant εi being polarized by a uni-
form external field E0.

as shown in Fig. B.1. The external field will polarize the sphere and induce charges

on the surface which will act to counter the external field. From symmetry, we can

see that the internal fields and polarization must be parallel to E0. The standard

statics solution [85, 91] proceeds by solving the Laplace’s equation ∇2Φ = 0 in the

charge free regions, r < a, where the potential can be expressed as Φi = Alr
lPl(cos θ)

and for r > a, where the potential is Φo = −E0r cos θ+Blr
−(l+1)Pl(cos θ). The Pl(x)

are the Legendre polynomials. The boundary conditions at r = a allow solution for

the unknown coefficients. The internal electric field is found in terms of the applied

field,

Ein =
3

εi + 2
E0. (B.2)

Note that the denominator contains a pole, εi = −2, which corresponds to a resonance

condition for the spherical geometry. At this value of εi a nontrivial solution to

the Laplace equation exists for a vanishing external field [92, 93], which represents

one possible electrostatic resonance within the Bergman spectral representation as

discussed in Appendix A. The polarization inside the sphere is P = ε0(εi− 1)Ein and

the static polarizability is obtained from pin = αE0 as follows,

αsphere = 4πa3ε0
εi − 1

εi + 2
. (B.3)
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Now, considering a mixture of i different spheres of dielectric constants εi, polarizabil-

ities αi and volume fractions fi = ni(4/3)πa3, we get the effective medium constant

in the quasi-static approximation from Eq. 4.19,

εeff − 1

εeff + 2
=
∑
i

fi(
εi − 1

εi + 2
), (B.4)

which is the CM result modified to include finite spheres. We are interested in in-

clusions located in a host background εh which requires the following substitutions

εeff → εeff
εh

and εi → εi
εh

. This results from the fact that for an arbitrary composite

geometry, the solution of the Laplace equation for the electric potential in all space

is identical for the inclusion/host pairs {εi,εh} and {εi/εh,1}. This produces identical

E field for the two cases, but the displacement field is modified D→ D/εh from the

case {εi,εh} to {εi/εh,1}. Since εeff =< D > / < E > then εeff also requires the

appropriate substitution. Carrying out the change and re-arranging for εeff results

in,

εeff = εh + 3εh

∑
i fi

εi−εh
εi+2εh

1−
∑

i fi
εi−εh
εi+2εh

. (B.5)

This is the well known Maxwell-Garnett (MG) formula for multi-phase mixtures [79].

In our experiments, we have samples that are composed of nearly spherical STO

particles at low volume fractions which means that the particles are fairly well dis-

persed. However, a large fraction of the particles tends to cluster and form larger,

irregularly shaped aggregates (see Figs. 2.10-2.14). As an approximation, we can

view the mixture as a dilute suspension if spherical particles as well as larger parti-

cle aggregates of varying shapes that are fused together on sintering. The irregular

agglomerates are difficult to simulate exactly and would require a scattering solution

for each particular shape of which there are an infinite number or an entirely different

statistical approach of generating such shapes from the constituent spheres by assum-

ing some form for the spatial correlation function. These approaches are involved,
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Figure B.2: Schematic of an ellipsoid of dielectric constant εi being polarized by a
uniform external field E0.

would still be based on statistical assumptions and would not take advantage of the

fact that we are dealing with a dilute CM type of mixture. For this reason, we will

approximate the aggregated shapes by a range of ellipsoidal shapes of varying axial

ratios for which exact solutions exist in the quasi-static limit. Thus we will model the

mixture as made up of a fraction of well dispersed spheres corresponding to individual

STO inclusions and ellipsoids which describe the clusters of varying geometries–from

disks to needles and everything in between. The total volume fraction of the inclusion

will be kept small in accordance with our samples. This should provide a reasonable

first-order description of the random STO/NiO composites.

As was done for a sphere, it is possible to solve for the internal and external

fields of a dielectric ellipsoid in an external static field. The approach is considerably

more involved due to the loss of symmetry, such that the Laplace equation must be

described in ellipsoidal coordinates for this problem [91, 94]. However, the approach

of expressing the electric potential inside and outside of the object and matching the

boundary conditions at the interface is analogous to the sphere. Again, the external

field will polarize the ellipsoid and induce a constant internal electric field irrespective

of the orientation although the field will not in general point in the same direction as

the external field, unless aligned along one of the principal axes of the ellipsoid. Let
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us take the principal axes to have half-lengths ax, ay, az. If E0 is aligned along one of

these axes, such as x̂, the internal field solution is,

Ein =
1

1 +Nx(εi − 1)
E0, (B.6)

where Nx is the depolarization factor found from,

Nx =
axayaz

2

∞∫
0

ds

(s+ a2
x)
√

(s+ a2
x)(s+ a2

y)(s+ a2
z)
. (B.7)

The depolarization factors Ny (Nz) can be calculated similarly by interchanging ay

and ax (az and ax) in the integral. The three factors always satisfy Nx +Ny +Nz = 1

and for the case of a sphere Nx = Ny = Nz = 1/3, in which case Eq. B.6 leads

to Eq. B.2. No closed form expression for Eq. B.7 exists for the general case of

three different axes, however the depolarization factors may be expressed in terms of

tabulated elliptic integrals [96] and simple equations exist for ellipsoids of revolution

(spheroids) where two of the axes are equal [79]. From Eq. B.6, one can see that the

ellipsoid will in general contain three poles εi = −(1/Nk − 1) for k ∈ {x, y, z}, which

will lead to electrostatic resonances at the corresponding frequencies in the region

of negative permittivity of the inclusion. The induced polarization will in general

be anisotropic, with the dipole moment given by pin =
∑

k=x,y,z

αk(k̂ · E0)k̂ and the

polarizability derived as before,

αk =
4πaxayaz

3

ε0(εi − 1)

1 +Nk(εi − 1)
. (B.8)

Due to the polarization anisotropy, the CM relation must in general be expressed

in vectorial form, however, since we are dealing with a random mixture where the

orientation of the inclusions is uniformly distributed, the effective polarizability will

be isotropic by symmetry. Thus we need to determine the magnitude of the isotropic
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polarizability of an ellipsoid with a uniform probability density of orientation over

4π degrees of solid angle, Ω [91, Ch. 5]. We express the constant external field in

spherical coordinates E0 = E0(sin θ cosφ, sin θ sinφ, cos θ) and assume that the frame

of the ellipsoid rotates uniformly. To calculate the effective polarizability we calculate

the contribution of each of the principal directions of polarization of the ellipsoid to

the direction of the external field. Thus, taking the ẑ component we get,

< αz >=
αz
4π

2π∫
0

π∫
0

cos2 θ sin θ dθ dφ =
αz
3
, (B.9)

with the integrals for < αx >, < αy > producing identical results. Thus the effective

polarizability of a randomly oriented ellipsoid is,

αellipsoid =
1

3
(αx + αy + αz). (B.10)

In addition, the local field will be altered for the ellipsoidal inclusion due to the loss

of spherical symmetry. In the derivation leading up to Eq. 4.17, the averaging of the

electric field must be done over an ellipsoidal shell [94, 95] which leads to the modified

Lorentz relation for electric field applied along one of the axes of the ellipsoid,

< E >= Eloc −
Nk

ε0
< P >, k = x, y, z (B.11)

where Nk is the depolarization factor as defined previously. In the case of random

orientation this relation will also be averaged in the three principal directions as

derived for the polarizability. The final result for the effective dielectric constant of
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a multi-phase mixture of finite-sized, randomly oriented ellipsoidal inclusions is [97],

εeff = εh +

1
3

∑
i

fi(εi − εh)
3∑

k=1

εh
εh+Nik(εi−εh)

1− 1
3

∑
i

fi(εi − εh)
3∑

k=1

Nik
εh+Nik(εi−εh)

. (B.12)

We note that the spherical geometry as shown in Eq. B.5 is a subset of this more

general formula.
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