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ABSTRACT 

 

With the increase in average life expectancy over the last few decades, the 

importance of research on central nervous system (CNS) diseases has continuously 

grown. In one effort to reveal the mechanisms of these diseases, mitochondria have been 

extensively studied in close relation to neurodegeneration and aging because of their 

decisive roles in apoptosis and cellular bioenergetics. However, the precise mechanisms 

behind mitochondrial functions in the development and progression of CNS diseases as 

well as how mitochondrial properties may reflect the functional states of mitochondria 

have not yet been elucidated. 

Throughout the dissertation, we started our mitochondrial research at the level of 

individual mitochondria. The scope of the research was then extended to the properties of 

the mitochondrial population. Finally, we shifted our attention into the internal structure 

and corresponding electrochemistry of mitochondria. 

First, we introduced image analysis methods in order to simultaneously quantify 

the changes in mitochondrial properties under 1,3-DNB exposure. By using these image 

analysis techniques, we presented that major membrane potential fluctuations are mostly 

accompanied by abrupt changes in mitochondrial morphology. Additionally, we found 

that 1,3-DNB can induce statistically significant changes in mitochondrial morphology 

and membrane potential, and that theses alterations may not be related to the 

mitochondrial permeability transition. 



 

xi 

Next, we developed a mitochondrion model simulating the electrochemical 

potential gradient across the inner mitochondrial membrane (IMM) and investigated the 

biophysical significance of the IMM. By performing simulations with various 

morphological parameters, we showed that a crista can enhance the capacity for ATP 

synthesis. Moreover, we identified key morphological parameters that may potentially 

represent the energy state of mitochondria. 

Finally, we investigated the effects of the local pH gradient on the IMM dynamics. 

A numerical model was developed to simulate the morphological evolution of the cristae 

membrane at the given pH profile. By using this model, we demonstrated that a tubular 

crista structure can be formed and regulated by the local pH gradient. The simulation 

results also suggested that the cristae membrane may contain a higher composition of 

cardiolipin than the other parts of the IMM. 
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CHAPTER 1  
 

INTRODUCTION 

 

 

1.1. CHALLENGES 

 

As average life expectancy has increased, the prevalence and risk of central 

nervous system (CNS) diseases, such as Alzheimer’s disease, Parkinson’s disease and 

Huntington’s disease, have increased as well. As of 2013, about 5.2 million Americans of 

all ages were found to have Alzheimer’s disease, which is the most common type of CNS 

disease. Moreover, the risk of Alzheimer’s disease increases with age. About 11% of 

Americans aged 65 and older have Alzheimer’s disease, whereas about 32% of 

Americans aged 85 and older suffer from this disease. Consequently, about one third of 

senior Americans die with Alzheimer’s disease or other types of dementia [1]. However, 

the precise mechanism of what triggers the initiation and progression of CNS diseases 

remains elusive. 

In the initiation and progression of these CNS diseases, the impairing of 

mitochondrial function has been considered a critical process because of the decisive 

roles of mitochondria in apoptosis and cellular bioenergetics. For example, studies have 

found that the impairing of mitochondrial function can disrupt energy metabolism, 

causing mitochondrial DNA mutation. During this process, disrupted energy metabolism 
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may produce oxidative stress, concomitantly increasing the risk of mitochondrial DNA 

mutation. The resulting muted mitochondrial DNA can exacerbate already disrupted 

energy metabolism [2-7]. With these cycling interactions, mitochondrial function may be 

an underlying mechanism of the progression of CNS diseases. 

Moreover, abnormal mitochondrial properties, which are potentially associated 

with the mitochondrial dysfunction, have been observed in CNS diseases. These 

abnormal mitochondrial properties include loss of membrane potential, swollen and 

fragmented external morphologies, and degenerated internal structures [8-11]. These 

changes in mitochondrial properties may reflect alterations in the disease states of a 

mitochondrion.  

Therefore, studies on mitochondrial properties (such as external and internal 

morphologies and mitochondrial membrane potential) from mitochondria in different 

functional or disease states may provide a better understanding of the role of 

mitochondria in CNS diseases. Finally, this study may allow the use of mitochondrial 

properties (as an indicator of CNS disease) in diagnosis as well as the development of 

new treatments. 

In the next section, we summarize existing research concerning the role of 

mitochondria in CNS diseases. In particular, studies on mitochondrial membrane 

potential and morphology are comprehensively reviewed. Finally, we identify research 

areas that require further investigation. 
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1.2. PRIOR ART ON MITOCHONDRIAL RESEARCH 

 

1.2.1. Role of mitochondria in CNS diseases 

 

The primary function of mitochondria is to provide cellular energy by 

synthesizing ATP. In addition to this energetic function, mitochondria also play 

important roles in signaling cell cycle and regulating cell death via apoptosis. Moreover, 

as major sources of reactive oxygen species, mitochondria are vulnerable to oxidative 

damages. Because of these critical functions and potential susceptibility, mitochondria 

have been investigated in close relation to various diseases such as diabetes, Leber’s 

hereditary optic neuropathy, Leigh syndrome, and mitochondrial myopathy [12-14]. In 

particular, impaired mitochondrial functions in the regulations of cellular energy and 

reactive oxygen species levels have been hypothesized as the underlying mechanism of 

the initiation and progression of CNS diseases. In this section, we review the existing 

literature on the role of mitochondria in CNS diseases. 

In Table 1.1, we summarized selected literature on the role of mitochondria in 

CNS diseases. The roles of mitochondria in CNS disease have been investigated in 

several aspects. Studies have found impaired mitochondrial functions, including 

decreased activities of electron transport chain and damaged mitochondrial DNA 

(mtDNA), in CNS diseases patients [2-4]. Defects in energy metabolism may induce 

oxidative stress, and consequently result in mtDNA mutation. This mtDNA mutation can 

exacerbate oxidative phosphorylation (i.e., energy metabolism). This interaction between 

energy metabolism and oxidative stress may be the mechanism of mitochondrial 

dysfunction in CNS diseases. Additionally, studies have suggested different mechanisms 



 

4 

of mitochondrial dysfunction in sporadic Alzheimer’s disease and familiar Alzheimer’s 

disease: mitochondrial dysfunction may initiate sporadic Alzheimer’s disease, whereas 

the progression of familial Alzheimer’s disease may result in mitochondrial dysfunction 

[5]. Moreover, studies have also provided evidence supporting the critical role of 

mitochondria in the initiation and progression of Parkinson’s disease [7]. 

Finally, there have been studies focusing on altered mitochondrial properties in 

CNS diseases. By investigating mitochondria from patients with CNS diseases, abnormal 

properties and defected fusion fission dynamics of mitochondria have been observed. For 

example, swollen mitochondria presenting loss of cristae membranes were observed from 

Parkinson’s diseas and Alzheimer’s disease cybrid cells [8]. Similarly, mitochondria from 

Alzheimer’s disease patients and Huntington’s disease patients showed abnormal cristae 

morphologies [15, 16]. In addition to the abnormalities in morphology, impaired 

mitochondrial dynamics (unbalanced fusion and fission) was found in Alzheimer’s 

disease [17]. In the next two sections, mitochondrial properties, specifically 

mitochondrial membrane potential (1.2.2) and morphology (1.2.3) are comprehensively 

reviewed. 
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Table 1.1. Prior art on mitochondria and CNS diseases 

Year Author Focus Conclusions 
1995 Bowling et 

al. [2] 
Mitochondrial 
dysfunction 

and oxidative 
stress in CNS 

Mitochondrial dysfunction and oxidative 
stress may be the pathogenesis of CNS 
disease 

2001 Hirai et al. 
[3] 

Mitochondria 
in AD 

Increase in mtDNA and decrease in 
number of mitochondria were observed 
in AD 

2002 Castellani et 
al. [4] 

Abnormal mitochondrial function is 
associated with AD 

2005 Reddy et al. 
[5] 

Mitochondrial defects may result in 
sporadic AD, while mitochondrial 
abnormalities and oxidative damage may 
result from familial AD 

2009 Yao et al. [6] Mitochondrial dysfunction and resulting 
energy deficit occur early in AD 
pathogenesis 

2011 Keane et al. 
[7] Mitochondria 

in PD 

Evidence supporting the close 
relationship between mitochondrial 
dysfunction and neuronal cell death in 
PD were reviewed 

2000 Trimmer et 
al. [8] 

Abnormal 
morphology 

Morphologically abnormal mitochondria 
were observed from PD and AD cybrid 
cells 

2003 Sharma et al. 
[15] 

Swollen mitochondria with defected 
cristae were found in AD 

2003 Yu et al. [16] Swollen mitochondria with abnormal 
cristae were observed in Huntington’s 
disease 

2009 Wang et al. 
[17] 

Abnormal 
mitochondrial 

dynamics 

Impaired balance in mitochondrial 
fission and fusion may be an underlying 
mechanism of mitochondrial dysfunction 
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1.2.2. Mitochondrial membrane potential 

 

Mitochondrial membrane potential is a critical parameter determining the viability 

of a mitochondrion because it regulates respiratory activities and ATP synthesis. During 

oxidative phosphorylation, electrochemical potential called the proton motive force is 

generated by electron transport chain (complex I, II, II, and IV) and utilized for 

synthesizing ATP via ATP synthase (complex V). Mitochondrial membrane potential is 

the electric potential component of this proton motive force.  

Even though the exact mechanism of how mitochondrial membrane potential is 

generated and regulated is still controversial, it is generally accepted that mitochondrial 

membrane potential is induced by coupled electron transport and proton translocation. By 

using free energy released from a series of redox reactions, the electron transport chain 

pumps protons across the inner mitochondrial membrane (IMM), and consequently the 

outer side of the IMM is positively charged by these protons. In the mean time, electrons 

transferred through the electron transport chain charged the inner side of the IMM 

negatively. Finally, mitochondrial membrane potential is generated by this charge 

separation across the IMM [18-23]. 

In Table 1.2, selected literature on mitochondrial membrane potential is 

summarized. Mitochondrial membrane potential has been primarily measured by using 

potentiometric fluorescent dyes such as TMRE (Tetramethyl Rhodamine Eethyl Ester), 

TMRM (Tetramethyl Rhodamine Methyl Ester), R123 (rhodamine 123), and JC-1 

(5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolocarbocyanine iodide) [24-30]. To 

estimate mitochondrial membrane potential, the Nersnt equation was applied to the ratio 

of intramitochondrial fluorescence and cytosolic fluorescence. This method enables the 
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measuring of mitochondrial membrane potential in living cells, and consequently the 

investigating of factors affecting mitochondrial membrane potential.  

In particular, factors inducing disruption or fluctuation of mitochondrial 

membrane potential have been extensively studied. For example, increased permeability 

of the IMM (by opening of mitochondrial permeability transition pores) was observed 

when mitochondria underwent rapid depolarizations [31]. Other factors such as Ca2+ 

influx, activities of ATP synthase, free radicals from the matrix side of mitochondria, and 

TMRM photoactivation were also considered to induce fluctuations of mitochondrial 

membrane potential [32-35]. Moreover, studies have found that this mitochondrial 

membrane potential disruption (mediated by permeability transition) can propagate from 

one mitochondrion to another by communicating the release of reactive oxygen species 

[36]. Given that these factors inducing disruption of mitochondrial membrane potential 

are closely related to energy metabolism, oxidative damages, and apoptosis, studies have 

investigated this disruption as an indicator of mitochondrial dysfunction [31, 37]. 

However, the underlying mechanism of how mitochondrial membrane potential 

represents the functional states of mitochondria remains elusive and requires further 

investigation. 
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Table 1.2. Prior art on mitochondrial membrane potential (MMP) 

Year Author Focus Conclusions 
1993 Loew et al. 

[24] 

MMP 
quantification 

MMP was estimated by using three-
dimensional imaging microscopy 
and mathematical modeling 

1999 Lemaster et 
al. [26] 

The methods for measuring MMP 
and pH by using confocal 
microscopy were introduced 

2008 Distelmaier 
et al. [29] 

An automated protocol was 
developed to measure MMP in 
living cells at the level of individual 
mitochondria 

1998 Huser et al. 
[31] 

MMP fluctuation 
inducing factors 

MMP fluctuation may be caused by 
mitochondrial permeability 
transition 

1998 Duchen et 
al. [32] 

MMP fluctuation may be caused by 
Ca2+ influx 

2001 Buckman et 
al. [33] 

MMP fluctuation may be caused by 
F0F1 ATPase activity 

2003 Aon et al. 
[34] 

MMP fluctuation may be caused by 
free radicals from matrix side of 
mitochondria 

2005 Falchi et al. 
[35] 

MMP fluctuation may be caused by 
TMRM photoactivation 

2003 Vergun et 
al. [37] 

MMP fluctuation 
and mitochondrial 

dysfunction 

MMP fluctuation may be an 
intermediate state to mitochondrial 
dysfunction 

2004 Brady et al. 
[36] Propagation of 

mitochondrial 
depolarization 

Mitochondrial permeability 
transition (causing MMP 
fluctuation) can propagate from one 
mitochondrion to another via 
reactive oxygen species induced 
reactive oxygen species release 

2005 Hattori et al. 
[38] Transient 

depolarization 

Transient depolarization may be 
caused by the opening of a proton 
conductive channel 
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1.2.3. Mitochondrial morphology 

 

Mitochondria are double-membraned organelles, structurally defined by the inner 

mitochondrial membrane (IMM) and the outer mitochondrial membrane (OMM). These 

membranes are composed of phospholipid bilayers and proteins. The OMM defines the 

outer boundary of the organelle, and is permeable to molecules of about 5000 daltons or 

less. On the other hand, the IMM, which is a major site of the electron transport chain and 

ATP synthase, is impermeable to most molecules. The space between the IMM and the 

OMM is the intermembrane space. The matrix is the space enclosed by the IMM, 

containing the mitochondrial DNA and high concentrations of enzymes [39]. Because of 

this compartmentalized structure of a mitochondrion, studies have focused either on the 

external structure or the internal structure (IMM morphology). 

The external morphologies of mitochondria have been studied in close relation to 

fusion and fission dynamics. Many studies have found evidence supporting the 

hypothesis that the external mitochondrial morphologies (regulated by fusion and fission) 

may reflect the functional states of mitochondria [39-43]. Moreover, mitochondrial 

fission has been considered to be a critical step of programmed cell death (apoptosis) [42, 

43]. However, the underlying mechanisms of these hypotheses (i.e., how mitochondrial 

morphology and dynamics are related to apoptosis and bioenergetics) are not well 

understood, and these hypotheses have not been supported by quantitative data.  

Recently, numerous advanced image processing and analysis techniques were 

developed. With these techniques, mitochondrial morphologies were quantified in living 

cells [30, 44-46]. However, studies on the external morphology as an indicator of 

mitochondrial functional states is still insufficient. 
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In the past decade, with the support of progress in imaging techniques, the 

internal structure of a mitochondrion has been comprehensively studied. The components 

of the internal structure of a mitochondrion were visualized and analyzed with advanced 

imaging techniques. In particular, cristae, which are infoldings of the IMM, have been 

extensively studied [47-57]. The folded morphology of the cristae membrane (CM) has 

been hypothesized to provide a greater capacity for ATP synthesis by increasing the 

surface area, whereas the narrow crista junction, which connects the CM and the inner 

boundary membrane, has been hypothesized as a diffusion barrier of molecules such as 

substrates and metabolites [48, 49, 56]. Additionally, recent studies have shown that the 

IMM has a diverse and dynamic morphology that differ widely among different 

physiological and pathological conditions. For example, electron tomography showed 

two distinctive IMM morphologies from mitochondria in two different energy states [50, 

51, 55]. The condensed conformation (characterized by enlarged cristae and contracted 

matrix) was observed from mitochondria in state III, while the orthodox conformation 

(characterized by constricted cristae and expanded matrix) was shown from mitochondria 

in state IV. As mentioned earlier in Section 1.2.1, more detrimental changes in the IMM 

morphology (loss of cristae) were observed from mitochondria in neurodegenerative 

diseases [8, 15, 16]. However, how the IMM morphologies are associated with the 

functional and disease states of mitochondria remains unclear. 
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Table 1.3. Prior art on mitochondrial morphologies 

Year Author Focus Conclusions 
1994 Bereiter-Hahn 

et al. [39] 

Fusion, fission 
and apoptosis 

Mitochondrial dynamics including 
fusion and fission were reviewed 

2003 Karbowski et 
al. [40] 

Mitochondrial morphology can be 
regulated by fusion and fission 

2005 Perfettini et 
al. [41] 

Fission may induce or inhibit 
apoptosis depending on the initial 
lethal stimulus 

2005 Youle et al. 
[42] 

Mitochondrial fission may be a critical 
step in apoptosis 

2010 Sauvanet et 
al. [43] 

Evidence supporting that 
mitochondrial morphologies may 
represent their functional states was 
reviewed 

2006 Koopman et 
al. [44] 

Quantitative 
analysis 

Multiple mitochondrial parameters in 
living cells were simultaneously 
quantified 

2007 Kaasik et al. 
[45] 

Morphological parameters of swollen 
mitochondria were measured by using 
3D reconstructions 

2010 Murphy et al. 
[46] 

Morphologies of mitochondria from 
mutant cells were compared with 
normal cells by using ion-abrasion 
scanning electron microscopy 

2000 Frey et al. 
[47] 

IMM 
morphology 

3D structure of the IMM was 
visualized by using electron 
microscopic tomography 

2006 Mannella [50] Distinctive IMM structures were 
observed from mitochondria in 
different energy states 

2009 Zick et al. 
[57] 

Widely varied IMM structures 
between cell types and physiological 
states were reviewed 

2011 Perkins et al. 
[55] 

It was shown that the morphology of 
the IMM is related to the workload of 
mitochondria 
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1.3. SCOPE AND OUTLINE OF THE DISSERTATION 

 

In Chapters 2 through 4, we investigate the effects of mitochondrial properties on 

mitochondrial functions. Specifically, in Chapter 2, we begin our study of mitochondria 

with individual mitochondria and then extend the scope to the average properties of the 

mitochondrial population. In Chapters 3 and 4, we shift our focus to the internal structure 

and corresponding electrochemistry of mitochondria. 

In Chapter 2, the changes in mitochondrial properties under 1,3-DNB are 

investigated. We introduce imaging and image processing techniques applicable to 

simultaneous quantification of mitochondrial properties. With these techniques, we 

investigate the effects of 1,3-DNB on the mitochondrial properties of both individual 

mitochondria and the mitochondrial population.  

In Chapter 3, we study the role of dynamic and diverse internal structures of 

mitochondria on ATP synthesis. A model is developed to simulate the distributions of 

electric potential and proton concentration at the given mitochondrial morphologies. By 

using this model, we investigate the biophysical significance of cristae membrane 

structures and examine morphological parameters potentially related to ATP synthesis. 

In Chapter 4, we investigate the effects of the local pH gradient on the cristae 

membrane morphology. A model simulating the optimized inner mitochondrial 

membrane morphologies at the given pH profiles is introduced. By using this model, we 

investigate the mechanisms of cristae formation and regulation. 

Finally, in Chapter 5, our major findings and contributions are summarized. In 

addition, we suggest future work. 
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CHAPTER 2  
 

QUANTITATIVE ANALYSIS OF MITOCHONDRIAL PROPERTIES 
UNDER 1,3-DNB EXPOSURE 

 

 

2.1. INTRODUCTION 

 

Mitochondria are the primary cellular powerhouses in most eukaryotic cells 

because their main function is synthesizing ATP.  In addition to ATP synthesis, 

mitochondria participate in signaling calcium, controlling the cell cycle, and regulating 

the apoptotic pathway. Moreover, mitochondria are dynamic organelles that can change 

their properties in response to physiological and pathological conditions [1-3]. Because of 

these critical and dynamic functions of mitochondria in cell viability, their dysfunction 

has been investigated in connection with central nervous system (CNS) diseases such as 

Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease [4-10]. In particular, 

the abnormal mitochondrial properties (including loss of membrane potential, swollen 

and fragmented external morphologies, and degenerated internal structures) have been 

hypothesized as the critical criteria for the initiation and the progression of CNS diseases 

[3, 11-13]. Therefore, investigating mitochondrial properties in different disease states 

may provide a better understanding of the role of mitochondria in CNS diseases.  
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There have been many studies investigating altered mitochondrial properties in 

different disease states. For example, swollen mitochondria with degenerated cristae 

membranes were observed in Parkinson’s disease and Alzheimer’s disease cybrid cells 

[11]. Abnormal mitochondrial dynamics (impaired balance of fission and fusion) was 

found in Alzheimer’s disease [14]. Fragmented mitochondrial morphology and decreased 

membrane potential were observed under neurotoxin challenges such as 1,3-

Dinitrobenzene (DNB) [15-17]. However, these studies mostly provided only qualitative 

descriptions of the changes in mitochondrial properties. 

Recently, with the aid of progress in image processing techniques, several 

methods for the quantification of mitochondrial properties were introduced. 

Mitochondrial membrane potential was estimated by using potentiometric fluorescent 

dyes [18-24]. The diameter and volume of swollen mitochondria were measured by 3D 

reconstructions [25]. 3D image processing techniques were applied to access 

mitochondrial fusion and fission [26]. Mitochondrial properties including mitochondrial 

membrane potential and morphology were simultaneously quantified [24]. However, 

these quantitative analyses have not sufficiently investigated the properties of 

mitochondria in association with functional and disease states of mitochondria. 

In this study, we investigate the alterations in mitochondrial properties induced by 

1,3-DNB exposure because this neurotoxin can reproduce the neurotoxic response of 

CNS diseases. First, the imaging technique is refined to independently capture both the 

morphology and the membrane potential of mitochondria. For the accurate quantification 

of mitochondrial properties, we introduce image processing and data analysis techniques. 

By using these techniques, we investigate i) the correlation between mitochondrial 
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properties (Section 2.3.1), ii) the effects of 1,3-DNB on mitochondrial properties (Section 

2.3.2), and iii) the effects of mitochondrial permeability transition inhibitors (Section 

2.3.3). Finally, the limitations of this study are discussed. 

 

 

2.2. METHODS 

 

2.2.1. Experimental methods 

 

Immortalized astrocyte cell lines (DI TNC) were obtained from the American 

Type Culture Collection. These cells were cultured to have passages between 4 and 30 

and were exposed to 50, 100, 200, 400, and 600 μM concentrations of 1,3-DNB within a 

26-hour period. After 1,3-DNB exposure, in order to obtain time-lapse images (500 ms 

time interval for 1 min), the cells were incubated in a 20 mM HBSS/HEPES buffer 

containing fluorescent dye (100 nM TMRM (Tetramethyl Rhodamine Methyl Ester)) for 

15 min. The excitation and emission wavelengths were 560 nm and 607 nm, respectively. 

To limit photobleaching of the dye, laser intensity was controlled at 13.5 μW for 50 ms. 

With this setup, wide-field images were captured using a 100x oil immersion objective. 

The experimental data analyzed in Section 2.3.2 were collected in collaboration with Ms. 

Laura Maurer (PhD candidate, Department of Toxicology, School of Public Health) and 

Mr. Andrew Jureziz (MPH, Department of Toxicology, School of Public Health). 

For the simultaneous quantification of mitochondrial membrane potential and 

morphology in Section 2.3.1, cells were exposed to 400 μM 1,3-DNB for 2 hours. Since 

the fluorescence intensity of TMRM depends on mitochondrial membrane potential, the 
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mitochondrial morphology may be inaccurately captured when a mitochondrion lose its 

membrane potential. To resolve this problem, we used MTDR (MitoTracker Deep Red) 

because its fluorescence intensity does not depend on mitochondrial membrane potential. 

To alternately capture the images from TMRM and MTDR, the cells were incubated in a 

20 mM HBSS/HEPES buffer containing 100 nM TMRM and 100 nM MTDR for 15 min. 

 

 

2.2.2. Image processing and quantification of mitochondrial properties 

 

 

Figure 2.1. Image processing procedures. (a) Image of the experimentally measured point 
spread function. (b) An example of the image processing result. 
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At each set of images, mitochondrial properties including the aspect ratio and 

membrane potential were quantified, and the existence of mitochondria showing major 

membrane potential fluctuation (i.e., flickering) was examined.  

To define the boundaries of mitochondria, raw images were converted to binary 

images using MATLAB (R2010a). Fig. 2.1 shows the image processing procedure for 

obtaining the binary image from the raw image. First, gray values of TMRM fluorescence 

intensities were linearly transformed to cover the entire 8 bit gray scale (0-255). These 

images were then deblurred using the ‘deconvblind’ function. The experimentally 

measured point spread function (PSF) was applied as an initial PSF for this 

deconvolution process [19, 27-29]. A Gaussian low pass filter with size 100 and standard 

deviation 1.33 was applied to smoothen the edge of the boundary. Finally, these images 

were converted to the binary images using Otsu’s method [30]. 

Conventionally, the aspect ratio of a mitochondrion is measured as the ratio 

between major and minor axis lengths of the ellipse equivalent to the mitochondrial shape 

(Fig. 2.2(a)). These conventional quantification methods, however, may not accurately 

quantify heterogeneous shapes of mitochondria. As illustrated in Fig. 2.2(a), by using the 

conventional method, mitochondria with clearly different morphologies can have the 

same aspect ratio. To resolve this problem, we redefined the mitochondrial aspect ratio. 

As can be seen in Fig. 2.2(b), the centerline of a mitochondrion was extracted from the 

binary image using a morphological thinning operation in MATLAB (‘bwmorph’ 

function with ‘thin’ operation).  After the thinning operation, the endpoints of the 

centerline were connected to the boundary of a mitochondrion to complete the centerline. 
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The average width of a mitochondrion was then calculated as area divided by centerline 

length.  

areaaverage width=
centerline length

      (2.1) 

The aspect ratio was defined as the ratio between centerline length and average width 

(multiply by π/4 allows the aspect ratio of a circle to be 1). 

centerline lengthAR=
4 average width
π        (2.2) 

 

 

Figure 2.2. (a) Illustration of the problem in the conventional morphology quantification 
method. (b) Morphology quantification of a branched mitochondrion achieved by 
applying the method introduced in this study. 
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Next, we quantified mitochondrial membrane potential from TMRM images. For 

this membrane potential quantification, we applied the method developed by Fink et al. 

[19]. Individual mitochondrial images were extracted from the binary images and used as 

masks. The average TMRM fluorescence intensity inside a mitochondrion (Fmit) and the 

average fluorescence intensity of background (Fcyt) were measured. Finally, 

mitochondrial membrane potential (ΔΨm) was calculated from the following modified 

Nernst equation [19]. 

10(mV) 60log ( )mit
m

cyt

FC
F

∆Ψ = − ,      (2.3) 

where C is a correction factor (C=7.6). 

 

 

2.2.3. Treatment of mitochondrial permeability transition inhibitors 

  

The observed mitochondrial membrane potential disruption and morphological 

change may be related to the opening of permeability transition pores. To test this 

hypothesis, we treated cells with drugs that can inhibit the mitochondrial permeability 

transition. Since bongkrekic acid (BKA) and cyclosporine A (CSA) are well-known 

inhibitors of the mitochondrial permeability transition [31-33], we prepared cells with the 

following four treatments: i) cells were exposed to 600 uM 1,3-DNB for 5 hours (‘DNB’ 

treatment), ii) cells were pretreated with 5 uM Bongkrekic acid for 30 min and then 

exposed to 600 uM 1,3-DNB for 5 hours (‘BKA’ treatment), iii) cells were pretreated 

with 1 uM Cyclosporin A for 30 min and then exposed to 600 uM 1,3-DNB for 5 hours 

(‘CSA’ treatment), and iv) cells were exposed to the same amount of DMSO (Dimethyl 
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sulfoxide) used for delivering 1,3-DNB (‘vehicle control (VC)’ treatment). We conducted 

120 sets of experiments (N=30 for each treatment). Finally, the images were obtained 

with the same setup described in Section 2.2.1. In addition to TMRM fluorescence 

images, bright field images were captured to identify the boundaries of a cell membrane 

and a nucleus. 

In order to compare the difference between the treatments, the mean aspect ratio 

and the number of mitochondria per cell were calculated. In addition, the position of 

mitochondria with respect to the nucleus was quantified. 

 

 

Figure 2.3. Image processing for the quantification of mitochondrial position. 

 

 

As can be seen in Fig. 2.3, a TMRM fluorescence image was first converted to the 

binary image. Then this binary image was numerically labeled to identify each 
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mitochondrion. The center of mass of each mitochondrion was calculated from the 

labeled image. In the meantime, the boundaries of the cell and the nucleus were manually 

drawn from the bright field image. We processed this image of the boundaries in order to 

obtain equidistant lines that divide the area between the cell boundary and the nucleus 

boundary into 10 regions. These regions were numbered from 1 to 10, where 1 is closest 

to the center of the nucleus and 10 is farthest. Finally, the position of each mitochondrion 

was quantified by two parameters: i) the distance from the centers of the nucleus and ii) 

the region number where the center of the mitochondrion belongs. 

After quantifying the positions of mitochondria within a cell, the distribution of 

these mitochondrial positions was obtained from each cell. This distribution was finally 

parameterized by the mean (or 1st moment) and the skewness (or 3rd standardized 

moment). 

 

2.2.4. Statistical analysis 

 

All of the statistical analyses in this chapter were conducted by using R (version 

2.11.1) and MATLAB (R2010a). 

In Section 2.3.1, we tested the correlation between the properties (length, width, 

aspect ratio, fluorescence intensity, and membrane potential) of an individual 

mitochondrion. The percentile change of each property was calculated and plotted against 

the elapsed time. In particular, the fluorescence intensity representing membrane 

potential and the aspect ratio were normalized to have a minimum of 0 and a maximum 

of 1. The correlation between these two parameters was calculated by the following 

equation. 
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cov( , ) E[( )( )]cor( , )
x y x y

X Y X X Y YX Y
σ σ σ σ

− −
= = ,    (2.4) 

where X and Y are the normalized fluorescence intensity and aspect ratio, respectively; σx 

and σy are the standard deviations of X and Y, respectively; and X  and Y  are the mean 

values of X and Y, respectively. 

In Section 2.3.2, the statistical significance of the respective effects of 1,3-DNB 

concentration, exposure time, and cell passage on mitochondrial morphology and 

membrane potential was tested. First, the mean aspect ratio (AR) representing the 

morphology of a mitochondrial population was calculated from each image. Linear 

regression with log transformation was used to check the respective statistical 

significance of 1,3-DNB concentration, exposure time, and cell passage on the mean AR. 

0 1 1 2 2 3 3mean AR log log logx x xβ β β β= + + + ,    (2.5) 

where x1 is 1,3-DNB concentration, x2 is exposure time, and x3  is cell passage. The 

ordinary least square method was used to calculate the estimated value of each coefficient 

and its p-value. On the other hand, the statistical significance of the probability of 

flickering was examined using the probit regression model because flickering is a 

dichotomous measure. 

0 1 1 2 2 3 3Prob(flickering)= ( )x x xβ β β βΦ + + + ,     (2.6) 

where Φ is a cumulative distribution function of the standard normal distribution, x1 is 

1,3-DNB concentration, x2 is exposure time, and x3 is passage group (stratified into two 

groups: young cell (4−8) and old cell (9−30)). To compare the results from the probit 

regression model with the actual data, the probability was calculated by binning the x-

axis of the plot. 
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number of flickering events when a z<bProb(flickering <b)=
number of total events when a z<b

a z ≤
≤

≤
, (2.7) 

where z=β0+β1x1+β2x2+β3x3. 

In Section 2.3.3, we compared the mean aspect ratio and the number of 

mitochondria per cell obtained from 4 different treatments (‘VC’, ‘DNB’, ‘BKA’, and 

‘CSA’). For this analysis, we used one-way ANOVA (analysis of variance) where the 

null hypothesis is that there is no difference between the treatments. In this section, we 

also analyzed the distribution of mitochondria within a cell. This distribution was 

quantified by the mean and skewness of the distribution. The statistical significance of 

the difference between these parameters was also tested by using one-way ANOVA. 

 

 

2.3. RESULTS 

 

In this section, we first investigate the correlation between mitochondrial 

properties by tracking individual mitochondria. The average properties of the 

mitochondrial population are then analyzed under different 1,3-DNB exposure conditions. 

Finally, the effects of mitochondrial permeability transition inhibitors on these 

mitochondrial properties are examined. 

 

2.3.1. Correlation between mitochondrial morphology and membrane potential in 
individual mitochondria 
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To investigate the relationship between the change in mitochondrial morphology 

and membrane potential fluctuation under 1,3-DNB exposure, we simultaneously 

quantified mitochondrial properties by tracking individual mitochondria. 

 

 

Figure 2.4. Images of the selected mitochondrion showing correlated changes in 
mitochondrial morphology (MTDR images) and membrane potential (TMRM images). 

 

 

Fig. 2.4 shows an example of images obtained from MTDR, TMRM, and image 

processing. We found that the morphological change of mitochondria was associated with 

membrane potential fluctuation. At 21 sec, accompanied by the morphological change 

(swollen mitochondrion), the membrane potential of the mitochondrion was abruptly 

dropped and then recovered. We quantified these changes in mitochondrial properties as 

described in Section 2.2.2.  
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Figure 2.5. Simultaneous quantification of mitochondrial properties (mitochondrial 
membrane potential, aspect ratio, and volume). 

 

 

As can be seen in Fig. 2.5, two major fluctuations of the membrane potential that 

occurred at 11 and 21 sec coincided with the steep drops of the aspect ratio and the 

fluctuations of volume. After the major fluctuations, the membrane potential and the 

aspect ratio gradually decreased, while the volume increased. Finally, the mitochondrion 

was entirely swollen and lost its membrane potential. 

In order to further confirm this relationship, we selected 16 mitochondria showing 

membrane potential disruption and analyzed their properties. The percentile changes of 
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the properties of these mitochondria were measured to calculate the correlation between 

the fluorescence intensity and the aspect ratio. The results are summarized in Table 2.1. 

The average correlation between the fluorescence intensity (which depends on the 

membrane potential) and the aspect ratio was 0.80, and the standard deviation was 0.13. 

These results support our hypothesis that the change in mitochondrial morphology is 

closely related to the membrane potential fluctuation.  

 

 

Table 2.1. Correlation between mitochondrial morphology and membrane potential 

Index 
# 

% change of morphology % change of 
fluorescence 
intensity (FI) 

Correlation between FI 
and AR 

Length Width AR cor (FI, AR) p-value 
1 32.3 43.8 61.4 59.2 0.72 1.4e-6 
2 47.7 26.2 57.7 88.1 0.74 5.9e-07 
3 33.9 23.7 46.8 76.5 0.92 3.2e-14 
4 40.7 33.3 55.5 59.4 0.42 0.013 
5 46.4 30.9 60.9 61.7 0.89 1.5e-12 
6 44.2 51.5 64.3 63.9 0.94 1.7e-16 
7 41.9 28.4 58.0 53.7 0.93 8.5e-16 
8 38.4 35.3 59.7 79.3 0.68 8.6e-06 
9 17.2 20.5 30.5 59.0 0.72 1.5e-06 

10 34.6 33.0 53.5 51.3 0.82 2.4e-09 
11 41.9 32.9 56.7 57.4 0.90 6.9e-13 
12 35.9 21.3 48.5 62.2 0.81 5.2e-09 
13 29.9 21.4 43.1 50.0 0.77 1.2e-07 
14 36.5 31.8 47.1 50.1 0.86 7.8e-11 
15 35.9 30.9 49.7 54.6 0.86 4.4e-11 
16 29.8 31.9 49.5 52.4 0.75 3.3e-07 
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2.3.2. Effects of 1,3-DNB on mitochondrial properties 

 

Changes in mitochondrial properties such as fragmented and swollen 

morphologies and loss of membrane potential have been experimentally observed. Fig. 

2.6 shows an example of alterations in mitochondrial properties induced by 1,3-DNB. 

Before 1,3-DNB exposure, mitochondria were mostly elongated tubules that formed 

interconnected networks. On the other hand, fragmented and swollen mitochondria were 

observed after 1,3-DNB exposure. Moreover, in many 1,3-DNB exposed cells, very weak 

fluorescence of TMRM was detected. 

 

 

Figure 2.6. Changes in mitochondrial properties after 5 hours of 600 μM 1,3-DNB 
exposure. 

 

 

In addition to these observations, we hypothesized that the alterations in 

mitochondrial morphology and membrane potential may be initiators of mitochondrial 

dysfunction. Thus, we further investigated the respective effects of 1,3-DNB 

concentration, exposure time, and cell passage on the mitochondrial morphology and 

membrane potential fluctuation by using statistical analysis. 
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Figure 2.7. Response surface of linear regression model for mean aspect ratio. 

 

 

Fig. 2.7 shows the effects of 1,3-DNB concentration, exposure time, and cell 

passage on the mean aspect ratio. The experimental results obtained from image 

processing were fitted to the linear regression model (Eq. 2.5). As expected, both 1,3-

DNB exposure and cell passage induced a significant decrease in the mean aspect ratio. 

The estimated values of β0, β1, β2, and β3 were 10.0464, -0.4956, -0.6542, and -0.5151, 

respectively. From the statistical analysis, we confirmed that all of these coefficients are 

statistically significant (p-values of β0, β1, β2, and β3 were 5.4e-11, 0.003, 0.0002, and 

0.008, respectively). However, because of the intrinsically high cell-to-cell variation, a 

discrete change of the mean aspect ratio, which may indicate the initiation point of 
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mitochondrial dysfunction, was not observed. This high variation also resulted in a low 

R-square value (0.0823) of the fitted model.  

 

 

Figure 2.8. Probability of flickering estimated from the probit regression model and 
experiment. 

 

 

We hypothesized that major fluctuation (or disruption) in mitochondrial 

membrane potential (i.e., flickering) may also represent the initiation of mitochondrial 

dysfunction. Therefore, the effects of 1,3-DNB and cell passage on the probability of 

flickering were investigated. The statistical significance of each independent variable was 

calculated using the probit regression model (Eq. 2.6).  

As can be seen in Fig. 2.8, the probability of flickering increased as 1,3-DNB 

concentration, exposure time, and cell passage increased (β0=-2.0461, β1=0.0696, 
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β2=0.0031, and β3=1.0739). The probit regression model suggested that this positive 

correlation between the probability of flickering and each independent variable is 

statistically significant (p-values of β0, β1, β2, and β3 were 0.0007, 0.0003, 0.015, and 

0.0005, respectively). Even though we showed that the effects of 1,3-DNB and passage 

on the membrane potential disruption were statistically significant, the abrupt increase in 

the probability was not observed. Therefore, it is not yet conclusive whether flickering 

may be an initiator of mitochondrial dysfunction.  

 

 

2.3.3. Effects of mitochondrial permeability transition inhibitors 

 

Since the mitochondrial permeability transition may be the underlying mechanism 

of the alterations in mitochondrial properties, we examined the effects of mitochondrial 

permeability transition inhibitors on mitochondrial properties. As explained in Section 

2.2.3, we analyzed mitochondria from four different treatments: VC, DNB, BKA, and 

CSA.  

First, the mean aspect ratios of mitochondria from the VC, DNB, BKA, and CSA 

treatment were compared (Fig. 2.9(a)). The one-way ANOVA results showed that the 

mean aspect ratios of the DNB, BKA, and CSA treatments were significantly smaller 

than that of the VC treatment (p-value=1.3e-7). However, the inhibition of the opening of 

the mitochondrial permeability transition pores did not restrain the changes in the 

mitochondrial morphology induced by 1,3-DNB exposure because the difference among 

the DNB, BKA, and CSA treatments were not statistically significant (p-value=0.81). 
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Moreover, as can be seen in Fig. 2.9(b), the number of mitochondria per cell did not show 

significant differences between the treatments (p-value=0.93). 

 

 

Figure 2.9. The effects of the treatments on the mean aspect ratio and the number of 
mitochondria per cell. (a) The mean aspect ratios of mitochondria from the different 
treatments. (b) The numbers of mitochondria per cell from the different treatments. 

 

 

We further investigated the effects of the treatments by comparing the 

mitochondrial position distributions. Mean region numbers of mitochondria from the 

DNB, BKA, and CSA treatments were significantly smaller than that from the VC 

treatment (p-value=0.0043). This result implies that mitochondria were more 

concentrated near the nucleus when cells were exposed to 1,3-DNB. However, the 

difference among the DNB, BKA, and CSA treatments were not statistically significant 

(p-value=0.60), and the skewness did not show a significant difference (p-value=0.73). 

 

 

 



 

36 

 

 

Figure 2.10. The effects of the treatments on mitochondrial position distribution. (a) 
Mitochondrial position distributions quantified by the distance from the center of the 
nucleus. (b) Mitochondrial position distributions quantified by the region number (1 is 
the closest to the center and 10 is the farthest from the center). (c) Mean region numbers 
of the mitochondrial position distributions. (d) Skewnesses of the mitochondrial position 
distributions. 

 

 

2.4. DISCUSSION 

 

In this section, we discuss the limitations in our imaging and image processing 

techniques and data analysis. 
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 The accuracy of mitochondrial property quantification was restricted by the 

limitations in the imaging and image processing techniques. Firstly, since the 2D wide-

field images were captured and used for the analysis, we did not have sufficient 3D 

information for differentiating the overlapped mitochondria from branched mitochondria. 

This limitation can cause inaccuracies in morphological quantification because branched 

mitochondria generally have higher aspect ratios. 

Moreover, with this 2D imaging technique, vertically drifting mitochondria can be 

confused with flickering mitochondria because it is very difficult to distinguish the loss 

of fluorescence caused by the actual membrane potential disruption from that caused by 

the drifting of mitochondria above and below the focal plane.  

Additionally, mitochondria with low membrane potential could not be included in 

our analysis because we used fluorescent dyes only capable of capturing images of viable 

mitochondria. This inability to capture the entire population of mitochondria limits the 

analysis of unhealthy or dying mitochondria under neurotoxin exposures. 

The data analysis methods applied in this study also have limitations.  In Section 

2.3.1, we calculated the correlation between the fluorescence intensity and the aspect 

ratio when a mitochondrion underwent a major membrane fluctuation. However, the 

critical degree (or amplitude) of the major fluctuation could not be strictly defined, 

because the initial fluorescence intensities of mitochondria varied widely.  

In Section 2.3.2, we tested the respective statistical significance by using the 

linear regression model and the probit regression model. However, functional forms for 

the response models of both the mean aspect ratio and the probability of flickering (with 
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respect to 1,3-DNB concentration, exposure time, and cell passage) are unavailable in the 

literature. Instead, these response models were based only on fitting experimental results. 

Even though our data analyses demonstrated that the effects of 1,3-DNB on 

mitochondrial properties are statistically significant, threshold values, which can be used 

to differentiate the disease state from the normal state, were not defined. Because the 

objective of this study is to investigate mitochondrial properties as indicators (or initiators) 

of mitochondrial dysfunction, further investigation on the existence of these threshold 

values is required. Therefore, the imaging and image processing techniques and the data 

analysis method need to be improved in order to handle the data with intrinsically high 

levels of variation.  

 

 

2.5. CONCLUSIONS 

 

The abnormal mitochondrial properties have been studied as indicators of CNS 

diseases. However, the existing literature has not sufficiently provided quantitative 

relationships between the properties of mitochondria and their functions under different 

disease states.  

In this study, we quantitatively investigated the changes in mitochondrial 

properties under 1,3-DNB exposure. By adding the MTDR, we simultaneously quantified 

the morphology and membrane potential of mitochondria. For more precise estimation of 

heterogeneous mitochondrial morphologies, we redefined the aspect ratio. Finally, the 

statistical significance was tested by using linear and probit regression models and one-

way ANOVA. 
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From the image processing and data analysis results, we found that major 

membrane potential fluctuations coincided with the morphological changes (steep drops 

of the aspect ratio and the fluctuations of volume). In addition, we showed that the 

respective effects of 1,3-DNB concentration, exposure time, and cell passage on both the 

mean aspect ratio and the membrane potential disruption were statistically significant. 

Finally, the mitochondrial permeability transition inhibitors, such as bongkrekic acid and 

cyclosporine A, could not prevent the property alterations induced by 1,3-DNB. 

Even though our results quantitatively presented the effects of 1,3-DNB on the 

properties of mitochondria, the existence of the threshold values determining the 

initiation of mitochondrial dysfunction has not been fully investigated. This objective 

may be achieved by the improvement in the imaging and image processing techniques as 

well as the data analysis methods. 
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CHAPTER 3  
 

BIOPHYSICAL SIGNIFICANCE OF THE INNER 
MITOCHONDRIAL MEMBRANE STRUCTURE ON THE 

ELECTROCHEMICAL POTENTIAL OF MITOCHONDRIA1 

 

 

3.1. INTRODUCTION 

 

Mitochondria are double-membraned organelles enclosed by inner and outer 

membranes composed of phospholipid bilayers and proteins. The inner mitochondrial 

membrane (IMM) is of particular interest in that it is a major site of the electron transport 

chain and ATP synthase. The structure of the IMM has been extensively studied for the 

past decade. Advanced imaging techniques have permitted researchers to visualize the 

various components of mitochondrial structure. The IMM is composed of the inner 

boundary membrane (IBM) and the crista membrane (CM).  Cristae are the involuted 

structures of the IMM that form tubules or lamellae. The CM and the IBM are connected 

via narrow tubular sites called crista junctions [1]. It is hypothesized that the role of crista 

morphology is to increase the surface area of the IMM to enable greater capacity for 

oxidative phosphorylation, whereas the morphologies of crista junctions have been 

                                                
1 Material in this chapter is a submitted paper: D. H. Song, L. L. Maurer, J. Park, W. Lu, 
M. A. Philbert, and A. M. Sastry, Biophysical significance of the inner mitochondrial 
membrane structure on the electrochemical potential of mitochondria. Biophysical 
Journal (2013). 



 

44 

studied and characterized as merely a molecular diffusion barrier [2-4]. Recent studies 

have shown that the IMM structures can differ widely among different cell types as well 

as physiological and pathological conditions. Therefore, investigating the mechanistic 

and functional effects of these pleomorphic IMM structures is a crucial step in 

understanding the progression of mitochondrial function and dysfunction.  

Experimental studies have investigated the IMM structure in relation to the 

energy state and disease state of mitochondria. Using electron tomography, two different 

morphologies of the IMM have been observed in mitochondria at different energy states 

[5-7]. Mitochondria with high respiratory activity (state III) contain enlarged cristae, 

while those with low respiratory activity (state IV) have small cristae. In addition to these 

studies, more decisive and detrimental changes in the IMM structures were observed 

from mitochondria in neurodegenerative diseases. For example, swollen mitochondria 

and loss of cristae are seen in Parkinson’s diseases [8], and swollen mitochondria with 

degenerated cristae are observed in Huntington’s disease [9]. However, these studies 

provide only a qualitative description of the morphological changes. Morphometric 

analyses of the IMM structure, on the other hand, may provide more concrete criteria for 

differentiating the multiplicity of known disease states from normal function.  

Despite providing compelling evidence that the IMM structure is closely related 

to mitochondrial function, experimental studies have not yet successfully explained how 

changes in the IMM structure alter the energetic function of mitochondria. The answer to 

this question requires estimations of both the electric potential and the difference in 

proton concentration across the IMM (that are driving forces for ATP synthesis) in 

different IMM structures. To date, mitochondrial membrane potential and proton 
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concentration have been experimentally measured primarily by the use of potentiometric 

fluorescent dyes [10-17]. However, limitations such as diffusion and optical resolution of 

structures smaller than the wavelength of light prevent other than the measurement of 

bulk proton concentrations and electric potential and make impossible the direct 

measurement of local variations of these properties along irregular IMM surfaces. 

Mathematical simulations are, therefore, an excellent adjunct to the observations made by 

conventional fluorescence microscopy and aid in a better understanding of the effects of 

the IMM morphology on mechanistic function. For example, a thermodynamic model of 

the tubular cristae was developed to examine changes in free energy induced by different 

morphology and composition of the membrane [18]. Later, this model was modified to 

explain observed morphologies of cristae by considering tensile force and shape entropy 

[19]. The effect of cristae geometry on diffusion was investigated using Monte Carlo 

simulations with simplified geometries of tubular and lamellar cristae [20]. However, 

simulation studies have not sufficiently investigated the most important role of the IMM 

structure: the effect of the IMM structure on the electrochemical potential (or ATP 

synthesis) of mitochondria. 

In this study, we introduce a model simulating the distributions of the electric 

potential and proton concentration in mitochondria to investigate the relationship between 

the IMM structure and the energetic function of mitochondria. The electric potential and 

proton transport were modeled based on the coupled Poisson-Nernst-Planck equations, 

which have been used for modeling the electrodiffusion of ions in membranes, double 

layer capacitors, and solvated biomolecular systems [21-23]. This equation was applied 

to the mitochondrion model with simplified geometry and solved using the finite element 
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method. By using this model, we tested the following hypotheses: i) the proton motive 

force on the CM is higher than that on the IBM, ii) the morphological parameters of a 

crista, such as the surface area and the surface-to-volume ratio, correlate with both the 

proton motive force and the capacity for ATP synthesis. Finally, the biophysical 

significance of the simulation results and the validity of model assumptions were 

discussed. 

 

 

3.2. METHODS 

 

3.2.1. Structure of the mitochondrion model 

 

A 2D axisymmetric mitochondrion model mimicking the key features of the 

mitochondrial compartments was constructed (Fig. 3.1). This mitochondrion model 

comprises three concentric spheres with a single crista. The innermost sphere and the 

middle sphere represent the inner side and the outer side of the IMM, respectively. As 

can be seen in Fig. 3.1(c), the inner side is the N side (negatively charged by electrons) 

and the outer side is the P side (positively charged by membrane-bound protons). The 

outermost sphere is the outer mitochondrial membrane (OMM). The space between the P 

side and the OMM is the intermembrane space (IMS). One specific element of this 

structure is that the IMM was modeled as a domain (volume), while the OMM was 

modeled as a boundary (surface). The IMM is composed of the crista membrane (CM) 

and the inner boundary membrane (IBM). The CM is connected to the IBM through a 

crista junction. As can be seen in Fig. 3.1(b) and (c), the crista junction was modeled as a 
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cylinder with diameter D (30 nm) and length L (40 nm). The edges connecting the crista 

junction with the CM and the IBM are rounded with an inside radius of 5 nm and an 

outside radius of 10 nm. The N side sphere has a diameter of 1 μm. The thickness of the 

IMM and the IMS is 5 nm and 25 nm, respectively.  

 

 

Figure 3.1. Structure of a mitochondrion model. (a) Heterogeneous morphologies of 
mitochondria observed in DI TNC1 cells. (b) Compartments of a mitochondrion model. 
(c) Cross section view of a crista in the mitochondrion model. (d) Description of proton 
transport model and boundary conditions (cH is the proton concentration, ϕ is the electric 
potential, ρs is the surface charge density at the P side, ρf is the free charge density, and 
Jdif and Jmig are the diffusion flux and the migration flux, respectively). Note: The 
dimension in this figure is exaggerated in order to clearly illustrate of the structure. 
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To study the effects of overall shapes and detailed morphologies of cristae, we 

constructed two types of crista geometries: type I (Fig. 3.2(a)) and type II (Fig. 3.2(b)). 

As can be seen in Fig. 3.2(a), type I crista geometries were constructed using three 

parameters (r1, r2, and z0). Parameters r1 and r2 represent the radii of the upper and lower 

circles of the crista structure and z0 is the distance between the centers of these circles.  

 

 

Figure 3.2. Two types of crista geometries. (a) Type I geometries were used for studying 
the effect of the overall crista shape. (b) Type II geometries were used to investigate the 
effect of detailed crista morphology. 

 

 

To parameterize the overall shape of a crista, we defined the slope of the lateral 

surface of a crista as follows: 

2 1 0( )k r r z≡ − .        (3.1) 

A positive value of k forms a narrow opening and a wide end of the crista structure, while 

a negative value of k forms a reversed shape. To investigate the effect of k on the 

electrochemical potential of a crista, we constructed three geometry groups, each with 
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different surface area and volume (Table 3.1). For each group, we generated a reference 

geometry whose k=0 (r1=r2). Within each group, we varied k from -0.25 to 0.25 with 

increments of 0.05. To solve for r1, r2, and z0 at a given k, we first calculated the surface 

area and the volume of the reference geometry. 

P side CM
Surface area 2dA rdsπ

Γ
= =∫∫ ∫ ,     (3.2) 

Volume 2
crista

dV rdAπ
Ω

= =∫∫∫ ∫∫ ,      (3.3) 

where Γ and Ω are the bold line and the shaded area in Fig. 3.2, respectively. From Eqs. 

3.1, 3.2, and 3.3, we found solutions for r1, r2, and z0 at the given surface area, volume 

and k.  

P side CM
2 2 2

1 0 1 2 2

Surface area 2

2 ( ) ( ) 2 (1 )
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r a k z b r r r k

π

π π π
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= − + + + +
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3 3
2
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3 3 3
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3 3
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r a a k k b r r r r z kr kr

r k k

π
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Finally, we used these parameters to construct type I crista geometries. 

 

 



 

50 

Table 3.1. Parameters for constructing type I geometries 

Group k=(r2-r1)/z0 
Reference 

geometry (k=0) 
Surface area 

(µm2) 
Volume 

(10-4 µm3) SVR (µm-1) 

1 -0.25−0.25 r1=r2=50,  z0=30 0.0394 7.54 52.18 
2 -0.25−0.25 r1=r2=50,  z0=40 0.0425 8.33 51.03 
3 -0.25−0.25 r1=r2=50,  z0=50 0.0456 9.11 50.08 

 

 

To further investigate the detailed morphologies of crista structures, type II crista 

geometries were constructed. As can be seen in Fig. 3.2(b), the cross section of a single 

crista was modeled as a combination of circles. To construct cristae structures with 

various surface area and volume, we varied the number of circles aligned in the centerline 

(Ncircle=1, 2, … , 6), the radius of the circle (r0=30, 31, … , 65 nm), and the angle (θ0=10, 

11, … , 25°) shown in Fig. 3.2(b). The surface area and the volume of a crista were 

calculated using Eqs. 3.2 and 3.3. 
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To avoid high correlation between the parameters, we selected structures whose 

surface areas were between 0.048 and 0.052 μm2 (Table 3.2). This allows studying 

respective effects of the surface area and the surface-to-volume ratio of a crista. 

 

Table 3.2. Parameters for constructing type II geometries 

Ncircle 
Number 

constructed r0 (nm) θ0 (°) Surface area 
(µm2) 

Volume 
(10-4 µm3) 

SVR 
(µm-1) 

1 3 63−65 − 0.048−0.052 10.42−11.45 45.0−46.4 
2 32 47 −56 10−25 0.048−0.052 8.86−11.02 46.7−54.5 
3 27 39−50 10−25 0.048−0.052 7.64−10.48 49.2−62.7 
4 24 35−45 10−25 0.048−0.052 7.12−9.56 52.6−68.4 
5 24 31−42 10−25 0.048−0.052 6.43−9.33 54.9−76.1 
6 20 30−39 10−23 0.048−0.052 6.40−8.72 58.0−77.0 

 

 

3.2.2. Model descriptions and assumptions 

 

To study the effect of the IMM morphology on the electrochemical potential of 

mitochondria, we modeled proton transport that is driven by diffusion and electric field-

induced migration. The effects of other ions and proteins in mitochondria and their 

interactions were not considered. As can be seen in Fig. 3.1(d), a diffusion flux can be 

induced by pH difference in mitochondria, whereas an electric field can be generated by 

the surface charge of the IMM. 

This model has 2 domains (IMM and IMS) and 3 boundaries (OMM, P side, and 

N side). The matrix domain was not considered because we assumed that the electric 

potential and the proton concentration inside the matrix are uniform. Three variables 
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including electric potential (ϕ), proton concentration in the IMS (cH), and the surface 

charge density at the P side (ρs) were considered in this model. 

Classically, the Nernst-Planck equation has been used to describe the transport of 

ions under a concentration gradient and an electric potential gradient [21-23]. In this 

study, the modified Nernst-Planck (N-P) equation was used to simulate the steady state 

proton concentration in the IMS (cH).  

[ ] 0i
H H HD c zcµ φ∇⋅ ∇ + ∇ = ,       (3.4) 

where DH
i is the intracellular proton diffusion coefficient, μ is the electrical mobility of 

the proton, and z is the valence of the proton (z=1). The Stokes-Einstein relation, which is 

the relationship between a diffusion coefficient and electrical mobility, was not applied in 

this equation because the interaction between solute and solvent may not be negligible in 

our model system. Instead, we used experimentally measured diffusion coefficients and 

electrical mobility.  

All coefficients and parameters used in this model are summarized in Table 3.3. 

Two boundary conditions at the P side and the OMM were required because the N-P 

equation was applied only in the IMS domain. At the P side, the net flux of protons was 

determined to be zero by assuming a balance between the number of protons pumped out 

by electron transport chain and those brought in through ATP synthase.  

At the OMM boundary, the Dirichelet boundary condition was applied. Because 

the OMM is permeable to protons, the protons at the OMM boundary can be buffered by 

the bulk cytosolic solution.  
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Boundary conditions: 
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+

 ⋅ − ∇ − ∇ =


=

n
,      (3.5) 

where [H+]cyto is bulk concentration of proton in cytosol. 

We modeled the electric potential (ϕ) in the IMM and the IMS based on the 

following theoretical model. Mitochondrial membrane potential (ΔΨm) is induced by 

coupled electron transport and proton translocation. Protons are pumped out from the 

matrix by electron transport chain. Some of these protons bind to the P side instead of 

diffusing into the bulk solution of the IMS. These membrane-bound protons efficiently 

diffuse along the membrane surface (P side) from source (electron transport chain) to 

sink (ATP synthase), charging the P side positively. In the meantime, electrons flowed 

from the electron transport chain, and then charged the N side negatively [24-29]. 

Accordingly, the electric potential (ϕ) in the IMM and the IMS can be described by 

Poisson’s equation. 

2 fρφ
ε

∇ = − ,         (3.6) 

where ρf is the free charge density, and ε is the permittivity. The free charge density (ρf) 

in the IMM domain was assumed to be zero because the IMM was modeled as a 

capacitor. Zero free charge density was also applied in the IMS domain because we 

assumed that the electroneutrality condition holds in the IMS (i.e., the net electrical 

charge is zero because charges from protons may be canceled out by other ions). 

Boundary conditions are applied at the N side, the P side and the OMM. Based on the 

above theoretical model, the N side may be assumed to be an equipotential surface, while 
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the P side requires the surface charge density (ρs) profile to be used as a boundary 

condition. At the OMM, the zero charge boundary condition was used. 

Boundary conditions: 
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N side
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,      (3.7) 

where n is a normal vector, ε0 is the electric constant, εIMM is the relative permittivity of 

the IMM,  εIMS is the relative permittivity of the IMS, and E1 and E2 are electric fields of 

the IMM and IMS at the P side, respectively. 

The surface charge density (ρs) used in the above boundary condition at the P side 

is not a constant. Because the surface charge density can be obtained from the density of 

membrane-bound protons (by multiplying the Faraday constant), ρs was also modeled 

using the modified Nernst-Planck equation. 

[ ] 0mb
H s sD ρ µρ φ∇⋅ ∇ + ∇ = ,       (3.8) 

where DH
mb is the diffusion coefficient of membrane-bound protons. The electrical 

mobility of the membrane-bound proton is assumed to be the same as that of the proton in 

the IMS. To impose a constraint on ρs, we assumed that the average density of 

membrane-bound proton (or surface charge density) does not vary in each simulation. 

0 side  sidesP P
dA dAρ ρ=∫∫ ∫∫  ,       (3.9) 

where ρ0 is the average surface charge density at the P side. Because this constraint can 

provide an equivalent condition of proton transport across the IMM (or the activities and 

contributions of proton source and sink) at each simulation, it enables to exclusively 
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investigate the effect of the IMM morphology without considering the effects of proton 

source and sink. 

 

Table 3.3. Simulation coefficients and parameters 

Symbol Description Reference value Value used   Reference 

cH,matrix 
Bulk concentration 
of proton in matrix pH 8.0 1×10-5 mol/m3 [16] 

cH,cyto 
Bulk concentration 
of proton in cytosol pH 7.2 1×10-4.2 mol/m3 [16] 

DH
i Diffusion coefficient 

of intracellular 
proton 

4×10-7−15.2×10-7 
cm2/s 10×10-7 cm2/s [30] 

DH
mb Diffusion coefficient 

of membrane-bound 
proton 

2×10-7−5.8×10-5 
cm2/s 1×10-5 cm2/s [29, 31-36] 

 μ Electric mobility of 
proton in medium 

28.7×10-4−35.9×10-4 
cm2/(V s) 30×10-4 cm2/(V s) [37] 

 εIMS 
Relative permittivity 
of the IMS 80 80 [38] 

 εIMM Relative permittivity 
of the IMM − 5.647 * 

 ρ0 
Average surface 
charge density at the 
P side 

− 1.5×10-3 C/m2 † 

 ρATPase 
Density of ATP 
synthase − 2500 molecules/μm2 ‡ 

 JH Proton flux 3100 H+/s/ATPase 4.966×10-16 
C/s/ATPase [39] 

 EATP 
Energy used to 
synthesize 1 mole of 
ATP 

14 kcal/mol 58576 J/mol [29] 

 D Diameter of a crista 
junction 20−40 nm 30 nm [4] 

 L Length of a crista 
junction 30−50 nm 40 nm [4] 

* εIMM is calculated by assuming that the capacitance of the IMM is 1 μF/cm2 and the IMM 
thickness (tIMM) is 5 nm. εIMM = (tIMM/ε0)×(1 μF/cm2) = 5.647, where ε0 is the electric constant. 
† ρ0 is calculated using the parallel plate capacitor model with a ΔΨm of -150 mV.  
ρ0 = ε0εIMM×(Δϕ/ tIMM) = 1.5×10-3 C/m2, where Δϕ is 150 mV. 
‡ ρATPase is calculated from the average distance between ATP synthases [40] 
ρATPase = 1/(20 nm×20 nm) = 2500 molecules/μm2. 
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The 2D axisymmetric finite element method was implemented to solve these 

coupled equations with coupled boundary conditions. We used the ‘Transport of Diluted 

Species’, ‘Electrostatics’, and ‘Weak Form Boundary PDE’ modules in COMSOL 

Multiphysics 4.3 (Comsol, Stockholm, Sweden). 

 

 

3.2.3. Post-processing 

 

The electric potential (ϕ) and proton concentration (cH) distributions were 

simulated with various geometrical parameters of a crista. The mitochondrial membrane 

potential (ΔΨm) and the proton concentration difference across the IMM (ΔpH) were 

calculated from these two variables (ϕ and cH), as 

  m N side P side
φ φ∆Ψ = − ,       (3.10) 
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From ΔpH, the chemical potential difference across the IMM (ΔμH) was calculated.  
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µ∆ = = − ∆ ,     (3.12) 

where R is the gas constant and T is temperature (310 K).  

The proton motive force (PMF) is composed of the electric potential difference 

(ΔΨm) and chemical potential difference (ΔμH). 

/m HPMF Fµ= ∆Ψ + ∆ ,       (3.13) 
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where F is the Faraday constant. 

Given that the PMF is not uniform along the P side, the average PMF was defined 

in order to compare the effects of various parameters. The average PMF on the CM 

(PMFCM) was calculated by integrating the PMF over the P side of the CM divided by the 

area of that region. 

P side CM

P side CM

 
CM

PMF dA
PMF

dA
= ∫∫

∫∫
.       (3.14) 

The average PMF on the IBM (PMFIBM) was also defined similarly. 

However, the average PMF might be an insufficient parameter for representing 

the total capacity for ATP synthesis because it does not consider the total area. To 

quantify this total capacity, we calculated the rate of ATP synthesis (RATP) of a crista as 

follows: 

P side CM
( )ATP H ATPase ATPR PMF J dA Eρ= −∫∫ ,     (3.15) 

where JH is the proton flux, ρATPase is the density of ATP synthase, and EATP is the energy 

used to synthesize 1 mole of ATP. 

For calculating and plotting the results, MATLAB R2009a (The MathWorks, 

Natick, MA) was used with COMSOL Multiphysics. 

 

 

3.3. RESULTS 

 

3.3.1. The effect of the crista on electrochemical potential 
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By using the mitochondrion model, we first tested the hypothesis that the PMF is 

higher on the CM than on the IBM. Fig. 3.3 shows an example of a mitochondrion model 

and its simulation results. As can be seen in Fig. 3.3(a), the electric potential in the crista 

is lower than that in the non-crista portion of the IMS. This electric potential difference 

can induce proton concentration gradient, i.e., protons are more concentrated in the crista 

because of the lower electric potential there (more details will be explained in the 

discussion section). As a result, the proton concentration in the crista is significantly 

greater than that of the non-crista portion (Fig. 3.3(b)). This high proton concentration 

inside the crista results in a higher absolute value of the chemical potential difference 

(ΔμH) across the CM compared to that across the IBM, and a consequently higher 

absolute value of the PMF on the CM. In the model shown in Fig. 3.3, the average PMF 

on the CM (PMFCM) is -231.1 mV, while that on the IBM is -200.5 mV. 

 

 

Figure 3.3. An example of the mitochondrion model with a single crista (type II, Ncircle=4, 
r0=50 nm, θ0=15°). (a) Electric potential distribution in the IMS (mV). (b) Proton 
concentration distribution in the IMS (expressed as pH). 
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3.3.2. The effect of the overall shape of a crista 

 

To investigate the effect of the overall shape of a crista structure on 

electrochemical potential, the type I crista geometries were constructed as described in 

the methods section.  

 

 

Figure 3.4. The effect of the overall crista shape (parameterized by k) on the average 
PMF on the CM (PMFCM) and the rate of ATP synthesis (RATP). (A) The effect of k on the 
PMFCM for groups 1−3. (B) The effect of k on the RATP for groups 1−3. 

 

 

As can be seen in Fig. 3.4, k does not show significant effects on either the 

PMFCM or the RATP (ANOVA p-value≈1). Thus, the overall shape of a crista may not be 

an important factor for the electrochemical potential of mitochondria. Instead, even 

though the difference of the PMFCM among groups 1, 2 and 3 is substantively small (~1.2 

mV difference between groups 1 and 3), this difference is still statistically significant (p-

value<0.05). Similarly, the difference of the RATP among groups is statistically significant.  
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As summarized in Table 3.1, groups 1, 2 and 3 have different surface areas and 

surface-to-volume ratios. Group 1, which has the highest surface-to-volume ratio and the 

smallest surface area, has the highest absolute value of the PMFCM and the lowest RATP.  

Conversely, group 3, which has the smallest surface-to-volume ratio and the largest 

surface area, has the lowest absolute value of the PMFCM and the highest RATP. Therefore, 

the PMFCM may depend on the surface-to-volume ratio, whereas the RATP may depend on 

the surface area. This hypothesis was further investigated by using the type II crista 

geometries. 

 

 

3.3.3. The effect of the surface area and the surface-to-volume ratio of a crista 

 

 

Figure 3.5. The effect of the detailed crista morphology on the average PMF on the CM 
(PMFCM) and the rate of ATP synthesis (RATP). (A) The effect of the surface-to-volume 
ratio (SVR) on the PMFCM. (B) The respective effects of the surface area and the SVR on 
the RATP. Markers show the simulation results. Dashed lines are fitted models of 
simulation results. 
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By using the type II crista geometry, we examined the hypothesis that the surface 

area and the surface-to-volume ratio of a crista correlate with both the PMFCM and the 

RATP. Fig. 3.5 shows the effects of the surface-to-volume ratio and the surface area on the 

PMFCM and the RATP. 

The lines in Fig. 3.5 are fitted models of the simulation results based on following 

equations: 

2
0 1 1CMPMF x αα α− = + ,       (3.16)  

0 1 1 2 2ATPR x xβ β β= + + ,       (3.17) 

where x1 is the surface-to-volume ratio and x2 is the surface area. Both models fit well 

with the simulation results (R2 for the -PMFCM and the RATP are 0.9818 and 0.9982, 

respectively). The absolute value of the PMFCM mainly depends on the surface-to-volume 

ratio (fits well to a power-law model), whereas the RATP almost linearly depends on the 

surface area. The effect of the surface area on the PMFCM is not statistically significant 

(p-value=0.063), while the effect of the surface-to-volume ratio on the RATP is 

statistically significant (p-value<0.05).  

 

 

3.3.4. The effect of the crista junction morphology 

 

The size effects of the crista junction on electrochemical potential were also 

investigated. Unlike the crista morphology, the crista junction morphology may not be 

significantly regulated by the energy state of mitochondria. Instead, the crista junction 

may be formed spontaneously to have a thermodynamically favored conformation. This 
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hypothesis is consistent with the empirical observations that found similar morphologies 

of crista junctions from condensed and orthodox mitochondria [2, 41]. To test the 

hypothesis that the morphology of the crista junction is correlated with energetic 

functions of mitochondria, we varied crista junction length (L) and diameter (D), and 

subsequently calculated the PMFCM and the RATP. 

 

 

Figure 3.6. The effect of the crista junction diameter (D) and length (L) on the average 
PMF on the CM (PMFCM) and the rate of ATP synthesis (RATP)  (DH

mb =1×10-5 cm2/s, a 
single sphere crista with radius=50 nm). (A) Change in the average PMF on the CM. (B) 
Change in the ATP synthesis rate (RATP). Blue dots indicate data points where simulations 
were conducted. 

 

 

As can be seen in Fig. 3.6, the length of the crista junction (L) does not notably 

affect either the PMFCM or the RATP. The effect of the crista junction diameter (D) is also 

small. When the diameter ranges from 20 nm to 40 nm, the PMFCM and the RATP vary 

only 0.6% and 1%, respectively.  Thus, these simulation results are in accordance with 

the existing literature.  
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Based on the simulation results, we propose that different thermodynamically 

favored morphological configurations between individual cristae and the crista junction 

may be achieved by specific protein complexes such as those related to the dynamin-

related protein and/or membrane composition. Given the relatively uniform morphology 

of the crista junction and the conservation of distinctive crista morphologies at different 

energy states, these two sub-compartments of the IMM may contain significantly 

different compositions, giving rise to diverse localized mechanical properties. For 

example, if the elastic moduli (or stiffness) of the crista and the crista junction are 

significantly different, two distinguishable sub-compartments may be formed. On the one 

hand, the crista can easily change its morphology in response to the matrix volume 

regulation. On the other hand, the crista junction may maintain its tubular shape if it has a 

relatively high elastic modulus. However, the precise compositions and mechanical 

properties of the crista and the crista junction are not fully understood. 

 

 

3.4. DISCUSSION 

 

3.4.1. Biophysical significance of the crista structure 

 

The higher absolute value of the PMF on the CM predicted by this model may 

provide an explanation of experimentally observed non-uniform distribution of the proton 

source (electron transport chain) and sink (ATP synthase) along the IMM. It has been 

found that the electron transport chain and ATP synthase are more concentrated in the 

CM [42, 43]. From our simulation results, this inhomogeneous distribution may benefit 
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the energy conversion process of mitochondria: by having more ATP synthase in the CM, 

mitochondria can synthesize ATP more efficiently due to the high absolute value of the 

PMF, which is the driving force for ATP synthesis. 

Additionally, the simulation model showed that a high PMF can be induced by the 

large surface-to-volume ratio of a crista, while a high capacity for ATP synthesis may 

require the large surface area of a crista. These simulation results may present inferences 

for the relationship between the IMM morphology and the energy state of mitochondria. 

As mentioned earlier in the introduction section, two distinctive cristae structures were 

observed from mitochondria of two different respiratory activities: small cristae at low 

respiratory activity (state 4) and large cristae at high respiratory activity (state 3) [5-7]. At 

low respiratory activity, a small crista may be favorable because a small surface area is 

sufficient for the low ATP synthesis rate. Moreover, a small crista may have a higher 

PMF than a large crista of similar shape because a small crista can have a greater surface-

to-volume ratio. On the other hand, a large crista with a large surface area, which has 

greater capacity for ATP synthesis, may be required to meet high energy demand at high 

respiratory activity. This hypothesis is in agreement with experimental studies that 

estimated 30−60 mV higher PMF in state 4 (~230 mV) compared to that in state 3 

(170−200 mV) [44, 45]. 

 

 

3.4.2. Membrane-bound proton diffusion coefficient 

 

In our model, the membrane-bound proton diffusion coefficient (DH
mb) was 

assumed to be   1×10-5 cm2/s. However, the measurements of the lateral proton diffusion 
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coefficient along the membrane surface have exhibited two orders of magnitude in 

difference   (2×10-7−5.8×10-5 cm2/s) [29, 31-36]. Because the DH
mb can influence the 

profiles of membrane-bound proton concentration, surface charge density at the P side, 

and electric potential, we will discuss the effects of the DH
mb on the electrochemical 

potential of mitochondria.  

 

 

Figure 3.7. The effect of the membrane-bound proton diffusion coefficient (DH
mb) on 

electrochemical potential (using a single sphere crista with radius=50 nm). (A) Change in 
the average PMF on the CM and the IBM. (B) Change in the average ΔΨm, the average 
ΔμH/F, and the average PMF on the CM. 

 

 

As can be seen in Fig. 3.7(a), the absolute value of the average PMF on the CM 

increases linearly as the diffusion coefficient increases, while the average PMF on the 

IBM is almost independent of the diffusion coefficient. This increase in the -PMFCM is 

caused by the increase in the chemical potential difference (Fig. 3.7(b)), not by the 

membrane potential. In our model, two transport mechanisms of membrane-bound proton 

were considered: ‘diffusion’ and ‘electric field-induced migration’. If the DH
mb is small 
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compared to the electric mobility (μ), then ‘electric field-induced migration’ will be the 

dominant mechanism of the membrane-bound proton transport. This will induce 

membrane-bound protons to move along the P side in order to minimize the electric 

potential gradient along the P side. Because of this approximately constant electric 

potential, the proton concentration in the IMS (cH) near the P side will become nearly 

uniform, resulting in a relatively small chemical potential gradient. In contrast, if the 

DH
mb is sufficiently large compared to the electric mobility (μ), ‘diffusion’ will be the 

dominant mechanism of the membrane-bound proton transport. In this case, the 

membrane-bound proton concentration along the P side (which determines the surface 

charge density) will be closer to uniform. Due to the irregular geometry of the CM, this 

roughly uniform surface charge density profile will induce an electric potential gradient 

(lower electric potential on the P side of the CM than that on the P side of the IBM). At 

this point the protons in the IMS will be transported to the opposite direction of the 

electric potential gradient, resulting in a high proton concentration in the crista and 

consequently a high chemical potential gradient across the CM. 

As mentioned earlier, it has been proposed that high proton concentration inside a 

crista is induced by restricted diffusion. However, simulation results presented here 

suggest that the high proton concentration inside a crista can also be induced by the non-

uniform electric potential along the P side resulting from the morphology-dependent 

membrane-bound proton distribution. To validate this model, the measurements of the 

local electric potential and the proton concentration around the IMM warrant further 

investigation. 
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3.4.3. Model assumptions and limitations 

 

We applied continuum theories to model the electrochemical potential of 

mitochondria, even though few protons can exist at the given pH values and sizes of the 

system. This treatment of pH values as a continuum is based on the chemiosmotic theory 

(i.e., the chemiosmotic theory assumes pH values in the chemical potential term of the 

proton motive force as a continuum). However, to the best of our knowledge, this issue 

has not been clearly justified in the existing literature. Our justification of this issue is as 

follows: Even though the number of protons at each moment is very small, it has been 

experimentally shown that the proton flux through ATP synthase and electron transport 

chain is very high (>1000 H+/s/molecule) [29, 39, 46]. To meet this high flux condition, 

protons should circulate very rapidly. Thus, the average distribution of protons over time 

can still be treated as a continuum. Moreover, a continuum-based approach is reasonable 

because we are not interested in the specific position of each proton at each instance of 

time, but the average distributions related to different geometries. 

The next subject to be discussed is the modeling mitochondrial structures. 

Mitochondrial structures were constructed from combinations of basic shapes including 

sphere and cylinder. The application of basic shapes in the crista structure may limit the 

available range of the surface-to-volume ratio of a crista.  As the PMFCM is a function of 

the surface-to-volume ratio, the range of the PMFCM simulated in this study (~234−240 

mV) is limited and may not be enough to show a biologically meaningful difference. 

Furthermore, given the heterogeneous compositions of the IMM, the thickness of the 

IMM is not uniform, which can cause changes in the local electrical capacity and the 

electric potential. However, it is difficult to implement a complex 3D mitochondrion 
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structure that requires extremely fine elements and currently expensive computations. 

Capturing complex geometries and localized properties of the IMM would require a 

stochastic model, with a large number of realizations for a variety of conditions. 

Variations among realizations of the same complex set of geometric descriptors would be 

likely to obfuscate lager trends, such as the effects of the suface area and the surface-to-

volume ratio of an individual crista. This complex model geometry can also introduce 

computational inaccuracies and instabilities. In this sense, simplified model geometries 

may be more suitable for identifying the effects of key morphological parameters. 

Another set of assumptions in this model is proton concentration distributions outside the 

mitochondrion, inside the matrix, and in the IMS. Proton concentration outside the OMM 

was not modeled due to our assumption of constant cytosolic pH; however, cytosolic pH 

can also be affected by mitochondrial matrix alkalinization [47]. In addition, uniform pH 

in the matrix can be challenged by complex compositions of the matrix. A prerequisite 

for the assumption of uniform pH in the matrix is uniform electric potential in the matrix. 

However, little is known of electric potential and proton concentration distributions in the 

matrix. The matrix contains a high density of enzymes and other proteins [48]. This high 

density of macromolecules may require specific configurations that may induce non-

uniform electric potential. In the IMS, we modeled proton concentration profile by 

assuming that the interaction between protons and other ions are negligible and that the 

net electric charge of ions in the IMS is neutral. These assumptions, however, have not 

been sufficiently investigated.  

Furthermore, we assumed that the narrow crista junction morphology does not 

alter the diffusion coefficient. However, the narrow opening of the crista junction has 
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been hypothesized to restrict the diffusion of molecules between the crista and the non-

crista portion of the IMS [1-4, 41]. In addition, a recent simulation study suggested that 

the anomalous diffusion of proteins can be induced by cristae geometries [20]. Even 

though this geometrical effect on the diffusion coefficient might not be applicable to 

protons (given the relatively small size and low concentration of protons with respect to 

the typical size of the crista junction), the crista junction morphology may affect 

mitochondrial functions by regulating the transport of metabolic substrates and proteins, 

which have greater molecular weights and volumes [1, 4]. 

Finally, inhomogeneous composition of the IMM was not considered. In 

particular, proteins, including ATP synthase and electron transport chain, are not evenly 

distributed in the IMM [42, 43]. These non-uniform distributions of proton source and 

sink may influence the membrane potential. Moreover, the activities of these protein 

complexes, regulated by the energy state of mitochondria, can also change the membrane 

potential. In our model, however, the average surface charge density was assumed to be 

constant in each simulation in order to exclusively investigate the morphological effects.  

 

 

3.5. CONCLUSIONS 

 

To date, research on the role of highly varied IMM structure has been primarily 

based on empirical observations that are not supported by theoretical verifications. 

Recently, some simulation studies have been conducted to explain the observed IMM 

structures using thermodynamic models [18, 19] and to examine the validity of a crista 

junction morphology as a diffusion barrier [20]. However, a model simulating the effect 
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of the IMM structure on ATP synthesis has not yet been developed. This study aimed to 

explain the biophysical significance of IMM structures on the energetic function of 

mitochondria using finite element methods. We constructed a simplified mitochondrion 

model that enables easy parameterization of the IMM structure. From this model, we 

found that a crista can enhance ATP synthesis not only by increasing the surface area, but 

also by increasing the PMF. Based on results from the current simulation, high PMF on 

the CM (mainly contributed by high proton concentration in the crista) is induced by its 

concave geometry, but is not necessarily related to the restricted diffusion that may be 

caused by a narrow crista junction opening. It was shown in the model that the 

morphology-dependent electric potential induces a proton concentration difference 

between a crista and the non-crista portion of the IMS (i.e., a crista can act as a proton 

trap not by restricted diffusion, but by induced electric field).  

Our simulation results also present potential explanations on the relationship 

between cristae morphologies and energy states. The simulation model showed that a 

high PMF can be induced by the large surface-to-volume ratio of a crista, whereas a high 

capacity for ATP synthesis can be mainly achieved by increasing the surface area of a 

crista. Based on these simulation results, the orthodox conformation (small cristae) might 

be more favorable for mitochondria of low respiratory activity, whereas the condensed 

conformation (large cristae) can be more preferable for mitochondria of high respiratory 

activity. 

Even though our model successfully details the biophysical significance of IMM 

structures, the current model might not sufficiently describe some important biological 

aspects because of potential over-simplifications and assumptions specific to these 
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calculations. Further investigation is required into the local electric potential and the 

distribution of protons, as well as the proton transport mechanisms in mitochondria in 

order to improve the validity of computational estimates of causal relationships between 

morphology and biochemical function.  
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CHAPTER 4  
 

NUMERICAL STUDY OF INNER MITOCHONDRIAL MEMBRANE 
DYNAMICS: EFFECTS OF LOCAL pH ON CRISTAE 

MORPHOLOGIES1 

 

 

4.1. INTRODUCTION 

 

Mitochondria have been recognized as the primary cellular powerhouses, because 

their main function is synthesizing ATP by oxidative phophorylation. During oxidative 

phosphorylation, the electron transport chain pumps protons across the inner 

mitochondrial membrane (IMM) by using free energy released from a series of redox 

reactions. The resulting electrochemical gradient of proton is used for synthesizing ATP 

via ATP synthase [1, 2]. These protein complexes involved in ATP synthesis are located 

in the IMM. In particular, a subcompartment of the IMM called a crista has been 

considered to be the major site of ATP synthesis since proteins comprising ATP synthase 

and electron transport chain are more concentrated on cristae membranes [3, 4]. These 

cristae membranes have complex, diverse, and dynamic morphologies. The biophysical 

effects of these widely varied cristae morphologies have been studied in relation to 

mitochondrial functions. For example, the morphologies of cristae have been speculated 
                                                
1 Material in this chapter is an unpublished paper in progress: : D. H. Song, J. Park, W. 
Lu, M. A. Philbert, and A. M. Sastry, Numerical study of inner mitochondrial membrane 
dynamics: Effects of local pH on cristae morphologies. Physical Review E (2013). 
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as the capacity enhancer for ATP synthesis by providing greater surface area and 

electrochemical potential [5-7]. Moreover, experimental studies found that mitochondria 

can have distinctive IMM morphologies with respect to their respiratory activities [8, 9]. 

However, the mechanisms of how these cristae structures can be formed and regulated 

and how the morphologies can be associated with mitochondrial functions have not been 

fully understood. 

To explain the formation and regulation of cristae structures, two hypotheses have 

been proposed: i) cristae morphologies may be related to the distributions of protein 

complexes [7, 10, 11], and ii) cristae morphologies may be regulated by the local pH 

gradient generated from oxidative phosphorylation [12-14]. The first hypothesis is 

supported by the experimental observation (by using electron microscopy with 3D image 

reconstruction) showing long ribbons of ATP synthase dimers located at the apex of 

cristae membranes [11]. Even though these dimer ribbons may contribute to the 

formation of cristae structures by bending the membrane, this hypothesis does not 

provide a sufficient explanation on how the cristae morphologies can be regulated by the 

respiratory activities. The second hypothesis is based on the fact that area per lipid 

headgroup decreases as pH decreases. The local pH difference across the membrane can 

induce the curvature by the area mismatch between two layers of the membrane. In this 

case, the morphology of a crista membrane can change in response to the local pH 

gradient generated during oxidative phosphorylation. Therefore, the curvature and the 

morphology of a membrane can be associated with the respiratory activity. 

The above hypothesis of the cristae formation by the local pH gradient was 

proposed by Khalifat et al. [12]. They experimentally showed that the local pH gradient 
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can form a cristae-like invagination on the giant unilamellar vesicle (GUV). The local pH 

gradient on the GUV was generated by the microinjection of acid. The cardiolipin (CL) 

containing GUVs presented dynamic and reversible changes of the cristae-like 

invaginations by acid delivery. They also provided theoretical explanations of observed 

cristae-like invaginations. Theoretical values of the radius and lengths of cristae-like 

tubules were calculated and compared with their experimental results. However, this 

study could not successfully explain why the cristae-like structures have tubular shapes 

and whether this shape is energetically favorable. Moreover, the mechanism proposed in 

this study needs to be validated at the mitochondrial scale because of the large size 

difference between mitochondria and GUVs (i.e. to form a crista at the mitochondrial 

scale, much higher local pH gradient may be required because a small crista has a higher 

curvature than a large crista of similar shape). 

However, the experimental validation of this mechanism at the actual 

mitochondrial scale is restricted by optical resolution and control of the local pH profile. 

Therefore, simulation models are not only plausible supplements for resolving those 

experimental limitations, but also excellent techniques for presenting a theoretical 

understanding of existing observations. For example, a thermodynamic model was used 

to provide theoretical explanations of experimentally observed cristae morphologies [15-

17]. The dynamics of lipid bilayer membranes were modeled and validated with the well-

known biological membrane dynamics [18-24]. To date, however, a numerical model 

simulating the IMM dynamics associated with the local pH gradient has not been 

developed. 
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In this paper, we introduce a model simulating the morphologies of the IMM at 

the given pH profiles. First, a spontaneous curvature depending on the pH difference 

across the membrane is modeled. In addition to the estimation of the spontaneous 

curvature, the finite element model of lipid bilayer membranes developed by Feng, Ma, 

and Klug [19, 21] is applied to find the energetically favorable membrane configuration. 

By using this model, we investigate i) how a tubular cristae structure can be formed and 

dissipated by the local pH gradient, ii) which factors can affect the cristae membrane 

morphologies, and iii) whether the same mechanism proposed by Khalifat et al. can be 

applicable at the mitochondrial scale. Finally, the validity and limitations of this study are 

discussed. 

 

 

4.2. METHODS 

 

We applied the finite element model of lipid bilayer membranes developed by 

Feng, Ma and Klug [19, 21]. Our model system was composed of a single closed lipid 

bilayer with homogeneous composition (the effects of protein compositions were not 

considered). To reduce the computational cost, we limited our study to 2D axisymmetric 

geometries. We first calculated the spontaneous curvature of the membrane induced by 

the pH difference across the membrane in order to simulate the effect of the local pH. 

Finally, this spontaneous curvature was plugged into the lipid bilayer model to find the 

membrane configuration having the minimum energy. 
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4.2.1. Local pH and curvature of the lipid bilayer 

 

During the oxidative phosphorylation, protons are pumped out from the matrix by 

the electron transport chain and generating the pH difference across the IMM. This pH 

difference can induce a curvature by mismatched areas between two layers of the 

membrane. 

 

 

Figure 4.1. Curvature of the lipid bilayer induced by local pH. (a) Illustration of a 
curvature induced by locally introduced protons. (b) Modeling of the pH-dependent area 
change and resulting spontaneous curvature. 

 

 

As illustrated in Fig. 4.1(a), positively charged protons (or hydrated hydrogen 

ions) introduced on the outer side of the membrane neutralize the negative charges of 
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lipid headgroups. This electrical neutralization reduces repulsive forces between 

headgroups and consequently the area per headgroup. This decreased area of the outer 

layer results in area mismatch between the inner and the outer layer. Finally, the 

curvature of the lipid bilayer can be induced by this area mismatch. 

First, we modeled the pH-dependent area change similar to thermal expansion. 

0 (1 )AA A pHα= + ∆ ,        (4.1) 

where A and A0 are areas of the layer before and after pH change, respectively; αA is the 

area expansion coefficient; and ΔpH is the pH difference (ΔpH=pH-pH0). From Eq. (4.1), 

the infinitesimal areas of the inner and the outer layer after pH change dAin and dAout (see 

Fig. 4.1(b)) are  

0 (1 )in A indA dA pHα= + ∆ ,       (4.2) 

0 (1 )out A outdA dA pHα= + ∆ .       (4.3) 

On the other hand, dAin and dAout can also be calculated by assuming that the inner and 

outer layers form concentric spherical surfaces. 

 2( / 2) sinindA r t d dθ θ φ= − ,       (4.4) 

 2( / 2) sinoutdA r t d dθ θ φ= + ,       (4.5) 

where r is the radius of the midplane of the membrane, t is the thickness of the membrane 

(5 nm), θ is a polar angle, and ϕ is an azimuth angle of a spherical coordinate system. 

From Eqs. (4.2)−(4.5), the spontaneous curvature of the membrane at the given pH (C0) is 

0
1 2( 1)

( 1)
cC

r t c
−

= =
+

, where 1
1

out A out

in A in

dA pHc
dA pH

α
α

+ ∆
= =

+ ∆
.   (4.6) 
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Therefore, C0 can be determined by the given pH values of the inner and outer surfaces of 

the membrane. The details of pH profiles used in this simulation will be explained in 

Section 4.2.5. 

 

4.2.2. Area expansion coefficient (αA) 

 

The area expansion coefficient (αA) can be estimated from the measurements of 

the mean area per lipid molecule at different pH values. For the GUV simulations, we 

used the mean area per lipid measured in Ref. [12]. The mean area per lipid molecule in 

monolayers composed of 90 mol % of phosphatidylcholine (PC) and 10 mol % of 

cardiolipin (CL) was measured at pH 8 and 4. The mean area decreased ~8.6% as pH 

decreased from 8 to 4. From Eq. (4.1), this corresponds to αA of 0.0214. We used this 

value for the area expansion coefficient of the GUV (αGUV=0.0214). 

For the simulations at the mitochondrial scale, we applied different values of αA. 

Since the lipid composition of the IMM is different from that of the GUV, the IMM can 

have a different αA. In particular, the IMM has higher CL composition (~20 %) [25, 26], 

which is considered to be the main contributor for the pH-dependent area change [12, 14, 

27, 28]. Thus, this higher CL composition can provide greater αA than αGUV. Moreover, it 

has been speculated that the CL composition in the cristae membrane is even higher [29, 

30]. However, to the best of our knowledge, accurate CL composition in the critae 

membrane has not been estimated. Therefore, we performed simulations with various αA 

in the range between αGUV and 10 times of αGUV. 
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4.2.3. Lipid bilayer model 

 

To simulate the lipid bilayer mechanics, we employed the model developed by 

Feng, Ma, and Klug [19, 21]. We modified the model suitable for the 2D axisymmetic 

geometry and large deformation. Since the lipid bilayer mechanics is not a main focus of 

this study, we will briefly explain the lipid bilayer model (see Ref. [21] for more detailed 

descriptions of the lipid bilayer model). 

Following Ref. [21], the total energy functional (I) of the single closed membrane 

can be written as 

con regI I I= Π + + ,        (4.7) 

where Π is the potential energy, Icon is the constraint energy, and Ireg is the regularization 

energy.  

The potential energy (Π) was constructed from the Helfrich functional [31-33]. 

2
0

1 (2 )
2

K H C AdsΠ = −∫ ,       (4.8) 

where K is the bending modulus, H is the mean curvature, C0 is the spontaneous 

curvature, and Ads is the infinitesimal surface area element. The potential energy was 

only composed of the bending energy because we assumed no work was done by external 

forces. The Gaussian curvature term in the Helfrich functional was neglected by the 

Gauss-Bonnet theorem.  

To enforce area and volume constraints, the constraint energy Icon was established 

by applying the augmented Lagrangian approach. 

2 2
0 0( ) ( )

2 2
con n nV AI V V p V A A Aµ µ α= − − + − + ,    (4.9) 
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where V and V0 are the current and the initial enclosed volumes, respectively; A and A0 

are the current and the initial surface areas, respectively; μV and μA are penalty parameters 

for the volume and area constraints, respectively; pn and αn are multiplier estimates for 

the volume and area constraints at the nth iteration, respectively. By employing this 

energy functional, Lagrange multipliers for the volume and area constraints can be solved 

iteratively.  

However, the constraint energy Icon can only impose global constraints. This 

constraint does not penalize in-plane deformations of finite element nodes and does not 

enforce local incompressibility. Especially in large deformation problems, these in-plane 

deformations may induce degenerate modes. To resolve this problem, we used dashpot 

regularization energy (which penalizes in-plane deformations) introduced by Ma and 

Klug [21]. 

2

 
( )

2
reg

ab ab
edge ab

kI l L= −∑ ,       (4.10) 

where k is a spring constant, lab and Lab are lengths between nodes a and b of current and 

reference configurations, respectively. 

From the principle of minimum potential energy, the weak form of the energy 

functional was derived from the variation of a functional. 

con regI I Iδ δ δ δ= Π + + ,       (4.11) 

2
0 0

1(2 ) (2 ) (2 )
2

K H C H A K H C A dsδ δ δ Π = − + −  ∫ ,   (4.12) 

1 1[ ]con n nI p V A dsδ δ α δ+ += − +∫ ,      (4.13) 

 
( )reg

ab ab ab
edge ab

I k l L lδ δ= −∑ ,       (4.14) 
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where pn+1=pn−μV(V−V0) and αn+1=αn+μA(A−A0).  

 

 

Figure 4.2. 2D axisymmetric coordinate system and geometry of the surface represented 
by curved line elements. (a) The membrane surface was parameterized by curvilinear 
coordinates: x=x(s). (b) A curved line element was obtained from interpolating 4 node 
points including nearest-neighbor nodes. 

 

 

Next, we derived the variables in 2D axisymmetric coordinate system. As can be 

seen in Fig. 4.2(a), the normal vector n is 

2 2 1/2 2 2 1/2( , ) ( , )
( ) ( )r z

z rn n
r z r z

′ ′−
= =

′ ′ ′ ′+ +
n ,     (4.15) 

where the single quotation mark (´) denotes a partial differentiation with respect to the 

parameter s. 

From the definition of the mean curvature and Eq. (4.15), the mean curvature can 

be derived as 

2 2 3/2 2 2 1/2

( )12
( ) ( )

r zrn n r z z r zH
r r z r z r r z

′ ′′ ′ ′′ ′∂ ∂ −
= ∇ ⋅ = + = +

′ ′ ′ ′∂ ∂ + +
n .   (4.16) 

By the first variation of Eq. (4.16), δH can be obtained as 
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1 2 3 4 5(2 )H c r c r c r c z c zδ δ δ δ δ δ′ ′′ ′ ′′= + + + + ,     (4.17) 

where 1 2 2 2 1/2( )
zc

r r z
′

= −
′ ′+

, 
2 2 3 3

2 2 2 5/2

2 3 ( ) /
( )

z z r z r r z r z r z rc
r z

′ ′′ ′ ′′ ′ ′′ ′ ′ ′ ′ ′− + − +
=

′ ′+
, 

3 2 2 3/2( )
zc

r z
′

= −
′ ′+

, 
2 2 4 2 2

4 2 2 5/2

3 2 ( ) /
( )

r r r z z r z r r z rc
r z

′ ′′ ′ ′ ′′ ′′ ′ ′ ′ ′− − + + +
=

′ ′+
, and 

5 2 2 3/2( )
rc

r z
′

=
′ ′+

. 

The total surface area can be calculated as 

2 2 1/22 ( )totA Ads r r z dsπ ′ ′= = +∫ ∫ .      (4.18) 

From the above equation, the infinitesimal surface area is 

2 2 1/22 ( )A r r zπ ′ ′= + .        (4.19) 

Then, the first variation of A is 

2 2 1/2 2 2 1/2 2 2 1/22 [( ) ( ) ( ) ]A r z r rr r z r rz r z zδ π δ δ δ− −′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + .  (4.20) 

Similarly, 

2
totV Vds r z dsπ ′= =∫ ∫ ,       (4.21) 

2V r zπ ′= ,         (4.22) 

2(2 ) ( )V rz r r zδ π δ π δ′ ′= + .       (4.23) 

 

Finally, the weak form of the energy functional was applied to find the conjugate 

direction for the numerical optimization method. 
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4.2.4. Finite element approximation and energy minimization 

 

Curved line elements were used to approximate the membrane surface in the 2D 

axisymmetric coordinate system. Because the curvature calculation requires the second 

derivative of a function, the interpolation (or shape) function need to be at least a 

quadratic polynomial in order to have a nonzero curvature. To implement this, we used a 

cubic polynomial function as a shape function. As can be seen in Fig. 4.2(b), shape 

functions were obtained from interpolating 4 node points including nearest-neighbor 

nodes.  

4

1
( ) ( )i

i
Nζ ζ

=

=∑ ix x ,        (4.24) 

where x is a position vector of the membrane surface, Ni is a shape function, and xi is a 

node point vector . To construct isoparametric shape functions, following conditions are 

applied. 

N1(−3)=1, N1(−1)=0, N1(1)=0, N1(3)=0, 

N2(−3)=0, N2(−1)=1, N2(1)=0, N2(3)=0, 

N3(−3)=0, N3(−1)=0, N3(1)=1, N3(3)=0, 

N4(−3)=0, N4(−1)=0, N4(1)=0, N4(3)=1. 

Because there are 4 conditions for each equation, we use cubic polynomial functions. 

From the above conditions, the resulting shape functions are 

3 2
1

1 ( 3 3)
48

N x x x= − + + − , 

3 2
2

1 (3 3 0 27 27)
48

N x x x= − − + , 
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3 2
3

1 ( 3 3 27 27)
48

N x x x= − − + + , 

3 2
4

1 ( 3 3)
48

N x x x= + − − . 

The total energy functional and its weak form were discretized by substituting the 

position vector x with a node point vector xi. At the given node positions, the numerical 

values of these discretized equations (Eqs. 4.7 and 4.11) can be evaluated by using a 

three-point Gaussian quadrature.  

Finally, simulations were performed by applying the nonlinear conjugate gradient 

method. The nonlinear conjugate method is used to find the local minimum of the total 

energy functional without deriving the stiffness matrix. The weak form of the total energy 

functional was used to find the steepest descent direction and the conjugate direction for 

the numerical optimization. In this study, we used the Polak-Ribiere-Polyak formula for 

calculating the conjugate gradient update parameter [34, 35]. 

 

 

4.2.5. Initial configurations, pH profiles, and post-processing 

 

We used oblate and prolate spheroids as initial shapes because the simulations 

were performed in 2D axisymmetric geometries. These initial shapes were parameterized 

by the equivalent radius (R0) and the reduced volume (ν). 

0 / 4R A π= ,         (4.25) 

3
0(4 / 3)

V
R

ν
π

= .        (4.26) 
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Since these initial shapes are not in equilibrium, the equilibrium shapes of these 

initial shapes were obtained by performing simulations with the zero spontaneous 

curvature. Finally, these equilibrium shapes were used as the initial configurations. 

 

 

Figure 4.3. pH profile on the membrane surface and morphological parameters of a 
cristae-like structure. (a) The area affected by acid delivery (Aaff) was set on the top 
center part of the membrane. (b) Morphological parameters were calculated from the 
structure enclosed by the affected area (shaded area). 

 

 

To simulate the experimental conditions described in Ref. [12], we defined the 

area affected by acid delivery (Aaff). As can be seen in Fig. 4.3(a), we set the affected area 

on the top center part of the membrane surface. To study the effects of the affected area, 

we changed the percentage of the affected area (Paff). 

0

100aff
aff

A
P

A
= × .        (4.27) 

We assigned pH values at the node points of the affected area (pHaff), while pH values 

elsewhere were assumed to remain at 8 (pH0). For numerical integration, pH values at the 
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Gauss points were linearly interpolated from the nodal values. We decreased pH values 

of the affected area from pH0 with a decrement of 0.1. However, during this process, the 

affected area can change due to the updates of node points. This problem is resolved by 

repositioning the node points. After every energy minimization step, the node points are 

repositioned along the surface of the membrane in order to have the same affected area. 

The overall simulation procedure is summarized as follows: 

 

i) Set initial parameters and the reference configuration X 

ii) Solve for the current configuration x at the given pH profile by the total energy 

minimization 

iii) Reposition the node points 

iv) Update the reference configuration: X=x 

v) Update parameters (μV, μA, pn, and αn) 

vi) Repeat steps ii−v until 5
0 0/ 10ν ν ν −− <  and 5/ 10regI I −<  

 

After solving for the configuration at each pH step, the morphology of a cristae-

like structure was quantified. Fig. 4.3(b) shows an example of a cristae-like strucuture. 

To quantify this morphology, we calculated the length (lcrista), radius (rcrista), aspect ratio 

(AR), and surface-to-volume ratio (SVR) of the cristae-like structure. 

2

crista
crista

crista

r z ds
r

l

π

π

′−
= ∫ ,       (4.28) 

2
crista

crista

lAR
r

= ,         (4.29) 
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2 2 1/2

2

2 ( )
crista

crista

r r z ds
SVR

r z ds

π

π

′ ′+
=

′−
∫

∫
.      (4.30) 

(Note: a radius of a crista (rcrista) was defined as a radius of an equivalent cylinder.)  

Finally, we analyzed the simulation results with these four morphological parameters: 

lcrista, rcrista, AR, and SVR. 

 

 

4.3. RESULTS 

 

We first simulated the equilibrium shapes of the membranes with a zero local pH 

gradient (or zero spontaneous curvature) for the verification purpose. After the 

verification of the model, we simulated the membrane dynamics at the GUV scale (R0=30 

μm). The formation and dissipation of the cristae-like structure with respect to the pH 

values on the affected area (pHaff) was studied. We also investigated the factors, such as 

the percentage of the affected area (Paff) and initial shapes, which may affect the 

morphology of the cristae-like structure. Finally, simulations were performed at the 

mitochondrial scale (R0=1 μm). At this smaller scale, we examined the conditions (ex. the 

critical pH value and the area expansion coefficient) required for the tubular cristae 

formation. 

 

 

4.3.1. Model verification 
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For the model verification, we simulated the equilibrium shapes of the membranes 

with different initial shapes and zero local pH gradient (i.e. zero spontaneous curvature). 

The normalized potential energy (Π/8πK) calculated from the equilibrium shape was 

compared with the result obtained from Seifert et al. [36].  

 

 

Figure 4.4. Comparison of the normalized potential energy calculated in this study with 
those obtained from Seifert et al. Equilibrium shapes of oblate and prolate spheroids at 
selected reduced volumes were presented in the inset. 

 

 

Fig. 4.4 shows the normalized potential energy and equilibrium shapes of oblate 

and prolate spheroids with different reduced volume. As can be seen in this figure, our 

simulation results were in good agreement with those from Seifert et al. 
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4.3.2. Formation and dissipation of the cristae-like structure at the GUV scale 

 

The dynamics of the membrane was studied at the GUV scale. We used an oblate 

spheroid with ν=0.95 and R0=30 μm as an initial shape and the area expansion coefficient 

(αA) of 0.0214 (αGUV). 

 

 

Figure 4.5. Formation process of the cristae-like structure at selected pHaff. An oblate 
spheroid with ν=0.95 and R0=30 μm was used as an initial shape. αA of 0.0214 (αGUV) and 
Paff of 0.5% were used. 

 

 

First, the equilibrium shape of the membrane was simulated at pH 8 (zero 

spontaneous curvature). We assigned the affected area at the top center of the membrane 
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surface as described in Section 4.2.5. The percentage of the affected area over the total 

surface area (Paff) was maintained at 0.5%. We decreased the pH value of the affected 

area (pHaff) from 8 to 7 with a decrement of 0.1. 

 As can be seen in Fig. 4.5, the affected area started to form a concave geometry 

due to the negative spontaneous curvature induced by pHaff. As pHaff decreased, a single 

spherical shape of a cristae-like structure emerged at pHaff=7.6. Then the affected area 

evolved to a structure of connected spheres with smaller radii in order to have a greater 

negative spontaneous curvature. Finally, the affected area formed a tubular cristae-like 

structure. At pHaff=7, the diameter (2rcrista) and the length (lcrista) of the cristae-like 

structure were 0.94 μm and 17.5 μm, respectively. 

To study the reversibility of this membrane deformation, we increased pHaff from 

7 to 8 with an increment of 0.1. The membrane configuration at pHaff=7 in Fig. 4.5 was 

used as an initial configuration for this simulation.  

Fig. 4.6 shows the dissipation of the cristae-like structure with increasing pHaff. At 

the same pHaff, the morphology of the cristae-like structure shown during the dissipation 

process (Fig. 4.6) was very similar to that which emerged during the formation process 

(Fig. 4.5). However, at pHaff=7.3, the structure of connected spheres was more clearly 

seen in the dissipation process. This slight difference in morphology may be caused by 

the different initial conditions for the formation process and the dissipation process (i.e., 

the equilibrium configurations in the formation process were developed from the 

configurations at the higher pH values, whereas those in the dissipation process were 

progressed from the configurations at the lower pH values). Finally, the cristae-like 
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structure was completely removed and the membrane was fully recovered to the original 

configuration when the local pH gradient disappeared (pHaff=8). 

 

 

Figure 4.6. Dissipation process of the cristae-like structure at selected pHaff. The 
membrane configuration at pHaff=7 in Fig. 4.5 was used as an initial configuration. αA of 
0.0214 (αGUV) and Paff of 0.5% were used. 

 

 

4.3.3. The effects of Paff and initial shapes 

 

To investigate the factors determining the morphology of the cristae-like structure, 

membrane models with different Paff and initial shapes were simulated. The morphology 
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of the cristae-like structure at each pHaff was analyzed by using four morphological 

parameters as described in Section 4.2.5: rcrista, lcrista, AR, and SVR. 

 

 

Figure 4.7. The effects of the percentage of the affected area (Paff) on the morphological 
parameters of a cristae-like structure. (a) Changes in the radius of cristae-like structures. 
(b) Changes in the lengths of cristae-like structures. (c) Changes in the aspect ratios of 
cristae-like structures. (d) Changes in the surface-to-volume ratios of cristae-like 
structures. 

 

 

The morphological changes of the critae-like structures with three different Paff 

(0.4%, 0.5%, and 0.6%) were analyzed. The same initial configuration (oblate spheroid 

with ν=0.95 and R0=30 μm) and the area expansion coefficient (αA) of 0.0214 were used.  
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As can be seen in Fig. 4.7(b) and (c), the cristae-like structure developed from a 

larger affected area was longer and consequently had a higher aspect ratio. On the other 

hand, the percentage of the affected area did not show significant effects on both rcrista 

and SVR (Fig. 4.7(a) and (d)). Because these two morphological parameters are mainly 

determined by the spontaneous curvature (which is directly related to the local pH), they 

were only associated with pHaff. 

 

 

Figure 4.8. The effects of the initial shape on the morphological parameters of a cristae-
like structure. Oblate and prolate spheroids with ν=0.95 and 0.85 were used as initial 
shapes. (a) Changes in the radius of cristae-like structures. (b) Changes in the lengths of 
cristae-like structures. (c) Changes in the aspect ratios of cristae-like structures. (d) 
Changes in the surface-to-volume ratios of cristae-like structures. 
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To study the effects of the initial shape, four different initial configurations were 

simulated at the same conditions (R0=30 μm, αA=0.0214, Paff=0.5%). Fig. 4.8 shows the 

effects of the initial shapes on the morphological parameters. Oblate spheroids with two 

different reduced volumes (ν=0.95 and 0.85) exhibited almost identical morphological 

parameters over the entire range of pHaff, whereas prolate spheroids showed delayed 

growth of tubular cristae-like structures. In the case of the oblate spheroid, the initial pH 

value for tubular cristae-like structure formation was 7.2. The prolate spheroids with 

ν=0.95 and ν=0.85 started to form a tubular cristae-like structure at pH 7.1 and 7, 

respectively. Moreover, the prolate spheroids developed initially thicker and shorter 

cristae-like structures. This delayed formation and development of the cristae-like 

structure from the prolate spheroids may be contributed from the higher positive 

curvature of the affected area (i.e., in prolate spheroids, the membrane invagination may 

be hindered by the more convex geometry of the affected area). However, after the 

cristae-like structures were fully formed, the morphological parameters of prolate 

spheroids were converged to those of oblate spheroids. 

 

 

4.3.4. Cristae formation at the mitochondrial scale 

 

The membrane dynamics was finally simulated at the mitochondrial scale. We 

investigated whether the same mechanism applied at the GUV scale can still be valid at 

the smaller mitochondrial scale. An oblate spheroid with ν=0.95 and R0=1 μm was used 

as an initial shape. We maintained the percentage of the affected area (Paff) of 0.5%, 

while pHaff was decreased from 8 to 4. 
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As can be seen in Fig. 4.9(a), when αA of 0.0214 (αGUV) was applied, the affected 

area formed a concave geometry instead of a tubular cristae-like structure. This is due to 

the higher negative spontaneous curvature required to form a smaller crista.  

 

 

Figure 4.9. Cristae formation at the mitochondrial scale. (a) The membrane morphology 
simulated with αGUV at pHaff=4. (b) The membrane morphology simulated with 5αGUV at 
pHaff=4. (c) Critical pH values required to form a tubular cristae-like structure with 
different area expansion coefficients. 

 

 

The higher negative spontaneous curvature can be achieved by a higher local pH 

gradient (lower pHaff) or a greater αA. Since the applicable range of pHaff is limited (a 

pHaff lower than 4 might not be feasible due to the lipid degradation in acid), we 

performed simulations with greater area expansion coefficients (αA was increased up to 

10 times of αGUV). When αA=5αGUV, a tubular cristae-like structure was fully developed at 

pHaff=4 (Fig. 4.9(b)).  
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We further investigated a critical pH value (pHcrit) required to form a tubular 

cristae-like structure. From the simulation results, we calculated the pHcrit where the 

membrane formed a crista with a diameter (2rcrista) of 40 nm. Fig. 4.9(c) shows the 

calculated pHcrit with different αA. To form a tubular crista at pH 5 and 6, αA of the cristae 

membrane should be greater than 6.4 times and 9.5 times of αGUV, respectively. As 

explained in Section 4.2.2, for the actual cristae membrane, this greater αA may be 

achieved by a higher CL composition of the cristae membrane. However, the accurate CL 

composition and the area expansion coefficient of the cristae membrane are still unknown. 

 

 

4.4. DISCUSSION 

 

In this section, by comparing the existing experimental observations, we first 

discuss the validity of the major findings in this study. In addition to the validation, the 

limitations from the model assumptions and simplifications are discussed. 

 

 

4.4.1. Comparison with existing experimental observations 

 

Through the simulation model, we showed that a tubular cristae structure can be 

formed and regulated by the local pH gradient. Even though the model did not reproduce 

complex and entangled geometries (due to the application of simple axisymmetric 

geometries), early steps of the cristae-like structure formation (from a concave geometry 

to a single sphere, connected spheres, and a tubular structure) and final steps of the 
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dissipation (from a tubular structure to connected spheres, a single sphere, and a concave 

geometry) were consistent with those observed in Ref. [12]. This distinctive process was 

more clearly seen during the dissipation of a cristae-like structure (see figures in Ref. 

[12]). This might be due to the fact that the complete disappearance of the local pH 

gradient after removing acid delivery takes more time than the development of the local 

pH gradient, and this slower process can provide more time for having a fully 

equilibrated membrane configuration (similar to those in the simulation results). 

Furthermore, the simulation results, which showed a decrease in the tubular crista radius 

accompanied by a increase in the local pH gradient, correspond to the experimental 

observations of actual cristae structures: swollen cristae were observed in mitochondria at 

state 3 (low local pH gradient), while narrow tubular cristae were shown in mitochondria 

at state 4 (high local pH gradient) [8]. 

Additionally, we investigated the effects of the affected area and the initial shape. 

First, the simulation results suggested that the affected area can only change the length, 

but not the diameter of a crista. From these simulation results, we can infer that the 

diameter of each crista may be nearly uniform if the local pH values on the cristae 

membranes are comparable. This inference is supported by the observations that found 

relatively small variations in tubular cristae diameters (20~40 nm) [37, 38]. Second, we 

showed that the initial shape can affect the growth of a tubular crista: The initial tubular 

crista formation on the membrane with higher positive curvature requires higher local pH 

gradient. Thus, the tubular cristae formation on a flat or concave surface is more 

favorable. This finding explains the direction of tubular cristae that is mostly 

perpendicular to the longitudinal axis of mitochondria [37, 39]. 
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Simulations at the mitochondrial scale were performed with a range of area 

expansion coefficients. At this small scale, developing a tubular crista comparable to its 

actual size (diameter of 40 nm) requires a greater area expansion coefficient and higher 

local pH gradient. In reality, the area expansion coefficient of the cristae membrane may 

be much greater than that estimated from the GUV due to higher CL composition. 

Additionally, the higher local pH gradient can be obtained by the locally concentrated 

protons on the cristae membrane (enhanced proton trapping by higher CL composition) 

[12, 14, 27, 28]. According to our simulation results, the local CL composition and pH 

gradient on the cristae membrane might be higher than those speculated in the existing 

literature. However, due to the limitations in optical resolution and diffusion, these local 

values have not been accurately measured. 

 

4.4.2. Model assumptions and limitations 

 

We discuss the limitations from the model assumptions and simplifications. As 

mentioned earlier, we limited our study to the 2D axisymmetric coordinate system in 

order to reduce the computational cost and avoid numerical instabilities by applying 

extremely fine elements. Because of the symmetric geometries and pH profiles, detailed 

membrane dynamics that deviated from symmetric conditions could not be simulated. 

In addition, we did not consider the effects of pH on mechanical properties of the 

membrane, such as the area expansion coefficient (αA) and the bending modulus (K). 

However, studies have found that these mechanical properties can be altered by pH [40-

42].  
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Figure 4.10. The effects of pH on the mechanical properties of lipid bilayers. (a) The 
correlation between the mean area per headgroup and pH estimated from the GUV 
experiment and the molecular dynamics (MD) simulation. (b) Bending modulus as a 
function of pH. 

 

 

Fig. 4.10(a) shows the pH-dependent area changes estimated from the GUV 

experiment [12] and the molecular dynamics (MD) simulation [41]. The MD simulation 

results showed that the area expansion coefficient does not considerably depend on pH 

(i.e., almost linear relationship between the mean area per headgroup and pH). In the 

GUV experiment, however, the functional form of the correlation between the area per 

headgroup and pH could not be determined because the mean area per headgroup was 

measured only at two different pH values (pH 4 and 8). Since the compositions of lipid 

used in the MD simulation and the GUV experiment are different, the validity of our 

assumption of the linear relationship between the area per headgroup and pH is not yet 

conclusive. 

 



 

104 

 

Figure 4.11. The effects of the pH-dependent bending modulus on the morphological 
parameters of a cristae-like structure (oblate spheroid with ν=0.95, R0=30 μm, αA= αGUV, 
Paff=0.5%). 

 

As can be seen in Fig. 4.10(b), the bending modulus may be a function of pH. In 

order to examine whether the pH-dependent bending modulus may affect the simulation 

results, we modeled the bending modulus as a function of pH (K=f(pH), where f is a cubic 

polynomial function) by curve-fitting the experimental data in Ref. [40]. This bending 

modulus was then applied to our simulation model. Within the range of pH values used in 

this study (from pH 6.5 to 8), applying the pH-dependent bending modulus did not 

notably affect our simulation results (Fig. 4.11). Thus, the bending modulus of the IMM 
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may be assumed as a constant (pH-independent) within the feasible pH range of 

mitochondria. 

Next, with an assumption of a homogeneous lipid membrane, the effects of 

protein complexes were not modeled. However, the insertion of a protein complex, such 

as ATP synthase, has been hypothesized to bend the membrane [10, 11]. Thus, in 

conjunction with the local pH gradient, the spontaneous curvature of the protein complex 

may contribute to the formation and regulation of cristae structures.  

Finally, we assumed localized protons on the cristae membrane (or the affected 

area by acid delivery) without considering the diffusion of protons along the membrane 

surface. Even though a meticulous modeling of the pH profile may provide more precise 

cristae dynamics, it requires consideration of many modeling parameters and physics 

(such as activities of proton source and sink, electric potential, and transport of proton), 

which may complicate the effects of the local pH on the crista morphology. 

 

 

4.5. CONCLUSIONS 

 

The complex and widely varied cristae morphologies have been studied in 

relation to mitochondrial functions. However, the mechanisms of how these cristae 

structures can be regulated and related to energetic functions of mitochondria are not 

clear. To date, the formation and regulation of cristae morphologies have been 

hypothesized i) by the distributions of protein complexes and ii) by the local pH gradient. 

Among these two hypotheses, we exclusively investigated the effects of the local pH 

gradient by using a numerical model.  
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To develop a numerical model simulating the morphologies of the IMM at the 

given pH profiles, we modeled a spontaneous curvature induced by the pH difference 

across the membrane. This spontaneous curvature was then applied to the finite element 

model of a single closed lipid bilayer in order to find the energetically favorable 

membrane configuration. This simulation model allows us to investigate the effects of the 

local pH on the IMM dynamics. 

From this study, we developed the first numerical model simulating the dynamics 

of cristae structures, from which we substantiated the hypothesis that a tubular crista 

structure can be formed and regulated by the local pH gradient and investigated the 

effects of the local pH gradient on the morphological parameters of the crista structure. 

Moreover, through the simulations with various initial conditions, we provided the 

potential explanations of the relatively uniform diameter and direction of the tubular 

cristae: the diameter of a crista is mainly determined by the local pH gradient, and the 

energetically favorable direction of a crista is perpendicular to the longitudinal axis of 

mitochondria (the initial formation of a crista on a less convex membrane surface 

requires less pH gradient). Finally, we presented that the formation of the tubular cristae 

structure at the actual mitochondrial scale requires a greater area expansion coefficient 

than that estimated from the GUV experiment. This simulation result supported the 

hypothesis that the cristae membrane may have a higher composition of CL than the other 

parts of the IMM. 
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CHAPTER 5  
 

CONCLUSIONS AND FUTURE WORK 

 

 

Over the last few decades, as average life expectancy has continuously increased, 

the importance of research on central nervous system diseases has been emphasized. 

Even though intensive studies have been conducted and several aspects of these diseases 

have been revealed, the molecular mechanism of the development and progression of 

these diseases has not yet been elucidated. 

In one effort to reveal this mechanism, the role of mitochondria in CNS diseases 

has been investigated. Studies have presented evidence supporting the hypothesis that 

mitochondrial dysfunction may be closely related to the progression of CNS diseases via 

metabolism disruption and mitochondrial DNA mutation. Moreover, mitochondrial 

properties have been examined as potential indicators reflecting functional and disease 

states of mitochondria. However, the precise mechanisms are not fully understood, and 

quantitative and biophysical approaches on this research area are still insufficient. 

 Therefore, in this study, we quantitatively investigated alterations in 

mitochondrial properties under neurotoxin challenge. Additionally, by using a 

mathematical model, we studied biophysical functions of dynamic and diverse internal 

mitochondrial structures. Finally, we theoretically examined the mechanism of cristae 

formation and regulation. 
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In Chapter 2, we introduced methods for simultaneous quantification of 

mitochondrial morphology and membrane potential, and investigated the changes in 

mitochondrial properties under 1,3-DNB exposure. From the image processing and data 

analysis results, we found the following: i) At the level of individual mitochondria, major 

membrane potential fluctuations are accompanied by abrupt changes in morphology, ii) at 

the level of mitochondrial population, the respective effects of 1,3-DNB concentration, 

exposure time, and cell passage on the mean aspect ratio and the probability of membrane 

potential fluctuations are statistically significant, and iii) the mitochondrial permeability 

transition inhibitors may not prevent the 1,3-DNB induced alterations in mitochondrial 

properties. 

In Chapter 3, by applying the finite element method, we studied the biophysical 

significance of the inner mitochondrial membrane (IMM) structure on the energetic 

function of mitochondria. By performing simulations with various morphological 

parameters, we showed that a crista can act as a proton trap, and consequently enhance 

the capacity for ATP synthesis. Additionally, we found that a high proton motive force 

can be induced by the large surface-to-volume ratio of a crista, whereas a high capacity 

for ATP synthesis can be mainly obtained from the large surface area of a crista. Finally, 

from the simulation results, we supported the hypothesis that cristae morphologies may 

be regulated by the energy state of mitochondria. 

In Chapter 4, we investigated the effects of the local pH gradient on the IMM 

morphology. By using an energy minimization method, we simulated the morphological 

evolution of the IMM at the given pH profiles. From the simulation results, we 

demonstrated that a tubular crista structure can be formed and regulated by controlling 
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the pH profile. Moreover, we proposed a possible mechanism of relatively uniform 

diameter and direction of tubular cristae observed in many experimental studies. Finally, 

the simulation results suggested that the formation of the tubular cristae structure at the 

actual mitochondrial scale may require a greater area expansion coefficient, which may 

be achieved by higher cardiolipin composition.  

Throughout this dissertation, by using quantitative data analyses and simulations, 

we investigated mitochondrial properties and their biophysical significance on 

mitochondrial functions. Even though we presented several significant findings, 

additional investigations and methodological improvements may provide a better 

understanding of mitochondrial properties and their functional effects. In the 

experimental study (Chapter 2), improvements in imaging, image processing, and data 

analysis techniques are necessary in order to handle biological data with intrinsically high 

levels of variation. Furthermore, for the validation of the simulation models (Chapters 3 

and 4), it is required to accurately estimate local properties such as electric potential, 

proton concentration, and lipid composition of the cristae membrane. Finally, more 

precise modeling of mitochondrial electrochemistry and membrane dynamics may be 

accomplished by combining two numerical models introduced in this study. 
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