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Abstract 

Healthy aging is defined as aging in the absence of chronic diseases that limit 

physical function and mobility.  With the increasingly high prevalence of chronic 

diseases and their risk factors in the United States, it is important to better understand the 

contributors and predictors of health and longevity.  Molecular markers of the epigenome 

provide one novel set of biomarkers to investigate the intersection of the effects of 

genetic variation and environmental variation in the initiation and progression of chronic 

disease.  This dissertation focuses on (1) investigating associations between 26,428 DNA 

methylation markers and chronological age, (2) elucidating the environmental and 

genetic components of the variation of 26,428 DNA methylation markers, and, finally, 

(3) predicting aging with DNA methylation markers sites in an African-American 

population of sibships from the Jackson, MS field center of the Genetic Epidemiology 

Network of Arteriopathy (GENOA) study.  We found that 27% of the genome-wide DNA 

methylation sites are significantly associated with age.  The majority of DNA 

methylation sites (88%) have significant heritabilities, and there is evidence of an age-

related genetic component to this heritability. Finally, when predicting aging, 

inflammatory biomarkers and DNA methylation markers, together, were found to explain 

14% of the variation in aging.  This dissertation illustrates that DNA methylation 

patterns  measured in epidemiological studies may be able to  provide new insights into 

the molecular processes underlying aging and chronic disease development.   
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Chapter I.  Introduction 

United States population demographics are shifting, and the number of elderly 

(age 65+) individuals is projected to increase by 135.4% between 2000 and 2050, thus 

placing a substantial additional burden on public programs for health care and long-term 

care giving.(1)  Because of the substantial increase in the senior citizen population, it is 

important to identify new biomarkers to detect diseases processes at early stages in order 

to be able to develop interventions that reduce health care expenses and increase well-

being before irreversible damage to organ systems has occurred.  Healthy aging is 

characterized by living with “optimal reserve and biological resilience to respond and 

accommodate daily environmental stressors,” meaning an absence of chronic disease risk 

factors and conditions that diminish physical function.(2)  Understanding the factors that 

contribute to healthy and unhealthy aging processes will aid in discovering ways to 

reduce the burden of chronic disease morbidity. 

Chronic diseases, such as hypertension, diabetes, cardiovascular and kidney 

diseases, are the leading cause of morbidity and mortality in the United States.(3)  These 

diseases are a huge economic burden to the United States, with total cardiovascular 

disease and stroke costs estimated at over $310 billion in direct and indirect costs.  

Hypertension affects 1 in 3 American adults, with the highest rates among African 

Americans (44%).(4)  Hypertension is associated with a wide range of target organ 

damage to the heart, brain, kidneys, and peripheral arteries resulting in strokes, 
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cardiovascular events, and end-stage renal disease,(5) rates of which are up to 400% in 

excess within the African American population relative to whites.(4)  

Over the last several decades, numerous epidemiological studies have been 

conducted to identify the genetic, environmental, and metabolic factors that predict an 

individual’s or population’s risk of chronic diseases such as obesity, hypertension, 

diabetes, and dyslipidemia which underlie the risk of all vascular diseases.(6-11)  These 

epidemiological studies have identified a wide range of lifestyle factors, anthropometric 

factors, and measures of lipid metabolism, glucose metabolism, blood pressure, and 

inflammation that now constitute our best predictors of future disease with advancing 

age.(12, 13)  All of these risk factors or indicators of disease have significant genetic 

contributions,(14-18)  and large international consortia have identified gene regions that 

have replicated strongly associated relationships with these important risk factors.(19-21)  

Even with the successful discovery of significant genetic contributions to variation in 

chronic disease risk factors, the amount of variation in chronic disease risk or its major 

risk factors that can be explained remains modest (e.g. 20-50%).(15, 17)  As the United 

States transitions into an unprecedented increase in the number of aging adults over the 

next few decades, there is an increased need to identify new markers of chronic disease 

risk that can lead to earlier identification and better treatments.   

One new class of biomarkers now available for study in epidemiological cohorts 

is epigenomic markers (e.g. DNA methylation).  The epigenome represents the malleable 

intersection of genes and environment, wherein environmental factors may modulate 

gene expression through measureable chemical modifications of the DNA backbone of 

the genetic code.(22-24)  Since it is established that chronic diseases have both genetic 
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and environmental associations,(12, 13, 15, 17) epigenetics may help elucidate how 

environmental signals and genomes interact to alter gene expression profiles underlying 

disease etiology.  Moreover, the study of the epigenome along the age continuum of 

adulthood may provide more global information about aging and the accumulated effects 

of healthy and unhealthy lifestyles.(25)  

The overall goal of this dissertation is to investigate the relationship between 

variation in DNA methylation and measures of healthy and unhealthy aging.  To 

accomplish this goal, I investigated the relationship between chronological age and 

26,428 DNA methylation markers (Aim 1), as well as the role of age-associated genetic 

factors within the heritability of these DNA methylation markers (Aim 2).  Finally, I 

generated a population-specific prediction model of aging based on traditional and novel 

risk factors of common chronic diseases to identify a set of DNA methylation markers 

that best predicts healthy versus unhealthy aging (Aim 3).  

Background and Public Health Significance 

During the last century, advances in public health and medicine have radically 

altered the life expectancy of an average United States citizen.(26)  These health benefits 

are anticipated to further translate into large shifts in age demographics over the next four 

decades in the U.S.  For instance, while population growth in young adult through middle 

aged groups (age 16-64) is projected to exhibit increases of 33% between 2000 and 2050, 

the number of senior citizens (age 65+) is projected to increase from 35 million to 82 

million people (135% change) during that time.  Additionally, the population aged 85+, 

which utilizes the most health care and long-term care services, is projected to increase 
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from 4 million to 19 million (i.e. an increase of 350%).  This dramatic increase within 

senior and elderly populations in the United States is likely to place a substantial 

additional economic burden on public programs for health and long-term care giving, 

such as Medicare and Medicaid.(1)  Although the last several decades of epidemiological 

studies have identified important risk factors for adult onset diseases with the greatest 

burden on the public’s health, such as heart disease, stroke, diabetes, and hypertension, 

there is a substantial gap in our understanding of the molecular and cellular processes that 

characterize the difference between healthy and unhealthy aging processes.   

Healthy aging occurs with the absence of chronic diseases and conditions that 

diminish physical function.(2)  While genotype appears to contribute 23-50% to life 

expectancy,(15, 17) lifestyle factors, such as dietary choices, exposure to pollutants and 

toxins, amount of physical activity, and exposure to stress may play a large role in 

healthy aging.(27, 28)  As biological risk factors of chronic disease evolve further into 

pathophysiological disease states, the process of unhealthy aging becomes irreversible.(2)  

It is well-known that the initiation of chronic diseases such as atherosclerosis of the 

coronary, carotid, or renal arteries often happens decades before a clinical diagnosis.  The 

progression from initial vascular injury to occluded artery often represents 

pathophysiological processes that evolve from a risk factor into an irreversible state of 

disease.(29)  Thus, it is important to understand the processes of healthy and unhealthy 

aging from their molecular onset through their progression in order to discover where 

new interventions can occur to alleviate the pain, suffering, and cost of poor health during 

the aging process.  The field of epigenomics offers a unique opportunity to explore new 

molecular mechanisms that could provide novel insight into aging and disease processes. 
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Chronic diseases including heart disease, diabetes, and stroke, and their risk 

factors (e.g., obesity and hypertension) are major players in derailing healthy aging, and 

they are some of the leading causes of morbidity and mortality in the United States.(3, 9, 

30) An estimated 85% of senior citizens (age 65+) have at least one chronic 

condition.(31)  Over 75% of money spent on health care is spent on individuals with 

chronic conditions for services such as home health visits, prescriptions, physician visits, 

and inpatient stays.(31)  Additionally, 62% of individuals aged 65+ have at least two 

comorbid chronic conditions, and individuals with these multiple comorbidities are the 

heaviest users of health care resources.(31)  Molecular pathways that cascade to create 

chronic disease states may be important predictors of unhealthy aging processes.  These 

pathways are important to understand and can lead to potential clinical, lifestyle, and 

pharmaceutical interventions earlier within the disease process to create better disease 

outcomes, and increase longevity and quality of life over time. 

Novel Risk Factors for Chronic Disease 

While traditional risk factors for common chronic diseases (e.g. hypertension, 

dyslipidemia) are important in understanding chronic disease epidemiology and 

pathophysiology, potential molecular signals that lead toward and/or interact within the 

processes of these risk factors, such as inflammatory cascades, are beginning to be 

explored.  These molecular signals may be important in the preclinical identification of 

individuals at risk of developing chronic diseases, which is especially important due to 

both  the dramatic demographic shifts  throughout the next half-century that are expected 

to result in drastic increases in the number of senior citizens (age 65+)(1) and the increase 

in chronic disease prevalence in the United States.(5, 8, 11, 32-34)  The role of 
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inflammatory markers has been implicated in some of the major chronic disease risk 

factors, such as atherosclerosis and type 2 diabetes.(35, 36)    Further, since DNA 

methylation is another novel molecular signal that has been found to be associated with a 

wide range of adverse health outcomes and aging processes,(37-41) as well as associated 

with inflammatory signaling,(42, 43) this dissertation will explore the associations of 

many markers of inflammation within the context of healthy and unhealthy aging, as well 

as their interaction with DNA methylation of CpG sites.  Details of inflammatory and 

epigenetic biomarkers will be described next, and further details of traditional and novel 

chronic disease risk factors explored within the course of this dissertation can be found 

within Appendix 1. 

Inflammation. Inflammation occurs in reaction to any type of bodily injury as 

part of the innate immune response.  The inflammatory response involves peripheral 

blood cells made up of immune cells including monocytes, macrophages, and T-

lymphocytes, as well as a number of small molecules such as cytokines, reactive oxygen 

species, and growth factors.  Inflammation is characterized by increased blood flow, 

elevated cellular metabolism, vasodilation, release of soluble mediators and fluids, and 

cellular influx.  Over time, chronic inflammation can lead to tissue architecture 

aberrations and, further, to major organ dysfunction.(44)  

During the aging process, the immune system changes in cellular makeup and 

reduces in functionality, which increases disease susceptibility.  This process is formally 

known as immunosenescence.  The deterioration of immune function increases disease 

susceptibility, as well as morbidity and mortality rates from infection.(45)  Biomarkers of 

immunosenescence include cells involved in innate and humoral immunity, which are 
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expressed in lymphocytes, and other peripheral blood cells.  Lymphocytes are made up of 

natural killer (NK), T-cells, and B-cells.  With older age, naïve T-cells decrease in 

percentage, while the percentage of memory and effector-memory cells increase.  

Further, NK-associated receptors show increased expression among older 

populations.(46)  Simultaneously, a decrease in B-cell diversity within older ages has also 

been found to be associated with poor health status.(47)   

As factors involved in immunity change in makeup with aging, so does the 

composition of inflammatory markers.  Pro-inflammatory mediators such as C-reactive 

protein (CRP), and cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor 

necrosis factor-α (TNF-α)are suggested to be chronically up-regulated during the aging 

process as a backdrop for disease initiation.  The elderly exhibit two- to four-fold 

increases in serum inflammatory markers, which are said to account for the biological 

mechanisms responsible for decline in physical function and initiation or exacerbated 

states of inflammatory-related diseases, such as Alzheimer’s disease, cardiovascular 

disease, type 2 diabetes, and  sarcopenia.(46, 48)  Biomarkers of inflammatory response 

are providing new insight into chronic disease pathophysiology and progression.  These 

factors may allow the ability to detect preclinical symptoms of downstream disease risk. 

Furthermore, the process of aging has a molecular component.  As centenarians 

embody a cohort with disease-free aging or delayed disease-onset aging, their offspring 

also tend to have delayed chronic disease states and markedly reduced prevalence of 

common chronic diseases, specifically in the context of cardiovascular disease.(49)  

Specifically, polymorphisms in genes involved in immune response and inflammation, 

such as cytokines, have been suggested to contribute to human longevity.(50, 51)  
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Epigenetic modifications may also be implicated in human longevity and healthy aging 

phenotypes due to their ability to alter gene expression.  Alterations in gene expression 

within inflammatory pathways may be indicative of how environmental factors play a 

role in the aging processes.(46, 51, 52)  

Inflammation has more recently been explored within the causal pathway of 

common chronic disease processes. In individuals with obesity and type 2 diabetes, 

chronic overnutrition may propagate oxidative stress and inflammatory changes leading 

to chronic inflammatory states.  Increases in TNF-α and IL-6 due to chronic 

inflammation may suppress insulin signal transduction, which then promotes chronic 

inflammation.(35)  Similarly, the atherosclerotic process, involving plaque formation, 

growth, and complication over a long period of time, is perceived by the body as injury.  

Thus, the body initiates an inflammatory response.(36)   

The inflammatory biomarkers that are used in a prediction model for healthy 

aging (Aim 3) include 12 measures that are associated with cardiovascular disease and 

diabetes.  These biomarkers include C-reactive protein, fibrinogen, homocysteine, 

intercellular adhesion molecule, interleukins 6 and 18, monocyte chemotactic protein-1, 

myeloperoxidase, resistin, serum amyloid A, and tumor necrosis factor receptors 1 and 2.  

See Appendix 2 for a brief review of the relevance of these markers to cellular processes 

and aging.   

Epigenetic Indicators of Common Chronic Diseases and Aging 

Epigenetics is the study of alterations in gene expression caused by biochemical 

changes that influence DNA and chromatin structure, but do not change the actual DNA 
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sequence.(22, 23)  Epigenetic changes are mitotically heritable,(23) and are known to 

occur via DNA methylation, histone modification, chromatin remodeling, and micro-

RNA interaction.(22, 53)  DNA methylation of CpG dinucleotides is the most commonly 

studied epigenetic mechanism because it is biochemically stable, can be measured using 

small volumes of DNA, and can be accurately quantified by current biotechnology.(22)  

Epigenetic modifications begin accruing during fetal development and can 

continue to change throughout a lifetime.  During embryogenesis, the epigenome appears 

most susceptible to environmental factors.  After fertilization, except for within imprinted 

genes, partially-methylated genomes of the egg and sperm are globally demethylated in 

order to make the genome available for the developing embryo.  Shortly after global 

demethylation, DNA methylation is reestablished progressively throughout fetal 

development, as cells are undergoing rapid division, making this a particularly vulnerable 

developmental stage.(54)  The epigenome continues to shift throughout the lifetime in 

response to the accumulation of environment effects and exposures, including diet, 

pollutants, stress, and other exposures.(55, 56)  Epigenetic processes are known to link a 

person’s genotype to their expressed phenotype by influencing levels of gene 

expression.(57-59)  Since epigenetic changes can alter gene expression, they may begin a 

cascade of events that result in later-life disease processes, such as cancers and other 

chronic conditions, as well as more immediate conditions occurring within earlier life 

stages such as childhood asthma and learning disorders.(60, 61) 

It is well-known that aging and chronic disease affect cellular mechanisms in a 

wide range of tissues via epigenetic modifications of the chromosome.(37-39, 42, 43)  

Until recently, the ability to measure these cellular and molecular entities was limited to 
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small laboratory studies.  With the development of new high-throughput chip-based 

methods of detecting variation in DNA methylation that are both quantitative and highly 

reproducible,(62) we now have the ability to examine how variation in the epigenome is 

associated with variation in basic human characteristics (e.g. age) and disease risk factors 

in large epidemiological samples. 

Previous studies have found DNA methylation patterns to be associated with age.  

A landmark study of monozygotic twin pairs has recently demonstrated that genome-

wide DNA methylation may result in differing later-life phenotypes, such as chronic 

disease processes, despite identical genotype, since remarkable epigenetic differences 

arise between twins as they age.(40)  Specific pathways in which DNA methylation has 

been shown to differ across age decades include pathways related to liver development 

and metabolism,(39) inflammation, endothelial function, oxidation,(41, 63) and tumor 

suppression,(64, 65) all of which are implicated in chronic disease processes.  The 

relationship between age and epigenetic differences across pathways affecting multiple 

organ systems indicates that epigenetics may have multiple avenues of influence on 

health and longevity.   

Since epigenetic events provide a modifiable association between a genotype and 

a resulting phenotype,(58, 59, 66-70) unraveling the relationship between epigenetic 

mechanisms and biological aging processes is crucial to understanding the origins of 

chronic diseases.  Currently, only a few studies have begun to examine the role of DNA 

methylation in chronic disease etiology.  By exploring the relationship between 

epigenome-wide DNA methylation and age (Aim 1), and the role of age within the 

heritability of epigenome-wide DNA methylation (Aim 2), we can begin to elucidate the 
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molecular conversation between age and epigenetics, and evaluate whether novel 

epigenetic biomarkers will assist in our overall prediction of chronic disease risk and its 

impact on health aging (Aim 3).   
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Chapter II.  Epigenomic Indicators of Age in African Americans 

Introduction 

Age is a well-established risk factor for chronic diseases.(33, 71)  However, the 

cellular and molecular changes associated with aging processes that are related to chronic 

disease initiation and progression are not well-understood.  While numerous 

epidemiological studies have identified a wide range of lifestyle factors and clinical 

indicators that are involved within an individual’s or population’s risk of chronic diseases 

and aging,(6-13) implications of molecular indicators, such as the amount of genetic 

variation in longevity and healthy physical aging phenotypes, remains modest (e.g. 20-

50%).(15, 17)  As the United States transitions into an unprecedented increase in the 

number of aging adults over the next few decades,(1) there is an increased need to 

identify new markers of cellular and molecular changes within aging processes that may 

pave the road toward earlier identification and better treatments .   

Recently, differential DNA methylation patterns that affect gene expression have 

been shown be associated with aging.(40)  More specifically, age has been found to be 

associated with DNA methylation status in pathways related to liver development and 

metabolism,(39) inflammation, endothelial function, oxidation,(41, 63) and tumor 

suppression.(64, 65)  Since epigenetic events provide a modifiable link between a gene’s 

expression and a resulting phenotype,(58, 59, 66, 67) unraveling the relationship between 
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epigenetic mechanisms and cellular aging processes is crucial to understanding the 

origins of chronic diseases.   

Many previous studies that have investigated the relationship between DNA 

methylation and aging processes have either focused on specific genomic regions, such as 

genes in a single biological pathway,(41, 63) or have investigated average whole-genome 

DNA methylation.(32, 40)  In this study, we use genome-wide DNA methylation 

information from 26,428 CpG sites in 13,877 genes to investigate the relationship 

between age and epigenetic variation in 972 African-American adults from the Genetic 

Epidemiology Network of Arteriopathy (GENOA) study.  Further, to investigate the 

cumulative epigenomic capacity to represent chronological age, we estimated principal 

components of the measurements of DNA methylation at CpG sites.   

Methods 

Sample  

The Genetic Epidemiology Network of Arteriopathy (GENOA) study is a 

community-based study investigating the genetics of hypertension and its arteriosclerotic 

complications in non-Hispanic whites from Rochester, MN and African-Americans from 

Jackson, MS.(72)  In the current study, we investigated the relationship between DNA 

methylation and age in GENOA African-Americans.  African-American sibships were 

recruited such that 2 siblings were diagnosed with primary hypertension before the age 

of 60 years, while other siblings within the sibship were invited to participate 

independent of hypertension status (N=1,854).  The initial examination (Phase I: 1996-

1999) included standardized interviews concerning prescription drug usage, cigarette 
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smoking, physical activity, history of hypertension, diabetes, and cardiovascular disease 

events; physical examination for blood pressure, height, weight, and waist and hip 

circumferences; and fasting blood samples for creatinine, total cholesterol, high-density 

lipoprotein (HDL)-cholesterol, triglycerides, glucose, and insulin.  The second 

examination (Phase II: 2000-2004) included 1,482 participants returning from Phase I, 

and included re-measurement of interview, physical examination, and blood 

characteristics, as well as additional measurements of arteriosclerotic target organ 

damage, including heart, kidney and peripheral artery traits. DNA methylation was 

quantified on 1,008 Phase II participants using stored blood samples collected during the 

second examination.  Comparisons between Phase II individuals within and outside of the 

DNA methylation study are available in Supplementary Table 1.  Written informed 

consent was obtained from all subjects and approval was granted by participating 

Institutional Review Boards.  Complete information on the GENOA study population and 

sample measurements can be found detailed in Appendix 3. 

Measurement of DNA methylation 

Samples were prepared and DNA methylation was measured according to 

previously published methods (73) which are summarized as follows.  For comprehensive 

information on these measurements, refer to Appendix 4. 

Sample Preparation and Methylation Assay.  DNA was isolated from peripheral 

blood leukocytes from GENOA Phase II stored samples, and bisulfite converted with the 

EZ DNA Methylation Gold Kit (Zymo Research, Orange CA).  Bisulfite-converted DNA 

samples were whole-genome amplified, enzymatically fragmented, and purified, then 

hybridized to Illumina Infinium HumanMethylation27K BeadChips, which contained 
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locus-specific DNA oligomers and a set of 56 control probes. The array was then 

fluorescently stained, scanned using the Illumina BeadXpress reader, and assessed for 

fluorescence intensities across the methylated and unmethylated bead types at 27,578 

CpG sites.  

Data processing and methylation quantification: At each CpG site, fluorescent 

signals were measured from the site-specific M (methlyated) and U (unmethylated) bead 

types. The raw fluorescence data from the scanner was processed using Illumina 

BeadStudio software. To reduce batch and chip effects, the correlation structure among 

all 56 control probes was evaluated within channel to identify the most parsimonious 

subset of probes that explained the maximum amount of batch and chip variation across 

samples (5 probes in the red channel and 8 probes in the green channel; Supplementary 

Table 2). Quality control standards were employed by linearly regressing the 13 selected 

probes onto the intensity signals from the methylated and unmethylated bead types 

separately across each CpG site.    

For each individual and across every CpG site, the M-Value was calculated from 

the M and U values as a continuous measure of methylation.  The M-Value is a 

commonly used measurement in microarray analysis that was more recently adapted for 

use in DNA methylation array data due to its ability to equalize the variance across the 

CpG sites.(74, 75)  The M-Value for each individual i at a single site, k, is calculated as: 

M-Valueik = log2[(max(Mik,0)  + 1) / ( max(Uik,0) + 1)] , where a constant is added to 

prevent large-scale changes caused by small intensity estimation errors.(75)  While many 

studies using the Illumina Infinium HumanMethylation27K array present results of the 

Beta Value, which are continuous variables between 0 and 1 that are calculated from the 
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measured M and U intensities and represent the percent methylation at a particular CpG 

site within an individual, we will present results of the M-Value since we feel that it has 

more desirable statistical properties which allow for more precise conformation to 

modeling assumptions.  The relationship between Beta and M-Values represents a logit 

transformation, where M-Valueik = log2 [Beta Valueik / ( 1 - Beta Valueik)].  

Unmethylated M-Values are considered to be < -2.0, methylated M-Values are > +2.0, 

and semi-methylated M-Values are between -2 and +2.   

Before statistical analysis, samples were checked for data quality.  From the 1,008 

study participants, 7 individuals were removed due to poor bisulfite conversion control 

efficiency, measured by bisulfite conversion control intensity of < 4,000.  An additional 

29 individuals were removed from the analysis due to extreme control probe values, 

assessed as having at least one control probe with a value of greater than 4 standard 

deviations from its mean value.  This resulted in a total sample size of 972 individuals.   

For this study, we analyzed only autosomal CpG sites.  A total of 58 CpG  sites 

were removed from the analysis because they were found to be multimodal based on the 

Dip Test proposed by Hartigan and Hartigan (76) using a cut-off of p<0.001 on the signal 

intensities of the methylated and/or unmethylated bead types, which clearly violated the 

statistical modeling assumptions.  This resulted in a total number of 26,428 CpG sites 

included in our analysis.  Finally, 2,984 non-specific binding probes and 908 

polymorphic probes overlapping with single nucleotide polymorphisms (SNPs) (77) were 

identified and denoted in the result tables. Though these sites were not removed from the 

analysis, we have interpreted the results from these sites with caution.  As a final method 

of quality control, DNA methylation values greater than ±4 standard deviation from each 
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M-Value’s mean were removed from each of the 26,428 CpG sites.  (See Appendix 4 for 

more information.) 

Statistical Analyses 

Linear mixed modeling. Using the nlme package in the statistical package R,(78) 

we used a linear mixed modeling approach to evaluate the cross-sectional associations 

between epigenetic variation and age variation, while accounting for the familial 

relationships among study participants.  In order to examine the association between 

DNA methylation and age, we considered each of the 26,428 individual CpG sites 

separately as outcomes, with participant age as a covariate:  Eijk = 0 + 1 Ageij0 + W0jk + 

ijk , for participant i in sibship j at CpG site k.  Ageijk represents participant age at Phase 

II exam, Eijk is the value of an M-Value, and W0jk is the random effect for each sibship.  

After performing this modeling, 4 CpG sites exhibited convergence issues when M-

Values were used as the outcome. These non-converging sites were subsequently 

removed from the analysis.   

Due to the strong associations between age and many of the CpG sites that we 

observed after performing the modeling described above, we wanted to assess the joint 

effects of CpG sites with age.  To assess this, we first used a second set of models to 

evaluate how well each of the DNA methylation markers predicted age.  This modeling 

considered age as an outcome and tested for association with each of the 26,428 CpG 

sites individually as covariates in a linear mixed model:  Ageijk = 0 + 1 Eijk + W0jk + ijk , 

for participant i in sibship j at the k
th

 M-Value.  For both modeling strategies, the 
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Bonferroni method was used to assess experiment-wise statistical significance of the p-

values and was 1.89x10
-6

 at a significance level of  =0.05. 

In order to better understand the joint effects and correlation structure of the large 

number of CpG sites associated with age, we performed principal component (PC) 

analysis.  The top 5 PCs were calculated using all CpG site M-Values that were 

significantly associated with age at 1.89x10
-6

.  Next, the top 5 PCs for the significant M-

Values were modeled separately in univariate models with age, with each of the c PCs as 

a single predictor, such that Ageijc = 0 + 1· PCijc + W0jc + ijc, and then within a 

multivariable mixed model, Ageij = 0 + 1· PC1ij + 2· PC2ij +3· PC3ij + 4· PC4ij + 5· 

PC5ij + W0j + ij, for participant i in sibship j.  R
2
 values based on likelihood ratio models 

(R
2

LR) were calculated for linear mixed models using the R package lmmfit.(79) 

Results 

Description of data.  After exclusions, this study contained phenotype and 

methylation data for 972 African Americans within 296 sibships and including 197 

singletons across 26,428 CpG sites.  The sample was predominantly female (70.7%) and 

hypertensive (82.5%), with mean age of 66.3 years and mean body mass index of 31.2 

kg/m
2
.  Further descriptive statistics are presented in Table 1. 

Within this population, the 26,428 CpG sites were predominantly unmethylated, 

where 15,221 (57.6%) CpG sites had a mean M-Value of <-2.0.  Across all CpG sites, the 

mean fluorescence intensities across the methylated bead types ranged from 482 to 

39,810 (mean = 28,25), while mean fluorescence intensities on the unmethylated bead 

types ranged from 497 to 37,310 (mean= 6,865).  CpG site Beta Value means ranged 
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from 0.025 to 0.97, with an average mean Beta Value of 0.31, and M-Value means 

ranged from -5.37 to 5.07 with an average mean M-Value of -1.58.  Due to outlier 

removal, the mean number of individuals measured across the 26,428 CpG sites is 970.9 

(standard deviation: 1.7), with a minimum of 935. (Figure 1). 

Age Associations with CpG sites.   Upon modeling age as a predictor of 

methylation, age was statistically significantly associated with 7,601 (28.8%) CpG site 

M-Values (after Bonferroni correction for α=0.05).  Of the sites significant in the 

association between age and M-Values, 671 (8.8%) contained non-specific binding 

probes, 159 (2.1%) contained polymorphic probes, and 9 sites (0.12%) were indicated to 

have both non-specific binding and polymorphic probes, as defined by Chen, et al. 

(2011).  Table 2 shows the 30 CpG sites with the most significant associations between 

age and M-Value.  A striking finding of this analysis is that age has an inverse 

association with all but two of the top 30 CpG sites, as shown in Table 2.  In fact, within 

the 7,601 CpG site M-Values that were significantly predicted by age (after Bonferroni 

correction for α=0.05), 309 (4.1%) had positive estimates for the regression coefficient 

for age. Figure 2 shows the relationship between the average M-Value at each site and the 

t-statistic corresponding to the regression coefficient for age from the linear mixed 

model.  Of the 7,601 CpG sites with which age was significant, 7,292 (95.9%) have 

negative t-statistics, and 309(4.1%) have positive t-statistics.  Further, within the 7,601 

CpG sites with which age was significant, negative t-statistics were observed in 5,589 

(73.5%) unmethylated sites, 1,675 (22.0%) semimethylated sites, and 28 (0.37%) 

methylated sites, while positive t-statistics were observed in 34 (0.45%) unmethylated 

sites, 106 (1.4%) semimethylated sites, and 169 (2.2%) methylated sites.   
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Given the very large number of highly significant age associations with DNA 

methylation at CpG sites, we became interested in how well the DNA methylation 

markers could predict age.  In the second set of models which examined CpG site M-

Values as predictors of age, 2,095 (7.9%) sites were significant predictors of age after 

Bonferroni correction at α=0.05.  Nearly all (2,086, 99.6%) of these 2,095 CpG sites were 

also significant (after Bonferroni correction at α=0.05) in the previously evaluated 

regression of M-Values on age, and had the same direction of effect.  The other 9 CpG 

sites within this set of 2,095 sites all were positive in direction of effect, and their p-value 

within the previously reported association (where CpG M-Value was the outcome) 

was <10
-5

.  

Principal component (PC) analysis reduces the dimensionality of data by finding 

orthogonal linear combinations of the predictors that fit the most variation in the data. 

This method is helpful to condense data with many outcomes that are potentially 

correlated.  PCs were estimated based on the 2,095 CpG sites found to be significant 

(after Bonferroni correction at α=0.05) in the association of age on M-Value, to examine 

initial features of the multivariable distribution of significant epigenetic predictors of age 

(Table 3).  The top 5 PCs for the M-Value analysis accounted for 69.3% of the variability 

in the 2,095 significant DNA methylation sites, and the next 5 PCs accounted for 4.7% 

more of the variability in these sites.  When the top 5 PCs were used as predictors of age, 

they explained 26.8% of the variation in age, while the top 10 PCs explained 36.5% of 

the variation in age. 
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Discussion 

Our findings suggest that age and DNA methylation are very strongly associated 

at many CpG sites across the genome.  Notably, we found that age is significantly 

associated with 7,601 (28.8%) of the CpG sites as measured by the M-Value. The 

associations between the methylation markers are so ubiquitous and strong across the age 

spectrum that we hypothesize that DNA methylation patterns are an important measure of 

cellular aging that underlies the association between chronic disease and chronological 

age.  

Consistent with previous studies in humans and other vertebrates,(80-82) we 

found that the majority of CpG sites tended to become less methylated with age. 

However, observing the t-statistics of the association between DNA methylation M-

Values and age (Figure 2) shows that this is not always the case.  The t-statistic on the y-

axis provides two types of information:  a) the magnitude of the association with age, and 

b) the direction of the association with age.  For example, a t-statistic of -5.0 represents a 

p-value=5x10
-7

 and indicates that as age increases, methylation decreases.  The increased 

density of negative t-statistics for unmethylated markers (M-Values < -2) indicates that 

these unmethylated markers are increasingly less methylated with older age (i.e., the 

regression coefficient for age is negative).  In contrast, the increased density of positive t-

statistics for methylated markers (M-Values > +2) indicates that these methylated 

markers are increasingly more methylated with older age.  Semimethylated markers (M-

Values between -2 and +2) show the most significant decreases in methylation with age. 

These changes in methylation may contribute to chronic diseases through a variety of 

mechanisms. For example, it has been found that loss of methylation in CpG 
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dinucleotides over time may activate silenced retrotransposons and lead to genomic 

instability,(83, 84) while increases in methylation at CpG dinucleotides may prevent the 

binding of transcription factors and potentially suppress gene expression.(85)  

Within our data, principal components of the M-Values of the 2,095 CpG sites 

most strongly associated with age showed that 69.3% of the total variation within these 

sites can be explained by the top 5 PCs, and only an additional 4.7% more can be 

explained further by PCs 6 through 10.  Thus, 10 principal components explain the 

majority (74.0%) of the variation within all 2,095 CpG sites, indicating a highly 

correlated set of epigenetic biomarkers.  Further, the top 5 PCs, together, are able to 

explain 26.8% of the variation within chronological age.  Because previous research has 

indicated that DNA methylation is a molecular representation of the environment and our 

findings indicate that the joint effects of 2,095 CpG sites are able to explain a moderate 

amount of the variation within age, future research may be interested to determine the 

genetic and environmental components within the epigenetic processes that may 

contribute to aging processes, and may discern important epigenetic contributions to the 

aging processes.   

Several other studies have examined the association between age and DNA 

methylation using the same Illumina Infinium HumanMethylation27K microarray 

platform that was used in this study.  For example, a study of 34 monozygotic twin pairs 

aged 21-55 years found 88 CpG sites to be correlated with age.(86)  Of these significant 

sites, 87 were included within GENOA analysis, and, of those, 77 (88.5%) sites 

replicated the direction of effect within the GENOA study.  Further, of sites replicating 

direction of effect, 65 (84.4%) CpG sites were significant at α=0.05 without Bonferroni 
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correction, and 33 (42.9%) sites were significant after Bonferroni correction at α=0.05 

within the GENOA study. 

Secondly, a pediatric population of 398 healthy males aged 3 through 17 found 

2,078 site Beta Values to be associated with age, where 477 sites had a positive 

association and 1,601 sites had a negative association with age.(87)  Of the 2,078 

significant sites, the GENOA study analyzed 2,022 sites and found 1,529 (73.6%) 

significant at α=0.05, and 904 (43.5%) were significant after Bonferroni correction at 

α=0.05.  Further, 1,465 (72.5%) CpG sites replicated the direction of association in our 

study and were significant at α=0.05, and 899 (44.5%) replicated the direction of effect in 

our study and were significant after Bonferroni correction at α=0.05.  Of the 1,465 CpG 

sites significant at α=0.05 and maintaining directional agreement in the GENOA sample, 

1,240 (84.6%) were less methylated with increasing age in both studies, and 225 (15.4%) 

were more methylated with increasing age.   

Another study partitioned age into three categories (fetal, where N=30; childhood 

(age 0-10 years), where N=15; and beyond childhood (age > 10 years), where N=63) to 

assess methylation patterns throughout different phases of development.(88)  The authors 

found 868 CpG sites significant with age in the fetal period, 5,506 sites significant with 

age during childhood, and 10,578 sites significant with age beyond childhood.  We 

compared our results to their top 99 sites from each age category that were listed in 

supplementary tables.  GENOA evaluated 96 of the reported top 99 most significant CpG 

sites in the fetal period, and we found 67 (69.8%) of them to be significant at α=0.05, and 

27 (28.1%) to be significant after Bonferroni correction of α=0.05.  A total of 24 of these 

96 sites replicated in direction of association, while 12 (50.0%) were also significant in 
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our sample at α=0.05, and 6 (25.0%) were significant after Bonferroni correction.  

GENOA found 57 of their top 99 (57.6%) sites significant with age within the childhood 

(age 0-10) period significant at α=0.05, and 23 (23.2%) significant after Bonferroni 

correction.  Seventy-six (76.8%) of the top 99 sites were replicated in direction of effect 

in GENOA, while 49 of these (64.5%) were also significant at α=0.05, and 15 (19.7%) 

were significant after Bonferroni correction.  Finally, GENOA replicated 65 of the top 99 

(65.7%) significant sites in the beyond childhood (age > 10) period at α=0.05, and 31 

(31.3%) after Bonferroni correction.  Of the top 99 sites, GENOA replicated the direction 

of effect of 94 (95.0%) sites, and, of these, 63 (67.0%) were significant at α=0.05, and 10 

(10.6%) were significant after Bonferroni correction.  

Finally, we compared our results to a study by Teschendorff, et al., which 

examined the association between age and DNA methylation within polycomb group 

protein target genes.(89)  Within the 589 sites they found to be associated with age in a 

case-control study of ovarian cancer and DNA methylation, 583 sites were analyzed 

within the GENOA sample, and 516 of those (87.6%) were significant at α=0.05, while 

361 (61.3%) were significant after Bonferroni correction for α=0.05.  Of the 583 sites 

analyzed within GENOA, 539 (91.5%) indicated directional agreement with the GENOA 

sample, whereas 499 (92.6%) were significant at α=0.05, and 361 (67.0%) were 

significant after Bonferroni correction.  Further, of the 499 sites significant in GENOA at 

α=0.05 that indicated directional agreement with respect to their association with age, 

153 (30.7%) were positive, and 346 (69.3%) were negative.  This group of genes 

indicates a much larger proportion of positive significant associations than within the 
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overall genome-wide analysis in GENOA, likely due to the group of genes selected for 

study by Teschendorff, et al.  

Additional studies have found significant associations between age and DNA 

methylation within specific chronic disease-related genetic pathways using alternative 

methods of methylation measurement (e.g. PCR-based methods).  Promoter regions of 

genes involved in liver development and metabolism, inflammation, endothelial function, 

and oxidation such as INS, KCNQ1OT1, and IGF2,(90) iNOS, TLR2, and GCR,(41) and 

TNF (63) were found to have significant decreases in methylation with increasing age.  

Our data supports significant age-associated decreases in methylation of INS (all 4 CpG 

sites in GENOA demonstrate age-related decreases in methylation, with 3 sites 

significant ranging from 1.96x10
-12

 to 2.64x10
-3

), IGF2 (2 of 5 CpG sites measured in 

GENOA indicated significant decreases, p = 5.09x10
-7

 and 2.55x10
-4

 ), and TNF (both 

CpG sites measured in GENOA highly significant; cg04425624, p=3.63x10
-12

; 

cg11484872, p=2.58x10
-9

).  Methylation at KCNQ1OT1, which is regulated by an 

imprinting control region in KCNQ1, was not measured in this sample, however 

methylation at KCNQ1 was measured in the GENOA sample and indicated mixed results, 

with 3 CpG sites showing statistically significant increases with age and 9 CpG sites 

indicating statistically significant decreases with age.  CpG sites in GENOA measured in 

iNOS, TLR2, and GCR did not exhibit significant results within the CpG sites measured 

in GENOA.   

Conversely, promoter regions of inflammatory genes, such as LEP, ABCA1, and 

GNASAS,(90) and IFNγ, F3, CRAT and OGG (41) have been found to have increases in 

DNA methylation with increasing age.  Our data supports significant age-associated 
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increases in methylation of LEP (both CpG sites in GENOA significant at p=7.42x10
-3

 

and p=0.022).  GNASAS was not measured within our study, as it is encoded on the 

minus-strand of chromosome 20q13.32, though GNAS, which slightly overlaps GNASAS 

and is encoded on the plus-strand of chromosome 20q13.3, indicated that 6 of the 29 CpG 

sites within the GNAS region measured within GENOA that exhibited significant 

(p<0.05) age-related increases, while 11 CpG sites indicated significant age-related 

decreases. Neither ABCA1 nor IFNγ had CpG sites that reached significance within 

GENOA, but F3, CRAT, and OGG actually indicated significant decreases within 

GENOA.  These differences in results may be due to the location of the measured 

methylation site, since not all of the CpG sites in our study are located in regions with 

large numbers of CpG sites, or CpG islands. In addition, different methylation sites 

within the same gene may exhibit contrasting relationships with age.   

There are a number of factors that may lead to the differences in the significance 

of CpG sites with age observed between previous studies and our own.  Tissue samples 

from which DNA was extracted and analyzed can create differing methylation profiles.  

For instance, Bocklandt, et al.(86) extracted DNA from saliva samples, while Numata, et 

al.(88) extracted DNA from dorsolateral prefrontal cortex tissue, both of which may 

exhibit differing methylation from our sample of peripheral blood cells.  Also, population 

demographics may create differing epigenetic profiles between other studies and the 

current study, such as the investigation of much younger(86-88) or older(41, 90) 

populations than our own.  Since the GENOA cohort is an older African American 

population with a high prevalence of hypertension, it is likely that the differing chronic 

disease indicators create a unique DNA methylation signature.  Further, differing 
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statistical techniques, such as the use of correlation by Bocklandt, et al.(86) versus linear 

mixed modeling in our study, creates differences in assessment of significance levels of 

CpG sites.  Sample sizes also will create discrepancies between statistically significant 

findings.  As a more extreme comparison, the sample size within each of the 

developmental stages was very small in the study by Numata, et al.(88), with 30 fetal 

participants, 15 children, and 63 participants ranging in age from 10 to 84, with only 38 

participants falling into the same age group as our sample of 972 individuals (ages 39-95 

years).  Of note, our sample was much larger (N=972) than all other studies we discussed.   

Since we assessed a cell population of peripheral blood leukocytes that consists 

largely of neutrophils (40-75%) and lymphocytes (16-48%),(91) we hypothesize that we 

may be exploring the action of these cell types in promoting chronic inflammation, such 

as by promoting the formation of atherosclerotic plaques in our predominantly 

hypertensive population.  This may result in different methylation patterns than in other 

cell types.  However, despite differences in demographics and health status, tissue sample 

types, statistical techniques, and sample size between our study and previously reported 

studies, it is important to recognize that 1) there are many unique epigenetic factors that 

are associated with age across a variety of studies, and that, 2) when unified, these studies 

may indicate groupings of CpG sites that are important indicators of age and 

developmental stage across a variety of populations.   

This study indicates that the relationship between age and epigenome-wide DNA 

methylation levels is intricately intertwined, implicating involvement from across the 

genome during the aging process.  Since the GENOA sample is a predominantly 

hypertensive population, we can hypothesize that chronic disease processes, such as 
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inflammatory pathways that lead to elevated blood pressure, may also be contributing to 

the association between age and epigenetic variation in this population.  Further studies 

within this cohort will help to decipher the role of aging along with genetic and 

environmental components that are contributing to variation in DNA methylation.  Since 

the epigenome is a mediator of environmental and genetic effects, as we look toward a 

more thorough understanding of healthy aging during the later stages of life, it may 

provide a new set of biomarkers of health that embody genome, environment, and health 

outcomes. 
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Figure 1. Distribution of means across 26,428 markers of methylation 

A) Methylated probe signal intensities (Range: 482 to 39,810, mean = 2,825) 

 
 

B) Unmethylated probe signal intensities (Range: 497 to 37,310, mean = 6,865) 
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C) Beta Values (Range: 0.02 to 0.97, mean = 0.31)  

 
 

D) M-Value (Range: -5.37 to 5.07, mean = -1.58)  
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Table 1. Baseline characteristics of GENOA participants after outlier removal: A) 

Continuous variables, and B) Categorical variables 

** If a participant is listed as taking hypertensive medications, 10 mm Hg is added to systolic 

blood pressure, and 5 mm Hg is added to diastolic blood pressure, else recorded blood pressure is 

used in this variable. 

 

 

 

 

 

 

 

  

A) Continuous Variables  

  N 

Count of 

Outliers 

Removed 

Count of 

Missing 

Values Range Mean (SD) 

Age, years 972 0 0 39-95 66 (8) 

BMI, kg/m
2
 965 0 7 16.4-55.1 31.1 (6.1) 

Systolic BP, mm Hg 970 0 2 79-221 140(21) 

Diastolic BP, mm Hg 972 0 0 45-121 78 (11) 

Pulse Pressure, mm Hg 971 0 1 26-127 62 (18) 

Systolic BP (Adj), mm Hg** 970 0 2 89-231 148 (23) 

Diastolic BP (Adj), mm Hg** 972 0 0 50-126 82 (11) 

Pulse Pressure (Adj), mm 

Hg** 

969 0 3 28-132 66 (18) 

Total cholesterol, mg/dL 972 0 0 73.5-354.5 203.7 (42.1) 

Triglycerides, mg/dL 963 5 4 37-345 116.6 (53.8) 

HDL cholesterol, mg/dL 967 2 3 21.7-122.25 57.9 (17.1) 

LDL cholesterol, mg/dL 972 0 0 24.85-272.1 123.6 (39.7) 

Glucose, mg/dL 951 11 10 49.5-245 108.6 (29.6) 

Insulin, mU/mL 953 16 3 0.22-58.29 9.23 (8.25) 

Serum creatinine, mg/dL 961 11 0 0.42-2.16 0.92 (0.25) 

B) Categorical Variables 

  Count Total Percent 

Female sex 687 972 70.7% 

Ever smoker 266 909 29.3% 

Hypertensive 802 972 82.5% 

Diabetic 298 972 30.7% 
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Table 2.  Top 30 methylation sites most strongly associated with age 

cg19761273 17 CSNK1D -1.98 (0.3) 0 972 -0.018 8.45E-43 

cg15538427 11 LOC221091 -0.11 (0.22) 0 969 -0.013 3.24E-40 

cg01820374 12 LAG3 -0.67 (0.31) 0 970 -0.016 6.23E-33 

cg17471102 19 FUT3 0.67 (0.29) 0 969 -0.015 1.64E-31 

cg15804973 6 MAP3K5 -0.63 (0.34) 0 972 -0.017 1.14E-30 

cg03996822 4 RASSF6 -0.21 (0.33) 0 972 -0.016 2.67E-29 

cg25538571 8 FLJ46365 -0.67 (0.31) 1 972 -0.015 7.08E-29 

cg00451635 16 EMP2 0.62 (0.33) 0 969 -0.016 2.34E-28 

cg19722847 12 IPO8 -1.78 (0.32) 0 971 -0.015 8.15E-28 

cg14244577 16 DDX19B -1.7 (0.28) 0 971 -0.013 8.99E-28 

cg08888956 12 NTS 0.04 (0.27) 0 972 -0.013 2.13E-27 

cg05442902 22 P2RXL1 -1.71 (0.25) 0 971 -0.012 3.53E-27 

cg17034109 1 CYB561D1 0.16 (0.25) 0 971 -0.011 9.10E-27 

cg16744741 4 PRKG2 -0.46 (0.35) 0 972 -0.016 5.44E-26 

cg15037004 5 ZNF366 -0.15 (0.23) 0 970 -0.011 9.61E-26 

cg00431114 20 C20orf121 -1.02 (0.27) 0 972 -0.013 1.60E-25 

cg22736354 6 NHLRC1 -1.6 (0.39) 0 972 0.018 2.00E-25 

cg00168942 10 CX40.1 0.05 (0.26) 0 971 -0.012 4.31E-25 

cg07158339 9 FXN -1.19 (0.32) 0 972 -0.014 5.93E-25 

cg04474832 3 ABHD14A -1.72 (0.28) 0 972 -0.013 6.08E-25 

cg27015931 16 MGC50721 -2.72 (0.29) 0 971 -0.013 6.75E-25 

cg04662594 8 EPB49 -0.81 (0.38) 1 972 -0.017 2.75E-24 

cg03172991 19 NFIX 0.53 (0.16) 0 970 -0.0073 3.86E-24 

cg08587542 5 KIAA0141 -2.42 (0.28) 0 971 -0.012 4.75E-24 

cg05724065 7 PHKG1 1.52 (0.28) 0 970 -0.012 5.03E-24 

cg08090640 17 IFI35 -1.15 (0.36) 0 971 -0.016 6.62E-24 

cg21232015 12 CHFR 2.49 (0.32) 0 970 0.014 8.36E-24 

cg08319238 19 BCAM -1.97 (0.24) 0 970 -0.011 8.66E-24 

cg09706243 11 POLD4 -0.97 (0.27) 0 969 -0.012 1.35E-23 

cg03143849 11 CDKN1C -0.22 (0.24) 0 970 -0.010 1.47E-23 

Model:  Eij = 0 + 1· Ageij + W0j  

Yellow highlight denotes positive values for regression 1.   

Polymorphic and Non-Specific Probes: (Chen, et al. 2011)  

**  0 = Neither, 1 = Polymorphic.   

CpG sites listed within this table were not among those with non-specific binding probes.  

 

 

Outcome Chr Gene 
Mean (SD) 

M-Value 

Probe 

Type** 
N β(Age) p-value 
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Figure 2. T-statistic distribution of regression of M-Value on age vs. mean M-Value 

of corresponding CpG site for 26,428 DNA methylation markers 

 

Red vertical lines at -2 and 2 represent delineation of unmethylated and methylated levels 

of CpG sites, such that sites having mean M-Value < -2 are unmethylated, and sites 

having mean M-Value > +2 are methylated. 

 

Blue horizontal lines at ±4.8 represent the t-statistics equivalent to p = 1.86x10-6, which 

is the Bonferroni-correction for α=0.05  
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Table 3. Association between top 5 principal components (estimated from 2,095 site 

M-Values significant with age, after Bonferroni correction for α=0.05) and Age 

 

Model:  Ageij = 0 + 1· PCij + W0j + ij. 

 

  Univariate Models Multivariable Model 

PC 
% Variation 

Explained 
β  p-value R

2
LR x100 β  p-value R

2
LR x100 

1 50.65% -0.12  6.63E-06 12.72 -0.13  5.60E-08  

2 9.53% 0.15  0.014 10.34 0.16  3.34E-03  

3 4.52% -0.69  8.84E-14 18.95 -0.72  1.03E-15  

4 2.47% -0.41  4.79E-04 11.39 -0.43  7.45E-05  

5 2.15% 0.16  0.21 9.58 0.14  0.22 26.76 

6-10 4.68%        36.54 

Total 74.00%       
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Supplementary Table 1.  Comparison of baseline characteristics of Phase II Non-Epigenetics Participants with Phase II 

Epigenetics Participants.  A) Continuous clinical variables, B) Continuous biomarkers, C) Categorical descriptive variables. 

 

A)  Continuous clinical variables 

 Phase II Non-Epigenetics Participants Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Age, years 474 0.0% 26.41-81.52 56.07 (9.21) 1008 0.00% 39.26-94.74 66.34 (7.6) 6.6E-49 

BMI, kg/m² 472 0.4% 18.1-57.9 32.6 (7.4) 1001 0.69% 16.41-55.09 31.1 (6.09) 0.013 

Systolic BP, mm Hg 473 0.2% 96-208 134.8 (19.3) 1006 0.20% 79-221 139.89 (21.12) 2.2E-06 

Diastolic BP, mm Hg 474 0.0% 53-122 81.57 (10.2) 1008 0.00% 45-121 78.29 (11.01) 2.3E-05 

Pulse Pressure, mm Hg 474 0.0% 19-127 53.41 (15.11) 1006 0.20% 26-127 61.64 (17.72) 6.0E-17 

Adj. Systolic BP, mm Hg (1) 473 0.2% 97-218 142.05 (21.47) 1006 0.20% 89-231 148.15 (22.74) 5.5E-08 

Adj. Diastolic BP, mm Hg (1) 474 0.0% 58-127 85.2 (10.95) 1008 0.00% 50-126 82.42 (11.43) 4.6E-04 

Adj. Pulse Pressure, mm Hg (1) 473 0.2% 24-132 56.89 (15.72) 1004 0.40% 28-132 65.65 (18.28) 2.2E-18 

Total Cholesterol, mg/dL 459 3.2% 72-348.5 197.93 (40.02) 1008 0.00% 73.5-354.5 203.98 (41.95) 7.8E-05 

Triglycerides, mg/dL 454 4.2% 28.5-419.5 111.95 (58.94) 1004 0.40% 37-402.5 117.9 (56.68) 9.8E-04 

ln (Triglycerides+1) 457 3.6% 3.38-6.45 4.62 (0.49) 1007 0.10% 3.64-6.27 4.69 (0.43) 0.69 

HDL-C, mg/dL 457 3.6% 23.8-125.8 55.42 (16.66) 1005 0.30% 21.7-130.35 58.08 (17.48) 7.0E-03 

ln (HDL+1) 460 3.0% 3.21-5.17 4 (0.3) 1008 0.00% 3.12-5.05 4.04 (0.29) 0.75 

LDL-C, mg/dL 459 3.2% 23.6-253.75 121.1 (36.88) 1008 0.00% 24.85-272.1 123.84 (39.58) 0.064 

Glucose, mg/dL 457 3.6% 43.5-296 108.28 (38.68) 998 0.99% 49.5-290 110.56 (34.31) 0.11 

ln (Glucose+1) 457 3.6% 3.8-5.69 4.65 (0.28) 1004 0.40% 3.92-5.82 4.69 (0.27) 0.77 

Insulin, mU/mL 163 65.6% 1.14-52.46 9.34 (8.53) 1005 0.30% 0.22-115.76 10.39 (12.45) 0.30 

ln (Insulin+1) 163 65.6% 0.76-3.98 2.12 (0.62) 1006 0.20% 0.2-5.02 2.12 (0.74) 1.00 

Menopause Age, years (2) 270 43.0% 23-59 42.6 (8.26) 699 30.65% 25-62 43.72 (7.85) 0.14 
 

1      If a participant is listed as taking hypertensive medications, 10 mm Hg is added to systolic blood pressure, and 5 mm Hg is added to diastolic blood pressure, else 

recorded blood pressure is used in this variable. 

2 Menopause age is represented for females only. 
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B)  Measures of inflammation 

 

  Phase II Non-Epigenetics Participants  Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Serum Creatinine, mg/dL 460 2.95% 0.44-3.64 0.89 (0.29) 1008 0.00% 0.42-2.98 0.94 (0.3) 0.69 

CRP, mg/L 347 26.79% 0.21-29.9 5.48 (5.8) 971 3.67% 0.21-29.9 6.05 (6.77) 0.37 

ln (CRP+1) 347 26.79% 0.08-1.49 0.68 (0.33) 971 3.67% 0.08-1.49 0.7 (0.34) 0.87 

Homocysteine, µmol/L 430 9.28% 4.5-25.2 9.38 (2.97) 1002 0.60% 4.7-31 10.57 (3.59) 7.1E-03 

ln (Hycs+1) 430 9.28% 1.7-3.27 2.3 (0.26) 1002 0.60% 1.74-3.47 2.41 (0.28) 0.41 

Fibrinogen, mg/dL 440 7.17% 123-684 362.44 (88.37) 1007 0.10% 120-680 369.35 (81) 1.6E-03 

ICAM, ng/mL 199 58.02% 101-584 296.97 (83.09) 578 42.66% 17-625 275.38 (80.82) 3.2E-16 

IL-6, pg/mL 241 49.16% 1.92-29.78 8.71 (5.06) 856 15.08% 1.42-36.45 9.09 (5.31) 0.54 

ln (IL-6+1) 245 48.31% 0.46-1.58 0.95 (0.22) 878 12.90% 0.38-1.58 0.97 (0.22) 0.86 

IL-18, pg/mL 240 49.37% 6.14-235.97 72.17 (38.66) 863 14.38% 1.86-252.42 69.92 (39.97) 0.19 

ln (IL-18+1) 241 49.16% 0.85-2.49 1.81 (0.23) 872 13.49% 0.84-2.49 1.8 (0.25) 0.92 

MPO, ng/mL 193 59.28% 11.74-141.47 47.43 (27.67) 954 5.36% 4-160.58 40.26 (25.04) 5.1E-07 

ln (MPO+1) 196 58.65% 1.1-2.22 1.63 (0.23) 968 3.97% 0.7-2.22 1.56 (0.24) 0.60 

MCP1, pg/mL 205 56.75% 247.44-2124.82 970.81 (319.89) 835 17.16% 159.81-2704.78 1053.43 (369.78) 2.3E-49 

ln (MCP+1) 205 56.75% 2.4-3.33 2.96 (0.15) 849 15.77% 2.46-3.49 3.01 (0.16) 0.69 

Resistin, ng/mL 312 34.18% 1-12.13 3.77 (1.96) 895 11.21% 1-12.32 4.07 (2.03) 0.40 

ln (Resistin+1) 315 33.54% 0.3-1.2 0.65 (0.18) 902 10.52% 0.3-1.2 0.68 (0.17) 0.798 

SAA, µg/mL 297 37.34% 2.35-146 26.75 (28.98) 731 27.48% 2.35-146 32.94 (30.88) 2.0E-05 

ln (SAA+1) 297 37.34% 0.53-2.17 1.27 (0.39) 731 27.48% 0.53-2.17 1.38 (0.38) 0.51 

TNFR-1, pg/mL 219 53.80% 102.78-3310.18 1113.11 (562.23) 872 13.49% 19.89-3844.07 1185.29 (546.83) 1.3E-27 

ln (TNFR1+1) 217 54.22% 2.15-3.52 3 (0.21) 882 12.50% 2.17-3.68 3.04 (0.22) 0.76 

TNFR-2, pg/mL 240 49.37% 388.3-4998.98 1751.03 (649.43) 849 15.77% 286.83-5333.39 1950.04 (831.08) 4.8E-117 

ln (TNFR2+1) 241 49.16% 2.59-3.8 3.22 (0.16) 854 15.28% 2.59-3.8 3.26 (0.17) 0.70 
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C)  Categorical variables 

 

 Non-Epigenetics Participants Epigenetics Participants 

  Count Total % of Total Count Total % of Total 

Female 335 474 70.68% 715 1,008 70.93% 

Hypertensive 344 474 72.57% 833 1,008 82.64% 

Has Diabetes 128 474 27.00% 308 1,008 30.56% 

Ever Smoker 174 474 36.71% 421 1,008 41.77% 
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Supplementary Table 2. List of probes used to standardize methylated and 

unmethylated signals. 

 

Red Channel Probes Green Channel Probes 

EXTENSION 1190050 BISULFITE CONVERSION 4670278 

EXTENSION 360446 BISULFITE CONVERSION 4670484 

NON-POLYMORPHIC 1740025 BISULFITE CONVERSION 5290048 

STAINING 4200736 EXTENSION 1190050 

STAINING 4570020 EXTENSION 360446 

 EXTENSION 520537 

 NON-POLYMORPHIC 1740025 

 STAINING 5340168 
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Chapter III.  The Role of Age within the Heritability of Epigenetic Markers 

Introduction 

Age is a well-known risk factor for many common chronic diseases.(33, 71)  

However, the cellular and molecular changes associated with aging processes that are 

related to chronic disease initiation and progression are not well-understood.  More 

recently, differential DNA methylation patterns that affect gene expression have been 

found be associated with aging.(40)  Specifically, age has been found to be associated 

with methylation status in chronic disease-related pathways such as those involved within 

liver development and metabolism,(39) inflammation, endothelial function, 

oxidation,(41, 63) and tumor suppression.(64, 65)  Since epigenetic events provide a 

modifiable link between a gene’s expression and a resulting phenotype,(58, 59, 66, 67) 

understanding the relative importance of genes to environment within epigenetic 

signatures with respect to age is crucial to understanding the role of epigenetics within 

the origins of chronic diseases.   

The total phenotypic variation within a trait is due to the effects of both genetics 

and environment.  In order to determine the amount of phenotypic variation in a trait due 

to genetics, genetic epidemiologists estimate the heritability of that trait.  Narrow-sense 

heritability compares the trait variation due to additive genetic effects, at a specific time 

and within a specific population, to the total phenotypic variation.  This quantity allows 

the comparison of a trait across generations within a population, or between different 



40 

 

populations, and may lead to novel insights about the underlying biology of a 

phenotype.(92, 93) 

The influence of environmental factors such as nutrition, infection, and exposure 

to pollutants on DNA methylation has been well-characterized.(94-97)  It is also known 

that genetic factors affect DNA methylation.  DNA methyltransferases are involved in the 

process and maintenance of methylation at CpG sites throughout the genome, and genetic 

factors are also involved in the process of methylation throughout the methioninine 

cycle,(98, 99) as well as processing life course events into cellular and molecular 

responses that may affect methylation throughout the genome.(100-102)  In general, 

more attention has been paid to environmental modifiers of  epigenetic profiles (e.g. 

stress, toxins) rather than their genetic modifiers, despite research indicating that the 

methylation at some CpG sites likely depends on single nucleotide polymorphisms 

(SNPs) in the region.(77)   

Due to the deficiency of research concerning the influence of genetic factors on 

DNA methylation levels, we examined the additive contribution of genes to the total 

variation of DNA methylation levels by estimating the heritabilities of DNA methylation 

levels at 26,428 CpG sites in 13,877 autosomal genes throughout the genome.  In 

addition, because our previous studies illustrate that age is so strongly involved in 

epigenetic processes,(103) we investigated the age-related genetic contributions to these 

heritabilities.   This research can provide a new method of understanding the potential 

mechanisms underlying associations of DNA methylation and chronic disease outcomes 

(i.e. the relative strength of the influence of genetic or environmental factors on DNA 

methylation). 
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Methods 

Sample  

The Genetic Epidemiology Network of Arteriopathy (GENOA) study is a 

community-based study investigating the genetics of hypertension and its arteriosclerotic 

complications in non-Hispanic whites from Rochester, MN and African-Americans from 

Jackson, MS.(72)  In the current study, we investigated the heritability of DNA 

methylation at 26,428 CpG sites in GENOA African-Americans.  African-American 

sibships were recruited such that 2 siblings were diagnosed with primary hypertension 

before the age of 60 years, while other siblings within the sibship were invited to 

participate independent of hypertension status (N=1,854).  The initial examination (Phase 

I: 1996-1999) included standardized interviews concerning prescription drug usage, 

cigarette smoking, physical activity, history of hypertension, diabetes, and cardiovascular 

disease events; physical examination for blood pressure, height, weight, and waist and 

hip circumferences; and fasting blood samples for creatinine, total cholesterol, high-

density lipoprotein (HDL)-cholesterol, triglycerides, glucose, and insulin.  The second 

examination (Phase II: 2000-2004) included 1,482 participants returning from Phase I, 

and included re-measurement of interview, physical examination, and blood 

characteristics, as well as additional measurements of arteriosclerotic target organ 

damage, including heart, kidney and peripheral artery traits. DNA methylation was 

quantified on 1,008 Phase II participants using stored blood samples collected during the 

second examination.  Comparisons between Phase II individuals within and outside of the 

DNA methylation study are available in Supplementary Table 3).  Written informed 

consent was obtained from all subjects and approval was granted by participating 
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Institutional Review Boards.  Complete information on the GENOA study population and 

sample measurements can be found detailed in Appendix 3. 

Measurement of DNA methylation 

Samples were prepared and DNA methylation was measured according to 

previously published methods (73) which are summarized as follows.  For comprehensive 

information on these measurements, refer to Appendix 4. 

Sample Preparation and Methylation Assay.  DNA was isolated from peripheral 

blood leukocytes from GENOA Phase II stored samples, and bisulfite converted with the 

EZ DNA Methylation Gold Kit (Zymo Research, Orange CA).  Bisulfite-converted DNA 

samples were whole-genome amplified, enzymatically fragmented, and purified, then 

hybridized to Illumina Infinium HumanMethylation27K BeadChips, which contained 

locus-specific DNA oligomers and a set of 56 control probes. The array was then 

fluorescently stained, scanned using the Illumina BeadXpress reader, and assessed for 

fluorescence intensities across the methylated and unmethylated bead types at 27,578 

CpG sites.  

Data processing and methylation quantification: At each CpG site, fluorescent 

signals were measured from the site-specific M (methlyated) and U (unmethylated) bead 

types. The raw fluorescence data from the scanner was processed using Illumina 

BeadStudio software. To reduce batch and chip effects, the correlation structure among 

all 56 control probes was evaluated within channel to identify the most parsimonious 

subset of probes that explained the maximum amount of batch and chip variation across 

samples (5 probes in the red channel and 8 probes in the green channel; Supplementary 
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Table 4). Quality control standards were employed by linearly regressing the 13 selected 

probes onto the intensity signals from the methylated and unmethylated bead types 

separately across each CpG site.    

Two measures of methylation were calculated for each individual, across every 

CpG site, from the adjusted M and U signal intensities: the Beta Value and the M-Value. 

Beta Values are continuous variables ranging from 0 to 1 that are proportional to the 

percent methylation at each particular CpG site within each individual.  The Beta Value 

for each individual i at a single site k, is calculated as:  Beta Valueik = max(Mik,0) / 

[max(Uik,0) + max(Mik,0) + 100].(104)  Beta Values between 0 and 0.2 are considered to 

be unmethylated, and those between 0.8 and 1 are considered methylated.  Beta Values 

between 0.2 and 0.8 are considered semi-methylated.  The M-Value is a commonly used 

measurement in microarray analysis that was more recently adapted for use in DNA 

methylation array data due to its ability to equalize the variance across the CpG sites.(74, 

75)  The M-Value for each individual i at a single site, k, is calculated as: M-Valueik = 

log2[(max(Mik,0)  + 1) / ( max(Uik,0) + 1)] , where a constant is added to prevent large-

scale changes caused by small intensity estimation errors.(75)  The relationship between 

Beta and M-Values represents a logit transformation, where M-Valueik = log2 [Beta 

Valueik / ( 1 - Beta Valueik)].  Unmethylated M-Values are considered to be < -2.0, 

methylated M-Values are > +2.0, and semi-methylated M-Values are between -2 and +2.  

In the following sections, we present results from both the M-Values and the Beta Values 

for many of the analyses. However, we feel that the M-Value is a better measure of 

methylation for modeling purposes due to its more desirable statistical properties, which 

allow better conformation to modeling assumptions. 
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Before statistical analysis, samples were checked for data quality.  From the 1,008 

study participants, 7 individuals were removed due to poor bisulfite conversion control 

efficiency, measured by bisulfite conversion control intensity of < 4,000.  An additional 

29 individuals were removed from the analysis due to extreme control probe values, 

assessed as having at least one control probe with a value of greater than 4 standard 

deviations from its mean value.  This resulted in a total sample size of 972 individuals.   

For this study, we analyzed only autosomal CpG sites.  A total of 58 CpG  sites 

were removed from the analysis because they were found to be multimodal based on the 

Dip Test proposed by Hartigan and Hartigan (76) using a cut-off of p<0.001 on the signal 

intensities of the methylated and/or unmethylated bead types, which clearly violated the 

statistical modeling assumptions.  This resulted in a total number of 26,428 CpG sites 

included in our analysis.  Finally, 2,984 non-specific binding probes and 908 

polymorphic probes overlapping with single nucleotide polymorphisms (SNPs) (77) were 

identified and denoted in the result tables. Though these sites were not removed from the 

analysis, we have interpreted the results from these sites with caution.  As a final method 

of quality control, and since heritability estimates are quite sensitive to outliers, DNA 

methylation values greater than ±4 standard deviation from each CpG site mean were 

removed from each of the 26,428 CpG sites.  Please refer to Appendix 4 for more 

detailed information. 

Statistical Analyses 

Estimating heritability for epigenetic markers: In order to better understand the 

genetic and environmental contributions to the epigenetic variation within the GENOA 

cohort, we estimated the heritabilities of DNA methylation levels within each of the 
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26,428 CpG sites using the t-distribution option in SOLAR (Sequential Oligogenic 

Linkage Analysis Routines) version 4.2.7.(105) The t-distribution option was used in 

order to ensure better estimates of heritability despite potential kurtosis within a CpG site 

distribution.  

Given the novelty of this set of phenotypes, we estimated heritabilities for a) 

methylated signal intensity, b) unmethylated signal intensity, c) Beta Value, and d) M-

Value at each CpG site. Traditionally, heritabilities are estimated before and after 

adjusting for age and sex; however, when we performed the adjustment for age, we found 

that the heritabilities decreased after adjustment (i.e. the genetic variance in the 

numerator was being reduced by the age adjustment). This finding was the motivation for 

partitioning the heritability into age-related and residual heritability components by 

mathematically utilizing the variance component information from raw and age-adjusted 

output from SOLAR. 

Method of partitioning the heritability.  After examining unadjusted and age-

adjusted models that estimated heritability in SOLAR, we utilized the output in order to 

calculate the age-adjusted genetic variance for each epigenetic marker.  To do so, we 

followed the subsequent rationale: 

 

Let P indicate the phenotype, or the sum of genotype and environment, where G indicates 

Genotype and E indicates Environment.  The total phenotypic variance can be 

decomposed into genetic and environmental variance, assuming the absence of 

covariance between G and E, such that: 
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[1] P = G + E  

[2] Var (P) = Var (G) + Var (E)  

 

Age designates age-related effects, to be expressed as a subset of phenotype, genotype, or 

environment; and NoAge designates age-independent effects (or non-age associated 

effects), to be expressed as a subset of phenotype, genotype, or environment. 

 

The total genetic variance can be decomposed into age-related genetic effects (GAge) and 

age-independent genetic effects (GNoAge). The total environmental variance can be 

decomposed similarly. 

[3] Var (G) = Var (GAge) + Var (GNoAge)   

[4] Var (E) = Var (EAge) + Var (ENoAge)  

 

If we consider Var (EAge), the age-related environmental effects, to be the effect of age 

itself, we can write equation [4] as: 

[5]  Var (E) = Var (Age) + Var (ENoAge) 

 

Substituting equations [3] and [5] into equation [2], we have: 

[6] Var (P) = Var (GAge) + Var (GNoAge) + Var (Age) + Var (ENoAge)  
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Heritability, or h
2

Unadj,  is defined as the proportion of phenotypic variance due to genetic 

variance.  Thus, from equation [2], unadjusted heritability is written as:  

[7] h
2

Unadj = Var (G) / Var (P) 

   

Substituting equations [3] and [6] into [7], unadjusted heritability is written as: 

[8] h
2

 Unadj = [Var (GAge) + Var (GNoAge)] / [Var (GAge) + Var (GNoAge)  

+ Var (Age) +Var (ENoAge)]   

 

Age-adjusted heritability is the proportion of phenotypic variance due to genetic variance 

after removing the variability due to age, and will be referred to as h
2

Age-adj. 

Here, since phenotypic variation due to age has been removed from P, both Var (Age) 

and Var (GAge) = 0. Thus, the decomposition of the phenotypic variance is as follows: 

[9] Var (PNoAge) = Var (GNoAge) + Var (ENoAge)    

 

From equation [9], age-adjusted heritability is written as: 

[10] h
2

Age-adj = Var (GNoAge) / [Var (GNoAge) + Var (ENoAge)]  
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SOLAR outputs the following quantities: 

 The phenotypic standard deviation, or SD(P), from which we can calculate Var 

(P) = [SD(P)]
2
  

 The total heritability estimated within the sample, before adjustment for age, or 

h
2

Unadj  

 Age-adjusted heritability estimated within the sample, designated h
2

NoAge 

 The proportion of Var (P) explained by age 

 

Using the proportion of Var (P) explained by age, we calculate Var (PNoAge ) as follows: 

[11] Var (PNoAge) = Var (P) – [Var (P)*Proportion of Var(P) explained by age]   

 

Rearranging equations [8] and [10] gives: 

[12] Var (GAge) + Var (GNoAge) = h
2

Unadj  * [[Var (GAge) + Var (GNoAge)  

+ Var (Age) +  Var (ENoAge)] = h
2

Unadj * Var(P)  

[13] Var (GNoAge)  = h
2

Age-adj * [Var (GNoAge) + Var (ENoAge)]  

= h
2

Age-adj * Var(PNoAge) 

 

Subtracting equation [13] from equation [12] solves for Var (GAge). 

[14] Var (GAge) = [h
2

 Unadj  * Var (P)] – [h
2

NoAge * Var (PNoAge)]  
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The heritability due to age-related genetic effects is estimated using: 

[15]  [Var (GAge) / Var (P)] = h
2

Age   

 

The proportion of heritability due to age-related genetic effects is: 

[16] = h
2

Age / h
2

Unadj   

 

Results 

Description of data.  After exclusions and quality control, this study contained 

phenotype and methylation data for 972 African Americans across 26,428 CpG sites.  

The sample was predominantly female (70.7%) and hypertensive (82.5%), with mean age 

of 66.3 years and mean body mass index of 31.2 kg/m
2
.  Further descriptive statistics are 

presented in Table 4.  This study population consisted of 197 singletons and 296 sibships 

ranging in size from 2 to 10 siblings, with a mean of 2.6 siblings per sibship (see 

Supplementary Table 5).     

Within this population, the 26,428 CpG sites were predominantly unmethylated, 

where 15,221 (57.6%) CpG sites had a mean M-Value of <-2.0.  Across all CpG sites, the 

mean fluorescence intensities across the methylated bead types ranged from 482 to 

39,810 (mean = 28,25), while mean fluorescence intensities on the unmethylated bead 

types ranged from 497 to 37,310 (mean= 6,865).  CpG site Beta Value means ranged 

from 0.025 to 0.97, with an average mean Beta Value of 0.31, and M-Value means 

ranged from -5.37 to 5.07 with an average mean M-Value of -1.58.  Due to outlier 
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removal, the mean number of individuals measured across the 26,428 CpG sites is 970.9 

(standard deviation: 1.7), with a minimum of 935.  (Figure 3.) 

Heritability.  Heritability was estimated across four measures of DNA 

methylation: (1) methylated and (2) unmethylated signal intensities, (3) Beta Values, and 

(4) M-Values.  The vast majority of the measures of DNA methylation were significantly 

heritable at p<0.05 (methylated probes: 20,646 (78.1%); unmethylated probes: 24,851 

(90.0%); Beta Values: 23,183 (87.7%), M-Values: 23,372 (88.4%)).  The estimates of 

mean heritabilities for each of the four DNA methylation measures in this sample were 

above 0.30 (methylated probe intensity, mean= 0.41; unmethylated probe intensity 

mean=0.38; Beta Value, mean = 0.30; M-Value mean =0.30).  The distributions of 

significant heritabilities for the four measures of methylation are shown in Figure 4.  It is 

noticeable that the heritabilities of the methylated and unmethylated signal intensities are 

distributed bimodally, while the distributions for the heritabilities of the Beta and M-

Values are heavily right-tailed. 

In order to better understand why the heritabilities of the methylated and 

unmethylated signals followed bimodal distributions, we used t-tests to investigate 

whether any CpG site attributes were associated with being in the lower vs. higher mode 

(cut point of h
2
= 0.41 for methylated signals, and cut point of h

2
= 0.38 for unmethylated 

signals).  Significantly associated with mode of methylated and unmethylated signals 

were probe GC content (methylated probe, p-value = 1.04x10
-13

; association with 

unmethylated probe, p-value 7.37 x10
-15

), distance to transcription start (methylated 

probe, p= 6.32x10
-3

; unmethylated probe, p=6.20x10
-31

), and the number of SNPs within 

a probe (methylated probe, p=9.11x10
-4

; unmethylated probe, p=1.00x10
-20

).  Further, the 
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color channel of which the CpG site’s intensity levels were measured and whether or not 

the CpG site is in a CpG island were significant at p< 0.0001 across both signal types.  

This may be important because each color channel represents a different nucleotide 

following the CpG site, where the red channel represents a final extended base of A or T 

and the green channel represents a final extended base of G or C, which may be 

indicative of probe GC content.  A t-test of the difference in means of probe GC content 

by color channel indicated a highly statistically significant association between these two 

variables (p=9.83x10
-9

).  Results from t-tests examining differences in modes of 

heritabilities and CpG site attributes can be found in Table 5.   

For each of the four measures of DNA methylation, (1) methylated and (2) 

unmethylated signal intensities, (3) Beta Values, and (4) M-Values, the genetic variance 

was calculated from the heritability and total phenotypic variance. The genetic variance 

was then decomposed into partitions that were due to age-related genetic factors or 

genetic factors not associated with age.  From this, the percentage of the total genetic 

variability due to age-related genetic factors and the proportion of age-related genetic 

effects within the total phenotypic variance were calculated.  The mean percentage of 

total genetic variability due to age-related genetic factors was highest for significant (p-

value < 0.05) unmethylated probe intensities (28.3%), while the mean percentage for the 

significant methylated probe intensity, Beta Value, and M-Value were 17.3%, 18.6%, and 

20.3% respectively (Table 6).  Each of the four measures of DNA methylation had 

between 53% and 66% of the significant CpG sites with at least 10% of their total genetic 

variability explained by age-related genetic factors.  Further, age-related genetic effects 

explained up to 100% of the total genetic variability for some methylated or 
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unmethylated signal intensities, Beta Values, and M-Values.  The sites with highest 

proportion of variance explained by age-related genetic effects for the M-Value are 

presented in Table 7.  These sites closely corresponded to those with the highest 

proportion of variance explained by age-related genetic effects for Beta Values.   

Utilizing heritabilities to understand epigenetic associations.   To better 

understand the genetic and environmental mechanisms underlying epigenetic 

associations, we examined the heritability of CpG sites relative to their association with 

age.   Upon examining the epigenetic markers as predictors of age using linear mixed 

modeling to account for sibship structure, 2,095 sites were significant predictors of age 

(after Bonferroni correction at α=0.05).  Figure 5 integrates information on heritability 

with the results of the linear mixed modeling of CpG sites as predictors of age to 

illustrate whether the CpG sites that have strong age associations vary predominantly due 

to environmental factors, genetic factors, or both.   

In Panel A, the raw heritability for each M-value was plotted against the strength 

of the association between age and CpG site represented by the –log(p-value) of the 

regression of age on each of the 26,428 CpG sites.  The blue horizontal line indicates 

significant association at Bonferroni corrected α=0.05 (here, the -log(p-value) of the 

regression of age on methylation is 5.72).  The red line at h
2
=0.3 denotes the cut-off for 

low and high heritabilities.  Points in the upper left quadrant of Panel A (434 CpG sites, 

1.6%) denote methylation markers that have a strong association with age but low 

heritability, suggesting that the effect of age on methylation at these sites may be 

moderated through environmental effects that accumulate with age.  Points in the upper 

right quadrant (1,661 CpG sites, 6.3%) denote methylation markers that have a strong 
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association with age and high heritability, suggesting that the effect of age on methylation 

may be moderated through age-related genetic factors.  The lower left quadrant contains 

16,695 (63.2%) CpG sites, and the lower right quadrant contains 7,635 (28.9%) CpG 

sites.  These quadrants indicate weak associations with age and low and high 

heritabilities, respectively.   

Figure 5, Panel B examines the age-adjusted heritabilities for each CpG site M-

Value versus the -log(p-value) of the regression of age on methylation.  After dividing 

this plot by heritability of 0.3 and significance of –log(p-value) of the regression of age 

on DNA methylation at 5.72 (Bonferroni corrected α=0.05), the lower left quadrant 

contains 18,690 (70.7%) CpG sites, the upper left quadrant contains 1,268 (4.8%) CpG 

sites, the lower right quadrant has 5,640 (21.3%) CpG sites, and the upper right quadrant 

has 827 (3.1%) CpG sites.  This quadrant of 827 CpG sites indicates sites that are both 

significantly associated with age, while simultaneously having a high heritability after 

age-adjustment.  Thus, these CpG sites may act as mediators between genetics and age, 

since they have high age-independent genetic variance components that may indicate a 

set of age-independent genetic factors that are also highly associated with age. 

Figure 5, Panel C indicates the percent of heritability due to age-related genetic 

factors compared to the –log(p-value) of the regression of age on each of the 26,428 CpG 

sites.  This plot is divided where 10% of the heritability is explained by age-related 

genes, and the where –log(p-value) of the regression of age on methylation is 5.72 (at 

Bonferroni corrected α=0.05).  In this plot, there are 10,849 (41.3%) CpG sites in the 

lower left quadrant, 118 (0.5%) CpG sites in the upper left quadrant, 13,317 (50.7%) 

CpG sites in the lower right quadrant, and 1,975 (7.5%) CpG sites in the upper right 
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quadrant.  Of these 1,975 sites in the upper right quadrant, 1,554 (78.7%) had high 

unadjusted heritabilities (hunadj
2
 > 0.3), and 720 (36.5%) had high age-adjusted 

heritabilities (hAge
2
 > 0.3).  All of the 720 sites with high age-adjusted heritabilities were 

contained within the set of 1,554 with high unadjusted heritabilities. These 1,975 sites in 

the upper right quadrant indicate a set of sites that both have a large proportion of their 

heritability explained by age-related genetic factors while also having strong associations 

with age, which could indicate a set of CpG sites whose levels are affected by genes that 

have effects later in life that may play a role in their association with age.  

Finally, Figure 5 Panels D and E indicate age-related (Panel D) or age-

independent (Panel E) portions of heritabilities relative to the –log(p-value) of the 

regression of age on each of the 26,428 CpG sites.  Each plot was divided by a line 

indicating the significance of –log(p-value) of the regression of age on DNA methylation 

at 5.72 (Bonferroni corrected α=0.05).  Panel D indicates 24,330 (92.1%) of the sites in 

the lower section and 2,095 (7.9%) of sites in the upper section.  Only 12 sites (0.05%) 

had age-related heritabilities > 0.3, and these sites were all significant in the regression of 

age on DNA methylation.  Panel E shows 24,330 (92.1%) of sites in the lower section, 

where 5,520 (22.7%) of them had age-independent heritabilities > 0.3, and 2,095 sites in 

the upper section, where 767 (36.5%) had age-independent heritabilities > 0.3.   

Discussion 

The epigenome is a known mediator of environmental effects and gene 

expression.(23, 57-59)  While many studies have illuminated the importance of the 

environment on epigenetics, indicating strong associations between DNA methylation 
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and environmental conditions such as diet,(106-109) stress,(110-112) and air 

pollution.(113-115), only a few have begun to explore the importance of genetics within 

the process of DNA methylation.(116, 117)  The current study underscores the 

importance of the contribution of both environmental and genetic factors to DNA 

methylation, and specifically sheds light on age-related genetic and environmental 

components to the variation in many DNA methylation markers.  First, it is noted 

that > 75% of CpG sites are significantly heritable, and that their average heritability 

ranges from 0.30 to 0.41, depending on the specific measurement (methylated or 

unmethylated signal intensity, Beta Value, M-Value).  Second, these heritabilities can be 

partitioned into age-related and age-independent genetic factors, and we identified 

multiple epigenetic sites that have strong age-related genetic components.  Finally, we 

used heritabilities to begin to understand the potential mechanisms that may be 

underlying epigenetic associations with epidemiological risk factors such as age.  

Heritability estimates in the GENOA sample indicated mean heritabilities of 0.30 

for CpG site M-Values and Beta Values.  These estimates are generally greater than those 

reported elsewhere in the literature (h
2
<0.18).(116-118)  Other studies may have different 

heritability estimates than those in GENOA due to different population demographics and 

structures and/or differences in the type of methylation markers assayed. For example, 

many studies focused on epigenetic variation within specific genomic regions,(116) while 

our study focused on variation across all measured Illumina Infinium sites.  Our 

heritabilities were estimated in a study 972 African-American individuals from 

hypertensive sibships, while other studies have used a much smaller number of European 

twins.(116, 117)  Further, the estimated heritabilities of many of the CpG sites within the 
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GENOA sample have a sizable age-related component, which may also contribute to the 

increased heritabilities.  Lastly, sib-sib plots, found in Supplementary Figure 1, indicate 

that some sites with higher heritabilities may be influenced by the sibship clusterings of 

high leverage values. 

Our previous work demonstrated a strong relationship between age and epigenetic 

variation.(103)  This finding is consistent with the idea that epigenetic variation 

represents a lifelong accumulation of environmental exposures.  However, when we 

adjusted for age in our estimation of heritability, we noticed a differential change in the 

magnitude of heritability that was not expected.  This led us to postulate that age-

dependent penetrance in some genes could be giving rise to an age-related genetic 

component that is distinct from age-independent genetic components.  In partitioning the 

genetic variance within our study into age-related and age-independent components, we 

found that 13,260 (56.7%) of the significantly heritable methylation sites as measured by 

the M-Value had at least 10% of their total heritability explained by age-related genetic 

effects.  Of these sites, 2,402 (10.3) had at least 50% of their total heritability explained 

by age-related genetic effects.  While age, itself, is known to have a high heritability in 

many family studies, we would expect that the contribution of age heritability to the 

overall epigenetic heritability of the CpG sites would be relatively uniform, especially for 

higher age-related sites, but it is not (See Figure 5 A and B). 

The set of 2,402 CpG sites that had at least 50% of their total heritability 

explained by age-related genetic effects is especially interesting because these CpG sites 

may be in genomic regions whose roles within the aging processes are not well 

understood and are, in fact, mediated through epigenetic markers.  In order to determine 
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whether these sites were related to a particular cellular pathway or function, we 

performed a gene enrichment analysis. Using the Expression Analysis Systematic 

Explorer (EASE),(119) we found that genes related to cell proliferation (Bonferroni-

corrected p-value =  0.0107) was overrepresented in this set of 2,402 CpG sites. These 

findings suggest that methylation sites with a strong age-related heritability component 

may be particularly important for key pathways related to cancer initiation or 

progression,(120, 121) which is consistent with prior research that has shown how 

methylation plays a key role in multiple types of cancer.(122, 123)  Further, these CpG 

sites may possibly be involved in atherosclerotic processes since excessive hyperplastic 

cell growth within vascular lesions is known to be a key component of inflammatory 

response within this disease.(124)   For the top 30 CpG sites with the largest contribution 

of age-related genetic factors (Table 7), one logical future study would be to investigate 

whether cis-acting DNA variation has an age-dependent penetrance relationship with 

CpG site variation.   

By examining the heritabilities of DNA methylation markers and their 

relationship to the strength of the association with age, we can begin to understand 

whether the cellular aging process at the epigenomic level is more a reflection of genetic 

or environmental factors.  Using EASE to analyze the organismal roles of the 1,661 sites 

that were found to be significantly associated with age (at Bonferroni-corrected α = 0.05 

and have high unadjusted heritabilities (> 0.3), we found that anti-pathogen response 

(Bonferroni-corrected p-value = 0.0022) and response to injury (Bonferroni-corrected p-

value = 0.0047) were significant.  We also found that the set of 827 sites that were 

significantly associated with age and had high age-adjusted heritability (> 0.3) were also 
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significantly associated with anti-pathogen response (Bonferroni-corrected p-value = 

1.17x10
-4

) and response to injury (Bonferroni-corrected p-value = 9.14x10
-4

).  Further, of 

the 1,975 sites that were significantly associated with age and had a large percentage of 

their heritability due to age-related genetic factors (> 10%), anti-pathogen response 

(Bonferroni-corrected p-value = 1.09x10
-4

) and response to injury (Bonferroni-corrected 

p-value = 0.042) were significant in EASE analysis.  This suggests that heritable sites 

that are associated with age may be involved in pathways related to immune response and 

tissue repair.  This finding is congruent with rising evidence that immune responses, such 

as inflammation, may be a significant factor within adult aging processes, especially in 

African-American populations.  Given these results, the epigenome may be a very 

important layer of the biological role of heritability in which to explore the impact of 

cellular aging on chronic disease processes that is due to both genetic and environmental 

influences.  Our heritability findings indicate that direct genetic studies of the epigenome 

(e.g. genome-wide association studies, or quantitative trait loci studies) might also 

provide new insight into the actual mechanisms of aging or other diseases in which the 

epigenome is a mediator of environment and genetic effects.  
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Table 4. Baseline characteristics of GENOA participants after outlier removal: A) 

Continuous variables, B) Categorical Variables 

** If a participant is listed as taking hypertensive medications, 10 mm Hg is added to systolic 

blood pressure, and 5 mm Hg is added to diastolic blood pressure, else recorded blood pressure is 

used in this variable. 

 

 

 

  

A) Continuous Variables  

  N 

Count of 

Outliers 

Removed 

Count of 

Missing 

Values Range Mean (SD) 

Age, years 972 0 0 39-95 66 (8) 

BMI, kg/m
2
 965 0 7 16.4-55.1 31.1 (6.1) 

Systolic BP, mm Hg 970 0 2 79-221 140(21) 

Diastolic BP, mm Hg 972 0 0 45-121 78 (11) 

Pulse Pressure, mm Hg 971 0 1 26-127 62 (18) 

Systolic BP (Adj), mm Hg** 970 0 2 89-231 148 (23) 

Diastolic BP (Adj), mm Hg** 972 0 0 50-126 82 (11) 

Pulse Pressure (Adj), mm 

Hg** 

969 0 3 28-132 66 (18) 

Total cholesterol, mg/dL 972 0 0 73.5-354.5 203.7 (42.1) 

Triglycerides, mg/dL 963 5 4 37-345 116.6 (53.8) 

HDL cholesterol, mg/dL 967 2 3 21.7-122.25 57.9 (17.1) 

LDL cholesterol, mg/dL 972 0 0 24.85-272.1 123.6 (39.7) 

Glucose, mg/dL 951 11 10 49.5-245 108.6 (29.6) 

Insulin, mU/mL 953 16 3 0.22-58.29 9.23 (8.25) 

Serum creatinine, mg/dL 961 11 0 0.42-2.16 0.92 (0.25) 

B) Categorical Variables 

  Count Total Percent 

Female sex 687 972 70.7% 

Ever smoker 266 909 29.3% 

Hypertensive 802 972 82.5% 

Diabetic 298 972 30.7% 
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Figure 3.  Distribution of means across 26,428 markers of methylation 

A) Methylated probe signal intensities (Range: 482 to 39,810, mean = 2,825) 

 
 

B) Unmethylated probe signal intensities (Range: 497 to 37,310, mean = 6,865) 

 

 
 

  



61 

 

 

C) Beta Values (Range: 0.02 to 0.97, mean = 0.31)  

 
 

D) M-Value (Range: -5.37 to 5.07, mean = -1.58)  

 

 

  



62 

 

Figure 4.  Distribution of significant (p<0.05) heritabilities of methylation markers 

a) Methylated Probe.  20,646 probes.  Mean (sd) = 0.41 (0.17).  Range, (0.12. 0.97)  

 
 

b) Unmethylated Probe.  24,851 probes.  Mean (sd) = 0.38 (0.16).  Range, (0.11, 1) 
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c) Beta Value.  23,183 probes.  Mean (sd) = 0.30 (0.13).   Range, (0.12, 1). 

 
 

d) M-Value.  23,372  probes.  Mean (sd) = 0.30 (0.13).  Range (0.11, 1). 
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Table 5. Potential contributors to the bimodality of significant methylated and 

unmethylated signal heritabilities (h
2 

significant at p< 0.05), A) Methylated Signal, 

B) Unmethylated Signal 

 

A) Methylated Signal 

 

 

 

B) Unmethylated Signal 

 

 

 

  

 < mean h
2
, 0.41 ≥ mean h

2
, 0.41 p-value 

Count 9,277 11,369   

Probe GC Content 

Mean (SD) 
28.70% (3.07%) 28.38% (3.22%) 1.04E-13 

Distance to Transcription 

Start 

Mean (SD) 

365.12 (332.27) 378.05 (343.09) 6.32E-03 

No. SNPs within Probe 

Mean (SD) 
2.04 (1.93) 2.14 (2.39 9.11E-04 

Color Channel  

Counts 
Red: 876 Red: 10,693 <0.0001 

Green: 8401 Green: 676 

In CpG Island 

Counts 
Yes: 6,823 Yes: 8,429 0.33 

No: 2454 No: 2940 

 < mean h
2
, 0.38 ≥ mean h

2
, 0.38 p-value 

Count of Probes 13,532 11,319   

Probe GC Content, % 

Mean (SD) 
28.70% (2.84%) 28.40% ( 3.24%) 7.37E-15 

Distance to Transcription 

Start, bp 

Mean (SD) 

329.53 (295.89) 376.47 (343.05) 6.20E-31 

No. SNPs within Probe 

Mean (SD) 
1.92 (1.801) 2.17 (2.42) 1.00E-20 

Color Channel  

Counts 
Red: 888 Red: 10,655 <0.0001 

Green: 12,644 Green: 664 

In CpG Island 

Counts 
Yes: 9937 Yes: 8412 0.11 

No: 3,595 No: 2,907 
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Table 6. Heritability and age-related genetic factors 

 

 

* Based on Methylated Probes, Unmethylated Probes, Beta Values, and M-Values with 

significant heritability (p<0.05) 

 

 

  

Epigenetic measure 

Heritability 

Mean (SD) 

% of total genetic variance 

due to age-related genetic 

factors* 

Mean (SD) 

Number of epigenetic markers 

with age-related genetic  factors 

explaining ≥10% of their total 

heritability 

Methylated Probe 0.41 (0.17) 17.34% (16.24) 12,744 

Unmethylated 

Probe 
0.38 (0.16) 28.34% (15.81%) 16,413 

Beta Value 0.30 (0.13) 18.62% (18.88%) 12,510 

M-Value 0.30 (0.13) 20.29% (20.01) 13,260 
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Table 7. Top 30 sites (M-Values) with largest portion of phenotypic variance 

explained by age-related genetic factors 

cg04662594 1 8 EPB49 0.8660 ♦ 0.4317 49.85% 13 

cg15538427 0 11 LOC221091 0.5293** 0.3538 66.84% 2 

cg15804973 0 6 MAP3K5 0.5897
□
 0.3353 56.86% 9 

cg00451635 0 16 EMP2 0.7521 ♦ 0.3312 44.04% 7 

cg11860203 0 17 CCL2 0.7519 ♦ 0.3182 42.32% 115 

cg15037004 0 5 ZNF366 0.5356** 0.3131 58.45% 28 

cg19722847 0 12 IPO8 0.3851** 0.3125 81.16% 38 

cg00431114 0 20 C20orf121 0.6793
□
 0.3113 45.83% 15 

cg23799313 0 1 PAQR7 0.6319
□
 0.3091 48.92% 45 

cg19761273 0 17 CSNK1D 0.4408** 0.3082 69.92% 1 

cg17034109 0 1 CYB561D1 0.6174
□
 0.3030 49.08% 16 

cg01820374 0 12 LAG3 0.7834 ♦ 0.3024 38.61% 3 

cg08090640 0 17 IFI35 0.5824
□
 0.2974 51.06% 37 

cg14244577 0 16 DDX19B 0.5693
□
 0.2914 51.18% 12 

cg07313155 0 17 THRA 0.4509** 0.2913 64.61% 219 

cg25538571 1 8 FLJ46365 0.6571
□
 0.2889 43.97% 8 

cg07211259 0 9 PDCD1LG2 0.5601
□
 0.2817 50.30% 49 

cg26954174 0 16 CARD15 0.6429
□
 0.2802 43.59% 80 

cg13302154 0 12 MGP 0.5167** 0.2798 54.16% 72 

cg07158339 0 9 FXN 0.3349* 0.2787 83.23% 74 

cg02945646 0 14 AP1G2 0.5186** 0.2779 53.58% 68 

cg24801210 0 3 PCNP 0.6772 ♦ 0.2777 41.00% 124 

cg08116137 2 2 NAT8 0.4828** 0.2767 57.30% 204 

cg09997082 0 19 GIPR 0.4893** 0.2749 56.18% 61 

cg02142461 2 4 LYAR 0.7660
 
♦ 0.2726 35.59% 141 

cg05037688 1 9 EGFL7 0.6561
 
♦ 0.2707 41.26% 82 

cg16435601 2 17 FALZ 0.3927** 0.2682 68.29% 574 

cg09172980 2 2 NAT8 0.5672
□
 0.2679 47.23% 181 

cg20870362 0 9 CCIN 0.6214
□
 0.2644 42.55% 30 

cg03996822 0 4 RASSF6 0.8192
 
♦ 0.2607 31.83% 5 

Significance levels:  ♦p< 10
-15

, 
□
p< 10

-10
, **p< 10

-5
, *p< 10

-3
Based on M-Values with significant 

heritability (p<0.05) 

Polymorphic and Non-Specific Probes: (Chen, et al. 2011)  

†  0 = Neither, 1 = Polymorphic, 2 = Non-Specific Binding 

Trait 
Probe 

Type† 
Chr. Gene h

2
 

Phenotypic 

Var. explained 

by age-related 

genetic factors 

% of h2 

explained by 

age-related 

genetic factors 

Ranking 

within 

regression of 

age on DNA 

methylation 
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Figure 5. Heritability (or variance partitions) vs. Significance of regression of Age 

on DNA methylation M-Values (A) Unadjusted heritability of the M-Value, (B) Age-

adjusted heritability of the M-Value,  (C) Percent of heritability explained by age-

related genetic factors, D) Age-related heritability, E) Age-independent heritability 

 

A) Heritability (unadjusted) vs. –log(pvalue) of Regression of Age on DNA methylation M-Value* 

 

B) Age-adjusted heritability vs. –log(pvalue) of Regression of Age on DNA methylation M-Value* 
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C) Proportion of Heritability due to Age-Related Genetic Factors vs. –log(pvalue) of Regression of 

Age on DNA methylation M-Value* 

 

 
 

 

 

D) Age-Related Heritability vs. –log(pvalue) of Regression of Age on DNA methylation M-Value* 

 
  



69 

 

 

E) Age-Independent Heritability vs. –log(pvalue) of Regression of Age on DNA methylation M-

Value* 

 
 

 

 

* Linear Mixed Model from which p-value is obtained: Ageij = 0 + 1· Eij + W0j + ij 

where Age is participant age at GENOA Exam 2, E is the M-Value of the CpG site, W is 

the random effect for each sibship, and  is the error term for the i
th

 individual in the j
th

 

sibship 
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Supplementary Table 3.  Comparison of baseline characteristics of Phase II Non-Epigenetics Participants with Phase II 

Epigenetics Participants.  A) Continuous clinical variables, B) Continuous biomarkers, C) Categorical descriptive variables. 

 

A)  Continuous clinical variables 

 Phase II Non-Epigenetics Participants Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Age, years 474 0.00% 26.41-81.52 56.07 (9.21) 1008 0.00% 39.26-94.74 66.34 (7.6) 6.6E-49 

BMI, kg/m² 472 0.42% 18.1-57.9 32.6 (7.4) 1001 0.69% 16.41-55.09 31.1 (6.09) 0.013 

Systolic BP, mm Hg 473 0.21% 96-208 134.8 (19.3) 1006 0.20% 79-221 139.89 (21.12) 2.2E-06 

Diastolic BP, mm Hg 474 0.00% 53-122 81.57 (10.2) 1008 0.00% 45-121 78.29 (11.01) 2.3E-05 

Pulse Pressure, mm Hg 474 0.00% 19-127 53.41 (15.11) 1006 0.20% 26-127 61.64 (17.72) 6.0E-17 

Adj. Systolic BP, mm Hg (1) 473 0.21% 97-218 142.05 (21.47) 1006 0.20% 89-231 148.15 (22.74) 5.5E-08 

Adj. Diastolic BP, mm Hg (1) 474 0.00% 58-127 85.2 (10.95) 1008 0.00% 50-126 82.42 (11.43) 4.6E-04 

Adj. Pulse Pressure, mm Hg (1) 473 0.21% 24-132 56.89 (15.72) 1004 0.40% 28-132 65.65 (18.28) 2.2E-18 

Total Cholesterol, mg/dL 459 3.16% 72-348.5 197.93 (40.02) 1008 0.00% 73.5-354.5 203.98 (41.95) 7.8E-05 

Triglycerides, mg/dL 454 4.22% 28.5-419.5 111.95 (58.94) 1004 0.40% 37-402.5 117.9 (56.68) 9.8E-04 

ln (Triglycerides+1) 457 3.59% 3.38-6.45 4.62 (0.49) 1007 0.10% 3.64-6.27 4.69 (0.43) 0.69 

HDL-C, mg/dL 457 3.59% 23.8-125.8 55.42 (16.66) 1005 0.30% 21.7-130.35 58.08 (17.48) 7.0E-03 

ln (HDL+1) 460 2.95% 3.21-5.17 4 (0.3) 1008 0.00% 3.12-5.05 4.04 (0.29) 0.75 

LDL-C, mg/dL 459 3.16% 23.6-253.75 121.1 (36.88) 1008 0.00% 24.85-272.1 123.84 (39.58) 0.064 

Glucose, mg/dL 457 3.59% 43.5-296 108.28 (38.68) 998 0.99% 49.5-290 110.56 (34.31) 0.11 

ln (Glucose+1) 457 3.59% 3.8-5.69 4.65 (0.28) 1004 0.40% 3.92-5.82 4.69 (0.27) 0.77 

Insulin, mU/mL 163 65.61% 1.14-52.46 9.34 (8.53) 1005 0.30% 0.22-115.76 10.39 (12.45) 0.30 

ln (Insulin+1) 163 65.61% 0.76-3.98 2.12 (0.62) 1006 0.20% 0.2-5.02 2.12 (0.74) 1.00 

Menopause Age, years (2) 270 43.04% 23-59 42.6 (8.26) 699 30.65% 25-62 43.72 (7.85) 0.14 
 

1 If a participant is listed as taking hypertensive medications, 10 mm Hg is added to systolic blood pressure, and 5 mm Hg is added to diastolic blood pressure, else 

recorded blood pressure is used in this variable. 

2 Menopause age is represented for females only. 
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B)  Biomarkers of inflammation 

 

  Phase II Non-Epigenetics Participants  Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Serum Creatinine, mg/dL 460 2.95% 0.44-3.64 0.89 (0.29) 1008 0.00% 0.42-2.98 0.94 (0.3) 0.69 

CRP, mg/L 347 26.79% 0.21-29.9 5.48 (5.8) 971 3.67% 0.21-29.9 6.05 (6.77) 0.37 

ln (CRP+1) 347 26.79% 0.08-1.49 0.68 (0.33) 971 3.67% 0.08-1.49 0.7 (0.34) 0.87 

Homocysteine, µmol/L 430 9.28% 4.5-25.2 9.38 (2.97) 1002 0.60% 4.7-31 10.57 (3.59) 7.1E-03 

ln (Hycs+1) 430 9.28% 1.7-3.27 2.3 (0.26) 1002 0.60% 1.74-3.47 2.41 (0.28) 0.41 

Fibrinogen, mg/dL 440 7.17% 123-684 362.44 (88.37) 1007 0.10% 120-680 369.35 (81) 1.6E-03 

ICAM, ng/mL 199 58.02% 101-584 296.97 (83.09) 578 42.66% 17-625 275.38 (80.82) 3.2E-16 

IL-6, pg/mL 241 49.16% 1.92-29.78 8.71 (5.06) 856 15.08% 1.42-36.45 9.09 (5.31) 0.54 

ln (IL-6+1) 245 48.31% 0.46-1.58 0.95 (0.22) 878 12.90% 0.38-1.58 0.97 (0.22) 0.86 

IL-18, pg/mL 240 49.37% 6.14-235.97 72.17 (38.66) 863 14.38% 1.86-252.42 69.92 (39.97) 0.19 

ln (IL-18+1) 241 49.16% 0.85-2.49 1.81 (0.23) 872 13.49% 0.84-2.49 1.8 (0.25) 0.92 

MPO, ng/mL 193 59.28% 11.74-141.47 47.43 (27.67) 954 5.36% 4-160.58 40.26 (25.04) 5.1E-07 

ln (MPO+1) 196 58.65% 1.1-2.22 1.63 (0.23) 968 3.97% 0.7-2.22 1.56 (0.24) 0.60 

MCP1, pg/mL 205 56.75% 247.44-2124.82 970.81 (319.89) 835 17.16% 159.81-2704.78 1053.43 (369.78) 2.3E-49 

ln (MCP+1) 205 56.75% 2.4-3.33 2.96 (0.15) 849 15.77% 2.46-3.49 3.01 (0.16) 0.69 

Resistin, ng/mL 312 34.18% 1-12.13 3.77 (1.96) 895 11.21% 1-12.32 4.07 (2.03) 0.40 

ln (Resistin+1) 315 33.54% 0.3-1.2 0.65 (0.18) 902 10.52% 0.3-1.2 0.68 (0.17) 0.798 

SAA, µg/mL 297 37.34% 2.35-146 26.75 (28.98) 731 27.48% 2.35-146 32.94 (30.88) 2.0E-05 

ln (SAA+1) 297 37.34% 0.53-2.17 1.27 (0.39) 731 27.48% 0.53-2.17 1.38 (0.38) 0.51 

TNFR-1, pg/mL 219 53.80% 102.78-3310.18 1113.11 (562.23) 872 13.49% 19.89-3844.07 1185.29 (546.83) 1.3E-27 

ln (TNFR1+1) 217 54.22% 2.15-3.52 3 (0.21) 882 12.50% 2.17-3.68 3.04 (0.22) 0.76 

TNFR-2, pg/mL 240 49.37% 388.3-4998.98 1751.03 (649.43) 849 15.77% 286.83-5333.39 1950.04 (831.08) 4.8E-117 

ln (TNFR2+1) 241 49.16% 2.59-3.8 3.22 (0.16) 854 15.28% 2.59-3.8 3.26 (0.17) 0.70 
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C) Categorical variables 

 

 Non-Epigenetics Participants Epigenetics Participants 

  Count Total % of Total Count Total % of Total 

Female 335 474 70.68% 715 1,008 70.93% 

Hypertensive 344 474 72.57% 833 1,008 82.64% 

Has Diabetes 128 474 27.00% 308 1,008 30.56% 

Ever Smoker 174 474 36.71% 421 1,008 41.77% 

 

 

 

 

 

 

  



73 

 

Supplementary Table 4. List of probes used to standardize methylated and 

unmethylated signals. 

 

Red Channel Probes Green Channel Probes 

EXTENSION 1190050 BISULFITE CONVERSION 4670278 

EXTENSION 360446 BISULFITE CONVERSION 4670484 

NON-POLYMORPHIC 1740025 BISULFITE CONVERSION 5290048 

STAINING 4200736 EXTENSION 1190050 

STAINING 4570020 EXTENSION 360446 

 EXTENSION 520537 

 NON-POLYMORPHIC 1740025 

 STAINING 5340168 
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Supplementary Table 5.  Sibship sizes in GENOA Epigenetic population. 

 

10 1 10 

9 0 0 

8 0 0 

7 1 7 

6 4 24 

5 7 35 

4 31 124 

3 71 213 

2 181 362 

1 197 197 

 

Average sibship size: 2.6

Sibship Size Sibship Count Number of Participants 

TOTAL: 296 sibships 

197 singletons 

972 
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Supplementary Figure 1.  Sib-Sib plots of a 6 CpG sites with significant (p<0.05) heritabilities.  A) 2 sites with low h
2
; B) 2 sites 

with medium h
2
; C) 2 sites with high h

2
 (h

2
=1) 

 

 

A) Sites with low heritability 
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B) Sites with medium heritability 
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C) Sites with high heritability = 1 
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Chapter IV.  Predicting Healthy and Unhealthy Aging with Epigenetic and 

Inflammatory Biomarkers 

Introduction 

Chronic diseases, such as cardiovascular diseases, chronic kidney disease, and 

diabetes, have long been considered as diseases of older age.  Due to improved and 

increased health care technologies and pharmaceuticals, the United States population of 

senior citizens is projected to increase by 135.4% between 2000 and 2050, creating a 

larger proportion of the population suffering from chronic diseases and, thus, in need of 

health care services and long-term caregiving.(1)  Moreover, increases in sedentary 

lifestyle, decreases in physical activity, and increases in caloric consumption have 

become more prevalent throughout the second half of the 20
th

 Century and into the 21
st
 

Century, and represent a kind of unhealthy aging that will have longer term effects on 

individual and population health.  For example, the demographics of the population 

suffering from chronic diseases are expanding to include younger and younger age 

groups.(125)  Chronic diseases are among the leading causes of morbidity and mortality 

in the United States,(3) and place a substantial burden on activities of daily living and 

physical function.(126)   Since chronic diseases are typically compounded (e.g. metabolic 

syndrome, hypertensive kidney disease), interventions at the earliest stages of disease 

progression are important in order to stop and possibly reverse the damage before it 

complicates physical function and quality of life.   
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Over the last several decades, numerous epidemiological studies have been 

conducted to identify the genetic, environmental, and metabolic factors that predict an 

individual’s or population’s risk of chronic diseases such as obesity, hypertension, 

diabetes, and dyslipidemia, which underlie the risk of vascular diseases.(6-11)  These 

epidemiological studies have identified a wide range of lifestyle factors, anthropometric 

factors, and measures of lipid metabolism, glucose metabolism, blood pressure, and 

inflammation that now constitute our best predictors of future disease with advancing 

age.(12, 13)  Since many common chronic diseases share a myriad of age-related risk 

factors, clinical measurements of these risk factors, such as blood pressure, body mass 

index (BMI), and cholesterol, may represent a way to assess the body’s biological age 

(with respect to chronic disease outcomes).  The difference between a person’s biological 

age and their chronological age could then be used to assess their level of healthy or 

unhealthy aging. For instance, using chronic disease risk factors to estimate biological 

age for an individual may be of clinical importance to guide the direction and extent of 

treatment regimes in order to manage an individual’s chronic disease risk. 

Beyond traditional risk factors, novel biomarkers have been implicated in chronic 

disease and aging processes.  Biomarkers of inflammation have been found to be 

associated with many common chronic diseases (e.g. Alzheimer’s disease, cardiovascular 

disease, type 2 diabetes), and may be telltale signs of preclinical stages of these 

diseases.(46, 48)  Further, epigenetics is known as a potential mediator of age and gene 

expression,(40, 87) that may be specifically involved in aging processes through 

pathways of chronic disease and inflammation.(39, 41, 63-65)  Utilizing inflammatory 

markers and epigenetic markers of DNA methylation as biomarkers of preclinical 
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disease, we may be able to boost the efficacy of a predictive equation for biological age 

in order to ascertain the origins of healthy and unhealthy aging processes.   

This study will use data from a longitudinal study of African American sibships 

from the Genetic Epidemiology Network of Arteriopathy (GENOA) to accomplish three 

goals: 1) estimate biological age using traditional chronic disease risk factors, and 

compare it to chronological age, 2) estimate the change in these traits as measures of 

healthy and unhealthy aging, and 3) investigate novel epigenetic and inflammatory 

predictors of aging processes.   

Methods 

Sample  

The Genetic Epidemiology Network of Arteriopathy (GENOA) study is a 

community-based study investigating the genetics of hypertension and its arteriosclerotic 

complications in non-Hispanic whites from Rochester, MN and African-Americans from 

Jackson, MS.(72)  In the current study, we investigated the capability of predicting aging 

using DNA methylation in GENOA African-Americans.  African-American sibships 

were recruited such that 2 siblings were diagnosed with primary hypertension before the 

age of 60 years, while other siblings within the sibship were invited to participate 

independent of hypertension status (N=1,854).  The initial examination (Phase I: 1996-

1999) included standardized interviews concerning prescription drug usage, cigarette 

smoking, physical activity, history of hypertension, diabetes, and cardiovascular disease 

events; physical examination for blood pressure, height, weight, and waist and hip 

circumferences; and fasting blood samples for creatinine, total cholesterol, high-density 
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lipoprotein (HDL)-cholesterol, triglycerides, glucose, and insulin.  Further, systolic and 

diastolic blood pressures (SBP and DBP) were adjusted for antihypertensive medication 

usage by adding 10 mm Hg to SBP (represented as adj. SBP) and 5 mm Hg to DBP 

(represented as adj. DBP) in order to more closely represent blood pressures as they 

would be without use of BP-lowering medications.  Pulse pressure (PP) was calculated as 

the difference between SBP and DBP, and adjusted PP was the difference between adj. 

SBP and adj. DBP.  For statistical purposes, each continuous variable was assessed for its 

approximate normality by examining histograms and estimating skewness and kurtosis.  

If the variable distribution is heavily skewed, natural log transformation of the variable 

plus a constant is made, as ln(variable+1).  For a list of variables and their 

transformations, see Supplementary Table 7. 

The second examination (Phase II: 2000-2004) included 1,482 participants 

returning from Phase I, and included re-measurement of interview, physical examination, 

and blood characteristics, as well as additional measurements of arteriosclerotic target 

organ damage, including heart, kidney and peripheral artery traits. DNA methylation was 

quantified on 1,008 Phase II participants using stored blood samples collected during the 

second examination.  (Comparisons between Phase II individuals within and outside of 

the DNA methylation study are available in Supplementary Table 6).  The third 

examination (Phase III: 2008-2011) included 752 African-American Phase II participants, 

and included re-measurement of interview, physical examination, and fasting blood 

characteristics from Phases I and II, as well as measurements of cognition and physical 

function, and coronary artery calcification (computed tomography).  Written informed 

consent was obtained from all subjects and approval was granted by participating 
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Institutional Review Boards.  Complete information on the GENOA study population and 

sample measurements can be found detailed in Appendix 3. 

Measurement of DNA methylation 

Samples were prepared and DNA methylation was measured according to 

previously published methods (73) which are summarized as follows.  For comprehensive 

information on these measurements, refer to Appendix 4. 

Sample Preparation and Methylation Assay.  DNA was isolated from peripheral 

blood leukocytes from GENOA Phase II stored samples, and bisulfite converted with the 

EZ DNA Methylation Gold Kit (Zymo Research, Orange CA).  Bisulfite-converted DNA 

samples were whole-genome amplified, enzymatically fragmented, and purified, then 

hybridized to Illumina Infinium HumanMethylation27K BeadChips, which contained 

locus-specific DNA oligomers and a set of 56 control probes. The array was then 

fluorescently stained, scanned using the Illumina BeadXpress reader, and assessed for 

fluorescence intensities across the methylated and unmethylated bead types at 27,578 

CpG sites.  

Data processing and methylation quantification: At each CpG site, fluorescent 

signals were measured from the site-specific M (methlyated) and U (unmethylated) bead 

types. The raw fluorescence data from the scanner was processed using Illumina 

BeadStudio software. To reduce batch and chip effects, the correlation structure among 

all 56 control probes was evaluated within channel to identify the most parsimonious 

subset of probes that explained the maximum amount of batch and chip variation across 

samples (5 probes in the red channel and 8 probes in the green channel; Supplementary 
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Table 8). Quality control standards were employed by linearly regressing the 13 selected 

probes onto the intensity signals from the methylated and unmethylated bead types 

separately across each CpG site.    

For each individual and across every CpG site, the M-Value was calculated from 

the M and U values as a continuous measure of methylation.  The M-Value is a 

commonly used measurement in microarray analysis that was more recently adapted for 

use in DNA methylation array data due to its ability to equalize the variance across the 

CpG sites.(74, 75)  The M-Value for each individual i at a single site, k, is calculated as: 

M-Valueik = log2[(max(Mik,0)  + 1) / ( max(Uik,0) + 1)] , where a constant is added to 

prevent large-scale changes caused by small intensity estimation errors.(75)  While many 

studies using the Illumina Infinium HumanMethylation27K array present results of the 

Beta Value, which are continuous variables between 0 and 1 that are calculated from the 

measured M and U intensities and represent the percent methylation at a particular CpG 

site within an individual, we will present results of the M-Value since we feel that it has 

more desirable statistical properties which allow for more precise conformation to 

modeling assumptions.  The relationship between Beta and M-Values represents a logit 

transformation, where M-Valueik = log2 [Beta Valueik / ( 1 - Beta Valueik)].  

Unmethylated M-Values are considered to be < -2.0, methylated M-Values are > +2.0, 

and semi-methylated M-Values are between -2 and +2.  

Before statistical analysis, samples were checked for data quality.  From the 1,008 

study participants, 7 individuals were removed due to poor bisulfite conversion control 

efficiency, measured by bisulfite conversion control intensity of < 4,000.  An additional 

29 individuals were removed from the analysis due to extreme control probe values, 
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assessed as having at least one control probe with a value of greater than 4 standard 

deviations from its mean value.  This resulted in a total sample size of 972 individuals.   

For this study, we analyzed only autosomal CpG sites.  A total of 58 CpG  sites 

were removed from the analysis because they were found to be multimodal based on the 

Dip Test proposed by Hartigan and Hartigan (76) using a cut-off of p<0.001 on the signal 

intensities of the methylated and/or unmethylated bead types, which clearly violated the 

statistical modeling assumptions.  This resulted in a total number of 26,428 CpG sites 

included in our analysis.  Finally, 2,984 non-specific binding probes and 908 

polymorphic probes overlapping with single nucleotide polymorphisms (SNPs) (77) were 

identified and denoted in the result tables. Though these sites were not removed from the 

analysis, we have interpreted the results from these sites with caution.  As a final method 

of quality control, DNA methylation values greater than ±4 standard deviation from each 

M-Value’s mean were removed from each of the 26,428 CpG sites.   

Measurement of Inflammatory Biomarkers Measurement 

Twelve protein markers of vascular disease were measured in either plasma or 

serum from Phase II blood samples, using commercially available solid-phase 

immunoassays and immunoturbidometric assays.(127, 128)  The following nine markers 

were measured in plasma: fibrinogen, serum amyloid A (SAA), interleukin 6 (IL6), 

interleukin 18 (IL18), tumor necrosis factors 1 and 2 (TNFR1 and TNFR2), intercellular 

adhesion molecule (ICAM),  monocyte chemotactic protein-1 (MCP1), and resistin.  The 

three markers measured in serum were C-reactive protein (CRP), myeloperoxidase 

(MPO), and homocysteine (Hycs).  Additional information on biomarker assays, 

including precision, accuracy, stability, and methods of quality control have been 
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previously described,(128) , and further information on these methods may be found in 

Appendix 2. 

Statistical Analyses 

Building predictive models for age using traditional chronic disease risk factors.  

Using the nlme package in the statistical package R,(78) a stepwise regression 

approach using linear mixed modeling was used to select the model that best predicted 

age of GENOA Phase I participants using traditional chronic disease risk factors, listed in 

Table 8.  This modeling schema can be found pictorially in Supplementary Figure 2, and 

is expressed as Ageijk = 0 +∑ k· RFijk +  W0jk + ijk such that RF is the k
th

 risk factor, 

higher order term of a risk factor, or interaction between two risk factors of the i
th

 

individual from the j
th

 sibship, W is the random effect for each sibship, and  is the error. 

Traditional chronic disease risk factors in Phase I were evaluated for potential 

collinearity (correlations available in Supplementary Table 9). For pairs of variables with 

high correlations (r > 0.8 or r < -0.8) we excluded the second variable from further 

analysis if the first variable was already in the regression model.  

To begin the traditional stepwise regression method using linear mixed modeling 

with sibships as the random effect, we started with an empty model in which the outcome 

was Phase I Age.  All traditional risk factors were available in a pool of available 

variables, and a univariate regression between age and each variable was performed.  The 

variable with the lowest regression coefficient p-value was added to the model.  After a 

variable was added to the model, it was removed from the pool of available variables, and 

the next higher order term of that variable was added into the pool.  Also added into the 
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pool of available variables were the two-way interaction terms for the newly added 

variable and any variable already expressed as a predictor in the current model.  Then, 

each of the variables within the pool was examined as an addition to the currently 

selected model to identify which variable had the most significant p-value.  After each 

new variable was added to the model, the p-values of the regression terms were re-

examined in the new model.  If any previously added variable within the model had a p-

value > 0.1, that variable was removed from the model and returned to the pool of 

available variables, as was any interaction term with that variable.  

At each step of the stepwise regression, the Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), and LR R
2
 were recorded.  Stepwise regression 

was halted after no further variables could be added while retaining p<0.10.  By using 

AIC and BIC in parallel, we selected the final model that best described the data (AIC) 

and best described the true model that generated the observed data (BIC)(129) with the 

fewest number of variables.  The final best-fitting model was chosen to have the lowest 

BIC of all models evaluated, while retaining a very low AIC, albeit not the lowest of all 

the models.  The final model contained fewer predictors than the model with the absolute 

lowest AIC.  Information about all steps calculated during stepwise regression can be 

found in Error! Reference source not found..  

Measures of Healthy Biological Age.  

When the difference (Δ) between chronological (actual) age and biological 

(predicted) age was calculated, a positive Δ value indicated healthy biological age, 

whereas a negative Δ value indicated an unhealthy biological age.  Using the Phase I 

(baseline, N=1,854) data in GENOA, the stepwise regression method outlined above was 
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used to determine the risk factors and their estimated regression relationship with age (as 

the outcome), which was then applied to Phase II epigenetic participants (N=972) and 

epigenetics participants who were followed to Phase III (N=484).  The average within-

family age difference between Phases I and the Phase being predicted was also calculated 

and added to the predicted age to maintain family effects in the predicted biological age.  

For each GENOA Phase of data collection, the residual between actual and predicted age 

was calculated (Δ1, Δ2, or Δ3).  Positive measures of Δ represent healthiness at that time 

point, while negative measures of Δ represent unhealthiness.  For example, if an 

individual were actually 40 years old, but was predicted as younger than their actual age, 

say 30 years, then Δ = 40-30 = 10 years younger, biologically.  

Measures of Healthy Biological Aging.  

The longitudinal nature of the GENOA study also allowed us to examine changes 

in the measurement of biological age relative to changes in chronological age (ζ) to 

estimate healthy or unhealthy aging.  Given three phases of data collection, we could 

estimate two measures of aging.  For example, the changes in predicted age relative to 

changes in chronological age between Phase I and Phase II is ζ1= Δ2 – Δ1.  Similarly, for 

the time period of Phase II to Phase III, ζ2= Δ3 – Δ2 =  (Phase III Chronological Age – 

Phase II Chronological Age) – (Phase III Predicted Age – Phase II Predicted Age). 

A value of ζ1 is positive, indicating unhealthy aging, under three conditions: if the 

latter time point exhibits health (Δ2 > 0) and either 1) the earlier time point also exhibits 

health, but is closer to 0 (less healthy) than the latter time point (Δ2 > Δ1 > 0), or 2) the 

earlier time point is unhealthy, such that Δ2 > 0 > Δ1, or 3) the latter time point is 

unhealthy, but not as unhealthy as the earlier time point (0 > Δ2 > Δ1).  Similarly, a value 
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of ζ1 is negative, indicating healthy aging, under three conditions: if the latter time point 

is unhealthy (Δ2 < 0) and either 1) the earlier time point also unhealthiness, but is closer 

to 0 (healthier) than the latter time point (Δ2 < Δ1 < 0), or 2) the earlier time point is 

healthy and the latter time point is unhealthy, such that Δ2 < 0 < Δ1, or 3) the latter time 

point is healthy, but not as healthy as the earlier time point (0 < Δ2 < Δ1).  The same 

lemmas exist when describing ζ2. 

Build the best predictive models for each of ζ1 and ζ2 with measures of inflammation.  

Since one of the main goals of this study is to predict healthy aging, we used a 

similar stepwise regression technique outlined above to develop multivariable models 

predicting each of ζ1 and ζ2 using 12 measures of inflammation.  For this modeling 

schema, each of the measures of healthy aging, ζ1 and ζ2, were adjusted by its baseline 

measure of health (Δ1 or Δ2, respectively on the model), then 12 measures of 

inflammation were added to the available in the variable pool.  This model can be written 

as: ζ1ijk = 0 +∑ k· Bijk +  W0jk + ijk such that B is the k
th

 inflammatory biomarker, higher 

order term of an inflammatory biomarker, or interaction between two inflammatory 

biomarkers of the i
th

 individual from the j
th

 sibship, W is the random effect for each 

sibship, and  is the error, and is written similarly for ζ2. 

Build the best predictive models for each of ζ1 and ζ2 with measures of epigenetics.  

In our previous studies,(103) we identified 2,095 DNA methylation sites that were 

significantly associated with age (after Bonferroni correction).  To reduce multiple testing 

burden, we only considered these 2,095 sites as potential predictors of the Δs and ζs.  

Using univariate linear mixed models that allow us to take into account sibship structure, 

we identified the CpG sites (Bonferroni corrected p-values = 2.71x10
-5

) that were 
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associated with Δ1, Δ2, and Δ3 such that Δ1ijk = 0 + 1 Eijk +  W0jk + ijk such that E is the 

k
th

 CpG site M-Value of the i
th

 individual from the j
th

 sibship, W is the random effect for 

each sibship, and  is the error, and is written similarly for Δ2 and Δ3.  Then, only sites 

that were significant (after Bonferroni correction) for Δ1 and Δ2 were tested against ζ1, 

while sites significant (after Bonferroni correction) for Δ2, and Δ3 were tested against ζ2 

written as ζ1ijk = 0 + 1 Eijk +  W0jk + ijk, and similarly for ζ2.  Multivariable models of 

CpG sites were also examined with either ζ1 and ζ2 using similar stepwise regression as 

described previously.   

Further, two sets of principal components were calculated based on (1) the joint 

set of CpG sites that were significant in the associations with Δ1 and Δ2, and (2) the joint 

set of sites that were significant in association with Δ2 and Δ3.  The corresponding top 1, 

5, and 10 principal components were then used as explanatory variables of ζ1 and ζ2 in 

linear mixed multivariable modeling.  Lastly, multivariable models including the 

inflammatory biomarkers modeled in the previous step and CpG sites and PCs were 

investigated to determine the most predictive model for each of ζ1 and ζ2. 

Results 

Description of data. 

The population on which the initial aging model was built was from Phase I 

(1996-1999) of the GENOA sample, and then applied to Phases II (2000-2004) and III 

(2008-2011) samples.  Descriptive statistics are provided in Table 8.  In brief, Phase I 

participants were mostly female (69.1%), and hypertensive (72.6%).  The average age 

increased 13.41 years from Phase I to the Phase III epigenetics participants.  Diabetes 
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prevalence increased from 21.6% to 35.7%, while hypertension prevalence increased 

from 72.6% to 87.4% between Phase I and Phase III epigenetics participants.  Body mass 

index (BMI), systolic blood pressure (SBP), and pulse pressure (PP) also increased over 

time.  Total cholesterol, triglycerides, and low density lipoprotein cholesterol (LDL-C) 

decreased while high-density lipoprotein cholesterol (HDL-C) increased slightly between 

Phases I and III.  Glucose increased slightly, while insulin and serum creatinine (SCr) 

decreased slightly.  

Biological age, healthy age, and healthy aging phenotypes.    

Initially, a model was built using traditional chronic disease risk factors to best 

represent chronological age, so that a biological age could be estimated.  The best fit 

model (Table 10) represented risk factors from all of the major chronic diseases – for 

example, it contained a measure of obesity (BMI), measures of hypertension (pulse 

pressure, adjusted diastolic BP), measures of diabetes (glucose, insulin), measures of 

dyslipidemia (HDL, triglycerides), and a measure of chronic kidney disease (serum 

creatinine), as well as interaction terms (diastolic BP and BMI, diastolic BP and serum 

creatinine, pulse pressure and glucose), and higher order terms (pulse pressure squared, 

diastolic BP squared, serum creatinine squared, and ln glucose squared).  The likelihood 

ratio (LR) R
2
 for the model was 0.515.   

The regression model from Phase I was applied to data from Phases II and III, 

with a family-based addition to each of the intercept terms equal to the average within-

family age difference between the Phase being calculated and Phase I.  The mean average 

within-family age difference between Phases I and II was 4.66, and was 11.07 years 

between Phases I and III.  Biological age ranged from 26.83 to 80.91 (mean = 58.19), 
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41.17 to 91.29 (mean = 66.08), and 48.27 to 92.85 (mean = 74.14) in Phases I, II, and III, 

respectively.  The difference between chronological and biological age ranged 

from -15.79 to 15.15 (mean = 0), -12.76 to 19.64 (mean = 0.16), and -18.03 to 16.84 

(mean = -2.52) for Δ1, Δ2, and Δ3, respectively, and ranges of healthy aging were -15.37 

to 22.57 (mean = -0.39), and -15.45 to 14.04 (mean = -2.25) for ζ1 and ζ2, respectively.  

Healthy aging between Phases I and II had a heritability of 0.43, even after adjusting for 

Phase I age, and healthy aging between Phases II and III had a heritability of 0.30, even 

after adjusting for Phase II age.  The distributions of chronological age, biological age 

and residuals across all three GENOA phases, and ζ1 and ζ2 are listed in Supplementary 

Table 11.   

Plots of chronological versus biological age for all three Phases are presented in 

Supplementary Figure 3.  In brief, the proportion of variation in chronological age 

explained by biological age was 80.3% in Phase I, 58.1% in Phase II, and 56.3% in Phase 

III.  It can be noted that those in the youngest age groups (chronological age < 40) were 

predominantly being predicted as older than their actual age, and those in the oldest age 

groups (chronological age > 70) were being predicted as younger than their actual age.  

Further, plots of the measure of health, Δ, for each participant at Phase I vs. Phase II 

(Supplementary Figure 4) show that 364 individuals (38.9%) have positive values at both 

time points indicating they exhibit a healthier than expected age at both time points, 307 

individuals (32.8%) have negative values at both time points indicating they exhibit a less 

healthy than expected age at both time points, 104 individuals (11.1%) were unhealthy at 

Phase I and healthy at Phase II, and 161 individuals (17.2%) were healthy at Phase I and 

unhealthy at Phase II.  A paired t-test indicated that there is a significant difference in 
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healthy age at Phase I versus II (Δ1 vs. Δ2, p=4.42x10
-3

).  Evaluating individuals at Phase 

II and Phase III, 69 (20.0%) individuals had positive Δs (healthy) at both time points, 156 

individuals (45.2%) were had negative Δs (unhealthy) at both time points, 27 individuals 

(7.8%) were unhealthy at Phase II and then healthy at Phase III, and 93 individuals 

(27.0%) were healthy at Phase II and unhealthy at Phase III.  A paired t-test indicated that 

there is a significant difference in healthy age at Phase II versus III (Δ2 vs. Δ3, p=2.96x10
-

19
).  Finally, when examining the difference in healthy aging over the two time periods 

(Phase I to II and Phase II to III), in Supplementary Figure 5, we see that 124 (35.6%) 

experienced healthy aging throughout both time periods, 20 (5.8%) experienced 

unhealthy aging throughout both time periods, 80 (23.2%) experienced healthy aging 

from Phases I to II and unhealthy aging between Phases II to III, and 121 (35.1%) 

experienced unhealthy aging between Phases I and II followed by healthy aging between 

Phases II and III.  A paired t-test indicated that there is a significant difference in healthy 

aging between Phases I and II versus between Phases II and III (ζ1 vs. ζ2, p=3.18x10
-5

).   

Explaining Healthy Aging with Inflammatory Markers.   

There were three inflammatory markers that were significant (with p-values < 

0.10) in predicting the period of aging between Phases I and II in GENOA (ζ1).  

Fibrinogen, ln (TNFR1+1), and ln (Hycs+1) were able to explain an additional 0.4% of 

the variation in ζ1 beyond that of health at Phase I (Δ1), which was already able to explain 

11.5% of the variation in ζ1.  Aging over the period between Phases II and III in the 

GENOA population (ζ2) only was significantly predicted (at p<0.10) by ln (MCP1+1) 

and ln (MCP1+1)
2
.  These variables were able to explain an additional 3.8% of the 

variation in ζ2 beyond the health of individuals at Phase II (Δ2), which already explained 



93 

 

22.0% of the variation in ζ2.  Thus, for each of ζ1 and ζ2, there is only a small amount of 

additional variation explained by inflammatory markers on top of health status at the 

period’s baseline (see Table 11). 

Explaining Healthy Aging with DNA Methylation Markers.   

Of the 2,095 CpG sites that were significantly associated with age (at Bonferroni 

corrected α=0.05, or 0.05/26,428), 244 were significant with Δ1, 147 were significantly 

associated with Δ2, and 6 were significantly associated with Δ3 at p< 2.37x10
-5

 

(Bonferroni corrected α=0.05, or 0.05/2,095).  Among the 244 sites significantly 

associated with Δ1 or Δ2 (where 94 sites were significant with both Δ1 and Δ2), 3 CpG 

sites were significantly associated with ζ1 at p< 2.05x10
-4

 (Bonferroni corrected α=0.05, 

or 0.05/244).  Among the 150 sites significant with Δ2 or Δ3 (where 3 sites were 

significantly associated with both Δ2 and Δ3), 7 CpG sites were significantly associated 

with ζ2 at p< 3.33x10
-4

 (Bonferroni corrected α=0.05, or 0.05/150).  Figure 6 contains 

information about the number of sites that were significant after regression on age, Δ1, 

Δ2, Δ3, ζ1, and ζ2.  Descriptions of the 3 CpG sites significantly associated with ζ1, and 7 

sites significantly associated with ζ2 are listed in Table 12.   

Principal components (PCs) were estimated using the 244 sites significant with 

either Δ1 and Δ2, and the top 10 PCs were modeled univariately, and in a multivariable 

model against ζ1.  The top 5 of these PCs were able to explain 56.3% of the variation in 

all 244 sites, and the top 10 PCs were able to explain 62.2% of the variation in all 244 

sites.  The top 5 principal components were able to explain an additional 2.2% of the 

variation in ζ1 beyond that explained by the health of individuals at Phase I (Δ1).  The top 



94 

 

10 PCs, together, were able to explain an additional 3.0% of the variation in ζ1 beyond 

that explained by Δ2 (Table 13, A). 

A second set of PCs was estimated on the 150 sites significant with either Δ2 and 

Δ3, and the top 5 PCs were able to explain 51.0% of the variation in those 150 sites, while 

the top 10 were able to explain 59.8% of the variation.  When modeled in a multivariable 

model to explain ζ2, the top 5 PCs were able to explain an additional 4.8% of the 

variation in ζ2 beyond that explained by health of individuals at Phase II (Δ2), and the top 

10 PCs were able to explain an additional 6.1% of the variation in ζ2 beyond that 

explained by health of individuals at Phase II (Δ2) (Table 13, B).  To note, when 

modeling PC5 against ζ2 in a univariate model, the model was not able to converge. 

Explaining Healthy Aging with Inflammatory and DNA Methylation Markers.   

Given what our previous findings of (1) inflammatory markers and (2) CpG sites 

that best predicted ζ1 and ζ2, we then tried to further predict healthy aging over the time 

periods of Phase I to II (ζ1) and Phase II to III (ζ2) using these sets of novel biomarkers 

collectively.  We found that the best predictive model for ζ1 added 2 CpG sites to the 

model with the inflammatory biomarkers fibrinogen, ln(TNFR1+1) and ln(Hycs+1), and 

health of individuals at Phase I (Δ1).  The two significant CpG sites (p<0.10) within the 

model were cg25494227 and cg04474832 which are within the genes C12orf59 and 

ABHD14A, respectively.  These two CpG sites were able to explain an additional 4.64% 

of the variation in ζ1 above the model with the three inflammatory biomarkers, and the 

model with the 3 inflammatory biomarkers and 2 CpG sites was able to explain an 

additional 5.06% of the variation in ζ1 than the model with only Δ1.  The final model for 
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ζ1 is represented below in Table 14, with stepwise selection steps available in 

Supplementary Table 12 A. 

The best fit model for ζ2 contained the inflammatory biomarkers, ln (MCP1+1) 

and ln (MCP1+1)
2
, as well as 3 of the 7 CpG sites (cg05501357, cg02533173, and 

cg16005443) previously found to be significant for ζ2, an interaction term between 

ln(MCP1+1) and cg05501357, one of the PCs (PC2) estimated on the 150 CpG sites that 

were significant after Bonferroni correction with Δ2 and Δ3,  and the health of individuals 

at Phase II (Δ2).  These DNA methylation and inflammatory markers were able to explain 

an additional 14.5% of the variation in ζ2 beyond that explained by the health of 

individuals at Phase II (Δ2).  Further, adding the 3 CpG sites, PC2, and the interaction 

term to these inflammatory markers was able to explain an additional 10.6% of the 

variation in ζ2.  The final model for ζ2 is represented in Table 15, with model selection 

steps available in Supplementary Table 12 B. 

Discussion 

Healthy aging is not a simple concept to measure.  Other investigators have 

categorized healthy aging by using self-reported measures of disease status, disability, 

physical function, and cognitive function, as in the Health and Retirement Study.(130)  In 

the study presented here, we develop continuously distributed representations of healthy 

aging using clinical measurements of chronic disease risk factors in order to maximize 

our ability to identify new predictors of aging.  Further, as we explore the phenomenon of 

healthy aging within a specific population, rather than attempting to compare it to a 

completely healthy population, we are able to understand healthy aging relative to the 
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overarching aging status of the population average.  Since health status, in general, 

deteriorates throughout older age, comparing an individual’s level of healthy or unhealthy 

aging within its population may allow the segregation of distinct groups that can be 

targeted for greater medical and social interventions.  Thus, in this study, models to 

predict biological age (from which healthy aging was later assessed) in GENOA were 

purposely constructed using Phase I of the population, since this population was the 

baseline community-based sample of African American sibships that have hypertension 

or family history of hypertension. 

Our study found that the correlation between chronological and biological ages 

was relatively high throughout the three phases of measurement.  The R
2
 between 

chronological and biological ages as measured in the GENOA sample was 0.80 at Phase 

I, 0.58 at Phase II, and 0.56 at Phase III.  The decreases in R
2
 between phases is 

explainable by the fact that the initial model to represent healthy aging was constructed 

on the healthier GENOA cohort from Phase I before being applied to Phase II, where 

many more people exhibited signs of chronic disease, and in Phase III where the cohort 

exhibited biases due to survival and morbidity.  Thus, the shift to lower correlations 

between chronological and biological ages after Phase I is likely due to the shift toward 

unhealthiness with age into Phase II, which is expected in this aging population. 

Studies conducted by other research groups relied on some variables not available 

within the course of the GENOA study, which were found to have predictive power in 

their models.  For example, Jee, Jeon, Kim, Kim, Choe, Park and Jin (131) were able to 

attain a predictive capability for chronological age of 42.3% in men and 46.8% in women 

when they employed models using measures of physical function, including physical 
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measures such as vertical jump and cardiopulmonary measures such as forced expiratory 

volume.  Another recent study used hormonal and biochemical signatures to increase 

predictive value of chronological age, such as prostate specific antigen (PSA), 

testosterone, dehydroepiandrosterone sulfate (DHEA-S), total antioxidant status and 

others, which aided in achieving an R
2
 of 0.66 for males and 0.62 for females.(132)  

Though these models indicated lower or similar correlations between chronological and 

biological age to those found within GENOA, future studies may attain a better 

prediction of biological age that is more representative of the holistic aging process if 

measures of physical and cognitive function, hormonal regulation, psychosocial or 

lifestyle factors, and other suggested indicators of healthy aging(133, 134) were 

incorporated.  However, variables representing physical and cognitive function were not 

available within the GENOA cohort at all three phases.   

Healthy and unhealthy aging (ζ) was established as the change across time points 

of the differences between chronological age and biological age (Δ), upon which we were 

then able to examine the predictive capabilities of epigenetic and inflammatory 

biomarkers.  Both the epigenetic and inflammatory markers were measured using Phase 

II samples.  Consequently, they were measured after the aging process from Phase I to 

Phase II was measured, and before the aging process from Phase II to Phase III was 

measured.   

Within the GENOA sample, we found that 3 inflammatory markers, 

homocysteine, TNFR1, and fibrinogen, as well as 2 CpG sites, cg25494227 and 

cg04474832, had statistically significant associations with ζ1, while monocyte 

chemotactic protein-1 significantly predicts ζ2 within the GENOA population.  
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Regression relationships of ln(Hycs+1), ln(TNFR1+1), and fibrinogen as predictors for ζ1 

were positive (Table 14), indicating that as levels of these inflammatory biomarkers 

increased the magnitude of ζ1 also increased, demonstrating a shift toward unhealthier 

aging with increases in these biomarkers. Previous works have shown inconsistent results 

in the association between homocysteine and cardiovascular disease,(135-140) with 

conclusions that homocysteine may be a marker of unhealthy lifestyle and poor dietary 

choices more so than an independent risk factor for cardiovascular disease.(138)  The 

positive association between homocysteine and ζ1 identified in our analysis may actually 

indicate the importance of dietary factors with respect to DNA methylation within aging 

processes.  In brief detail, dietary methyl donors and cofactors carrying 1-carbon units 

enter the methionine pathway, wherein homocysteine is an intermediary amino acid 

formed during the conversion of methionine to cytosine, and methyl groups needed for 

DNA methylation and other biological processes are imminently derived.(141)  Since 

deficiencies in vitamins B6, B12, and folate, can increase blood levels of 

homocysteine(142-145), it is possible that poor dietary choices act within the context of 

DNA methylation to be indicative of inflammatory-related disease processes.  Further 

insight into the relationship between ζ1 and inflammation can be illuminated with respect 

to TNFR-1 and fibrinogen.  TNFR-1 binds TNF-α to cells and mediates activation-

induced cytotoxic effects of T-cells.(146)  TNF-α is central to the inflammatory response, 

as it regulates leukocyte activation, maturation, cytokine and chemokine release, and 

production of reactive oxygen and nitrogen intermediates.(147)  Further, TNF-α may play 

a central role in atherosclerotic processes due to its interaction with leukocytes as well as 

endothelial cells, due to recruitment of activated leukocytes, and adipocytes, due to the 



99 

 

perturbation of lipid metabolism.(147)  Fibrinogen is also known to be central to the 

development and progression of atherosclerotic plaques.(148)  High levels of fibrinogen 

may cause platelet aggregation and increased blood viscosity alterations leading to 

hypercoagulation, which may slow circulation and increase arterial damage.(149)  

Adding two CpG sites (significant at p<0.10) was able to explain an extra 4.6% 

explanatory power to the model predicting ζ1.  The CpG sites were within C12orf59 on 

chromosome 12, and ABHD14A on chromosome 3.  C12orf59 is known to interact with 

ELAVL1 on chromosome 9.(150)  ELAVL1 is a ubiquitous RNA-binding protein that 

promotes translation of mRNAs.  It binds to many proteins known involved in cancer 

phenotypes, such as cell proliferation, increased cell survival, elevated local 

angiogenesis, and metastasis.  It  also promotes expression of pro-inflammatory cytokines 

such as TNF-α and IL6, and its expression is suggested to be involved in rheumatoid 

arthritis, inflammatory bowel disease, asthma, and atherosclerosis.(151)  Expression of 

ABHD14A is suggested to be positively regulated by ZIC1 during cerebellar 

development.(152)  Further, ZIC1 is found to bind to the APOE gene promoter.(153)  

Variants in APOE, of course, are known to be major genetic risk factors for late onset 

Alzheimer’s Disease.(154)  The negative association of CpG sites within these regions 

and ζ1 could imply that aging processes may be related to demethylation of gene regions 

that affect important adverse aging processes such as inflammation and 

neurodegeneration. 

The analysis of key predictors of aging over the time period from Phase II to 

Phase III (ζ2) showed that one inflammatory marker (monocyte chemotactic protein-1), 

3 CpG sites (cg05501357, cg02533173, cg16005443), an interaction between 
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cg05501357 and MCP1, and a principal component (estimated from 150 CpG sites) were 

significant (at p<0.10) in the prediction of healthy aging over this time period.  Monocyte 

chemotactic protein-1 has a unique relationship with ζ2, where its linear term is 

negatively associated, while its squared term is positively associated.  Further, 

ln(MCP1+1) also has a statistically significant interaction with cg05501357, which is 

found in the HIPK3 gene.  MCP1 recruits monocytes to sites of active inflammation, and 

stimulates their maturity into macrophages,(155, 156) and elevated levels of MCP1 has 

been implicated in the role of many disease processes throughout various life stages, 

including insulin resistance and obesity.(157, 158)  Further, MCP1 may play a 

fundamental role in the initiation and progression of atherosclerosis due to its role in 

recruitment of macrophages to vascular lesions,(159, 160) is one of the predominant 

chemokines involved in central nervous system (CNS) inflammatory process, plays a 

large role in bone remodeling, and plays a pivotal role in the genesis of kidney damage 

and renal dysfunction, especially within diabetic nephropathy.(161)  Polymorphisms 

within the gene encoding MCP1 have been found to be associated with increased risk of 

individuals suffering coronary artery disease.(162)    

The three CpG sites found to be significantly associated with ζ2 (p<0.10), 

cg05501357, cg02533173, and cg16005443, are found in genes HIPK3, BRD4, and 

LILRB3, respectively.  Overexpression of HIPK3 may be associated with decreased 

sensitivity to Fas-mediated apoptosis, which has the primary role of regulating immune 

response and tissue-function, including regulating T-cell and B-cell development, 

maturation, and deletion.(163)  BRD4 is known to play a crucial role in maintaining the 

cell cycle.  It has been shown to be involved in cancer, and is thought to co-activate pro-
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inflammatory genes.(164)  LILRB4 is also shown to be involved in immune function 

through encoding  the LIR protein expressed on immune cells on which MHC class I 

molecules bind to inhibit immune response.(165)  Further, to evaluate the importance of 

the PC found significant within this analysis, we used  the Expression Analysis 

Systematic Explorer (EASE) to identify enriched biological pathways(119) within the 

150 CpG sites from which principal components were estimated.   While no significant 

results were found that passed Bonferroni correction, the biological role of neurogenesis 

indicated an EASE score of 0.04.  This indicates the potential relationship of DNA 

methylation and cognitive diseases, such as Alzheimer’s disease, within the scope of the 

aging process.  Previous research has indicated the importance of the APOE ε4 allele 

within Alzheimer’s disease risk,(166) specifically within African Americans,(167) and, 

importantly, the allele falls within a CpG Island that, when hypermethylated, indicates 

higher risk of late-onset Alzheimer’s disease.(168)  Furthermore, hypertension has been 

linked to the manifestations of Alzheimer’s disease and vascular dementia, though the 

pathophysiology of this relationship is not well-understood.(169-173)  This potential 

relationship between hypertension and dementia may explain why the current study of a 

predominantly hypertensive population (82.5% in Phase II, 87.3% in Phase III) has 

uncovered a set of DNA methylation markers within genes that are over-representative of 

those with roles in neurogenesis.   

Using CpG sites to predict biological age is a relatively new concept.  A recent 

study by Hannum, et al.(174) was able to predict biological age, and create an “apparent 

methylomic aging rate” (ratio of biological age to chronological age) in a sample of 656 

individuals ranging from 19 to 101 years, using 71 CpG sites from the Illumina 450K 
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platform and clinical measures such as gender, diabetes status, and BMI.  Biological age 

was able to explain 96% of the variation in chronological age in this initial sample.  

Further, they were able to validate their prediction model of age in a secondary sample 

that resulted in an R
2
 of 0.91 between chronological and biological age.  Of the 71 sites 

they found predictive within this model of age, only 7 were measured on the Illumina 

HumanMethylation 27K chip and used within the scope of the GENOA study.  As a 

summary, this set of 7 sites was highly significant (p-value range: 1.20x10
-25

 to    

2.53x10
-15

), agreed on direction of effect with estimates for GENOA age at Phase II, and 

also agreed on direction of effect for all three measures of health estimated in this study 

(Δ1, Δ2, and Δ3) with significant p-values (Δ1: p = 3.34 x10
-15

 to 2.05x10
-5

; Δ2: p = 

4.61x10
-11

 to 4.21x10
-4

; Δ3: p=9.55 x10
-5

 to 0.017).  They also agreed on the direction of 

effect with both ζ1 and ζ2 within GENOA, though the p-values were not all significant 

(ζ1: p = 1.86 x10
-4 

to 0.65; ζ2: p = 5.24 x10
-3 

to 0.78).  Full details on comparison of these 

7 sites across both studies are available in Table 16.   

In order to reduce multiple testing burden, we made the decision to utilize only 

the 2,095 sites that were found to significantly predict age (at Bonferroni-correction for 

α=0.05) as predictors of health (Δ1, Δ2, and Δ3).  We then used the 244 sites significant in 

the associations with Δ1 and/or Δ2 as predictors of healthy aging, ζ1, and the 150 sites 

significant in the associations for  Δ1 and/or Δ2 as predictors of healthy aging, ζ2.  By 

using these smaller sets of sites as potential predictors of health (Δ1, Δ2, and Δ3) and 

healthy aging (ζ1 or ζ2) instead of the entire set of 26,428 CpG sites we increased our 

power to detect associations between variables, but may also have introduced type II 

errors into our study and limited our ability to detect associations that would have 
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otherwise been significant.  The appropriateness of the decision to begin our analysis of 

aging with the reduced number (2,095) CpG sites was discerned within the context of 

additional studies examining heritability in the GENOA cohort.  The confirmation for our 

decision was indicated in that the majority of CpG sites significantly associated with Δ1, 

Δ2, or Δ3 do fall within this set of 2,095 sites, while only some of the significant sites in 

these analyses are not contained within the set of 2,095 sites (191 of 249 (76.7%) sites 

significant for Δ1; 147 of 157 (93.6%) of sites significant for Δ2, and 6 of 11 (54.6%) of 

sites significant for Δ3).  When plotting unadjusted heritability versus the –log(p-value) of 

the associations between 26,428 CpG sites and each of Δ1, Δ2, and Δ3, we see that most 

of the sites significant for age and the Δ of interest are highly heritable (refer to orange 

dots in plots within Figure 7).  Of the 191 CpG sites that are of Bonferroni corrected 

significance of α=0.05 for age and Δ1, the average h
2
 is 0.48, and 174 sites (91.1%) have 

h
2
 > 0.3.  Of the 147 CpG sites that are of Bonferroni corrected significance of p<0.05 for 

age and Δ2, the average h
2
 is 0.51, and 136 sites (92.5%) have h

2
 > 0.3.  Of the 6 CpG 

sites that are of Bonferroni corrected significant fore α=0.05 for age and Δ3, the average 

h
2
 is 0.43, and 4 sites (66.7%) have h

2
 > 0.3 (Figure 7). 

Other studies that have attempted to predict biological age using chronic disease 

risk factors have noted similar relationships between biological and chronological ages as 

within the GENOA study, where the oldest and youngest age groups were under and over 

predicted, respectively, compared to middle age groups that were more accurately 

predicted.(175-177)  While this issue was addressed using exponential and interaction 

terms of traditional chronic disease risk factors in our modeling schema, it was unable to 

be completely resolved.  Thus, it is noted that the best prediction of biological age lies 
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approximately between ages 40 and 75, as is seen in Phase I data in Supplementary 

Figure 3.  This may be in part due to the small sample sizes at the extremes of the 

GENOA data.  When initially predicting biological age, only 85 of the 1,822 participants 

(4.7%) used in this prediction were under age 40, and only 70 (3.8%) were over age 75.  

Further, our prediction model may not hold well into Phase III due to the limited sample 

size that is likely to be biased due to survival and better morbidity status than those from 

Phase II who are not measured in Phase III.  Since Phase III participants are participants 

of earlier phases who aged well enough to remain participants in our study and maintain 

their clinical exam visits, these participants are likely to be healthier than GENOA 

participants who are not measured at Phase III.  Having a sample that is larger and 

includes equal numbers of people within different age strata may aid in the ability to 

predict biological age more precisely across the age spectrum.   

Additionally, GENOA is a unique study that began by the recruitment of 

hypertensive sibships, indicating that chronic diseases processes had already begun in 

many individuals at the beginning of the study and often occurred earlier than within the 

general population.  There may be distinct inflammatory and epigenetic biomarkers 

acting within this cohort that represent the unique cellular aging process over the time 

periods (ζ1 and ζ2).  While it is important to understand the mechanisms of how 

inflammation and DNA methylation work together within the context of healthy and 

unhealthy aging in narrowly defined subpopulations in order to identify the mechanisms 

at play within high risk populations, larger and more generalizable populations are 

needed in order to paint a more complete picture of the interplay between these important 

biomarkers. 
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Use of the GENOA study to examine the explanatory power of inflammatory and 

epigenetic biomarkers as factors in a predictive model for healthy aging is the first of its 

kind of which we are aware.  Though there is still room for better predictive capabilities 

in order to achieve models that can properly assess health factors involved in later life 

aging processes based on current biomarker levels, modeling schema similar to this may 

be useful within the clinic to provide personalized medicine tailored to the individual.  

With the upcoming demographic increase within the senior citizen population, and the 

shift of chronic disease patterns to earlier ages within the United States, understanding 

preclinical symptoms of healthy and unhealthy aging processes will allow for better and 

earlier medical interventions and new therapeutics for those exhibiting signs of unhealthy 

aging.  Thus, identification of biological indicators involved in aging processes, such as 

epigenetic and inflammatory biomarkers, is an important advancement in our predictive 

capability.
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Table 8. Description of traditional chronic disease risk factors in GENOA participants, A) Continuous variables, and B) 

Categorical variables 

A) Continuous variables 

  

Phase 1 Phase 2  

Epigenetics Sample 

Phase 3 
(participants within Phase 2 

Epigenetics sample) 

Variable N Range Mean (SD) N Range Mean (SD) N Range Mean (SD) 

Age, years 1854 21-91 58 (10) 972 39-95 66 (8) 484 47-98 72 (7) 

BMI, kg/m2 1852 14-57 31 (6) 965 16-55 31 (6) 482 15-54 32 (7) 

Systolic BP, mm Hg 1852 80-223 136 (23) 971 79-223 140 (21) 481 88-215 139 (21) 

Diastolic BP, mm Hg 1853 35-126 78 (12) 972 45-121 78 (11) 481 45-116 72 (11) 

Pulse Pressure, mm Hg 1847 19-130 58 (18) 972 26-132 62 (18) 480 22-125 67 (17) 

Systolic BP (Adj), mm Hg** 1852 80-233 142 (24) 971 89-233 148 (231) 481 93-225 147 (21) 

Diastolic BP (Adj), mm Hg** 1854 40-131 81 (13) 972 50-126 82 (11) 481 50-116 76 (11) 

Pulse Pressure (Adj), mm Hg** 1849 19-138 61 (19) 972 26-132 62 (18) 480 27-130 71 (17) 

Total cholesterol, mg/dL 1845 76-385 204 (45) 972 74-355 204 (42) 476 84-308 189 (40) 

Triglycerides, mg/dL 1834 42-498 141 (65) 966 37-376 117 (55) 473 30-319 97 (46) 

ln (triglycerides + 1) 1846 3.8-6.5 4.9 (0.42) 971 3.6-6.3 4.7 (0.44) 476 3.4-6.3 4.5 (0.44) 

HDL cholesterol, mg/dL 1844 23-127 55(17) 968 22-130 58 (17) 476 19-115 57 (17) 

ln (HDL+1) 1850 3.2-5.2 4.0 (0.3) 972 3.1-5.1 4.0 (0.29) 477 3.0-4.9 4.0 (0.29) 

LDL cholesterol, mg/dL 1843 6-290 123 (42) 972 25-272 124 (40) 476 22-236 113 (35) 

Glucose, mg/dL 1830 41-309 109 (41) 961 50-282 110 (34) 470 36-277 109 (31) 

ln (Glucose + 1) 1847 3.7-5.9 4.7 (0.31) 967 3.9-5.8 4.7 (0.26) 473 3.6-5.8 4.7 (0.25) 

Insulin, mU/mL 1831 1-93 12 (12) 969 0-116 10 (13) 465 1-69 10 (9) 

ln (Insulin + 1) 1849 0.6-5.3 2.4 (0.73) 970 0.2-5.0 2.1 (0.75) 475 0.88-4.8 2.3 (0.7) 

Serum creatinine, , mg/dL 1853 0.5-9.4 0.83 (0.37) 961 0.42-2.2 0.92 (0.25) 486 0.48-2.5 0.92 (0.25) 

** If a participant is listed as taking hypertensive medications, 10 mm Hg is added to systolic blood pressure, and 5 mm Hg is added to diastolic blood 

pressure, else recorded blood pressure is used in this variable. 
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B) Categorical variables 

  Phase 1 Phase 2 Phase 3 

Variable 
Count  

(%) 

Count 

(%) 

Count 

(%) 

Female sex 
1,281  

(69%) 

687  

(71%) 

353  

(73%) 

Ever smoker 
784  

(42%) 

266 

 (29%) 

198  

(41%) 

Hypertensive 
1,346  

(73%) 

802  

(83%) 

423  

(87%) 

Diabetic 
400  

(22%) 

298  

(31%) 

173  

(36%) 
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Table 9. Description of inflammatory markers in GENOA participants 

 

 

N Count of 

Outliers 

Count of Missing 

Values 

Range Mean (SD) 

C-Reactive Protein (CRP), mg/L 936 0 36 0.21-29.9 6.0 (6.8) 

Homocysteine (Hycs), µmol/L 964 8 0 4.7-28.7 10.5 (3.5) 

Fibrinogen, mg/dL 971 1 0 120-680 369 (81) 

Intercellular adhesion molecular (ICAM), ng/mL 556 3 413 17-543 274 (77) 

Interleukin-6 (IL6), pg/mL 818 8 146 1.4-29.4 8.8 (4.7) 

Interleukin-18 (IL18), pg/mL 829 4 139 2-215 69 (38) 

Monocyte chemotactic protein-1 (MCP1), pg/mL 804 2 166 160-2,515 1,048 (359) 

Myeloperoxidase (MPO), ng/mL 911 8 53 4-141 40 (23) 

Resistin, ng/mL 859 1 112 1.0-12.2 4.1 (2.0) 

Serum amyloid A (SAA), µg/mL 704 0 268 2-146 33 (31) 

Tumor necrosis factor receptor-1 (TNFRI), pg/mL 840 3 129 112-3,108 1,167 (513) 

Tumor necrosis factor receptor-2 (TNFRII), pg/mL 818 1 153 287-5,170 1,945 (822) 
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Table 10. Predictors of final model of Age with Phase I GENOA Participants 

(N=1,822) 

 Coefficient Value Std. Error DF t-value p-value 

(Intercept) -185.70 32.80 1126 -5.66 1.90E-08 

BMI 0.27 0.15 1126 1.78 7.50E-02 

Adj. Diastolic BP 0.51 0.12 1126 4.15 3.60E-05 

ln (Glucose+1) 60.99 12.70 1126 4.80 1.77E-06 

ln (HDL+1) 3.02 0.64 1126 4.70 2.97E-06 

ln (Insulin+1) -0.87 0.26 1126 -3.30 9.97E-04 

ln (Triglycerides+1) 1.22 0.44 1126 2.78 5.54E-03 

Adj. Pulse Pressure 1.05 0.13 1126 8.25 4.40E-16 

Serum Creatinine 36.47 6.20 1126 5.88 5.46E-09 

Adj. Pulse Pressure* ln (Glucose+1) -0.12 0.03 1126 -4.42 1.10E-05 

Adj. Diastolic BP*BMI 0.00 0.00 1126 -2.43 1.52E-02 

Adj. Diastolic BP*Serum Creatinine -0.19 0.06 1126 -3.11 1.92E-03 

Adj. Diastolic BP
 2
 0.00 0.00 1126 -2.83 4.80E-03 

ln (Glucose+1)
 2
 -5.26 1.27 1126 -4.13 3.87E-05 

Adj. Pulse Pressure 
2 

0.00 0.00 1126 -6.55 8.46E-11 

Serum Creatinine
2
 -6.85 1.85 1126 -3.70 2.28E-04 

 

LR R
2
 for Phase I data = 0.515 

Model built upon 1,822 Phase I participants who had no missing data, out of 1,848 

GENOA Phase I participants 
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Table 11.  Models of (A) ζ1 and (B) ζ2 vs. significant inflammatory biomarkers 

(p<0.10) 

A)  ζ1vs. inflammatory biomarkers 

 

 

 

 

 

 

 

 

 

 

 

LR R
2
 = 11.95% 

N=785 

 

 

 

 

 

B) ζ2 vs. inflammatory biomarkers,  

 

 

 

 

 

 

 

 

 

 

LR R
2
 = 25.84% 

N=289 

 

Variable 

Beta 

Estimate p-value 

Intercept -8.047 1.22E-03 

Δ1 -0.276 2.11E-16 

Fibrinogen 0.00424 1.73E-02 

ln (TNFR1+1) 1.240 6.03E-02 

ln (Homocysteine + 1) 1.056 5.73E-02 

Variable 

Beta 

Estimate p-value 

Intercept 68.144 7.45E-02 

Δ2 -0.448 8.84E-15 

ln (MCP1 + 1)   -44.729 8.06E-02 

ln (MCP1 + 1)
2
 7.025 9.75E-02 
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Figure 6. Counts of significant sites for Age, Delta, and Zeta regressions. 
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Figure 7. Heritability of M-Value (Raw) vs. -log(p-value) of Association between 

26,428 CpG sites and A) Δ1, B) Δ2, and C) Δ3 

 

A) Heritability of M-Value (Raw) vs. -log(p-value) of Association between 26,428 CpG sites and 

Δ1 

 

 Orange dots represent 191 CpG sites significant for Age at Bonferroni corrected p < 

0.05 (1.86x10
-6

) and Δ1 at Bonferroni corrected p<0.05 (2.71x10
-5

) 

 Red vertical line at x=0.3 indicates high heritability to its right and low heritability to 

its left. 

 Blue horizontal line at y=4.57 indicates sites that reached Bonferroni-corrected 

significance above it, and sites that did not reach Bonferroni-corrected significance 

below it. 
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B) Heritability of M-Value (Raw) vs. -log(p-value) of Association between 26,428 CpG sites and 

Δ2   

 
 Orange dots represent 147 CpG sites significant for Age at Bonferroni corrected p 

< 0.05 (1.86x10
-6

) and Δ2 at Bonferroni corrected p<0.05 (2.71x10
-5

) 

 Red vertical line at x=0.3 indicates high heritability to its right and low heritability to 

its left. 

 Blue horizontal line at y=4.57 indicates sites that reached Bonferroni-corrected 

significance above it, and sites that did not reach Bonferroni-corrected significance 

below it. 
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C) Heritability of M-Value (Raw) vs. -log(p-value) of Association between 26,428 CpG sites and 

Δ3   

 

 

 Orange dots represent 6 CpG sites significant for Age at Bonferroni corrected p < 

0.05 (1.86x10
-6

) and Δ3 at Bonferroni corrected p<0.05 (2.71x10
-5

) 

 Red vertical line at x=0.3 indicates high heritability to its right and low heritability to 

its left. 

 Blue horizontal line at y=4.57 indicates sites that reached Bonferroni-corrected 

significance above it, and sites that did not reach Bonferroni-corrected significance 

below it. 
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Table 12.  CpG sites significant (after Bonferroni correction) in association with ζ1 

or ζ2 

 

Outcome CpG Site 

Beta 

Est. 

(CpG) 

p-value 

(CpG) 

Model 

LR R
2
 Chr Gene 

Mean 

M-

Value 

Probe 

Type** Product 

ζ1 cg25494227 -2.35 4.79E-05 1.66% 12 C12orf59 00.77 0 hypothetical 

protein 

LOC120939 

ζ1 cg15538427 -2.28 1.29E-04 1.62% 11 LOC2210

91 

-0.11 0 hypothetical 

protein 

LOC221091 

ζ1 cg04474832 -1.78 1.86E-04 1.32% 3 ABHD14

A 

-1.72 0 abhydrolase 

domain containing 

14A 

ζ2 cg05501357 -2.28 5.31E-05 3.85% 11 HIPK3 -0.80 0 homeodomain 

interacting protein 

kinase 3 

ζ2 cg16360372 -2.78 6.92E-05 3.73% 5 SPINK1 1.70 1 serine protease 

inhibitor; Kazal 

type 1 

ζ2 cg02533173 -4.04 1.46E-04 3.38% 19 BRD4 0.32 0 bromodomain-

containing protein 

4 isoform long 

ζ2 cg08290628 -3.39 1.94E-04 3.25% 15 CORO2B 0.40 0 coronin; actin 

binding protein; 

2B 

ζ2 cg16005443 -2.24 2.27E-04 3.20% 19 LILRB3 -0.90 1 leukocyte 

immunoglobulin-

like receptor; 

subfamily B (with 

TM and ITIM 

domains); member 

3 

ζ2 cg15804973 -2.50 3.01E-04 3.05% 6 MAP3K5 -0.63 0 mitogen-activated 

protein kinase 

kinase kinase 5 

ζ2 cg14123992 -2.93 3.20E-04 3.05% 19 APOE 10.52 0 apolipoprotein E 

precursor 

Model:   ζ1ijk = 0 +  1 Ek +  W0jk  

ζ2ijk = 0 +  1 Ek+  W0jk 

where E is the CpG M-Value for the i
th

 individual in the k
th

 sibship, and W is the random effect for 

each sibship 

Polymorphic and Non-Specific Probes: (Chen, Choufani et al. 2011)  

**  0 = Neither, 1 = Polymorphic 
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Table 13. (A) Association between ζ1 and top 5 and 10 PCs of sites significant with Δ1 

and Δ2 based on M-Value (n=244); (B) Association between ζ2 and top 5 and 10 PCs 

of sites significant with Δ2 and Δ3 based on M-Value (n=150) 

(A) ζ1 and top 5 and 10 PCs 

Model:  ζ1ij = 0 + 1· PCij + 2· Δ1ij + W0j + ij. 

 

 

(B) ζ2 and top 5 and 10 PCs 

Model:  ζ2ij = 0 + 1· PCij + 2· Δ2ij +  W0j + ij. 

  

  Univariate Models Multivariable Model 

PC 

% 

Variation 

Explained 

β(PC) p-value 
R

2
LR 

x100 
β(PC) p-value 

R
2
LR 

x100 

1 34.56 0.04 0.35 0.71 0.05 0.21  

2 12.83 0.28 7.80E-05 2.28 0.30 3.05E-05  

3 3.84 -0.10 0.41 0.69 -0.14 0.25  

4 3.18 0.06 0.66 0.64 0.07 0.59  

5 1.92 -0.20 0.26 0.76 -0.25 0.16 2.81 

6-10 5.90      3.63 

Total 62.24       

  Univariate Models Multivariable Model 

PC 

% 

Variation 

Explained 

β(PC) 
R

2
LR 

x100 
β(PC) 

R
2

LR 

x100 

1 21.83 0.50 9.68E-05 4.57 0.52 5.76E-05  

2 16.59 0.07 0.65 0.76 0.06 0.67  

3 5.15 -0.03 0.92 0.71 -0.0023 0.99  

4 4.54 0.18 0.49 0.82 0.27 0.30  

5 2.92 NA NA NA -0.62 0.08 5.55 

6-10 8.77      6.80 

Total 59.81       
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Table 14.  Best fitting model for ζ1 using inflammatory and DNA methylation 

markers.  A) ζ1 with inflammatory markers and CpG sites  

 

Outcome Predictor Beta Est. p-value LR R2 

ζ1 Intercept -10.04 4.52E-04 16.59% 

Δ1 -0.30 7.80E-17 

Fibrinogen 0.01 2.06E-03 

ln (TNFR1+1) 1.44 0.034 

ln (Hycs + 1) 1.23 0.036 

cg25494227 -2.48 8.27E-04 

cg04474832 -1.29 0.031 

 

N=683 
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Table 15. Best fitting model for  ζ2 using inflammatory and DNA methylation 

markers.  A) ζ2 with inflammatory markers. CpG sites, and PCs 

 

Outcome Predictor Beta Est. p-value LR R2 

ζ2 Intercept 84.91 0.036 36.43% 

Δ2 -0.50 1.22E-15 

ln (MCP1+1) -52.52 0.048 

ln (MCP1+1)
2
 7.49 0.084 

cg05501357 21.24 0.071 

cg02533173 -2.50 0.042 

cg16005443 -1.34 0.041 

 PC2 0.36 0.043  

 ln (MCP1+1)* cg05501357 -8.04 0.041  

N=270 
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Table 16.  Comparison of  GENOA results to 7 CpG sites found significant within the study by Hannum, Guinney, Zhao, 

Zhang, Hughes, Sadda, Klotzle, Bibikova, Fan, Gao, Deconde, Chen, Rajapakse, Friend, Ideker and Zhang (174) 

 

Marker Coef * 

GENOA 

Coef 

(Age) 

GENOA 

p-val 

(Age) 

GENOA 

Coef 

(Δ1) 

GENOA 

p-val 

(Δ1) 

GENOA 

Coef 

(Δ2) 

GENOA 

p-val 

(Δ2) 

GENOA 

Coef 

(Δ3) 

GENOA 

p-val 

(Δ3) 

GENOA 

Coef 

(ζ1) 

GENOA 

p-val 

(ζ1) 

GENOA 

Coef 

(ζ2) 

GENOA 

p-val 

(ζ 2) 

cg05442902 -22.7 -8.51 1.26E-20 -2.46 9.36E-06 -2.79 1.88E-05 -2.24 0.041 -1.02 0.054 -1.39 0.127 

cg04474832 -7.1 -7.75 2.17E-21 -3.01 8.74E-10 -3.80 4.61E-11 -3.73 5.89E-05 -1.78 1.86E-04 -2.17 5.24E-03 

cg19722847 -5.66 -6.19 1.24E-18 -1.80 2.05E-05 -2.55 2.32E-07 -1.97 0.017 -1.23 2.11E-03 -1.40 0.041 

cg09809672 -0.74 -5.27 8.51E-22 -1.85 4.05E-09 -1.30 4.21E-04 -1.37 0.021 -0.14 0.647 -0.55 0.265 

cg22736354 4.42 6.26 1.20E-25 2.79 3.34E-15 2.50 1.63E-09 1.88 7.65E-03 0.70 0.047 0.17 0.775 

cg21296230 8.39 4.65 7.47E-15 2.29 6.55E-10 2.31 1.09E-07 2.88 9.55E-05 0.71 0.046 1.17 0.061 

cg06493994 9.42 5.69 2.53E-15 2.64 3.60E-09 2.28 1.69E-05 3.35 1.75E-04 0.49 0.257 1.62 0.032 

* Coefficient reported by Hannum, Guinney, Zhao, Zhang, Hughes, Sadda, Klotzle, Bibikova, Fan, Gao, Deconde, Chen, Rajapakse, Friend, 

Ideker and Zhang (174) 
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Supplementary Table 6.  Comparison of baseline characteristics of Phase II Non-Epigenetics Participants with Phase II 

Epigenetics Participants.  A) Continuous clinical variables, B) Continuous biomarkers, C) Categorical descriptive variables. 

 

A)  Continuous clinical variables 

 Phase II Non-Epigenetics Participants Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Age, years 474 0.00% 26.41-81.52 56.07 (9.21) 1008 0.00% 39.26-94.74 66.34 (7.6) 6.6E-49 

BMI, kg/m² 472 0.42% 18.1-57.9 32.6 (7.4) 1001 0.69% 16.41-55.09 31.1 (6.09) 0.013 

Systolic BP, mm Hg 473 0.21% 96-208 134.8 (19.3) 1006 0.20% 79-221 139.89 (21.12) 2.2E-06 

Diastolic BP, mm Hg 474 0.00% 53-122 81.57 (10.2) 1008 0.00% 45-121 78.29 (11.01) 2.3E-05 

Pulse Pressure, mm Hg 474 0.00% 19-127 53.41 (15.11) 1006 0.20% 26-127 61.64 (17.72) 6.0E-17 

Adj. Systolic BP, mm Hg (1) 473 0.21% 97-218 142.05 (21.47) 1006 0.20% 89-231 148.15 (22.74) 5.5E-08 

Adj. Diastolic BP, mm Hg (1) 474 0.00% 58-127 85.2 (10.95) 1008 0.00% 50-126 82.42 (11.43) 4.6E-04 

Adj. Pulse Pressure, mm Hg (1) 473 0.21% 24-132 56.89 (15.72) 1004 0.40% 28-132 65.65 (18.28) 2.2E-18 

Total Cholesterol, mg/dL 459 3.16% 72-348.5 197.93 (40.02) 1008 0.00% 73.5-354.5 203.98 (41.95) 7.8E-05 

Triglycerides, mg/dL 454 4.22% 28.5-419.5 111.95 (58.94) 1004 0.40% 37-402.5 117.9 (56.68) 9.8E-04 

ln (Triglycerides+1) 457 3.59% 3.38-6.45 4.62 (0.49) 1007 0.10% 3.64-6.27 4.69 (0.43) 0.69 

HDL-C, mg/dL 457 3.59% 23.8-125.8 55.42 (16.66) 1005 0.30% 21.7-130.35 58.08 (17.48) 7.0E-03 

ln (HDL+1) 460 2.95% 3.21-5.17 4 (0.3) 1008 0.00% 3.12-5.05 4.04 (0.29) 0.75 

LDL-C, mg/dL 459 3.16% 23.6-253.75 121.1 (36.88) 1008 0.00% 24.85-272.1 123.84 (39.58) 0.064 

Glucose, mg/dL 457 3.59% 43.5-296 108.28 (38.68) 998 0.99% 49.5-290 110.56 (34.31) 0.11 

ln (Glucose+1) 457 3.59% 3.8-5.69 4.65 (0.28) 1004 0.40% 3.92-5.82 4.69 (0.27) 0.77 

Insulin, mU/mL 163 65.61% 1.14-52.46 9.34 (8.53) 1005 0.30% 0.22-115.76 10.39 (12.45) 0.30 

ln (Insulin+1) 163 65.61% 0.76-3.98 2.12 (0.62) 1006 0.20% 0.2-5.02 2.12 (0.74) 1.00 

Menopause Age, years (2) 270 43.04% 23-59 42.6 (8.26) 699 30.65% 25-62 43.72 (7.85) 0.14 
 

1 If a participant is listed as taking hypertensive medications, 10 mm Hg is added to systolic blood pressure, and 5 mm Hg is added to diastolic blood pressure, else 

recorded blood pressure is used in this variable. 

2 Menopause age is represented for females only. 
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B)  Measures of inflammation 

 

  Phase II Non-Epigenetics Participants  Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Serum Creatinine, mg/dL 460 2.95% 0.44-3.64 0.89 (0.29) 1008 0.00% 0.42-2.98 0.94 (0.3) 0.69 

CRP, mg/L 347 26.79% 0.21-29.9 5.48 (5.8) 971 3.67% 0.21-29.9 6.05 (6.77) 0.37 

ln (CRP+1) 347 26.79% 0.08-1.49 0.68 (0.33) 971 3.67% 0.08-1.49 0.7 (0.34) 0.87 

Homocysteine, µmol/L 430 9.28% 4.5-25.2 9.38 (2.97) 1002 0.60% 4.7-31 10.57 (3.59) 7.1E-03 

ln (Hycs+1) 430 9.28% 1.7-3.27 2.3 (0.26) 1002 0.60% 1.74-3.47 2.41 (0.28) 0.41 

Fibrinogen, mg/dL 440 7.17% 123-684 362.44 (88.37) 1007 0.10% 120-680 369.35 (81) 1.6E-03 

ICAM, ng/mL 199 58.02% 101-584 296.97 (83.09) 578 42.66% 17-625 275.38 (80.82) 3.2E-16 

IL-6, pg/mL 241 49.16% 1.92-29.78 8.71 (5.06) 856 15.08% 1.42-36.45 9.09 (5.31) 0.54 

ln (IL-6+1) 245 48.31% 0.46-1.58 0.95 (0.22) 878 12.90% 0.38-1.58 0.97 (0.22) 0.86 

IL-18, pg/mL 240 49.37% 6.14-235.97 72.17 (38.66) 863 14.38% 1.86-252.42 69.92 (39.97) 0.19 

ln (IL-18+1) 241 49.16% 0.85-2.49 1.81 (0.23) 872 13.49% 0.84-2.49 1.8 (0.25) 0.92 

MPO, ng/mL 193 59.28% 11.74-141.47 47.43 (27.67) 954 5.36% 4-160.58 40.26 (25.04) 5.1E-07 

ln (MPO+1) 196 58.65% 1.1-2.22 1.63 (0.23) 968 3.97% 0.7-2.22 1.56 (0.24) 0.60 

MCP1, pg/mL 205 56.75% 247.44-2124.82 970.81 (319.89) 835 17.16% 159.81-2704.78 1053.43 (369.78) 2.3E-49 

ln (MCP+1) 205 56.75% 2.4-3.33 2.96 (0.15) 849 15.77% 2.46-3.49 3.01 (0.16) 0.69 

Resistin, ng/mL 312 34.18% 1-12.13 3.77 (1.96) 895 11.21% 1-12.32 4.07 (2.03) 0.40 

ln (Resistin+1) 315 33.54% 0.3-1.2 0.65 (0.18) 902 10.52% 0.3-1.2 0.68 (0.17) 0.798 

SAA, µg/mL 297 37.34% 2.35-146 26.75 (28.98) 731 27.48% 2.35-146 32.94 (30.88) 2.0E-05 

ln (SAA+1) 297 37.34% 0.53-2.17 1.27 (0.39) 731 27.48% 0.53-2.17 1.38 (0.38) 0.51 

TNFR-1, pg/mL 219 53.80% 102.78-3310.18 1113.11 (562.23) 872 13.49% 19.89-3844.07 1185.29 (546.83) 1.3E-27 

ln (TNFR1+1) 217 54.22% 2.15-3.52 3 (0.21) 882 12.50% 2.17-3.68 3.04 (0.22) 0.76 

TNFR-2, pg/mL 240 49.37% 388.3-4998.98 1751.03 (649.43) 849 15.77% 286.83-5333.39 1950.04 (831.08) 4.8E-117 

ln (TNFR2+1) 241 49.16% 2.59-3.8 3.22 (0.16) 854 15.28% 2.59-3.8 3.26 (0.17) 0.70 
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C)  Categorical variables 

 

 Non-Epigenetics Participants Epigenetics Participants 

  Count Total % of Total Count Total % of Total 

Female 335 474 70.68% 715 1,008 70.93% 

Hypertensive 344 474 72.57% 833 1,008 82.64% 

Has Diabetes 128 474 27.00% 308 1,008 30.56% 

Ever Smoker 174 474 36.71% 421 1,008 41.77% 
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Supplementary Table 7.  List of variables and transformations 

 

Age Age years none 

Body Mass Index 

(BMI) 

Obesity kg/m2 
               

           

            
 

Systolic Blood 

Pressure (BP) 

Hypertension mm Hg none 

Diastolic BP Hypertension mm Hg none 

Pulse Pressure Hypertension mm Hg none 

Adj. Systolic BP Hypertension mm Hg If Hypertension = Yes, Adj Sys BP = Systolic 

BP + 10 mm Hg  

Else if Hypertension = N then Adj Sys BP = 

Systolic BP 

Adj. Diastolic BP Hypertension mm Hg If Hypertension = Yes, Adj Dia BP =  Diastolic 

BP + 5 mm Hg  

Else if Hypertension = N, then Adj Dia BP =  

Diastolic BP 

Adj. Pulse Pressure Hypertension mm Hg Adj PP = Adj Sys BP – Adj Dia BP  

Total Cholesterol Dyslipidemia mg/dL Total molar mass of lipoproteins in blood 

Triglycerides (trig) Dyslipidemia mg/dL Trig is represented as: ln(Trig + 1) 

High density 

lipoproteins (HDL-

C) 

Dyslipidemia mg/dL HDL is represented as:  ln(HDL + 1) 

Low density 

lipoproteins (LDL-

C) 

Dyslipidemia mg/dL If triglycerides < 200 mg/dL, LDL-C = 

                         
             

 
⁄   

Else if triglycerides ≥ 200 mg/dL,  

                               
     

Glucose Diabetes mg/dL Glucose is represented as:  ln(Glucose + 1) 

Insulin Diabetes mU/mL Insulin is represented as: ln(Insulin + 1) 

 

Serum Creatinine 

(SCr) 

Chronic Kidney 

Disease 

mg/dL Lab value if measured by Isotope Dilution Mass 

Spectrometry (most of Ph 2,all of Ph 3).  Else: 

Phase 1: SCr=(0.807*(0.8134*SCr_Ph1-

0.167)+0.1738); 

Phase 2: SCr =(0.807*SCr_Ph2)+0.1738. 

C-Reactive Protein 

(CRP) 

Inflammation mg/L CRP is represented as: ln(CRP+1) 

Fibrinogen Inflammation mg/dL None 

Homocysteine Inflammation  µmol/L Hycs is represented as: ln(Hycs+1) 

Intercellular 

Adhesion Molecule 

(ICAM) 

Inflammation ng/mL None 

Interleukin-6 (IL-6) Inflammation pg/mL IL-6 is represented as: ln(IL-6+1) 

Interleukin-18 (IL-

18) 

Inflammation pg/mL IL-18 is represented as: ln(IL-18+1) 

Variable Disease 

Measurement 

Units Description/Transformation 
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Monocyte 

Chemotactic 

Protein-1 (MCP1) 

Inflammation pg/mL MCP is represented as: ln(MCP1+1) 

Myeloperoxidase 

(MPO) 

Inflammation ng/mL MPO is represented as: ln(MPO+1) 

Resistin Inflammation ng/mL Resistin is represented as: ln(Resistin+1) 

Serum Amyloid A 

(SAA) 

Inflammation µg/mL SAA is represented as: ln(SAA+1) 

Tumor Necrosis 

Factor Receptor-1 

(TNFR-1) 

Inflammation pg/mL TNFR1 is represented as: ln(TNFR-1+1) 

Tumor Necrosis 

Factor Receptor-2 

(TNFR-2) 

Inflammation pg/mL TNFR2 is represented as: ln(TNFR-2+1 
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Supplementary Table 8. List of probes used to standardize methylated and 

unmethylated signals. 

 

Red Channel Probes Green Channel Probes 

EXTENSION 1190050 BISULFITE CONVERSION 4670278 

EXTENSION 360446 BISULFITE CONVERSION 4670484 

NON-POLYMORPHIC 1740025 BISULFITE CONVERSION 5290048 

STAINING 4200736 EXTENSION 1190050 

STAINING 4570020 EXTENSION 360446 

 EXTENSION 520537 

 NON-POLYMORPHIC 1740025 

 STAINING 5340168 
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Supplementary Table 9. Correlations between traditional risk factors measured at Phase I Exam. 

 

  Age BMI 

SysBP 

Adj 

DiaBP 

Adj 

PulsePress 

Adj 

Serum 

Creatinine Cholesterol ln (Trig+1) 

ln 

(HDL+1) LDL 

ln 

(Glucose+1) 

ln 

(Insulin+1) 

Age 1.00                       

BMI -0.09 1.00                     

SysBP Adj 0.32 0.12 1.00                   

DiaBP Adj -0.10 0.05 0.64 1.00                 

PulsePress Adj 0.48 0.12 0.85 0.14 1.00               

Serum 

Creatinine 0.19 -0.12 0.11 0.08 0.09 1.00             

Cholesterol 0.09 0.01 0.08 0.06 0.06 0.07 1.00           

ln (Trig+1) 0.10 0.09 0.10 0.03 0.11 0.15 0.29 1.00         

ln (HDL+1) 0.11 -0.09 0.04 -0.02 0.06 -0.17 0.22 -0.33 1.00       

LDL 0.03 0.04 0.05 0.08 0.02 0.11 0.93 0.29 -0.12 1.00     

ln (Glucose+1) 0.11 0.23 0.15 0.01 0.19 0.02 0.02 0.24 -0.17 0.06 1.00   

ln (Insulin+1) -0.04 0.41 0.06 -0.01 0.09 0.05 -0.02 0.32 -0.28 0.04 0.32 1.00 

Cells indicated in red represent variables that we considered to be in high correlation (>0.8) 
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Supplementary Table 10.  Steps of Stepwise Modeling to Obtain Final Model 

 

     Model with new predictor added in: 

Step Outcome Last Predictor in Model New Predictor to be added p-value of new of 

predictor  

AIC BIC LR R2 

Step 1 ph1_age null Adj Pulse Pressure 2.82E-62 12,771.58 12,793.67 0.4386 

Step 2 ph1_age Adj Pulse Pressure Adj Diastolic BP 3.56E-09 12,738.63 12,766.24 0.4491 

Step 3 ph1_age Adj Diastolic BP Adj Pulse Pressure^2 3.86E-11 12,696.61 12,729.75 0.4621 

Step 4 ph1_age Adj Pulse Pressure^2 Serum Creatinine 4.47E-12 12,572.83 12,611.44 0.4779 

Step 5 ph1_age Serum creatinine ln (HDL + 1) 4.41E-06 12,539.36 12,583.49 0.4842 

Step 6 ph1_age ln (HDL + 1) Adj Diastolic BP^2 4.21E-05 12,524.49 12,574.13 0.4889 

Step 7 ph1_age Adj Diastolic BP^2 Serum creatinine ^2 1.89E-04 12,512.59 12,567.75 0.4928 

Step 8 ph1_age Serum creatinine ^2 BMI 1.57E-03 12,489.84 12,550.50 0.4963 

Step 9 ph1_age BMI Adj Diastolic BP*BMI 0.0144 12,485.82 12,551.99 0.4980 

Step 10 ph1_age Adj Diastolic BP*BMI Adj Diastolic BP*Serum creatinine 0.0066 12,480.38 12,552.07 0.5000 

Step 11 ph1_age Adj Diastolic BP*Serum creatinine ln (trig + 1) 0.0246 12,449.34 12,526.51 0.5020 

Step 12 ph1_age ln (trig + 1) ln (insulin+1) 0.0144 12,424.80 12,507.46 0.5038 

Step 13 ph1_age ln (insulin+1) Adj Pulse Pressure * ln (trig+1) 0.0188 12,421.24 12,509.40 0.5053 

Step 14 ph1_age Adj Pulse Pressure * ln (trig+1) ln (glucose+1) 0.0404 12,381.97 12,475.60 0.5073 

Step 15 ph1_age ln (glucose+1) ln (glucose+1) ^2 3.88E-05 12,366.90 12,466.03 0.5119 

Step 16 ph1_age ln (glucose+1) ^2 Adj Pulse Pressure * ln (glucose+1) 1.36E-04 12,354.16 12,458.81 0.5158 

Step 17 ph1_age REMOVE  

Adj Pulse Pressure * ln (trig+1) 

Adj Pulse Pressure * ln (glucose+1) 1.10E-05 12,353.85 12,452.99 0.5154 

Step 18 ph1_age Adj Pulse Pressure * ln (glucose+1) ln (trig + 1 )^2 0.0685 12,352.50 12,457.15 0.5163 

Step 19 ph1_age ln (trig + 1 )^2 Adj Pulse pressure * Adj Diastolic BP 0.0905 12,351.61 12,461.76 0.5170 
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     Model with new predictor added in: 

Step Outcome Last Predictor in Model New Predictor to be added p-value of new of 

predictor  

AIC BIC LR R2 

Step 20 ph1_age REMOVE BMI and all BMI-

interactions 

BMI 0.0016 12,356.90 12,456.04 0.5145 

Step 21 ph1_age BMI Adj Diastolic BP * BMI 0.0119 12,352.50 12,457.15 0.5163 

Step 22 ph1_age Adj Diastolic BP * BMI Adj Pulse Pressure * Adj Diastolic BP 0.0905 12,351.61 12,461.76 0.5170 

Step 23 ph1_age Adj Pulse Pressure * Adj Diastolic 

BP 

ln (HDL+1) * ln (trig+1) 0.0979 12,350.84 12,466.50 0.5178 

Step 24 ph1_age ln (HDL+1) * ln (trig+1) Adj Diastolic BP ^3 0.1368 12,350.60 12,471.77 0.5183 

Max 

Model 

ph1_age all terms, interaction, and squared 

terms 

n/a n/a 12,368.22 12,693.04 0.5265 

    Minimum: 12,350.60 12,452.99  

 

 

Cells with lowest AIC and BIC are highlighted in blue. 

 

Model chosen for analysis is highlighted in green. 
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Supplementary Table 11.  Distributions of ζ1 and ζ2, and Age, biological age, and Δ for Phases I, II, and III,  

 
Count 

h
2
 unadj 

(h
2
 adj**) 

Min Median Mean Max 

Ph1 Chronological Age 1822 1 (NA) 20.5 58.7 58.2 88.21 

Ph1 Biological Age  1822 1 (0) 26.83 58.33 58.19 80.91 

Δ1 1822 0 (0) -15.79 1.28E-01 -3.98E-13 15.15 

Ph2 Chronological Age 963 0.9783 (NA) 39.26 65.96 66.27 91.58 

Ph 2 Biological Age 936 1 (0.1141) 41.17 65.83 66.08 91.29 

Δ2 936 0 (0.1142) -12.76 0 0.16 19.64 

Ph3 Chronological Age 479 0.9708 (NA) 47.38 71.2 71.68 98.12 

Ph 3 Biological Age 346 1 (0) 48.27 73.76 74.14 92.85 

Δ3 346 0 (0) -18.03 -2.32 -2.52 16.84 

ζ1 936 
0.4314 

(0.4314) 
-15.37 -0.38 -0.39 22.58 

ζ2 345 
0.2968 

(0.3022) 
-15.45 -2.19 -2.25 14.04 

 

**  Adjusted h
2
 is adjusted for age within SOLAR models.  The variables Ph1 Biological Age, Δ1, and ζ1 were adjusted for chronological 

age at Phase 1.  The variables Ph2 Biological Age, Δ2, and ζ2 were adjusted for chronological age at Phase 2.  Lastly, Ph3 Biological Age and 

Δ3 were adjusted for chronological age at Phase 3. 
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Supplementary Table 12.  Stepwise selection steps of final modeling for Aim 3, using 

inflammatory and methylation markers to predict ζ1 and ζ2 

A) ζ1 modeled with inflammatory biomarkers, CpG sites, and PCs (estimated from 244 CpG sites 

significant for Δ1 and Δ2 after Bonferroni correction for α=0.05) 

*  Yellow indicates where p-value of additional variable was > 0.10 

 

B) ζ2 modeled with inflammatory biomarkers and PCs (estimated from 148 CpG sites significant for 

Δ2 and Δ3 after Bonferroni correction for α=0.05) 

*  Yellow indicates where p-value of additional variable was > 0.10 

 

 

 

Step Outco

me 

Model New Predictor to 

be added 

p-value of 

new of 

predictor  

LR R
2
 x100 

(after new 

predictor 

added) 

Step 1 ζ1 Δ1 + Fibrinogen + ln 

(TNFR1+1) +ln (Hycs+1) 
cg25494227 4.50E-05 16.01% 

Step 2 ζ1 Δ1 + Fibrinogen + ln 

(TNFR1+1) +ln (Hycs+1) + 

cg25494227 

cg04474832 0.0314 16.59% 

Step 3 ζ1 Δ1 + Fibrinogen + ln 

(TNFR1+1) +ln (Hycs+1) + 

cg25494227+cg04474832 

X_fibrinogen:cg15

538427  
0.122*   

Final 

Model 

ζ1 Δ1 + Fibrinogen + ln (TNFR1+1) +ln (Hycs+1) + 

cg25494227+cg04474832 

16.59% 

Step Outcome Model New Predictor 

to be added 

p-value 

of new of 

predictor  

LR R
2
  

(after new 

predictor 

added) 

Step 1 ζ2 Δ2+ ln (MCP1+1)+ ln (MCP1+1)
2
 cg05501357 2.50E-05 31.36% 

Step 2 ζ2 Δ2+ ln (MCP1+1)+ ln (MCP1+1)
2 + 

cg05501357 
cg02533173 7.05E-03 33.33% 

Step 3 ζ2 Δ2+ ln (MCP1+1)+ ln (MCP1+1)
2 + 

cg05501357 + cg02533173 

ln_MCP1:cg05

501357 
0.0386 34.44% 

Step 4 ζ2 Δ2+ ln (MCP1+1) + ln (MCP1+1)
2 + 

cg05501357 + cg02533173 + ln 

(MCP1+1)*cg05501357   

cg16005443, 0.0552 35.39% 

Step 5 ζ2 Δ2+ ln (MCP1+1) + ln (MCP1+1)
2 + 

cg05501357 + cg02533173 + ln 

(MCP1+1)*cg05501357   + PC2 

PC2 0.041 36.43% 

Step 6 ζ2 Δ2+ ln (MCP1+1) + ln (MCP1+1)
2 + 

cg05501357 + cg02533173 + ln 

(MCP1+1)*cg05501357   + PC2 + 

PC6 

PC6 0.117*   

Final 

Model 

ζ2 Δ2+ ln (MCP1+1) + ln (MCP1+1)
2 + 

cg05501357 + cg02533173 

+ ln (MCP1+1)*cg05501357   + PC2 

36.43% 
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Supplementary Figure 2.  Stepwise variable selection method utilized to build 

models predicting biological age. 
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Supplementary Figure 3.  Chronological vs. biological Ages in A) Phase I, B) Phase 

II, and, C) Phase III 

A) Chronological vs. Biological Ages in Phase I 

 
R

2
 between chronological and biological ages =  0.80 

 

 

 

B) Chronological vs. Biological Ages in Phase II 

 
R

2
 between chronological and biological ages =  0.58 
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C) Chronological vs. Biological Ages in Phase III 

 
R

2
 between chronological and biological ages =  0.56 

 

Red Line represents y=x 

Blue line represents regression line. 
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Supplementary Figure 4.  Measures of healthy age at different time points.  A) Δ1 vs. 

Δ2  B) Δ2 vs. Δ3   

A) Δ1 vs. Δ2   

 

B) Δ2 vs. Δ3   
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Supplementary Figure 5.  Healthy Aging Over Time: ζ1 vs. ζ2 
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Chapter V.  Conclusions and Future Directions 

Summary of Findings 

The GENOA sample is unique for epigenetic analyses since it contains genome-

wide information about methylation on a large number of participants (N=972, after 

quality control).  Due to the large sample size, this study has power to detect smaller 

effect sizes than many previously published epigenetic studies in smaller samples.  

Having family data also allows us to explore the genetic and environmental components 

of DNA methylation within adulthood by estimating heritabilities. Though this study is 

cross-sectional with respect to measures of inflammation and methylation, and does not 

allow us to examine DNA methylation information along the different life stages of 

individuals within our sample, participant ages span five decades which allows us to 

evaluate the relationship between middle and older age spectrums and DNA methylation 

values cross-sectionally.  This aspect of the data set helps to elucidate the role of DNA 

methylation within and as a part of the aging process. 

In this dissertation, the interplay of age and DNA methylation was explored first 

to assess how variation in the epigenome is associated with age (Aim 1), then by 

investigating the role of age within the genetic and environmental variations in the 

epigenome (Aim2), and, finally, in the context of chronic disease and inflammation, to 

generate and evaluate a population-specific prediction model of aging in order to identify 

a set of epigenetic markers that best predicts healthy versus unhealthy aging (Aim 3)..  
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First, in Aim 1 of this dissertation, the associations between chronological age and 26,428 

genome-wide DNA methylation sites were investigated in a community-based sample of 

African Americans and found to be ubiquitous and strong across the age spectrum.  In 

fact, 7,601 (28.8%) CpG sites were found to be significantly predicted by age (at 

Bonferroni corrected α=0.05), and, further, 10.3% of the variation in age was explained 

by the top 10 principal components estimated by the 2,095 (7.9%) sites that significantly 

predicted age.  Of the 7,601 CpG sites that were significantly predicted by chronological 

age (at Bonferroni corrected α=0.05), 73.5% of them were unmethylated (mean M-Value 

< -2) and became less methylated with older age, while 2.2% were methylated (mean M-

Value >2) and became more methylated with older age.  Previous studies have 

established that loss of methylation in CpG dinucleotides over time may activate silenced 

retrotransposons and lead to genomic instability,(83, 84) while increases in methylation 

at CpG dinucleotides may prevent the binding of transcription factors and potentially 

suppress gene expression.(85)  Thus, the sets of sites that are significantly associated 

within the scope of the age continuum may be important mediators between age and 

chronic disease processes through these mechanisms, and future studies may provide 

insight as to the processes involved in chronic disease initiation and progression, and 

cellular aging within the scope of methylation surrounding these genomic regions.   

Because the epigenome is a known mediator of environmental and genetic 

effects,(23, 57-59) Aim 2 sought to elucidate the genetic and environmental variation 

within epigenetic markers by estimating the additive heritabilities of 26,428 genome-

wide DNA methylation sites in a community-based sample of African-American 

sibships.  When we adjusted for age in the estimation of heritabilities, we noticed a 
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differential change in the magnitude of heritability that was not expected, and led us to 

postulate that age-dependent gene penetrance in certain genes may be giving rise to an 

age-related genetic component that is distinct from age-independent genetic components.  

After partitioning the genetic variance within our study into age-related and age-

independent components, we found that 13,260 (56.7%) of the significantly heritable 

methylation sites had at least 10% of their total heritability explained by age-related 

genetic effects and 2,402 (10.3%) had at least 50% of their total heritability explained by 

age-related genetic effects.  This set of 2,402 sites that had at least 50% of their total 

heritability explained by age-related genetic effects were located within proximal 

promoter regions of transcription start sites of genes that were significantly enriched with 

sites that encoded control of cell proliferation (Bonferroni-corrected p-value =  0.0107).  

This indicates that methylation sites with strong age-related heritability components may 

be particularly important for key pathways related to cancer initiation or progression, or 

atherosclerotic processes due to excessive hyperplastic cell growth within vascular 

lesions.(120, 121, 124) 

Further, because our previous studies illustrated that age is so strongly involved in 

epigenetic processes,(103) we examined the age-related genetic contributions to these 

heritabilities to identify whether the cellular aging process at the epigenomic level is 

more of a reflection of genetic or environmental factors.  There were 1,661 CpG sites 

found to be significantly associated with age and have high unadjusted heritabilities (h
2
 > 

0.3).  Using the Expression Analysis Systematic Explorer (EASE)(119) to analyze the 

organismal roles of these 1,661 sites, anti-pathogen response (Bonferroni-corrected p-

value = 1.17x10
-4

) and response to injury (Bonferroni-corrected p-value = 9.14x10
-4

) 
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were found to be significantly overrepresented.  This suggests that heritable sites that are 

associated with age may be involved in pathways related to immune response and tissue 

repair, which is congruent with rising evidence that immune responses, such as 

inflammation, are an increasing part of the adult aging process, especially in African-

American populations.  These results indicate that the epigenome may be a very 

important layer of heritability in which to explore the impact of cellular aging on chronic 

disease processes due to both genetic and environmental influences.  The findings of the 

heritability analyses within the context of Aim 2 indicate that direct genetic studies of the 

epigenome (e.g. genome-wide association studies, or quantitative trait loci studies) may 

be able to provide new insight into the actual mechanisms of aging or chronic diseases in 

which the epigenome is a mediator of environmental and genetic effects. 

Lastly, in Aim 3, we examined the predictive capability of novel epigenetic and 

inflammatory biomarkers within the scope of healthy and unhealthy aging by (1) utilizing 

risk factors of common chronic diseases (obesity, dyslipidemia, hypertension, diabetes, 

and chronic kidney disease) to estimate a biological age, (2) evaluating healthy and 

unhealthy aging (ζ), represented as the change across time points of the differences 

between chronological age and biological age (Δ), and (3) considering inflammatory and 

epigenetic biomarkers as predictors of healthy and unhealthy aging (ζ) using a 

longitudinal study of African American sibships from the GENOA study (Phase 1: 

N1=1854, Phase 2: N2=972, Phase 3: N3=484).  First, we estimated biological age by 

modeling chronological age as predicted by measures of obesity (BMI), hypertension 

(diastolic BP, pulse pressure), dyslipidemia (HDL, triglycerides), diabetes (glucose, 

insulin), and chronic kidney disease (serum creatinine) within Phase 1 data (LR R
2
 = 
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51.5%), and applying this model to data from Phases II and III.  Though these risk factors 

underlie many of the chronic diseases that have the highest morbidity and mortality rates 

in the United States (e.g. cardiovascular disease),(3, 5, 178) future studies using similar 

estimation techniques to achieve a measure of biological age may wish to consider 

additional measures of physical and cognitive function, hormonal regulation, 

psychosocial or lifestyle factors, and other suggested indicators of healthy aging,(133, 

134) if available, in order to attain a more complete prediction of biological age that is 

representative of the wide range of morbidity and disability involved in the aging process.  

Despite this limitation, chronological and biological ages within the GENOA sample 

were highly correlated, with R
2
 values of 0.80, 0.58, and 0.56 for Phases I, II, and III, 

respectively. 

In our study, healthy and unhealthy aging (ζ) was represented as the change over 

two periods of time, of the differences between chronological age and biological age (Δ).  

We examined the associations between ζ, and inflammatory and epigenetic biomarkers, 

measured at Phase II.  Regression relationships indicated significant associations 

(α=0.10) of ζ1 with fibrinogen, and TNFR1, which are thought to play a central role in 

atherosclerotic plaque progression, and homocysteine, which may also be involved in 

atherosclerosis.(137-139, 147, 148)  It also indicated significant associations of ζ1 with 2 

CpG which are located within C12orf59 on chromosome 12, and ABHD14A on 

chromosome 3, which may indicate their involvement in disease-associated inflammatory 

processes, that include cancer development, atherosclerosis, and Alzheimer’s 

disease.(151-153)  
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Regression relationships between inflammatory and methylation markers with 

aging from Phase II to Phase III (ζ2) indicated significant associations (α=0.10) of 

monocyte chemotactic protein-1 (MCP1), 3 CpG sites, an interaction between 

cg05501357 and MCP1, and a principal component (estimated from 150 CpG sites) were 

significant (at p<0.10) in the prediction of healthy aging over this time period.  The 

chemokine MCP1 is known for an array of inflammatory efforts, including effects within 

the development and progression of atherosclerotic lesions, CNS inflammatory processes, 

bone remodeling, and the genesis of kidney damage and renal dysfunction, especially 

within diabetic nephropathy.(161)   The 3 CpG sites are found within the genes HIPK3, 

BRD4, and LILRB3, which all play roles within immune function and response.(163-165)  

Further, the 150 CpG sites from which principal components were estimated indicated 

gene enrichment within the biological role of neurogenesis, which may be a link to the 

relationship of DNA methylation and cognitive diseases, such as Alzheimer’s disease, 

within the scope of the aging process.  Since these associations are found in peripheral 

blood cells, these sites may be indicators of the impending damage and dysfunction of 

multiple organ systems (e.g. heart, brain, kidneys) that are associated with disease 

processes within aging through inflammatory mechanisms.  By beginning to illuminate 

the interplay of epigenetics and inflammation as predictors of healthy aging processes, as 

implied in this Aim 3 analysis, insight can be gained into the potential targets for 

therapeutic interventions to increase health within the aging process.  With the projected 

increase in size of the senior citizen population, and the shift of chronic disease patterns 

to earlier ages within the United States, it is important to understand preclinical 

symptoms that are predictive of healthy and unhealthy aging, in order to allow for better 
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and earlier medical interventions, and potentially new therapeutics for those exhibiting 

signs of unhealthy aging. 

Limitations 

Within the scope of human DNA methylation microarray studies, the GENOA 

study consists of a relatively large sample size (N=972) compared to many other 

epidemiological studies.  This allows us better power to detect associations with 

meaningful effect sizes within the course of Aims 1 and 2 where the entire methylation 

sample size is utilized compared to other groups.  However, Aim 3 becomes limited in 

power when Phase III data is utilized since there are only 752 total African American 

study participants, wherein 484 had epigenetic measurements, and only 345 had 

measurements across the risk factors for chronic disease that are appraised within the 

study.  This decrease in sample size may limit the efficacy of the inferences made within 

the scope of assessment of healthy aging between Phases II and III (ζ2).  At the same 

time, the decrease in sample size and the older age of participants in Phase III may be 

indicating a survival bias of participants.  Thus, it is possible that the results from 

predicting aging with inflammation and DNA methylation between Phases II and III are 

not exactly evaluating the effect of chronic disease processes occurring with aging, since 

the participants are still healthy enough to participate in the GENOA sample.  The results 

between Phases II and III may be indicating completely different processes than the 

results of analysis of aging between Phases I and II. 

Further, the GENOA study is a cross-sectional study that has collected data at 

three time points.  One of the main limitations of cross-sectional studies is that causality 
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is difficult to determine since the order of exposure induction and disease initiation is 

often indistinguishable.(179)  Since Aims 1 and 2 of this dissertation scrutinize the 

relationship between DNA methylation and chronological age at a single time point, this 

limitation will only become problematic when inferences of biological age are made 

through the proxy variable of chronological age, since it is unclear if the biological 

processes are causative of methylation levels, or if methylation levels are affecting 

biological processes.  However, though DNA methylation may affect biological aging, 

chronological age is a fixed variable without molecular roots and, thus, isn’t affected by 

molecular processes.  Further, since we have available chronic disease risk factor 

measurements across three time points, with inflammation and DNA methylation 

available at the midpoint, we are able to assess healthy aging with respect to 

inflammation and DNA methylation measurements in order to measure the phenotype 

before and after aging assessments.  We, however, are still limited within the assessment 

of biological age and healthy aging due to the cross-sectional nature of the study.  Along 

these same lines, due to the cross-sectional nature of this study, we are unable to assess 

whether medication usage by individuals may be affecting DNA methylation.  Future 

analysis may be needed to examine the effects of medications, such as statins.  While few 

studies have assessed pharmaceutical use on DNA methylation levels, it is thought that 

some function through epigenetic effects.(180)   For example, it is hypothesized that 

statins inhibit the enzyme HMG-CoA reductase in the liver, thus stimulating the 

production of LDL receptors, through an unknown epigenetic mechanism.(181) Since the 

effects of medications are unknown, we did not adjust for them in our models throughout 



144 

 

this dissertation.  Thus, associations presented in this paper may be confounded by 

medication usage of study participants.  

Further, given the tissue-specific nature of DNA methylation patterns,(182, 183) 

the selection of the appropriate cell population for study is an important consideration.  In 

most large epidemiological studies, biological specimens from which DNA is extracted 

are typically limited to peripheral blood, saliva, and hair, since collection of other tissue 

types is significantly more invasive.  While peripheral blood samples are convenient, they 

may also be an important cell population to assay because they are the orchestrators of 

the immune response and inflammatory pathways across multiple organ systems.(184, 

185) 

Peripheral blood cells are a heterogeneous population of immune cells, made up 

mainly of lymphocytes (~6-48%), neutrophils (~40-75%), monocytes (~4-14%), and 

eosinophils (~<7%), with a small proportion of basophils (<2%).(91, 186)  The makeup 

of cells within peripheral blood may differ in methylation status, thus confounding 

studies of DNA methylation that utilize this peripheral blood for analysis.(186)  To avoid 

confounding by proportion of cell type when using peripheral blood cells within studies 

of DNA methylation, an adjustment for cellular makeup should be employed during 

normalization.  Peripheral blood cellular makeup is not available within the GENOA 

sample due to cost efficiency in such a large study, thus this correction cannot be applied.  

However, and of important note, when comparing a sub-sample of peripheral blood and 

transformed B-lymphocytes within the GENOA population, the average correlation of 

methylation measurement was 0.91 within African American men and 0.89 within 
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African American women,(73) indicating that the methylation measurements within the 

peripheral blood are similar to B-lymphocytes 

 Inflammatory markers within peripheral blood play an important role in 

predicting disease and mortality risks.  For instance, in a group of 870 high-functioning 

elderly individuals, those with at least 3 elevated measured inflammatory markers 

exhibited 6.6 times the risk of 3-year mortality, and 3.2 times the risk of 7-year mortality, 

than individuals with no abnormal inflammatory marker values.(187)  Further, individual 

inflammatory markers measured within the bloodstream, such as CRP, IL-6, IL-18, and 

MPO, have been found to be predictive of cardiovascular outcomes(188-197) and the 

development of diabetes.(198, 199).  Thus, examining peripheral blood cells, despite their 

heterogeneous cellular makeup, is essential for understanding the role of DNA 

methylation within inflammatory processes. 

Future directions. 

The current set of studies presented in this dissertation indicates that the 

relationship between age and epigenome-wide DNA methylation levels is intricately 

intertwined, rallying involvement from across the genome during the aging process.  

Previous studies have indicated that epigenetics acts as a mediator between the accrued 

effects of age and gene expression(40) that may indicate higher risk for adverse disease 

outcomes, such as cancer(37, 89) or cardiovascular disease.(99)  Since our sample is 

mostly a hypertensive population, we can add to this body of knowledge by 

hypothesizing that chronic disease processes, such as inflammatory pathways that lead to 

atherosclerotic processes, work synchronically to highlight these associations between 
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age and DNA methylation patterns.  However, further studies are needed to decipher the 

cooperation among inflammation, DNA methylation, and aging processes, and the impact 

of this cooperation on chronic disease initiation and progression.  Although our study 

advances the knowledge in this area by identifying different and specific sets of 

inflammation and DNA methylation biomarkers related to healthy and unhealthy aging 

prospectively and retrospectively, questions about the causal mechanisms involved in 

aging processes remain and need further scrutiny.  Many questions remain, such whether 

inflammation leads to DNA methylation or vice versa, or what biological interactions are 

at play among DNA methylation, inflammation, chronic disease processes and aging. 

Exploration into the questions of whether DNA methylation within certain genomic 

regions may be more influenced by aging, inflammation, or chronic disease events, while 

methylation within other genomic regions may be more influential of aging and chronic 

disease processes is also still needed.  Larger population-based studies with multiple 

longitudinal measurements of DNA methylation are necessitated to begin to shed light on 

the collaboration across cell types and throughout cascades of cellular events. 

The GENOA African-American cohort is a unique cohort that evaluates disease 

outcomes on hypertensive sibships from Jackson, MS in which at least 2 siblings were 

initially diagnosed as hypertensive before age 60 by Phase I, results concerning healthy 

aging and DNA methylation are very specific to this population.  This population may 

not mirror other population groups in the United States because it is comprised of 

participants that are predominantly female with high rates of hypertension (Phase I 

consisted of 69.1% females, of which 51.1% were hypertensive, compared to 41.9% of 

African American females within the general population in 1999-2002(33)).  Because of 
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its selection process of hypertensive individuals, the GENOA cohort likely has earlier 

onset and/or further advanced stages of chronic diseases due to recruitment based on 

hypertension status, the relationships of DNA methylation and inflammation that are 

inferred within the scope of age and aging are population-specific to GENOA, and may 

be generalizable only to similar populations of African Americans.  Again, this indicates 

the need for larger and more generalizable samples to explore the associations of 

methylation within age and aging processes to which we can compare biomarkers within 

GENOA and other special population groups.  By exploring special populations 

separately within the context of aging research, we can examine the differential 

mechanisms of inflammation and methylation within the whole system of aging, which 

can provide novel insight within the field of healthy aging.  Further, understanding how 

these special populations differ from a more generalizable population will further unravel 

how these inflammatory and methylation mechanisms promote or restrict disease 

processes.   

Additionally, while we defined healthy and unhealthy aging with respect to 

chronic disease processes, others may argue that this is not a complete picture of 

disability and morbidity within aging processes, and that many other biochemical, 

physical, cognitive, and psychosocial factors must be scrutinized in order to represent 

aging more accurately.(133, 134)  However, our study sought to elucidate the role of 

inflammation and methylation within aging processes.  Throughout the aging process, the 

immune system changes in cellular makeup and reduces in functionality, and the 

composition of inflammatory markers becomes altered which is thought to play a large 

role in the decrease of physical function, and initiation or exacerbated states of 
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inflammatory-related chronic diseases such as cardiovascular disease and  type 2 

diabetes.(45, 46, 48)  Since DNA methylation was measured in this study in peripheral 

blood cells, and this cell population directs immune response across multiple organ 

systems,(184, 185) we attempted to measure the relationship between DNA methylation 

and inflammation within the scope of inflammatory-related aging processes, thus defined 

by known inflammatory-related chronic diseases.  The methodology and models used in 

our study performed well within the scope of the data set, with distinct CpG sites and 

inflammatory measures able to predict ~10% of the variation in healthy aging.  However, 

of course, developing more thorough models to represent the aging processes by allowing 

for the inclusion of other variables that account for other aspects of the aging process 

may allow researchers to gain a more comprehensive insight into the molecular dialogues 

between DNA methylation and cellular processes.   

Also, since aging and chronic diseases are multidimensional, discovering the true 

nature of the biological mechanisms underlying their processes is important and 

challenging.  Integrating comprehensive information from genomic, epigenomic, 

transcriptomic, and proteomic data will be needed to further clarify the precise 

mechanisms acting within these pathophysiologic processes.  This is a logical research 

progression for this field, as computational efficiency is improving.  But integration of 

such multidimensional variables on the large scale necessary to explain the origins of 

chronic disease processes is still in its infancy.   

Ultimately, the goal within the field of aging research is to understand the factors 

within the aging process that can be acted upon to help people age in a healthier manner, 

with less disability and morbidity. DNA methylation is a good target for intervention 
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strategies because it is a modifiable association between environment and gene 

expression.(23)  DNA methylation profiles may lead to the discovery of novel targets for 

preclinical diagnosis or therapeutic interventions for chronic disease events, such as 

cardiovascular disease or chronic kidney disease.  This is a promising avenue, as 

epigenetic targets have been implicated in certain cancers and a few pharmaceutical 

agents are in clinical trial phases.(200, 201)  As more knowledge about epigenetic 

changes involved in the aging process are coupled with strategies to mitigate such 

changes, and comprehensive information from genomic, epigenomic, transcriptomic, and 

proteomic data are incorporated into the clinic, the result may be more personalized 

therapeutics to target specific mechanisms and pathways acting within an individual that 

lead to chronic diseases and unhealthy aging, and provide mitigating interventions.  

 Conclusion. 

Age and aging processes are complex and multidimensional, involving changes in 

cellular composition and inflammatory makeup that are controlled by both genetics and 

the environment.(46, 47, 202, 203)  The work presented in this dissertation is an 

explorative effort to illuminate the role of epigenetics as a mediator between 

inflammatory and aging processes.  Since epigenetics links the environment to genetic 

processes,(57-59) it is an excellent source of information to interrogate when exploring 

intricate processes such as healthy and unhealthy aging.  Significant findings within the 

scope of this dissertation have begun to elucidate the important associations between 

DNA methylation and age, and, simultaneously, the effect of methylation in the age 

spectrum is partly moderated through age-related genetic factors.  Further, this 

dissertation has indicated the importance of specific DNA methylation markers as 
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indicators of healthy and unhealthy aging processes that may mediate cellular aging 

through inflammation within the GENOA sample.  These results are an important 

contribution to public health by allowing important molecular insights into aging 

processes that may pave the way for novel clinical applications of DNA methylation (e.g. 

preclinical predictive models of health over time, therapeutic targets).  



151 

 

Appendices. 

Appendix 1.  Background on common risk factors for chronic diseases 

 

 

Common Risk Factors for Chronic Disease 

Hypertension:  Hypertension, or high blood pressure, is defined as having 

systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg, taking 

antihypertensive medicine, or having at least twice been told by a physician or other 

health professional that one has high blood pressure.(178)  Hypertension affects 1 in 3 

American adults, with the highest rates among African Americans (41.4%).(178)  

Mortality rates for essential hypertension increase considerably as age increases, with 

young and middle aged U.S. adults having mortality rates fewer than 7.3 per 100,000, 

and senior citizens having morality rates up to 195.6 per 100,000.(3)  In fact, among 

senior citizens, 66.5% of 65-74 year olds are hypertensive, and 75.0% of those aged 75+ 

are hypertensive.(204)  Nearly everyone becomes hypertensive eventually because blood 

pressure naturally rises with age as a physiological mechanism to sustain blood flow 

through a stiffening arterial bed.(205)  Hypertension is further associated with end-stage 

renal disease, cardiovascular events, and stroke, which are also common causes of 

morbidity and mortality in the United States.(3, 5)  
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Systolic and diastolic blood pressures represent extremes of arterial pressure 

fluctuation, where systolic is the maximum and diastolic is the minimum.  Pulse pressure 

represents the difference between systolic and diastolic blood pressures.  Systolic blood 

pressure tends to rise throughout life, while diastolic rises only until age 50-60, after 

which it declines due to stiffening of the arteries.(206)  The Framingham Heart Study 

found the three measures of hypertension to be differentially predictive of target organ 

damage effects throughout different phases of the lifetime.  At younger ages (<50 years), 

diastolic blood pressure is the best predictor of coronary heart disease (CHD);  in patients 

between 50 and 59 years, all three measurements are comparative when predicting  CHD; 

and at >60 years of age, pulse pressure is the best predictor of CHD.(207)  Many groups 

currently regard pulse pressure as the best predictor of target organ damage.(208-210)  

Diabetes.  Diabetes is a grouping of metabolic diseases that result in defective 

insulin secretion, insulin action, or both, causing hyperglycemia.  Chronic hyperglycemia 

is associated with damage and dysfunction of multiple organ systems, including the heart 

and arteries, brain, kidneys, and eyes.(211)  The current standard of diabetes diagnosis as 

recommended in 2009 by an International Expert Committee and adopted by the 

American Diabetes Association, is having glycated hemoglobin (A1C), representing 

average plasma glucose concentration, >6.5%,(212) though the World Health 

Organization defines diabetes as fasting glucose ≥126 mg/dL (7.0 mmol/L) or a two-hour 

post glucose challenge value ≥200 mg/dL (11.1 mmol/L).(213)  The present dissertation 

will use fasting plasma glucose and fasting plasma insulin as measures to represent 

diabetes.   
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Overall, the age-adjusted prevalence of diabetes among United States adults is 

10.9%, with large racial disparities (African Americans: 18.7% prevalence, whites: 

10.2% prevalence).  Diabetes prevalence increases with age, and U.S. senior citizens 

have rates of 26.9%, which is over 7 times that of young adults (age 20-44), and nearly 

twice that of middle-aged adults (age 45-64).(11, 204)  Approximately, 10.9 million 

senior citizens in the United States are estimated to be diabetic.(204)  Not only is diabetes 

the seventh leading cause of death in the United States,(3) but it is also a major cause of 

chronic disease, like heart disease and stroke.  It is also the leading cause of kidney 

failure, non-traumatic lower-limb amputations, and new cases of blindness among United 

States adults.(11)  Further, ~75% of diabetics are also hypertensive, creating an even 

greater downstream disease risk of macrovascular and microvascular complications, such 

as coronary artery disease, myocardial infarction, congestive heart failure, stroke, and 

peripheral vascular disease.(214)  Diabetes is a major cause of morbidity in the United 

States, with elderly diabetics 2-3 times more likely to report inability to perform tasks 

like walking short distances, climbing stairs and doing housework, than non-diabetics of 

the same age group.(11)  

Obesity.  Obesity is an excess accumulation of fat mass, measured most 

accurately by magnetic resonance imaging or computer-assisted tomography scanning.  

Due to the expense of these tests, anthropometric measurements, like body mass index 

(BMI), waist and hip circumferences, and waist-hip ratio, are often used as a proxy for fat 

mass.(215)  BMI is most commonly found in the literature to represent body fat mass, 

and thus will be used to represent a measure of obesity in this dissertation.  BMI is 

measured in body weight per height-squared (kg/m
2
).  The World Health Organization 
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divides BMI into four major categories: underweight (<18.50 kg/m
2
), normal weight 

(18.50-24.99 kg/m
2
), overweight (≥25.00 kg/m

2
), and obese (≥ 30.00 kg/m

2
).  However, 

obesity is further split into classes I, II, and III (BMI 30.00-34.99, 35.00-39.99, ≥ 40.00 

kg/m
2
, respectively) to better classify the shifting severity in obesity, while 

simultaneously identifying groups with increased risks of morbidity and mortality.(216)  

Obesity is associated with 111,909 excess deaths in the United States in the year 

2000, with the majority of excess deaths (82,066 deaths) occurring in individuals with a 

BMI of 35.0 or higher.(217)  In the United States, obesity has a U-shaped relationship 

with age, wherein 55-64 year olds tend to have the highest rates of obesity >40.4%, 

though even the young adult (age 20-34) and the oldest adults (age 75+) have rates 

exceeding 25% of their population.(204)  Obesity is highly associated with increased 

risks of many chronic diseases and chronic disease risk factors, such as hypertension, 

dyslipidemia, type 2 diabetes, heart disease, stroke, and osteoarthritis.(9, 218-220)  This 

dissertation will focus on BMI as an indicator of obesity, since it is widely used in 

chronic disease studies and has been found to have similar associations with chronic 

diseases like diabetes, hypertension, and dyslipidemia that measures of waist-hip ratio 

and waist circumference.(221, 222)  

Dyslipidemia.  Dyslipidemia is commonly characterized by an unbalanced lipid 

triad of elevated triglycerides (>150 mg/dL) and small low density lipoproteins (LDL-C) 

particles (>100 mg/dL), and reduced high density lipoprotein (HDL-C) particles (<40 

mg/dL).(8)  The prevalence of dyslipidemia shows an increasing trend with age, and 

senior citizens are shown to have more than twice the prevalence (39.1%) of lipid 

imbalance than middle aged adults (age 45-55) (15.5%) within 6,704 participants the 
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Multi-Ethnic Study of Atherosclerosis.(223) Elevated levels of LDL cholesterol and 

reduced levels of HDL are associated with the high lifetime risk of developing coronary 

heart disease (CHD) in the United States, risks which are 49% for men and 32% for 

women.(224) Triglycerides are also implicated in the onset of CHD, though this risk is 

often implicated at least in part to their correlation with abnormal levels of HDL and 

LDL.(8, 225)  In this dissertation, I use measurements of HDL-C, LDL-C, triglycerides, 

and total cholesterol to represent the lipid triad commonly affected in dyslipidemia. 

Chronic Kidney Disease (CKD).  CKD is characterized by the presence of 

kidney damage or decreased kidney function for a duration of at least three months.  

While glomerular filtration rate is considered to be the best marker of kidney function, 

wherein declines indicate progressive kidney disease,(226), estimation equations of 

glomerular filtration rate (eGFR) based on the Modification of Diet in Renal Disease 

(MDRD) Study take into effect age, sex, and racial differences of glomerular filtration of 

serum creatinine,(227) and, thus, their use as a predictor within this study are confounded 

by the comparison with outcome variables, such as age and a defined variable 

representing healthy aging.  Thus, serum creatinine will be used as a proxy for kidney 

function.    According to NHANES data, CKD has increased in prevalence over time in 

the United States.(33)  Potential reasons for increasing prevalence of CKD include 

shifting demographics, predominantly in age, race, and sex, which are all risk factors for 

CKD.  In 2005, more than 35% of adults over age 60 had clinical characteristics of CKD, 

and ≥65.5% of adults over 80 had clinical CKD, wherein only 9.1% of adults aged 41 to 

59 had CKD.  Further, 15.8% of U.S. women were diagnosed with CKD, as compared to 

12.1% of men; and blacks also had a higher rate of CKD than did whites, with  16.0% 
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versus 14.3%, respectively.(228)  CKD patients have an increased risk of cardiovascular 

diseases, end-stage renal disease, and mortality than those without chronic kidney 

disease.  This is due, in part, to the increase in cardiovascular risk factors, such as 

hypertension and diabetes, but CKD is a risk factor for cardiovascular disease and 

mortality on its own.(229) 
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Appendix 2.  Description of 12 inflammatory markers used within this dissertation 

 

 

C-Reactive Protein (CRP).  

CRP is primarily synthesized by hepatocytes in response to acute and chronic 

inflammation.(230)  CRP activates elements of the innate immune system, such as the 

classical complement system and phagocytosis, and it can bind to immunoglobulin 

receptors.(231)  It up-regulates the expression of adhesion molecules in endothelial cells, 

inhibits nitric-oxide synthase expression, and increases the release of cytokines IL-1, IL-

6, IL-18, and TNF-α.(232)  Normal levels of CRP in populations without acute illness are 

<2 mg/L, but levels can increase to 300 mg/L in populations exhibiting acute illness.(233, 

234)  Increases of CRP levels are found in response to acute and chronic stimuli, such as 

infection, burns, surgery, major trauma, and other inflammatory conditions.(235) 

Specifically, elevated levels of CRP are associated with risk factors for cardiovascular 

disease and metabolic syndrome, such as obesity, diabetes, hypertension, low HDL-C 

levels, and female sex.(236, 237)  CRP has been successfully employed in predictive 

modeling for risk of cardiovascular endpoints, such as myocardial infarction, stroke, and 

CHD death.(189-192)  It has been found to improve prediction of cardiovascular events 

when modeled with other inflammatory markers, such as serum amyloid A and 

intercellular adhesion molecule.(193) 
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Fibrinogen.   

Fibrinogen is primarily synthesized by hepatocytes under the control of the IL-6 

family of cytokines,(238) and circulates in plasma at a normal concentration of 200-400 

mg/dL.(239)  Because fibrinogen biosynthesis is mediated by IL-6, its production 

increases with stress and inflammation.(240, 241)  The main purpose of fibrinogen is 

within the process of hemostatic balance.  After conversion of fibrinogen to fibrin with 

thrombin, the product serves as the substrate for fibrin clot formation, binding to platelets 

to support platelet aggregation, wound healing, and serving as a template for thrombin 

binding and the fibrinolytic system.(239, 242) High fibrinogen levels are found to be 

associated with increased risk of cardiovascular disease, stroke, and nonvascular 

mortality.(243-245)    In a population of 150,000 middle-aged and elderly patients, hazard 

ratios for the association between increased fibrinogen and CHD, stroke, and nonvascular 

mortality ranged from 1.8-2.42 after adjustment for age, sex, and C-Reactive 

Protein.(245) 

Homocysteine (Hycs).  

Homocysteine is an intermediary amino acid formed during the conversion of 

methionine to cytosine.  It is metabolized by the processes of transsulfuration, which 

necessitates vitamin B-6 as a precursor, and remethylation, of which vitamin B12 is a 

cofactor.  Deficiencies in vitamins B6 and 12, as well as folate, can increase blood levels 

of homocysteine.(142-145)  A stable baseline level of homocysteine is reached when 

folate intake exceeds 400 µg/day.(246)  The association between homocysteine levels 

and cardiovascular disease has been somewhat inconsistent,(135-140) with conclusions 

that homocysteine may be a marker of unhealthy lifestyle and poor dietary choices more 



159 

 

so than an independent risk factor for cardiovascular disease.(138)  However, 

investigators within the Framingham Heart Study found that adding homocysteine to 

models with traditional risk factors to improved risk prediction of cardiovascular 

events.(247) 

 Intercellular adhesion molecule-1 (ICAM-1).   

ICAM-1 is expressed at low-levels on vascular endothelial cells, lymphocytes, 

and monocytes,(248) and supports leukocyte-leukocyte, leukocyte-endothelial cell, and 

leukocyte-epithelial cell adhesion.(249)  ICAM-1 also functions in the development of 

the nervous system,(250) and influences the immune system by binding and recruiting 

circulating leukocytes to the vascular endothelium,(251) binding T-lymphocytes with 

antigen presenting cells like macrophages,(252) and assisting in the transendothelial 

migration of inflammatory cells from the capillary bed into a target tissue.(253)  

Overexpression of ICAM-1 is a common characteristic of inflammatory and immune 

response,(253, 254) and increased expression of ICAM-1 across cell types has been 

found to occur with increased inflammatory cytokines, such as IL-1, TNF-α, and IFN-

γ.(248, 255)  ICAM-1 is found to be associated with risk factors for cardiovascular 

disease, such as ever smoking, diabetes, and female sex.(256)  However, models for 

identifying individuals at higher risk of cardiac events have indicated mixed results in the 

predictive power of ICAM.(257-259) 

Interleukin 18 (IL-18).  

 IL-18 is a member of the IL-1 superfamily of cytokines.  Active IL-18 

predominantly acts on macrophages and dendritic cells of the innate immune system, 
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though it is also expressed throughout the body in epithelial cells as well.  It acts with 

other interleukins (12 and 5) in order to drive the helper T-cell and NK-cell response 

through induction of IFN-γ within disease processes, and, consequently, suppress 

immunoglobulin E (IgE) synthesis.(260)  IL-18 is an important regulator of innate and 

acquired immune responses since it enhances T-cell and NK-cell maturation, thus it is a 

potent proinflammatory cytokine.(260, 261)   

IL-18 is associated with insulin resistance and type 2 diabetes,(262-266) 

obesity,(262, 267, 268) hypertension,(269) and dyslipidemia.(267)  IL-18 is highly 

expressed in atherosclerotic plaque macrophages,(270) and is thought to result in 

vulnerable, rupture-prone plaques via induction of IFN-γ which may inhibit fibrous cap 

formation.(271, 272)  IL-18 is associated with metabolic syndrome and its components, 

and levels of IL-18 increase as the number of components of metabolic syndrome 

rises.(267, 273)  Further, levels of IL-18 have been found to be predictive of 

cardiovascular events and mortality in populations with metabolic syndrome(195, 196) 

and coronary artery disease.(197) 

Interleukin 6 (IL-6).   

IL-6 is produced by a wide range of cell types, including fibroblasts,(274) 

endothelial cells,(275) keratinocytes,(276) T-cell lines,(277, 278) mast cells,(279, 280) 

and many tumor cell lines,(281) however lymphocytes represent a significant source of 

IL-6 production.(278, 282, 283)  IL-6 is not usually produced by healthy cells, but its 

expression is induced by viral infections,(284-287) lipopolysaccharide,(288) and many 

inflammatory cytokines, such as IL-1,(289)  TNF-α,(290) IFN-y,(289, 291) and platelet-
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derived growth factor.(292)  IL-6 is stimulates immune cell response via its activation of 

T-cells and control of their proliferation,(293-295) and the growth of B cells.(296)   

Circulating IL-6 has been found to be associated with age and a number of 

chronic disease risk factors.  Plasma levels of IL-6 have been validated in elderly cohorts, 

and age-related increases of circulating IL-6 have also been discovered in middle-aged 

subjects, who have IL-6 levels 1.8 times greater than those in younger controls.(194, 297, 

298)  Because of these strong age associations with IL-6 and the link between IL-6 and 

TNF-α, it is thought that IL-6 may be a good biomarker for total inflammation.(299)  

Further, because adipose tissue secretes IL-6, obesity is associated with higher circulating 

levels of IL-6.(300-305)  More specifically, it is hypothesized that visceral obesity is 

more detrimental to health than subcutaneous obesity because omental adipose tissue 

produces higher levels of IL-6 than does subcutaneous adipose tissue.(300)  Elevated IL-

6 levels are also found to be associated with smoking, and are predictive of both 

myocardial infarction(194) and the development of diabetes.(198, 199) 

Monocyte chemotactic protein-1 (MCP1).  

MCP1, also known as CCL2, regulates migration and infiltration of monocytes 

and macrophages.(306)  It is a chemokine produced by numerous cell types, including 

endothelial, epithelial, smooth muscle, mesangial, fibroblasts, astrocytes, and microglial 

cells,(307-310) but is most commonly produced by monocytes.(311, 312)  MCP1 is the 

most studied member of the chemokine family, and is important within antiviral immune 

response within peripheral blood circulation and within tissues.(306)  With the help of 

prostaglandin E2, MCP1 recruits monocytes to sites of active inflammation, and 

stimulates their maturity into macrophages.(155, 156) 
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Elevated levels of MCP1 has been implicated in the role of many disease 

processes throughout various life stages, including multiple sclerosis,(313) complications 

with HIV infection,(314, 315) and rheumatoid arthritis.(316) It has been implicated 

within insulin resistance and obesity since insulin appears to induce MCP1 expression in 

adipocytes, which may alter adipocyte function and metabolism.(157, 158)  Further, 

MCP1 may play a fundamental role in the initiation and progression of atherosclerosis 

due to its role in recruitment of macrophages to vascular lesions.(159, 160)  

Polymorphisms within the gene encoding MCP1 have been found to be associated with 

increased risk of individuals suffering coronary artery disease.(162)   Lastly, increased 

plasma levels of MCP1 following coronary artery balloon angioplasty are predictive of 

restenosis, indicating limited success of coronary interventions and higher morbidity 

within these patients.(317) 

Myeloperoxidase (MPO).   

MPO is a protein secreted by neutrophils and monocytes during innate 

inflammatory response.  MPO has bactericidal properties(318) and  is excreted 

predominantly by neutrophils during phagocytosis.(319)  MPO oxidizes a number of 

substrates into free radical intermediates.(320)  The MPO-derived oxidants are known to 

damage cells and tissues,(319, 321-323) which are implicated in the development of a 

number of inflammatory diseases, such as ischemia-reperfusion injury, respiratory 

distress syndrome, glomerulonephritis, arthritis, peptic ulcer formation, and gastric 

cancer.(319, 324-326)  During atherosclerotic processes, MPO secreted from monocytes 

is thought to be the source responsible for the oxidation of LDL-C that is taken up by 

macrophage receptors and, consequently, forms foam cells.(29, 327, 328)  Because MPO 
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is thought to be active throughout atherosclerotic processes, it may have utility in 

predicting the risk of cardiovascular disease development.(188)  

Resistin.   

Resistin is an adipocyte-derived polypeptide that is secreted by adipocytes and 

macrophages, and mainly targets the liver but also acts upon skeletal muscle and adipose 

tissue.(329-331)  Resistin has more recently been implicated in inflammatory processes, 

wherein it is demonstrated to stimulate the synthesis and secretion of pro-inflammatory 

cytokines, such as TNF-α, IL-12, IL-1b, and IL-6 via the NF-κB signaling pathway.(332, 

333)  Resistin creates downstream hepatic insulin resistance,(330, 334-336) and engages 

overproduction of adipose tissue.(337-342)  Thus, rises in resistin levels are correlated 

with obesity.(343)  Resistin is involved in hepatic and skeletal muscle glucose 

metabolism through reduction of insulin action within the tissues.(334-336, 344)  Resistin 

has also been implicated as the link between obesity and diabetes, since insulin-

stimulated glucose uptake by adipocytes is enhanced by neutralization of resistin and 

reduced by treatment with resistin.(345) Furthermore, resistin may play a role in 

atherosclerosis since it has been shown to up-regulate both MCP1 and ICAM.(346-348) 

Serum Amyloid A (SAA).   

SAA is a conserved acute-phase protein, composed of three isotopes within 

plasma.(349) Upon stimulation by cytokines, such as IL-6 and TNF-α, SAA is 

synthesized primarily by hepatocytes.(350-352)  SAA inhibits antibody production,(353) 

impedes platelet agglutination,(354) and induces chemotaxis for neutrophils and 

monocytes.(355) Thus, SAA appears to have an anti-inflammatory role in preventing 
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progression of cellular injury via tissue repair mechanisms.(356)  During acute 

inflammatory responses, SAA levels can increase up to 1000 times that of baseline within 

just a few hours,(357) while SAA becomes the predominant apolipoprotein on HDL, 

displacing apoA1.(358)  Chronic inflammatory states, however, change the milieu of 

SAA.  Plasma SAA levels are chronically increased in obese individuals when compared 

to lean individuals, and the protein becomes expressed more predominantly by adipocytes 

than hepatocytes.(359)  Further, during chronic inflammation, SAA appears to activate 

pro-inflammatory cytokines, such as IL-6 and MCP1, and SAA may alter fat metabolism, 

and impact insulin resistance and atherosclerosis through systemic changes in cytokine 

production.(359)  

Tumor Necrosis Factor Receptors 1 and 2 (TNFR-1, TNFR-2).   

TNF-α is a cytokine produced mainly by macrophages that is involved in acute 

phase inflammation, and also acts to protect the body against infectious agents and 

tumors, and aids in sleep regulation.(360, 361)  TNF-α activates neutrophils and platelets, 

and enhances apoptosis and cell necrosis.(362)  TNF-α binds to cells via receptors, 

TNFR-1 and TNFR-2.  Most cell types express both TNFR-1 and TNFR-2, though 

TNFR-2 is preferentially expressed on cells of hematopoietic origin.(363, 364) The most 

important functions of the receptors is to mediate activation-induced cell death of T- 

cells(365) and to promote inflammatory response.(366)  Most cytotoxic effects are 

mediated by TNFR-1,(146) while TNFR-2 is thought to mediate signals that promote 

tissue repair and angiogenesis.(367)  NF-κB binds to the TNFR-associated death domain 

protein indirectly to TNFR-1, or directly to TNFR-2 in order to transduce intercellular 

signals and promote inflammatory response.(368, 369)  Further, it is thought that the 
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receptors may act as mechanisms to protect from excessive TNF-α activity during 

inflammatory states.(370) 

 TNF-α is associated with many cardiovascular conditions, such as 

atherosclerosis, myocardial infarction, heart failure, and vascular endothelial response.  

Myocytes and macrophages within myocardial tissue are known to produce TNF-α.(371, 

372)  The cytokine increases within the myocardium after ischemia and reperfusion, burn 

trauma, myocardial infarction, and cardiopulmonary bypass.(373-377)  Further, TNF-α is 

associated with obesity, adipocyte cell volume, and inhibition of glucose uptake in 

adipocytes.(378-381)  TNF-α may mediate insulin resistance via obesity,(305, 382, 383) 

partly through increased IL-18 expression in myocytes.(384) 
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Appendix 3.The GENOA  Study Population and Design 

 

A. GENOA Study Population 

The Genetic Epidemiology Network of Arteriopathy (GENOA) study is a 

community-based study investigating the genetics of hypertension and its arteriosclerotic 

complications in non-Hispanic whites from Rochester, MN and African-Americans from 

Jackson, MS.(72)  The present study will investigate the relationship between DNA 

methylation and aging processes in GENOA African-Americans.  African-American 

sibships in which 2 siblings were diagnosed with primary hypertension before the age of 

60 years (N=1,854) were recruited for an initial examination (Phase I: 1996-1999) that 

included standardized interviews concerning prescription drug usage, cigarette smoking, 

physical activity, history of hypertension, diabetes, and cardiovascular disease events; 

physical examination for blood pressure, height, weight, and waist circumference; and 

fasting blood samples for creatinine, total cholesterol, high-density lipoprotein (HDL)-

cholesterol, triglycerides, glucose, and insulin.  The second examination (Phase II: 2000-

2004) included 1,482 Phase I participants, and included re-measurement of interview, 

physical examination, and blood characteristics from Phase I, as well as additional 

measurements of arteriosclerotic target organ damage of the heart (echocardiogram), 

kidney (estimated glomerular filtration rate), and peripheral arteries (ankle-brachial 

index).   The third examination (Phase III: 2008-2011) included 752 African-American 

Phase II participants, and included re-measurement of interview, physical examination, 

and fasting blood characteristics from Phases I and II, as well as measurements of 

cognition and physical functioning, and coronary artery calcification (computed 
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tomography).  Written informed consent was obtained from all subjects and approval was 

granted by participating Institutional Review Boards. 

Due to financial limitations, DNA methylation was quantified on 1,008 of the 

1,482 (68.0%) Phase II African-American participants.  Methylation was assessed on 

DNA extracted from stored peripheral blood samples collected during the second 

examination.  Epigenetics study participants were chosen based on the order of their 

Phase II exam, a method which is more likely to keep siblings in the same sibship within 

the study.  By following this method, family-based analyses, including estimates of 

heritability, are executable.  After quality control standards were employed (as described 

later in this section), 972 GENOA African-Americans had measurements of DNA 

methylation across 27,578 CpG sites (Figure 8).  

Descriptive statistics of Phase II baseline variables, calculated using SAS 

software (SAS v.9.3, Cary, NC), comparing the 1,008 Phase II epigenetics study 

participants with the 474 Phase II participants who did not participate in the epigenetics 

study are presented in Supplementary Table 15.  In brief, the epigenetics participants 

were similar in gender makeup to non-epigenetics participants (70.93% vs. 70.68% 

female), and epigenetics participants had higher prevalences of hypertension (82.64% vs. 

70.68%), diabetes (30.56% vs. 27.00%), and having ever smoked ≥20 cigarettes within 

their lifetime (41.77% vs. 36.71%).  Epigenetics study participants were also significantly 

older (mean: 66.34 vs. 56.07), less obese (mean: 31.1 kg/m
2
 vs. 32.6 kg/m

2
), and had 

significantly higher total cholesterol and HDL-C (mean: 203.98 vs. 197.93 and 58.08 vs. 

55.42, respectively) than non-epigenetics study participants.   
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Figure 8.  GENOA African American sample size. 

 

 

 

B. Covariate Definition within GENOA 

Traditional Risk Factors for Chronic Disease 

Phenotypic measurements to be employed within the context of Aims 1 and 2 of 

this research, which analyze the associations between age and DNA methylation, and the 

heritability of DNA methylation markers, were collected during the Phase II examination 

within the African-American field center of the GENOA study.  Aim 3 incorporates 

chronic disease risk factor data from Phases I, II, and III of the GENOA African 
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American field center, and inflammatory marker measurement from Phase II, along with 

epigenetics measurements from Phase II.  Phenotype information was measured using 

consistent methodologies at each exam point.   

Medical history and medication use was obtained via a questionnaire recorded the 

day of the exam.  Blood was drawn by venipuncture after an overnight fast.  Total serum 

cholesterol, high-density lipoprotein cholesterol (HDL-C), fasting glucose, and fasting 

insulin were measured by standard enzymatic methods.(127, 385, 386)  Serum creatinine 

(SCr) was measured by the rate-Jaffe spectrophotometric method, in Phase I with 

standardized to later measurement methods using the equation:               

                       ; in Phase II by either spectrophotometric method with 

standardization equation:                         or by a recently nationally 

standardized procedure of Isotope Dilution Mass Spectrometry (IDMS); and solely via 

IDMS in Phase III.(387, 388)  If the subject was being treated with insulin or oral agents, 

or had a fasting glucose level ≥126 mg/dL, they were considered to have diabetes.(386)  

Low-density lipoprotein cholesterol (LDL-C) was calculated as 

                                
             

 
⁄   for individuals with 

triglyceride measurements < 200 mg/dL, or                                 

    for triglyceride measurements ≥ 200 mg/dL.   

Blood pressure was measured by a trained technician using a random-zero 

sphygmomanometer (Hawksley and Sons, London, UK) on participants who were lying 

in supine position in a quiet room with controlled temperature.  Blood pressure was 

measured three times per participant, with the average of the last two values used for 
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analyses.  Pulse pressure was calculated as the difference between systolic and diastolic 

blood pressures.(127)  Hypertension was assessed as the average of the last two blood 

pressure level measures at the study visit (>140/90 mm Hg), or a prior diagnosis of 

hypertension and current treatment with antihypertensive medications.(386)  In order to 

more accurately approximate the epigenetic effects on blood pressure, constants of 10 

mm Hg were added to systolic blood pressure and 5 mm Hg were added to diastolic 

pressure if a patient reported taking blood pressure lowering medications, since anti-

hypertensive medication usage may obscure the epigenetic association with hypertension.  

Adjusted pulse pressure was calculated as the difference between adjusted systolic and 

adjusted diastolic blood pressures.  Brief information about all chronic disease risk 

factors can be seen in Table 17. 

Table 17. Traditional chronic disease measurements used in the course of this 

dissertation. 

Variable Disease Measurement Units 

Body Mass Index (BMI) Obesity kg/m
2
 

Systolic Blood Pressure (BP) Hypertension mm Hg 

Diastolic BP Hypertension mm Hg 

Pulse Pressure Hypertension mm Hg 

Adj. Systolic BP Hypertension mm Hg 

Adj. Diastolic BP Hypertension mm Hg 

Adj. Pulse Pressure Hypertension mm Hg 

Total Cholesterol Dyslipidemia mg/dL 

Triglycerides (trig) Dyslipidemia mg/dL 

High density lipoproteins (HDL-C) Dyslipidemia mg/dL 

Low density lipoproteins (LDL-C) Dyslipidemia mg/dL 

Glucose Diabetes mg/dL 

Insulin Diabetes mU/mL 

Serum Creatinine Chronic Kidney Disease mg/dL 
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Novel Inflammatory Biomarkers of Chronic Disease. 

Protein markers of vascular disease were measured in plasma (fibrinogen, serum 

amyloid A, interleukins 6 and 18, tumor necrosis factors 1 and 2, intercellular adhesion 

molecule,  monocyte chemotactic protein-1, and resistin) or serum (C-reactive protein, 

myeloperoxidase, homocysteine) from Phase II blood samples, using commercially 

available solid-phase immunoassays and immunoturbidometric assays (Table 18).(127, 

128)  Additional information on biomarker assays, including precision, accuracy, 

stability, and methods of quality control have been previously described.(128)  

Table 18.  Measurement of inflammatory niomarkers 

C-reactive protein  

(CRP) 

Serum Immunoturbidometric
1
 

 

mg/L 

Fibrinogen  Sodium-citrate 

plasma 

Clot-based
2
 mg/dL 

Homocysteine  

(Hycs) 

Plasma High-pressure liquid 

chromatography
3
 

µmol/L 

Intercellular adhesion molecule  

(ICAM) 

EDTA Plasma ELISA
4 

ng/mL 

Interleukin 18  

(IL-18) 

EDTA Plasma ELISA 6-plex
5
 pg/mL 

Interleukin 6  

(IL-6) 

EDTA Plasma ELISA 6-plex
5
 pg/mL 

Monocyte chemotactic protein-1  

(MCP1) 

EDTA Plasma ELISA 9-plex
5
 pg/mL 

Myeloperoxidase 

(MPO) 

Serum ELISA
6
 ng/mL 

Resistin EDTA Plasma ELISA
7
 ng/mL 

Serum amyloid A  

(SAA) 

EDTA Plasma ELISA
8
 µg/mL 

Tumor necrosis factor receptor-1  

(TNFR-1) 

EDTA Plasma ELISA 6-plex
5
 pg/mL 

Tumor necrosis factor receptor-2  

(TNFR-2) 

EDTA Plasma ELISA 9-plex
5
 pg/mL 

(1) Diasorin, Inc., Stillwater, MN; (2) Diagnostica STAGO, Asnieres, France; (3) 

Magera, Lacey, Casetta and Rinaldo (389);  (4) R&D Systems, Minneapolis, MN; (5) 

SearchLight™, Pierce, Boston, MA; (6) ALPCO Diagnostics, Salem, NH; (7) 

BioVendor, Modrice, Czech Republic; (8) BioSource International, Camarillo, CA 

 

Biomarker Sample Matrix Measurement Units 
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Phenotypic variable transformation. 

Before their use in statistical analysis, each continuous variable was assessed for 

its approximate normality by examining histograms and estimating skewness and 

kurtosis.  If the variable distribution is heavily skewed, natural log transformation of the 

variable plus a constant is made, as ln(variable+1).  For a list of variables and their 

transformations, see Supplementary Table 14. Outliers, as assessed as values of a variable 

that is more than its mean ± 4*standard deviation, was excluded from analysis due to 

their extremeness.  By limiting the transformation to a log-transformation, the variables 

retain their ability to be interpreted in a biological context, and are comparable to 

previous studies using this data. 
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Supplementary Table 13. Comparison of baseline characteristics of Phase II Non-Epigenetics Participants with Phase II 

Epigenetics Participants.  A) Continuous variables, B) Categorical variables. 

 

 

A)  Continuous clinical variables 

 Phase II Non-Epigenetics Participants Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Age, years 474 0.00% 26.41-81.52 56.07 (9.21) 1008 0.00% 39.26-94.74 66.34 (7.6) 6.6E-49 

BMI, kg/m² 472 0.42% 18.1-57.9 32.6 (7.4) 1001 0.69% 16.41-55.09 31.1 (6.09) 0.013 

Systolic BP, mm Hg 473 0.21% 96-208 134.8 (19.3) 1006 0.20% 79-221 139.89 (21.12) 2.2E-06 

Diastolic BP, mm Hg 474 0.00% 53-122 81.57 (10.2) 1008 0.00% 45-121 78.29 (11.01) 2.3E-05 

Pulse Pressure, mm Hg 474 0.00% 19-127 53.41 (15.11) 1006 0.20% 26-127 61.64 (17.72) 6.0E-17 

Adj. Systolic BP, mm Hg (1) 473 0.21% 97-218 142.05 (21.47) 1006 0.20% 89-231 148.15 (22.74) 5.5E-08 

Adj. Diastolic BP, mm Hg (1) 474 0.00% 58-127 85.2 (10.95) 1008 0.00% 50-126 82.42 (11.43) 4.6E-04 

Adj. Pulse Pressure, mm Hg (1) 473 0.21% 24-132 56.89 (15.72) 1004 0.40% 28-132 65.65 (18.28) 2.2E-18 

Total Cholesterol, mg/dL 459 3.16% 72-348.5 197.93 (40.02) 1008 0.00% 73.5-354.5 203.98 (41.95) 7.8E-05 

Triglycerides, mg/dL 454 4.22% 28.5-419.5 111.95 (58.94) 1004 0.40% 37-402.5 117.9 (56.68) 9.8E-04 

ln (Triglycerides+1) 457 3.59% 3.38-6.45 4.62 (0.49) 1007 0.10% 3.64-6.27 4.69 (0.43) 0.69 

HDL-C, mg/dL 457 3.59% 23.8-125.8 55.42 (16.66) 1005 0.30% 21.7-130.35 58.08 (17.48) 7.0E-03 

ln (HDL+1) 460 2.95% 3.21-5.17 4 (0.3) 1008 0.00% 3.12-5.05 4.04 (0.29) 0.75 

LDL-C, mg/dL 459 3.16% 23.6-253.75 121.1 (36.88) 1008 0.00% 24.85-272.1 123.84 (39.58) 0.064 

Glucose, mg/dL 457 3.59% 43.5-296 108.28 (38.68) 998 0.99% 49.5-290 110.56 (34.31) 0.11 

ln (Glucose+1) 457 3.59% 3.8-5.69 4.65 (0.28) 1004 0.40% 3.92-5.82 4.69 (0.27) 0.77 

Insulin, mU/mL 163 65.61% 1.14-52.46 9.34 (8.53) 1005 0.30% 0.22-115.76 10.39 (12.45) 0.30 

ln (Insulin+1) 163 65.61% 0.76-3.98 2.12 (0.62) 1006 0.20% 0.2-5.02 2.12 (0.74) 1.00 

Menopause Age, years (2) 270 43.04% 23-59 42.6 (8.26) 699 30.65% 25-62 43.72 (7.85) 0.14 
 

1 If a participant is listed as taking hypertensive medications, 10 mm Hg is added to systolic blood pressure, and 5 mm Hg is added to diastolic blood pressure, else 

recorded blood pressure is used in this variable. 

2 Menopause age is represented for females only. 
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B)  Measures of inflammation 

 

  Phase II Non-Epigenetics Participants  Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Serum Creatinine, mg/dL 460 2.95% 0.44-3.64 0.89 (0.29) 1008 0.00% 0.42-2.98 0.94 (0.3) 0.69 

CRP, mg/L 347 26.79% 0.21-29.9 5.48 (5.8) 971 3.67% 0.21-29.9 6.05 (6.77) 0.37 

ln (CRP+1) 347 26.79% 0.08-1.49 0.68 (0.33) 971 3.67% 0.08-1.49 0.7 (0.34) 0.87 

Homocysteine, µmol/L 430 9.28% 4.5-25.2 9.38 (2.97) 1002 0.60% 4.7-31 10.57 (3.59) 7.1E-03 

ln (Hycs+1) 430 9.28% 1.7-3.27 2.3 (0.26) 1002 0.60% 1.74-3.47 2.41 (0.28) 0.41 

Fibrinogen, mg/dL 440 7.17% 123-684 362.44 (88.37) 1007 0.10% 120-680 369.35 (81) 1.6E-03 

ICAM, ng/mL 199 58.02% 101-584 296.97 (83.09) 578 42.66% 17-625 275.38 (80.82) 3.2E-16 

IL-6, pg/mL 241 49.16% 1.92-29.78 8.71 (5.06) 856 15.08% 1.42-36.45 9.09 (5.31) 0.54 

ln (IL-6+1) 245 48.31% 0.46-1.58 0.95 (0.22) 878 12.90% 0.38-1.58 0.97 (0.22) 0.86 

IL-18, pg/mL 240 49.37% 6.14-235.97 72.17 (38.66) 863 14.38% 1.86-252.42 69.92 (39.97) 0.19 

ln (IL-18+1) 241 49.16% 0.85-2.49 1.81 (0.23) 872 13.49% 0.84-2.49 1.8 (0.25) 0.92 

MPO, ng/mL 193 59.28% 11.74-141.47 47.43 (27.67) 954 5.36% 4-160.58 40.26 (25.04) 5.1E-07 

ln (MPO+1) 196 58.65% 1.1-2.22 1.63 (0.23) 968 3.97% 0.7-2.22 1.56 (0.24) 0.60 

MCP1, pg/mL 205 56.75% 247.44-2124.82 970.81 (319.89) 835 17.16% 159.81-2704.78 1053.43 (369.78) 2.3E-49 

ln (MCP+1) 205 56.75% 2.4-3.33 2.96 (0.15) 849 15.77% 2.46-3.49 3.01 (0.16) 0.69 

Resistin, ng/mL 312 34.18% 1-12.13 3.77 (1.96) 895 11.21% 1-12.32 4.07 (2.03) 0.40 

ln (Resistin+1) 315 33.54% 0.3-1.2 0.65 (0.18) 902 10.52% 0.3-1.2 0.68 (0.17) 0.798 

SAA, µg/mL 297 37.34% 2.35-146 26.75 (28.98) 731 27.48% 2.35-146 32.94 (30.88) 2.0E-05 

ln (SAA+1) 297 37.34% 0.53-2.17 1.27 (0.39) 731 27.48% 0.53-2.17 1.38 (0.38) 0.51 

TNFR-1, pg/mL 219 53.80% 102.78-3310.18 1113.11 (562.23) 872 13.49% 19.89-3844.07 1185.29 (546.83) 1.3E-27 

ln (TNFR1+1) 217 54.22% 2.15-3.52 3 (0.21) 882 12.50% 2.17-3.68 3.04 (0.22) 0.76 

TNFR-2, pg/mL 240 49.37% 388.3-4998.98 1751.03 (649.43) 849 15.77% 286.83-5333.39 1950.04 (831.08) 4.8E-117 

ln (TNFR2+1) 241 49.16% 2.59-3.8 3.22 (0.16) 854 15.28% 2.59-3.8 3.26 (0.17) 0.70 
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C)  Categorical variables 

 

 Non-Epigenetics Participants Epigenetics Participan 

  Count Total % of Total Count Total % of Total 

Female 335 474 70.68% 715 1,008 70.93% 

Hypertensive 344 474 72.57% 833 1,008 82.64% 

Has Diabetes 128 474 27.00% 308 1,008 30.56% 

Ever Smoker 174 474 36.71% 421 1,008 41.77% 
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Supplementary Table 14.  List of variables and transformations 

Age Age years none 

Body Mass Index 

(BMI) 

Obesity kg/m
2
 

               
           

            
 

 

Systolic Blood 

Pressure (BP) 

Hypertension mm Hg none 

Diastolic BP Hypertension mm Hg none 

Pulse Pressure Hypertension mm Hg none 

Adj. Systolic BP Hypertension mm Hg If Hypertension = Yes, Adj Sys BP = Systolic BP + 10 

mm Hg  

Else if Hypertension = N then Adj Sys BP = Systolic 

BP 

Adj. Diastolic BP Hypertension mm Hg If Hypertension = Yes, Adj Dia BP =  Diastolic BP + 5 

mm Hg  

Else if Hypertension = N, then Adj Dia BP =  Diastolic 

BP 

Adj. Pulse 

Pressure 

Hypertension mm Hg Adj PP = Adj Sys BP – Adj Dia BP  

Total Cholesterol Dyslipidemia mg/dL Total molar mass of lipoproteins in blood 

Triglycerides 

(trig) 

Dyslipidemia mg/dL Trig is represented as: ln(Trig + 1) 

High density 

lipoproteins 

(HDL-C) 

Dyslipidemia mg/dL HDL is represented as:  ln(HDL + 1) 

Low density 

lipoproteins 

(LDL-C) 

Dyslipidemia mg/dL If triglycerides < 200 mg/dL, LDL-C = 

                         
             

 
⁄   

Else if triglycerides ≥ 200 mg/dL,  

                                    

Glucose Diabetes mg/dL Glucose is represented as:  ln(Glucose + 1) 

Insulin Diabetes mU/mL Insulin is represented as: ln(Insulin + 1) 

 

Serum Creatinine 

(SCr) 

Chronic 

Kidney 

Disease 

mg/dL Lab value if measured by Isotope Dilution Mass 

Spectrometry (most of phase 2 values, and all of phase 

3 values).  Else:  

Phase 1: SCr=(0.807*(0.8134*SCr_Ph1-

0.167)+0.1738); 

Phase 2: SCr =(0.807*SCr_Ph2)+0.1738. 

C-Reactive 

Protein (CRP) 

Inflammation mg/L CRP is represented as: ln(CRP+1) 

Fibrinogen Inflammation mg/dL None 

Homocysteine Inflammation  µmol/L Hycs is represented as: ln(Hycs+1) 

Intercellular 

Adhesion 

Molecule (ICAM) 

Inflammation ng/mL None 

Interleukin-6 (IL-

6) 

Inflammation pg/mL IL-6 is represented as: ln(IL-6+1) 

Interleukin-18 

(IL-18) 

Inflammation pg/mL IL-18 is represented as: ln(IL-18+1) 

Variable Disease 

Measurement 

Units Description/Transformation 
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Monocyte 

Chemotactic 

Protein-1 (MCP1) 

Inflammation pg/mL MCP is represented as: ln(MCP1+1) 

Myeloperoxidase 

(MPO) 

Inflammation ng/mL MPO is represented as: ln(MPO+1) 

Resistin Inflammation ng/mL Resistin is represented as: ln(Resistin+1) 

Serum Amyloid A 

(SAA) 

Inflammation µg/mL SAA is represented as: ln(SAA+1) 

Tumor Necrosis 

Factor Receptor-1 

(TNFR-1) 

Inflammation pg/mL TNFR1 is represented as: ln(TNFR-1+1) 

Tumor Necrosis 

Factor Receptor-2 

(TNFR-2) 

Inflammation pg/mL TNFR2 is represented as: ln(TNFR-2+1 
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Appendix 4. Measurement of DNA methylation using the Illumina 

HumanMethylation27K microarray. 

 

 

Illumina HumanMethylation27K 

The Illumina HumanMethylation27 BeadChip (Illumina, San Diego, CA, USA) 

performs high-throughput genome-wide DNA methylation analysis, requiring only a 

small amount of bisulfite converted genomic DNA (1 µg) to assess methylation 

measurements across 27,578 CpG dinucleotides.(390)  Each CpG site measured by 

Illumina has a primer length of 60 base pairs on each side of the CpG site, thus each CpG 

locus has a unique 122-base pair sequence identifying it.(391)  The methylation sites 

measured by the Illumina Infinium 27K microarray span 14,495 genes, including 12,833 

well-annotated genes described in NCBI National Center for Biotechnology Information 

(CCDS) database9 (Genome Build 36), 982 cancer-related targets, 144 methylation 

hotspots in cancer genes, and 110 micro RNA promoter regions.(392)  On average, there 

are approximately two CpG sites measured for each gene represented on the Infinium 

27K microarray, with an overrepresentation methylation hotspots in cancer genes, 

averaging 7.6 CpG sites per gene.(392)(Table 19) 
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Table 19.  CpG sites and genes represented by Illumina Infinium 

HumanMethylation27K 

1 2,904 1,538 1.89 2,012 76.44% 

2 1,712 922 1.86 1,203 76.64% 

3 1,523 795 1.92 1,040 76.44% 

4 1,028 561 1.83 718 78.13% 

5 1,159 622 1.86 849 73.26% 

6 1,490 807 1.85 1,002 80.54% 

7 1,260 632 1.99 866 72.98% 

8 942 501 1.88 659 76.02% 

9 1,076 566 1.90 785 72.10% 

10 1,045 557 1.88 745 74.77% 

11 1,735 845 2.05 1,258 67.17% 

12 1,529 788 1.94 1,003 78.56% 

13 493 258 1.91 318 81.13% 

14 833 441 1.89 601 73.38% 

15 829 416 1.99 562 74.02% 

16 1,198 619 1.94 805 76.89% 

17 1,586 832 1.91 1,158 71.85% 

18 395 197 2.01 268 73.51% 

19 1,905 992 1.92 1,399 70.91% 

20 884 459 1.93 533 86.12% 

21 315 180 1.75 225 80.00% 

22 645 343 1.88 431 79.58% 

X 1,085 599 1.81 815 73.50% 

Y 7 5 1.40 45 11.11% 

 

Though the Illumina Infinium 27K microarray measures CpG sites within genes 

spanning ~75% of the genome, it is by no means an exhaustive quantification of whole-

genome DNA methylation.  There are approximately 28 million CpG sites within the 

human genome,(62) a frequency of which is far less than expected based on genome GC 

content,(395) but the Infinium 27K chip is only able to critically assess a very small 

percentage of the total CpG sites. However, CpG methylation occurs differentially within 

CpG Islands – regions, approximately a few hundred base pairs in length, with elevated 

frequency of CpG sites.(395)  The Infinium 27K chip contains 20,006 (72.5%) sites 

Chr 

Infinium 

27K CpG 

Sites(393) 

Infinium 

27K 

Genes(393

) 

# CpG 

sites per 

Gene 

Confirmed protein-

encoding genes in 

human genome(394) 

% of protein-encoding 

genes covered by 

Infinium 27K 

Total 27,578 14,475 1.91 19,300 75.00% 
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within CpG Islands, methylation levels which may approximate those of methylation in 

surrounding CpG sites due to the correlation in DNA methylation in sites within CpG 

Islands.  Lastly, since the Infinium 27K array more highly overlays CpG sites within 

cancer hotspots, and does not cover every gene in the genome, the results may be biased 

within this study of aging and chronic disease risk factors since crucial gene regions may 

be absent from the microarray.   

DNA extraction and Methylation assay.   

DNA was isolated from peripheral blood leukocytes from GENOA Phase II 

stored samples, using the PureGene DNA Isolation Kit from Gentra Systems 

(Minneapolis MN), and all DNA samples were run on agarose gels to verify quality.  

Next, 1 µg of each sample was bisulfite-converted utilizing the EZ-DNA Methylation Kit 

(Zymo Research, Irvine, CA).  In the presence of bisulfite, unmethylated cytosines are 

chemically deaminated to uracil, while methylated cytosines are unaffected.  Following 

bisulfite conversion, a thermocycling process with a short denaturation process (16 cycles 

of 95º, followed by 50º for one hour) occurs to improve bisulfite-conversion efficiency. 

Control samples were run in parallel to test the efficiency of the bisulfite conversion.  

DNA samples were then denatured, neutralized, and whole-genome amplified 

overnight, which increases the amount of DNA sample by several thousand-fold without 

introducing large amounts of amplification bias, using reagents supplied by Illumina. 

(396)  Samples were then enzymatically fragmented using end-point fragmentation to 

avoid overfragmentation, then purified by isopropanol precipitation.  Samples were then 

hybrized to Illumina BeadChips, where the amplified, fragmented DNA samples anneal 

to locus-specific 50mers covering 27,578 CpG sites and a set of 56 control probes during 
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hybridization.  Unhybridized and non-specifically hybridized DNA were then washed 

away. Two bead types are present for every CpG site interrogated: one corresponding to 

the methylated (cytosine or C) state and the other corresponding to the unmethylated 

(thymine or T) state. DNP- and biotin-labeled ddNTPs are used to extend the primer by a 

single base following allele-specific primer annealing. The array was fluorescently 

stained, scanned using the Illumina BeadXpress reader, and assessed for fluorescence 

intensities across the methylated and unmethylated bead types at 27,578 CpG sites.  The 

scanner excites the fluorophore of the single-base extension product on the beads with a 

laser, then records high-resolution images of the light emitted from the 

fluorophores.(396) Twelve samples were assessed in parallel upon  each BeadChip, with 

up to eight BeadChips analyzed in one batch within the BeadXpress Reader.(390) 

Illumina Control Probes and Quality Control 

The HumanMethylation27 BeadChip reads 56 control probes for each sample 

processed.  These controls are split into sample-independent and sample-dependent 

controls.  Sample-independent controls include staining, extension, target removal, and 

hybridization controls which evaluate the quality of each sample throughout each step in 

the process flow.  The sample-dependent controls include bisulfite conversion, 

specificity, negative, and non-polymorphic controls, which evaluate performance across 

samples.  Illumina recommends excluding samples that have bisulfite conversion control 

intensities of less than 4,000.  Seven of our samples met the bisulfite conversion control 

exclusion criteria.  We also established a criterion of excluding samples that had extreme 

outlying control probe values, which was calculated as a control probe value greater than 

4 standard deviations from its mean.  The expectation is that >99.99% of samples are 
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contained within ±4 standard deviations from the mean in a normal distribution. Twenty-

nine samples were excluded due to having extreme outlier values of their control probes.  

(Figure 8.)   

Data processing and methylation quantitation. 

At each CpG site, fluorescent signals were measured from the site-specific M 

(methlyated) and U (unmethylated) bead types. The raw fluorescence data from the 

scanner was processed in Illumina BeadStudio software. To reduce batch and chip 

effects, the correlation structure among all 56 control probes was evaluated within 

channel to identify the most parsimonious subset of probes that explained the maximum 

amount of batch and chip variation across samples (5 probes in the red channel and 8 

probes in the green channel; Table 20). Normalization was conducted by linearly 

regressing the 13 selected probes onto the intensity signals from the methylated and 

unmethylated bead types separately across each CpG site.   

Table 20. List of Probes used to Standardize Methylated and Unmethylated Signals 

EXTENSION 1190050 BISULFITE CONVERSION 4670278 

EXTENSION 360446 BISULFITE CONVERSION 4670484 

NON-POLYMORPHIC 1740025 BISULFITE CONVERSION 5290048 

STAINING 4200736 EXTENSION 1190050 

STAINING 4570020 EXTENSION 360446 

 EXTENSION 520537 

 NON-POLYMORPHIC 1740025 

 STAINING 5340168 

 

Two measures of methylation were calculated for each individual at every CpG 

site from the normalized methylated and unmethylated bead type signal intensities: the 

Beta Value and the M-Value. Beta Values are continuous variables ranging from 0 to 1 

Red Channel Probes Green Channel Probes 
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that are proportional to the percent methylation at each particular CpG site within each 

individual.  The Beta Value(104) for an individual, i, at a single site, k, is calculated as:   

             
           

                         
. 

The constant added to the denominator of the Beta Value formula is a compensation for 

any negative value of signals that may arise from global background subtraction.  Beta 

Values between 0 and 0.2 are generally considered to be unmethylated, and those 

between 0.8 and 1 are considered methylated, while values between 0.2 and 0.8 are 

considered semi-methylated.(62)  The M-Value is also a commonly used measurement in 

microarray analysis that was more recently adapted for use in DNA methylation array 

data due to its ability to equalize the variance across the epigenetic sites.(74, 75)  The M-

Value is calculated as:  

              
            

            
,  

where a constant is added to prevent large-scale changes caused by small intensity 

estimation errors.(75)  The relationship between Beta and M-Values represents a logit 

transformation, where: 

              
            

               
. 

 Unmethylated M-Values are considered to be < -2.0, methylated M-Values are > +2.0, 

and semi-methylated M-Values are between -2 and +2.  In the results presented below, 

we discern the M-Value results more frequently than the Beta Value results because the 

statistical distributions of the M-Values conform to modeling assumptions more often 

than do those of the Beta Values. 
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DNA methylation sample and CpG site exclusion criteria. 

Epigenetic mechanisms are known to control X-chromosome inactivation, which 

occurs in all female mammals in order to achieve dosage compensation between the 

sexes.  Methylation pattern differences between active and inactive X-chromosomes are 

vastly different, with inactive X-chromosomes displaying hypermethylation in gene-rich 

regions, and hypomethylation in gene-poor regions, and the active X-chromosome 

exhibiting the opposite.(397)  Since each individual’s sample is a heterogeneous 

collection of cells, these cells may exhibit immensely different levels of DNA 

methylation on the X-chromosome due to the population of cells expressing potentially 

different X-chromosomes within it.  Thus, statistical associations between DNA 

methylation levels of CpG sites on the X-chromosome and phenotypic data may be 

weakened due to differing levels of methylation being read within the same cell 

population. 

Further, the Illumina Infinium HumanMethylation27K microarray has been found 

to contain CpG site probes that are non-specific and cross-reactive to regions of the 

genome beyond their intended target.  Within the Infinium 27K’s sample of 1,085 CpG 

sites on the X-chromosome, 173 (15.9%) are found to have cross-reactive probes that 

may bind to non-target sequences around the genome, and are between 80-100% identical 

to non-target sequences. These probes were found after initially leading investigators to 

false discovery of sex-specific DNA methylation, and, thus, interpretation of these sites 

must be treated carefully.(77)  In fact, Chen, Choufani, Ferreira, Grafodatskaya, Butcher 

and Weksberg (77) published a list of 2,984 CpG sites found to have probes that are 80-

100% identical to non-target sequences elsewhere in the genome, which represents 
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10.82% of the total CpG sites on the Infinium 27K microarray.  Chen, Choufani, Ferreira, 

Grafodatskaya, Butcher and Weksberg (77) also discovered a set of 876 (3.18%) 

polymorphic probes that overlap with at least one SNP, as recorded in the database 

dbSNP.  Methylation levels of some CpG sites are thought to be entirely dependent on 

the genotype of nearby SNPs.(77) 

Due to the considerations discussed above, autosomal CpG sites were analyzed 

within the scope of this dissertation.  CpG sites excluded from the analysis included 

1,085 X-chromosome CpG sites and 7 CpG sites on the Y-chromosome. A total of 58 

autosomal CpG sites were removed from the analysis because they were found to be 

multimodal based on the Dip Test(76) using a cut-off of p<0.001 on the signal intensities 

of the methylated and/or unmethylated bead types.  These multimodal sites clearly 

violated the statistical modeling assumptions of normality.  To note, sex chromosomes 

had 46% of CpG sites identified as multimodal.  This resulted in a total number of 26,428 

CpG sites included in our analysis (Figure 9).  Finally, 2,984 non-specific binding probes 

and 908 polymorphic probes overlapping with single nucleotide polymorphisms 

(SNPs)(77) were identified and denoted in the result tables. Though these sites are not 

removed from the analysis, their results should be interpreted with caution.   
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Figure 9.  CpG sites used in analysis 
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Appendix 5.  Description of methylation data within GENOA. 

 

 

Summary of methylation data in the GENOA study 

 After exclusion criteria were employed, this study contained phenotype and 

methylation data for 972 African Americans across 26,428 CpG sites.  The sample was 

predominantly female (70.7%) and hypertensive (82.5%), with mean age of 66.3 years 

and mean body mass index of 31.1 kg/m
2
.  Further descriptive statistics are presented in 

Table 21, and descriptive statistics before inclusion criteria were employed are available 

in Supplementary Table 15.  This study population consisted of 197 singletons, and 296 

sibships ranging in size from 2 to 10 siblings, with a mean of 2.6 siblings per sibship 

(Supplementary Table 16).   

The majority of the 26,428 CpG sites were unmethylated in this population 

(15,227 (57.6%) sites had a mean Beta Value of <0.2; 15,217 (57.6%) had a mean M-

Value of <-2.0).  Across all CpG sites, the mean fluorescence intensities across the 

methylated bead types ranged from 482 to 39,693 (mean= 2,829), while mean 

fluorescence intensities on the unmethylated bead types ranged from 497 to 37,269 

(mean= 6,866).  Beta Value means ranged from 0.025 to 0.97, with an average mean Beta 

Value of 0.31, and M-Value means ranged from -5.37 to 5.07 with an average mean M-

Value of -1.58 (Figure 10). 
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Table 21. Baseline characteristics of GENOA Phase II epigenetics participants after 

outlier removal 

Age, years 972 0 0 39.26-94.74 66.28 (7.6) 

BMI, kg/m2 965 0 7 16.41-55.09 31.06 (6.09) 

Systolic BP, mm Hg 970 0 2 79-221 139.75 (21.01) 

Diastolic BP, mm Hg 972 0 0 45-121 78.33 (11) 

Pulse Pressure, mm Hg 971 0 1 26-127 61.54 (17.77) 

Systolic BP (Adj), mm Hg** 970 0 2 89-231 148 (22.66) 

Diastolic BP (Adj), mm Hg** 972 0 0 50-126 82.46 (11.44) 

Pulse Pressure (Adj), mm Hg** 969 0 3 28-132 65.54 (18.32) 

Total cholesterol, mg/dL 972 0 0 73.5-354.5 203.73 (42.08) 

Triglycerides, mg/dL 963 5 4 37-345 116.63 (53.77) 

HDL cholesterol, mg/dL 967 2 3 21.7-122.25 57.91 (17.07) 

LDL cholesterol, mg/dL 972 0 0 24.85-272.1 123.59 (39.73) 

Glucose, mg/dL 951 11 10 49.5-245 108.6 (29.64) 

Insulin, mU/mL 953 16 3 0.22-58.29 9.23 (8.25) 

Serum creatinine, , mg/dL 961 11 0 0.42-2.16 0.92 (0.25) 

**  If a participant is listed as taking hypertensive medications, 10 mm Hg is added to 

systolic blood pressure, and 5 mm Hg is added to diastolic blood pressure, else recorded 

blood pressure is used in this variable. 

 

CRP, mg/L 936 0 36 0.21-29.9 6.03 (6.78) 

Hycs, µmol/L 964 8 0 4.7-28.7 10.53 (3.49) 

Fibrinogen, mg/dL 971 1 0 120-680 368.95 (80.98) 

ICAM, ng/mL 556 3 413 17-543 274.2 (77.03) 

IL6, pg/mL 818 8 146 1.42-29.35 8.83 (4.68) 

IL18, pg/mL 829 4 139 1.86-214.85 69.09 (38.22) 

MCP1, pg/mL 804 2 166 159.81-2,514.69 1,048.22 (359) 

MPO, ng/mL 911 8 53 4-140.53 39.6 (23.05) 

Resistin, ng/mL 859 1 112 1-12.16 4.07 (2.03) 

SAA, µg/mL 704 0 268 2.35-146 32.94 (30.88) 

TNFRI, pg/mL 840 3 129 112.01-3,108.14 1,167.39 (513.09) 

TNFRII, pg/mL 818 1 153 286.83-5,170.48 1,945 (822.08) 

 

 

  

(a) Continuous Variables (Traditional Risk Factors for Common Chronic Diseases) 

  

N Count of 

Outliers 

Count of 

Missing Values 

Range Mean (SD) 

(b) Continuous Variables (Novel Inflammatory Markers) 

 

N Count of 

Outliers 

Count of 

Missing Values 

Range Mean (SD) 

(c)  Categorical Variables 

  Count Total Percent 

Female sex 687 972 70.68% 

Ever smoker 266 909 29.26% 

Hypertensive 802 972 82.51% 

Diabetic 298 972 30.66% 
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Figure 10. Distribution of means across 26,428 markers of methylation 

 

a) Methylated probe signal intensities (Range: 482 to 39,810, mean = 2,825), 

b) Unmethylated probe signal intensities (Range: 497 to 37,310, mean = 6,865),  

c) Beta (epigenetic) Values (Range: 0.03 to 0.97, mean =0.31)  

d) M-Value (Range: -5.37 to 5.07, mean =-1.58)  

 

 

Power Calculations 

Power is calculated based on an effective sample size of 732 as calculated using a 

conservative estimate of the correlation amongst members of each sibship,(398) and 

compared to the power of the original sample sized of 972, which is the sample size if 

data is assumed uncorrelated.  For quantitative traits, the effect sizes were estimated 
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using the program PS Power and Sample Size Calculations Version 3.0(399) and are 

indicated in Figure 11.  In brief, at α=1.89x10
-6

, which is the Bonferroni-corrected α for 

this sample, when the effective sample size is 732, there will be >80% power to identify 

associations between DNA methylation markers with a standardized regression beta 

coefficient (effect size) >0.209, and for a power of 90% the effect size is >0.225. Using 

the full sample size of 972, at α=1.89x10
-6

, there will be >80% power to identify 

associations between DNA methylation markers with a standardized regression beta 

coefficient (effect size) >0.181, and for a power of 90% the effect size is >0.195. 

 

Figure 11.  Power and effect size. 
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Supplementary Table 15.  Comparison of baseline characteristics of Phase II Non-Epigenetics Participants with Phase II 

Epigenetics Participants.  A) Continuous clinical variables, B) Continuous biomarkers, C) Categorical descriptive variables. 

 

A)  Continuous clinical variables 

 Phase II Non-Epigenetics Participants Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Age, years 474 0.00% 26.41-81.52 56.07 (9.21) 1008 0.00% 39.26-94.74 66.34 (7.6) 6.6E-49 

BMI, kg/m² 472 0.42% 18.1-57.9 32.6 (7.4) 1001 0.69% 16.41-55.09 31.1 (6.09) 0.013 

Systolic BP, mm Hg 473 0.21% 96-208 134.8 (19.3) 1006 0.20% 79-221 139.89 (21.12) 2.2E-06 

Diastolic BP, mm Hg 474 0.00% 53-122 81.57 (10.2) 1008 0.00% 45-121 78.29 (11.01) 2.3E-05 

Pulse Pressure, mm Hg 474 0.00% 19-127 53.41 (15.11) 1006 0.20% 26-127 61.64 (17.72) 6.0E-17 

Adj. Systolic BP, mm Hg (1) 473 0.21% 97-218 142.05 (21.47) 1006 0.20% 89-231 148.15 (22.74) 5.5E-08 

Adj. Diastolic BP, mm Hg (1) 474 0.00% 58-127 85.2 (10.95) 1008 0.00% 50-126 82.42 (11.43) 4.6E-04 

Adj. Pulse Pressure, mm Hg (1) 473 0.21% 24-132 56.89 (15.72) 1004 0.40% 28-132 65.65 (18.28) 2.2E-18 

Total Cholesterol, mg/dL 459 3.16% 72-348.5 197.93 (40.02) 1008 0.00% 73.5-354.5 203.98 (41.95) 7.8E-05 

Triglycerides, mg/dL 454 4.22% 28.5-419.5 111.95 (58.94) 1004 0.40% 37-402.5 117.9 (56.68) 9.8E-04 

ln (Triglycerides+1) 457 3.59% 3.38-6.45 4.62 (0.49) 1007 0.10% 3.64-6.27 4.69 (0.43) 0.69 

HDL-C, mg/dL 457 3.59% 23.8-125.8 55.42 (16.66) 1005 0.30% 21.7-130.35 58.08 (17.48) 7.0E-03 

ln (HDL+1) 460 2.95% 3.21-5.17 4 (0.3) 1008 0.00% 3.12-5.05 4.04 (0.29) 0.75 

LDL-C, mg/dL 459 3.16% 23.6-253.75 121.1 (36.88) 1008 0.00% 24.85-272.1 123.84 (39.58) 0.064 

Glucose, mg/dL 457 3.59% 43.5-296 108.28 (38.68) 998 0.99% 49.5-290 110.56 (34.31) 0.11 

ln (Glucose+1) 457 3.59% 3.8-5.69 4.65 (0.28) 1004 0.40% 3.92-5.82 4.69 (0.27) 0.77 

Insulin, mU/mL 163 65.61% 1.14-52.46 9.34 (8.53) 1005 0.30% 0.22-115.76 10.39 (12.45) 0.30 

ln (Insulin+1) 163 65.61% 0.76-3.98 2.12 (0.62) 1006 0.20% 0.2-5.02 2.12 (0.74) 1.00 

Menopause Age, years (2) 270 43.04% 23-59 42.6 (8.26) 699 30.65% 25-62 43.72 (7.85) 0.14 
 

1      If a participant is listed as taking hypertensive medications, 10 mm Hg is added to systolic blood pressure, and 5 mm Hg is added to diastolic blood pressure, else 

recorded blood pressure is used in this variable. 

2 Menopause age is represented for females only. 
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B)  Measures of inflammation 

 

  Phase II Non-Epigenetics Participants  Phase II Epigenetics Participants  

Variable N % Missing Range Mean (SD) N % Missing Range Mean (SD) Pr > |t| 

Serum Creatinine, mg/dL 460 2.95% 0.44-3.64 0.89 (0.29) 1008 0.00% 0.42-2.98 0.94 (0.3) 0.69 

CRP, mg/L 347 26.79% 0.21-29.9 5.48 (5.8) 971 3.67% 0.21-29.9 6.05 (6.77) 0.37 

ln (CRP+1) 347 26.79% 0.08-1.49 0.68 (0.33) 971 3.67% 0.08-1.49 0.7 (0.34) 0.87 

Homocysteine, µmol/L 430 9.28% 4.5-25.2 9.38 (2.97) 1002 0.60% 4.7-31 10.57 (3.59) 7.1E-03 

ln (Hycs+1) 430 9.28% 1.7-3.27 2.3 (0.26) 1002 0.60% 1.74-3.47 2.41 (0.28) 0.41 

Fibrinogen, mg/dL 440 7.17% 123-684 362.44 (88.37) 1007 0.10% 120-680 369.35 (81) 1.6E-03 

ICAM, ng/mL 199 58.02% 101-584 296.97 (83.09) 578 42.66% 17-625 275.38 (80.82) 3.2E-16 

IL-6, pg/mL 241 49.16% 1.92-29.78 8.71 (5.06) 856 15.08% 1.42-36.45 9.09 (5.31) 0.54 

ln (IL-6+1) 245 48.31% 0.46-1.58 0.95 (0.22) 878 12.90% 0.38-1.58 0.97 (0.22) 0.86 

IL-18, pg/mL 240 49.37% 6.14-235.97 72.17 (38.66) 863 14.38% 1.86-252.42 69.92 (39.97) 0.19 

ln (IL-18+1) 241 49.16% 0.85-2.49 1.81 (0.23) 872 13.49% 0.84-2.49 1.8 (0.25) 0.92 

MPO, ng/mL 193 59.28% 11.74-141.47 47.43 (27.67) 954 5.36% 4-160.58 40.26 (25.04) 5.1E-07 

ln (MPO+1) 196 58.65% 1.1-2.22 1.63 (0.23) 968 3.97% 0.7-2.22 1.56 (0.24) 0.60 

MCP1, pg/mL 205 56.75% 247.44-2124.82 970.81 (319.89) 835 17.16% 159.81-2704.78 1053.43 (369.78) 2.3E-49 

ln (MCP+1) 205 56.75% 2.4-3.33 2.96 (0.15) 849 15.77% 2.46-3.49 3.01 (0.16) 0.69 

Resistin, ng/mL 312 34.18% 1-12.13 3.77 (1.96) 895 11.21% 1-12.32 4.07 (2.03) 0.40 

ln (Resistin+1) 315 33.54% 0.3-1.2 0.65 (0.18) 902 10.52% 0.3-1.2 0.68 (0.17) 0.798 

SAA, µg/mL 297 37.34% 2.35-146 26.75 (28.98) 731 27.48% 2.35-146 32.94 (30.88) 2.0E-05 

ln (SAA+1) 297 37.34% 0.53-2.17 1.27 (0.39) 731 27.48% 0.53-2.17 1.38 (0.38) 0.51 

TNFR-1, pg/mL 219 53.80% 102.78-3310.18 1113.11 (562.23) 872 13.49% 19.89-3844.07 1185.29 (546.83) 1.3E-27 

ln (TNFR1+1) 217 54.22% 2.15-3.52 3 (0.21) 882 12.50% 2.17-3.68 3.04 (0.22) 0.76 

TNFR-2, pg/mL 240 49.37% 388.3-4998.98 1751.03 (649.43) 849 15.77% 286.83-5333.39 1950.04 (831.08) 4.8E-117 

ln (TNFR2+1) 241 49.16% 2.59-3.8 3.22 (0.16) 854 15.28% 2.59-3.8 3.26 (0.17) 0.70 
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C)  Categorical variables 

 

 Non-Epigenetics Participants Epigenetics Participan 

  Count Total % of Total Count Total % of Total 

Female 335 474 70.68% 715 1,008 70.93% 

Hypertensive 344 474 72.57% 833 1,008 82.64% 

Has Diabetes 128 474 27.00% 308 1,008 30.56% 

Ever Smoker 174 474 36.71% 421 1,008 41.77% 
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Supplementary Table 16.  Sibship sizes in GENOA Epigenetic population. 

 

10 1 10 

9 0 0 

8 0 0 

7 1 7 

6 4 24 

5 7 35 

4 31 124 

3 71 213 

2 181 362 

1 197 197 

 

Average sibship size: 2.6 

 

Sibship Size Sibship Count Number of Participants 

TOTAL: 296 sibships 

197 singletons 

972 
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