
Semi-Parametric Methods for Competing Risks
Data with Applications in Organ Transplantation

by

Ludi Fan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2013

Doctoral Committee:
Professor Douglas E. Schaubel, Chair
Professor Thomas M. Braun
Associate Research Professor Brenda W. Gillespie
Assistant Professor Christopher J. Sonnenday



c© Ludi Fan 2013

All Rights Reserved



For my parents

ii



ACKNOWLEDGEMENTS

First I would like to thank my dissertation committee: Drs. Doug Schaubel, Tom

Braun, Brenda Gillespie and Chris Sonnenday. I owe my deepest gratitude to my

advisor Dr. Schaubel, who has been tremendously and consistently supportive of me

during my entire time in graduate school, starting with instructing the course that

got me interested in survival analysis. Thank you for guiding me through the field

of competing risks and the dissertation writing process. I enjoyed our meetings and

discussions immensely and I have learned much from you about what it means to

be a methodological statistician, a healthcare researcher, and a mentor. I consider

myself lucky to have had the opportunity to learn from and work with you.

Drs. Braun and Gillespie have both been extremely crucial both as instructors and

as committee members, offering insightful comments and suggestions. Thank you

for carefully going through the drafts, helping me clarify my ideas, and asking the

thought-provoking questions. I especially appreciate your efforts to challenge me to

think beyond the immediate scope of the work and to make connections between the

different sections of the dissertation and future work.

A special acknowledgement is due to Dr. Sonnenday, who has provided crucial clin-

iii



ical knowledge and the medical motivation for the dissertation. Your first-hand ex-

perience with kidney transplantation helped me focus on the real world implications

of the statistical methods. I am grateful for your perspective of providing optimal

patient healthcare, which reminds me of why we ultimately do what we do.

I would also like to thank Dr. Jack Kalbfleisch, as well as Drs. Schaubel and

Sonnenday for their financial support, making it possible for me to finish what I

have started.

There were many friends and colleagues who have made graduate school a memorable

experience, in particular, Jennifer Lin, Maria Larkina, Doug Fuller, Erin Shellman,

Bryan Mayer, Rena Sun, Kevin He, John Li, Nabihah Tayob, Laura Fernandes, Elsie

Grace, Julia Kotlyar, Amanda Wilke, Rick Ma, Gong Qi, Erin Leister, Matt Jones,

and Vesela Gateva. Thank you for all the good times.

I would also like to thank Carl Miller, a constant companion through much of the

writing of this dissertation, the only other person in the trenches with me. Thank

you for the life lessons and your kindness, encouragement, and love. You have helped

me more than you will ever know.

Lastly, I would like to thank the people who mean the world to me. My parents,

Yinshui Fan and Fuying Lu, laid the foundation for my graduate studies. Thank you

for your unwavering support and unconditional love. You were an integral part of

this process and it is to you that this dissertation is dedicated.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Comparing Cumulative Incidence Functions Between Non-
Randomized Groups . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

III. Comparing Cumulative Incidence Functions using Weighted
Counting Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV. Semi-Parametric Methods for Modeling the Subdistribution
Hazard using Multiple Imputation . . . . . . . . . . . . . . . . 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Set-up and Models . . . . . . . . . . . . . . . . . . 63
4.2.2 Imputing Censoring Times . . . . . . . . . . . . . . 66
4.2.3 Inference Procedures . . . . . . . . . . . . . . . . . 70

4.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

V. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vi



LIST OF FIGURES

Figure

2.1 Analysis of SRTR data: δ̂j1(t) for 1, 3, and 5 years post wait-listing,
for j = 1, . . . , 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Analysis of SRTR data: δ̂j1(t) for various t ∈ [0, 5] years post wait-
listing, for j = 1, . . . , 6. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Analysis of SRTR data: δ̂11(t) with 95% confidence interval for var-
ious t ∈ [0, 5] years post wait-listing. . . . . . . . . . . . . . . . . . . 48

3.3 Analysis of SRTR data: δ̂j1(t) with 95% confidence interval of for
various t ∈ [0, 5] years post wait-listing, for j = 2, . . . , 6. . . . . . . . 49

3.4 Analysis of SRTR data: Change in δ̂11(t) over various time intervals,
for t ∈ [0, 5] years post wait-listing. . . . . . . . . . . . . . . . . . . 50

3.5 Analysis of SRTR data: Change in δ̂41(t) for various t ∈ [0, 5] years
post wait-listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Analysis of SRTR data: Change in δ̂61(t) for various t ∈ [0, 5] years
post wait-listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.1 Analysis of SRTR data: Boxplot of δ̂j1(t) for t = 1, t = 3, and t = 5
years. Whiskers represent minimum and maximum. . . . . . . . . . 103

B.2 Analysis of SRTR data: Histogram of δ̂j1(t) at t = 5 years post
wait-listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vii



LIST OF TABLES

Table

2.1 Baseline cause-specific hazards for the simulation study . . . . . . . 19

2.2 Performance of δ̂j1(t) based on 500 simulations of Configuration 1,
with bias, empirical standard deviation (ESD), the bootstrap stan-
dard error (BSE), and the 95% confidence interval coverage proba-
bilities (CP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Performance of δ̂j1(t) based on 500 simulations of Configuration 2,
with bias, empirical standard deviation (ESD), the bootstrap stan-
dard error (BSE), and the 95% confidence interval coverage proba-
bilities (CP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Analysis of SRTR data: δ̂j1(t) with 95% confidence limits for 1, 3,
and 5 years post wait-listing, for j = 1, . . . , 6. . . . . . . . . . . . . . 25

3.1 Simulation results using Configuration 1: estimate for effect of center
j on CIF of cause k = 1, with bias, empirical standard deviation
(ESD), bootstrap standard error (BSE), and 95% confidence interval
coverage probabilities (CP). . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Simulation results using Configuration 2: estimate for effect of center
j on CIF of cause k = 1, with bias, empirical standard deviation
(ESD), bootstrap standard error (BSE), and 95% confidence interval
coverage probabilities (CP). . . . . . . . . . . . . . . . . . . . . . . 44

viii



4.1 Simulation results for proposed estimator for five configurations,
with bias, asymptotic standard error (ASE), empirical standard de-
viation (ESD), and 95% confidence interval coverage probabilities
(CP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Analysis of SRTR data using proposed method with M = 10. . . . . 74

ix



LIST OF APPENDICES

Appendix

A. Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B. Analysis of SRTR data utilizing J = 58 OPOs for Chapter III . . . . . 102

C. Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



CHAPTER I

Introduction

Competing risks data arise naturally in many biomedical studies. Often the subject

is at risk for many types of events; with the occurrence of one event precluding the

subsequent occurrence of all other types of events. Some key quantities in the com-

peting risks setting are the cumulative incidence function, the cause-specific hazard

and, more recently, the subdistribution hazard. In many practical settings, one of

the possible causes is of chief interest, although competing causes must be taken into

account.

There are two frameworks applied to the competing risks setting. In one approach,

a latent failure time exists for each event, though it may not ever be observed. The

minimum of the latent event times is the observed event time and, consequently, also

determines the observed event type. The quantities associated with this framework

are identifiable if the latent failure times are independent. This framework has been

referred to as the ‘alarm clock’ model, where many alarms are set, but the one that

goes off first is the only one that is heard and observed.

1



In the second framework, the competing risks data are made up of an observation

time and an event type indicator for each individual. If a particular event is observed

to occur, the event times for the other causes are not unobserved; they simply do

not exist for the other causes and are undefined. The functions involved in this

approach are the cause-specific hazard (CSH) and the cumulative incidence function

(CIF), known as the crude functions. For the crude functions to be identifiable, no

assumptions need to be made about independent causes. In this dissertation we will

adopt the second framework, with the CIF serving as the key function to compare

groups and characterize covariate effects.

Suppose that cause k is the event type of interest. The cause-specific hazard can

be thought of as the rate at which subjects die due to cause k, among those still at

risk (alive). The cumulative incidence is the cumulative probability of cause k, ac-

knowledging that death from other causes prevents the occurrence of cause k. In this

proposal we develop methods for analyzing observational time-to-event data in the

presence of competing risks. We propose two methods that compare the cumulative

incidence functions among subgroups. The third method uses multiple imputation

to model the subdistribution hazard through Cox regression (Cox , 1972).

It is often of interest to compare outcomes between subgroups of subjects. In the

presence of observational data, group assignment is typically not randomized, so that

adjustment must be made for differences in covariate distributions across groups. The

second chapter proposes a measure to contrast group-specific CIFs. The proposed

method assumes proportional cause-specific hazards, which are estimated through
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Cox models stratified by organ procurement organizations (OPO). The effect mea-

sure compares the average CIF of each OPO to the average CIF that would have

resulted if that particular OPO had cumulative incidence equal to that of the national

average.

Like the second chapter, the third chapter aims to compare the CIFs among sub-

groups of subjects from an observational study. However, this section proposes a

measure which, based on direct standardization, contrasts the population average

cumulative incidence under two scenarios: (i) subjects are distributed across groups

as per the existing population and (ii) all subjects are members of a particular group.

The proposed comparison of CIFs has a strong connection to measures used in the

causal inference literature. The proposed methods are nonparametric in the sense

that no models are assumed for the cause-specific hazards or the subdistribution

function. Observed event counts are weighted using Inverse Probability of Treatment

Weighting (IPTW) and Inverse Probability of Censoring Weighting (IPCW).

The fourth chapter describes a multiple imputation method for competing risks data

that creates a ‘censoring-complete’ dataset such that all the potential censoring times

are known. For individuals who experienced a competing risk, we impute what

their censoring times would have been had death not prevented their occurrence.

Regression methods for the subdistribution hazard model developed by Fine and

Gray (1999) can then be applied to the censoring-complete data. The censoring

hazard is estimated by a Cox proportional hazards model, with the baseline hazard

computed by a linear interpolation of the Breslow estimator, instead of the usual step
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function. We use the subdistribution hazard to estimate the effect of explanatory

variables on the outcome of interest.

For each of the proposed methods, large sample properties are derived and the finite-

sample properties are evaluated using simulations. We apply each method to national

kidney transplantation data from the Scientific Registry of Transplant Recipients

(SRTR). A patient in need of a kidney transplant is placed on a wait-list, which are

maintained by the OPOs. OPOs are geographically based, usually covering patients

in an area smaller than or the size of a state. Each OPO maintains its own wait-list

and is responsible for allocating organs to those on the wait-list as kidneys become

available. There are 58 OPOs in the United States, which are in turn grouped into

11 Regions that may consist of a couple states. In this dissertation, we focus on

Region 10, which includes Michigan and Ohio.

Patients on the wait-list can experience events that prevent them from ever receiving

a transplant. In this case, the competing risks are death while on the wait-list

and removal from the wait-list due to deterioration of patient health. If either of

the competing risks is observed, the OPO has failed to provide the patient with a

transplant in time, and thus analyses on such data must incorporate this information.

Since OPOs represent different parts of the country, the patient characteristics, such

as race and age, may vary quite a bit. Thus valid comparisons between OPOs require

covariate adjustment.
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CHAPTER II

Comparing Cumulative Incidence Functions

Between Non-Randomized Groups

2.1 Introduction

In many studies with time to event data, comparisons among groups are of key in-

terest. These groups can be defined by country, state, region or treatment center,

for example. A natural grouping that often occurs in medical data is defined by

treatment centers or hospitals. It is often of interest to study differences in out-

comes by location, since geographic and center-based disparities can be present in

health outcomes, and would be of concern in settings where uniformity in quality of

care is a priority. There are a number of existing methods for estimating group or

center effects. Harrington and Fleming (1982) developed a class of non-parametric

methods based on the rank test that accommodates comparisons of more than two

groups. Dabrowska and Doksum (1988) developed estimation and inference methods
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for comparison of the generalized odds-rate model in the two-group setting. Most of

these methods assume, either explicitly or implicitly, that all events are of the same

cause.

Often in survival data, the terminating event is due to one of several possible causes.

Experiencing a particular type of event precludes an individual from experiencing

any other types of events. These events are said to be competing risks. An example

of the competing risks setting would be time until death, where death is caused

by cardiovascular disease, cancer, and all other causes. This data structure occurs

frequently, and has to be explicitly acknowledged in models fitted to said data.

Analyses that ignore the competing risks aspect of the data by not differentiating

between the types of events may lose information on the covariate effects and lead

to inaccurate interpretation of results. Several methods have been proposed for

analysis of competing risks data. Benichou and Gail (1990) developed a method

for estimating the absolute risk of an event during a time interval for a particular

covariate pattern. The authors investigated the results of using the exponential,

piecewise exponential, and Cox models (Cox , 1972) for the hazard functions. Cheng

et al. (1998) investigated the prediction of cumulative incidence functions (CIF) and

simultaneous confidence bands. Fine and Gray (1999) developed regression methods

for the subdistribution hazard function.

There are few methods for comparing groups or centers in the presence of com-

peting risks. Gray (1988) developed a method to compare CIFs among multiple

groups, non-parametrically and unadjusted for covariates. Zhang and Fine (2008)
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then summarized differences for several transformations of the CIF for two groups.

We propose methods that compare centers in the presence of competing risks. The

methods are targeted at observational data and, therefore, account for differences in

group-specific covariate distributions.

The data that motivated the methods proposed in this chapter arise from the end-

stage renal disease (ESRD) setting. A patient who experiences kidney failure typi-

cally begins receiving dialysis and, if medically suitable, the patient may subsequently

be placed on a wait-list for deceased-donor kidney transplantation. Patients often

have to wait to receive an organ transplant because there are not nearly enough

donor kidneys to accommodate all wait-listed patients. For the purpose of solid or-

gan transplantation, the United States is divided into 11 Regions, each subdivided

into donation service areas. For each donation service area, an organ procurement

organization (OPO) maintains a wait-list (i.e., each OPO has its own wait-list) and

is responsible for allocating organs to patients within its corresponding area, based

on several factors. We use the general terms group and center to indicate any fac-

tor that subdivides the study population. In the context of organ transplantation,

the unit of our interest is an OPO. This setting corresponds to a competing risks

framework because a patient on a wait-list can experience a number of other events

that preclude a transplant. The competing risks are death while on wait-list and re-

moval from the wait-list, which occurs when a patient’s general health has declined

so much that he/she is not expected to make a recovery from the surgery itself. Thus

both events indicate that the OPO has failed to allocate an organ to the patient fast

enough for the patient to survive.
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To be wait-listed by an OPO, a patient often must be able to travel to the location

at which the transplant will occur within a relatively short period of time after being

notified that a particular organ is available. Thus, since most individuals do not

have unlimited resources to travel long distances within short notice, where a given

patient can be put on a wait-list is largely determined by where he/she resides. A

natural question to ask is how each OPO performs relative to the national average.

A natural quantity reflecting an OPO’s performance is the average probability that

a patient on a wait-list will receive a transplant, acknowledging that the patient

may instead die while on, or be removed from, the wait-list. In this chapter, our

goal is to propose a metric that will compare the average experience of wait-listed

patients at an OPO to the average experience that would have been observed if that

particular OPO performed at the national average. We are specifically focused on

the probability that a patient receives a transplant. Data were obtained from the

Scientific Registry of Transplant Recipients (SRTR), a national population-based

organ transplant registry.

There are two frameworks for casting the event times in a competing risks setting.

The first method is based on latent failure times (Gail, 2001, 1975; Crowder , 2001),

in which there exists a latent event time for every cause, but only the minimum

of the latent event times is observed (Cox , 1959; Moeschberger and David, 1971).

For marginal quantities (such as the failure-type-specific survival functions) to be

identifiable under the latent failure times set up, each of the latent failure times

must act independently.
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The second framework assumes there is only one event time for each subject, with

the event occurring from one of two or more causes. Under this framework, there

only exists one failure time, due to one cause. For example, if a particular type

of event occurs, then the event times due to other causes are undefined. The key

functions that arise from this framework are the crude functions known as cause-

specific hazard (CSH) and the cumulative incidence function (CIF) (Anderson et al.,

1993; Chiang, 1968; Kalbfleisch and Prentice, 2002). These models do not require

the assumption that the causes of death are independent (Tsiatis, 1975).

In this chapter, we propose methods that contrast centers with respect to cumula-

tive incidence. We model the cause-specific hazards explicitly through Cox (1972)

regression, with the CSHs then combined and integrated, then transformed to obtain

the CIF. The effect measure, or, the effect of a particular OPO on a specific cause, is

obtained through appropriately averaging fitted values. The event times are subject

to right censoring, which is assumed to be independent of the event time given the

covariates.

In Section 2.2, we introduce the notation and present the proposed method and esti-

mation procedures. Section 2.3 describes the asymptotic properties of the proposed

estimators. In Section 2.4 we evaluate the finite sample performance of the proposed

estimators in simulation studies. We return to the motivating example in Section

2.5, applying the proposed methods to data from the SRTR to compare OPOs across

the United States. Section 2.6 concludes with a discussion.
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2.2 Proposed Methods

Let Ti and Ci be the event and censoring times, respectively, for individual i (i =

1, . . . , n). Center and cause will be denoted by j (j = 1, . . . , J) and k (k = 1, . . . , K),

respectively. There are n individuals in the entire sample, with nj individuals in cen-

ter j. For concreteness, we refer to the factor of interest as center, although in

practice this factor could be any categorical covariate defining subgroups of individ-

uals. Let ∆i = kI(Ti < Ci), where I(·) is the indicator function. Ai (Ai = 1, . . . , J)

is the center that subject i belongs to and Aij = I(Ai = j) is equal to 1 if subject i

is in center j. The observation time is defined as Xi = Ti ∧ Ci. Thus, the observed

data consist of {Xi,∆i,Zi, Ai}, where Zi is the vector of covariates which is assumed

to be time constant. The at-risk indicator is given by Yij(t) = I(Xi ≥ t, Ai = j) and

the counting process for subject i in center j, cause k is denoted by Nijk(t) = I(Xi ≤

t, Ai = j,∆i = k). Let the CIF for cause k for individual i, at center j be denoted

by

Fijk(t) ≡ P (Ti ≤ t,∆i = k|Ai = j,Zi),

interpreted as the probability that individual i in center j experiences an event of

type k by time t.

Our goal is to contrast the average CIF for center j with an appropriate average

across all centers. Along those lines, we define the effect of center j on cause k
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as

δjk(t) = EZ|A[Fijk(t)]− EZ|A [EA [FiAk(t)]] , (2.1)

which is intended to reflect the impact of center j on the CIF of cause k. The effect

measure δjk(t) compares, through the CIF, two scenarios: (i) the observed reality:

all individuals assigned to center j are treated at center j and (ii) all individuals

assigned to center j are instead treated at a hypothetical center with cumulative

incidence equal to those of the national average.

The outer expectation in both the first and second terms on the right side of (2.1) are

evaluated with respect to the distribution of [Z|A = j]. The quantity EZ|A[Fijk(t)] is

the CIF for group j, averaged over the covariate distribution of individuals in center

j. The inner expectation in the second term is evaluated with respect to the marginal

distribution of A. The term EA [FiAk(t)] is the CIF if individual i, who is actually

at center j, were at the hypothetical national center. This national average center

does not actually exist, but individual i’s experience at this hypothetical center can

be obtained by considering the CIFs for individual i at all of the centers and the

likelihood of being in a particular center. The CIF if individual i, known to be in

center j, were actually at center l is denoted by Filk(t). By considering Filk(t) for

l = 1, . . . , J , we consider what would have happened to individual i at each of the

actual centers in the study sample. An individual is defined by his/her covariate

pattern.

One option for obtaining the CIFs is to use the cause-specific hazards. The cause k
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CIF for individual i at center j is

Fijk(t) =
t∫

0

Sij(s)λ#
ijk(s)ds, (2.2)

where Sij(t) = P (Ti > t|Zi, Ai = j) is the survival function for individual i at center

j, and the cause-specific hazards are given by

λ#
ijk(t) = lim

ε↓0
P (t ≤ Ti < t+ ε,∆i = k|Ti ≥ t,Zi, Ai = j).

Note that Fijk(t) can be written entirely in terms of the cause-specific hazard, since

Sij(t) = exp{−∑K
k=1 Λ#

ijk(t)}, where the cumulative CSH for individual i at center

j is Λ#
ijk(t) =

∫ t
0 λ

#
ijk(s)ds. Also called the subdistribution function, Fijk(t) is the

probability that subject i experiences an event of type j by time t, acknowledging

that he/she could experience another event first, which would preclude event k from

happening. From (2.2), it can be seen that the CIF is a function of all of the CSHs,

so that the CIF acknowledges the presence of other types of events. As t → ∞,

Fijk(t) → P (∆i = k|Zi, Ai = j). Therefore, unlike the cumulative distribution

function in the single cause setting, the CIF will generally not approach 1 if the

competing causes have non-zero probabilities.

In this chapter, Cox regression (Cox , 1972) stratified on center is assumed to relate

the covariates to the cause-specific hazards,

λ#
ijk(t) = λ0jk(t) exp{βT

kZi}. (2.3)
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The Cox model is selected due to its flexibility and popularity. Stratifying on center

adjusts for center effects non-parametrically. As such, we are assuming proportion-

ality with respect to the cause k hazard at time t among subjects alive at time t with

respect to the adjustment covariates, Zi, although not the centers.

A few comments on model (2.2) are in order. First, the stratification by center would

make it difficult to estimate the effect of center j on λ#
ijk(t) based on model (2.2)

alone. However, as defined previously, the cause-specific hazards are not of primary

interest per se, and are useful only through their connection to Fijk(t). Second, the

covariate vector is assumed to be constant. If not, accurate estimation of Fijk(t)

would be substantially more complicated, and the methods proposed in this chapter

would not be recommended. Third, covariate effects, βk, are allowed to vary by

cause but are assumed to be constant over time. This could be relaxed through

additional stratification, or by parametrically modeling covariate effects that are

time-dependent; e.g., through the Cox non-proportional hazards model; see Klein

and Moeschberger (2003).

We estimate δjk(t) by using the finite sample estimators for the quantities involved.

The covariate effects βk are estimated through partial likelihood (Cox , 1975), while

the cumulative baseline cause-specific hazards Λ#
0jk(t) are estimated by the Breslow

estimator (Breslow, 1972). Referring back to (2.1), the quantity EZ|A[Fijk(t)] can be

estimated by taking the average of F̂ijk(t) with respect to the empirical distribution

of [Zi|Ai = j]. The CIF for individual i at the national average center is estimated

by taking a weighted average of the CIFs for individual i across centers, expressed
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as ∑J
l=1 F̂ilk(t)p̂l, with p̂l = nl/n an estimator for pl = P (Ai = l). Combining these

estimators, we then estimate the proposed center effect measure by

δ̂jk(t) = 1
nj

n∑
i=1

I(Ai = j)F̂ijk(t)−
1
nj

n∑
i=1

I(Ai = j)
{

J∑
l=1

F̂ilk(t)p̂l
}
, (2.4)

where F̂ijk(t) =
∫ t

0 exp{−∑K
k=1 Λ̂#

ijk(s)}dΛ̂#
ijk(s) and Λ̂#

ijk(t) =
∫ t

0 exp(β̂T

kZi)dΛ̂#
0jk(s).

Note that, in cases where Ai 6= l, the cause-specific hazard function of individual i

at center l is estimated using the baseline hazard from center l with the covariates

of individual i; i.e., Λ̂#
ilk(t) =

∫ t
0 dΛ̂#

0lk(s) exp(β̂T

kZi). The center to which a subject

actually belongs is accounted for in the model fitting. Once the regression parameters

and cause-specific cumulative baseline hazards are estimated, subject i’s actual center

is not factored into the averaging in the second term on the right side of (2.4).

These methods are valid under independent censoring, which can be formally written

as

lim
ε→0

1
ε
P (t ≤ Ti < t+ ε,∆i = k|Ti > t,Ci > t,Zi, Ai)

= lim
ε→0

1
ε
P (t ≤ Ti < t+ ε,∆i = k|Ti > t,Zi, Ai)

for k = 1, . . . K.

We now describe the properties of the proposed estimators when n becomes large.
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2.3 Asymptotic Properties

We begin by listing the assumed regularity conditions for i = 1, . . . , n, j = 1, . . . , J ,

and k = 1, . . . , K.

(a) {Xi,∆i,Zi, Ai} are independent and identically distributed.

(b) P (Yij(τ) = 1) > 0.

(c) P (Ai = j|Zi) > 0.

(d) |Ziq| ≤ K, where Ziq is the qth element of Zi and K is a constant.

(e)
∫ τ

0 λ
#
0jk(t)dt <∞.

(f) Continuity of the following functions:

r(d)
jk (t; β) = E

[
Yij(t)Z⊗di exp(βT

kZi)
]
, d = 0, 1, 2.

with r(d)
jk (t; β) bounded away from 0 for t ∈ (0, τ ].

(g) Positive-definiteness of the following matrices:

Ik(βk) = E

 J∑
j=1

τ∫
0

r(2)
j (t; βk)
r

(0)
j (t; βk)

− z̄j(t; βk)⊗2

 dNijk(t)
 ,

where z̄j(t; β) = r(1)
jk (t; β)−1r

(0)
jk (t; β).
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Condition (a) permits fairly standard applications of the Central Limit Theorem.

Conditions (b) and (c) ensure identifiability, with (c) being the positivity assumption

familiar to causal inference methodology. Condition (e) ensures boundedness of many

integrals arising in the asymptotic development. The framework we work with has

n→∞ with the number of centers J remaining constant. In this case, nj →∞ for

all j as n→∞.

Theorem 2.1: Under Conditions (a) through (g), F̂ijk(t) converges almost surely to

Fijk(t) and δ̂jk(t) converges almost surely to δjk(t).

F̂ijk(t) is a functional of consistent estimators β̂k and Λ̂#
0jk(t). The proof of consis-

tency then follows from successive applications of the Continuous Mapping Theo-

rem.

Theorem 2.2: Under conditions (a) through (g), n 1
2
{
δ̂jk(t)− δjk(t)

}
converges

asymptotically to a zero-mean Gaussian process with variance function σjk(t) =

E [ψmjk(t; β)2] where ψmjk(t; β) = ∑4
d=1

{
φdljk(t; β)− φdlk(t; β)

}
+ op(1), with βT =
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[βT
1 , . . . ,β

T
k ] and φdlk(t; β) = EA

[
φdljk(t; β)

]
and where we define

φ1
ljk(t; β) = − 1

pj
E

 K∑
m=1

Aij

t∫
0

DT
ijm(s; βm)dFijk(s)

 Im(βm)−1Ulm(βm),

φ2
ljk(t; β) = −

K∑
m=1

t∫
0

1
pj
E
[
Aij {Fijk(t)− Fijk(u)}Yij(u) exp(βT

mZi)r(0)
jk (u; βm)−1

]
dMljm(u; βm),

φ3
ljk(t; β) = 1

pj
E

Aij t∫
0

[Zi − z̄j(s; β)]TdFijk(s)
 Ik(βk)−1Ulk(βk),

φ4
ljk(t; β) =

t∫
0

1
pj
E
[
AijSij(s; β1,β2)Yij(s) exp(βT

kZi)r(0)
jk (s; β2)−1

]
dMljk(s; βk),

where Ik(βk) and z̄j(t; β) are defined in Condition (g), r(d)
jk defined in Condition (f),

and

Dijk(t; βk) =
t∫

0

{Zi − z̄j(s; βk)} dΛ#
ijk(s; βk),

Uik(βk) =
J∑
j=1

n∑
i=1

τ∫
0

{Zi − z̄j(t; βk)} dMijk(t),

dMijk(s; βk) = dNijk(s)− Yij(s)dΛ#
ijk(s).

The martingales Mijk(t; βk) are defined with respect to the joint filtration Fij(t) =

σ {Nij(s), Yij(s),Zi; s ∈ (0, t)}, where Nij(s) = I(Xi ≤ s, Ai = j)

The asymptotic variance can be estimated by:

V̂ ar
[
n

1
2
{
δ̂jk(t)− δjk(t)

}]
= 1
n

n∑
l=1

[ 4∑
d=1

{
φ̂dljk(t; β)− φ̂dlk(t; β)

}]2

,
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where the φ̂ljk(t) are obtained by replacing limiting values in φljk(t) with their em-

pirical counterparts.

As implied by the formulas in Theorem 2.2, calculation of the asymptotic variance

is cumbersome computationally. As a result, we propose the bootstrap, which we

evaluate through simulation in the next section.

2.4 Simulation Studies

We conducted simulation studies to evaluate the finite sample performance of the

proposed estimator δ̂jk(t). In the first simulation study, there are K = 2 causes,

with cause k = 1 being of primary interest. There are J = 5 centers, with varying

center sizes of nj = 100, 125, and 150 individuals. There are three covariates,

all of which are binary and hierarchically dependent. The covariate Zi1 follows a

Bernoulli distribution with p = θ1j, Zi2|Zi1 is distributed as a Bernoulli with P (Zi2 =

1|Zi1) = Zi1θ21+(1−Zi1)θ22, and Zi3|Zi2 follows a Bernoulli distribution with P (Zi3 =

1|Zi2) = Zi2θ31 + (1 − Zi2)θ32. The covariate patterns varied for each center due to

center-specific θ1j. In these set of simulations, θT1j = [0.55, 0.75, 0.6, 0.65, 0.5], θ21 =

0.55, θ22 = 0.45, θ31 = 0.45, and θ32 = 0.65.

The event time for cause one Tij1 and the event time for cause two Tij2 follow expo-

nential distributions, with

λ#
ijk(t) = λ0jk exp{βk1Zi1 + βk2Zi2 + βk3Zi3}
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for k = 1, 2. The baseline hazards λ0jk(t) vary across centers and causes. For both

configurations, the covariate effect for cause 1 is βT
1 = [0.4, 0.5, 0.6] and for cause

2 is βT
2 = [−0.1, 0.3,−0.2]. The baseline cause-specific hazards are shown in Table

2.1.

Table 2.1: Baseline cause-specific hazards for the simulation study

Configuration 1 j = 1 j = 2 j = 3 j = 4 j = 5
λ0j1 0.1 0.15 0.2 0.22 0.7
λ0j2 0.12 0.1 0.08 0.09 0.08

Configuration 2
λ0j1 0.1 0.8 0.2 0.76 0.4
λ0j2 0.12 0.1 0.08 0.09 0.08

The censoring distribution Ci is also exponential and also depends on the covariates,

with

λCi (t) = λC0 exp{α1Zi1 + α2Zi2 + α3Zi3}.

The distribution of Ci differs for each center due to the different covariate patterns.

There is administrative censoring at t = 10 to reflect the real life scenario of a finite

observation period. The censoring baseline hazard is λC0 = 0.02.

The observation time, Xi, is defined as the minimum of Ti1, Ti2, and Ci and whichever

is the minimum will determine the value of ∆i. Although we are using the latent

failure time model to generate the data, analysis of the simulated data will not take

that perspective. For example, the analysis stills assumes that Ti1 does not exist if
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Ti1 > Ti2.

We used the bootstrapping method to estimate the variability of the effect, with

standard errors calculated using 25 bootstrap samples. The results based on 500

replicates of Configuration 1 and 2 are shown in Tables 2.2 and 2.3, respectively. We

calculated the estimated effect at the times t = 1, t = 3, and t = 5 after the start

of follow-up. In Configuration 1, the true effect varied greatly from having a large

negative effect, -0.243 to a large positive effect, 0.369. Given the inherent bounds

of 0 and 1 on cumulative incidence, and thus bounds of -1 and 1 on the difference

of cumulative incidence, a 30 percent displacement represents a rather large effect.

Centers j = 1 and j = 2 are smaller centers that perform worse than expected and

center j = 4 is a larger center that performs better than expected.

The proposed estimators δ̂jk(t) have small bias, even when the size of the center is

small. As expected, the larger the center, in general the smaller the bias of δ̂jk(t).

Within a center, the bias tends to be smaller at the earlier times than at later times.

This could be due to the fact that there are more individuals at risk at the earlier

times. The bootstrap standard errors (BSE) were close to the empirical standard

deviations (ESD). Coverage probabilities (CP) are mostly just under 95 percent.

Larger centers do not necessarily have higher CPs than smaller centers, which is

somewhat counter-intuitive.

In Configuration 2, we investigated the behavior of the proposed estimator in the

presence of smaller center sizes. In Table 2.3, center j = 1 is a small center that has

negative true effects of high magnitude, both factors that may hinder the estimator
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Table 2.2: Performance of δ̂j1(t) based on 500 simulations of Configuration 1, with
bias, empirical standard deviation (ESD), the bootstrap standard error
(BSE), and the 95% confidence interval coverage probabilities (CP).

j nj t δj1(t) Bias ESD BSE CP
1 100 1 -0.205 0.015 0.037 0.037 0.93

3 -0.243 0.016 0.041 0.044 0.94
5 -0.221 0.018 0.040 0.045 0.94

2 100 1 -0.101 -0.009 0.043 0.043 0.92
3 -0.078 -0.015 0.049 0.050 0.93
5 -0.056 -0.022 0.047 0.052 0.93

3 125 1 -0.040 0.007 0.036 0.037 0.95
3 0.004 0.008 0.035 0.036 0.93
5 0.021 0.009 0.031 0.033 0.94

4 150 1 -0.009 -0.000 0.032 0.033 0.95
3 0.032 0.003 0.031 0.031 0.93
5 0.038 0.004 0.028 0.029 0.95

5 100 1 0.369 -0.011 0.035 0.038 0.96
3 0.268 -0.019 0.027 0.029 0.92
5 0.194 -0.019 0.026 0.028 0.92
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Table 2.3: Performance of δ̂j1(t) based on 500 simulations of Configuration 2, with
bias, empirical standard deviation (ESD), the bootstrap standard error
(BSE), and the 95% confidence interval coverage probabilities (CP).

j nj t δj1(t) Bias ESD BSE CP
1 50 1 -0.379 0.014 0.051 0.053 0.95

3 -0.379 0.008 0.063 0.064 0.94
5 -0.323 0.003 0.059 0.066 0.97

2 100 1 0.231 -0.016 0.034 0.037 0.94
3 0.137 -0.024 0.023 0.028 0.92
5 0.093 -0.021 0.022 0.027 0.93

3 125 1 -0.215 0.012 0.036 0.035 0.93
3 -0.133 0.014 0.032 0.034 0.92
5 -0.080 0.013 0.027 0.031 0.94

4 100 1 0.207 -0.002 0.036 0.037 0.95
3 0.134 -0.008 0.025 0.027 0.96
5 0.093 -0.007 0.023 0.025 0.96

5 150 1 0.014 -0.001 0.032 0.031 0.94
3 0.057 0.001 0.023 0.024 0.96
5 0.050 0.001 0.021 0.022 0.95

22



by reducing the number of type 1 events. Having only nj = 50 individuals while the

other four centers have at least twice as many individuals, center j = 1 not only has

a small center in absolute terms, but also in relative terms. The bias of center 1 is

still quite small at all of the three studied time points and its coverage probability is

close to the nominal value. Thus, even for smaller centers that perform worse than

expected, the proposed estimator performs quite well.

2.5 Application

We applied the proposed methods to compare, by OPO, the probability of receiving a

kidney transplant among patients wait-listed for kidney transplantation. Data were

obtained from the Scientific Registry of Transplant Recipients (SRTR). We selected

patients from OPOs that make up Region 10 and who were wait-listed between

January 1, 2000 and December 31, 2009, with a resulting sample size of n = 23, 490

from J = 6 centers. Each patient’s follow-up started when the patient was put on the

wait-list. Follow-up ended at the earliest of receiving a transplant, death on wait-list,

removal from wait-list, or loss to follow-up. Since we were interested in evaluating

the OPOs based on their ability to ensure as many patients as possible receive the

preferred treatment of receiving a deceased-donor transplant, transplantation was the

cause of interest, with deaths and removals treated as competing risks. We focused

on three time points, years 1, 3, and 5. This reflects current practice since survival

statistics are usually reported at chosen year intervals rather than on a daily or a

monthly basis.
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Figure 2.1: Analysis of SRTR data: δ̂j1(t) for 1, 3, and 5 years post wait-listing, for
j = 1, . . . , 6.
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Table 2.4: Analysis of SRTR data: δ̂j1(t) with 95% confidence limits for 1, 3, and 5
years post wait-listing, for j = 1, . . . , 6.

upper 95% lower 95%
year OPO δ̂j1(t) confidence limit confidence limit
1 1 0.12 0.09 0.15
3 1 0.16 0.12 0.20
5 1 0.06 0.02 0.11

1 2 0.12 0.09 0.14
3 2 0.21 0.18 0.24
5 2 0.09 0.05 0.12

1 3 0.05 0.03 0.07
3 3 0.15 0.12 0.17
5 3 0.07 0.04 0.09

1 4 0.13 0.11 0.15
3 4 0.15 0.13 0.18
5 4 0.13 0.10 0.15

1 5 -0.07 -0.08 -0.06
3 5 -0.14 -0.16 -0.12
5 5 -0.10 -0.12 -0.07

1 6 -0.06 -0.07 -0.06
3 6 -0.08 -0.10 -0.07
5 6 -0.04 -0.06 -0.03
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A figure of the estimated effects δ̂jk(t) for k = 1 at the three time points is shown

in Figure 2.1. We would have expected to see that as follow-up time increased, the

spread of the estimated effects increased as well. This is because we believe that

earlier differences in performance are less likely to be attributable to the OPO than

are later differences. In the earlier period of follow-up, other factors independent of

the OPO, such as the patient’s inherent overall health may affect his/her chance of

surviving until a transplant becomes available. It appears that even one year after

the start of follow-up, there is differentiation between the OPOs that perform better

than expected and ones that perform worse than expected. The differences between

the OPOs widen by year three, but decrease by year five. The 95% confidence

intervals for δ̂jk(t) are shown in Table 2.4.

2.6 Discussion

We have proposed a summary measure that quantifies the center effect in terms

of CIF. By averaging over transformed fitted values obtained by Cox models and

transformations, we compare the patient experience under two scenarios, one actual

and one hypothetical. The proposed method would allow one to determine which

groups of patients are at greater or lesser probability of experiencing the event of

interest. In the context of evaluating centers, a center could compare its actual

performance to that if it were performing at the overall average. The proposed

effect measure has negligible bias. Although calculating the theoretical asymptotic

standard error is cumbersome, the bootstrap standard error appeared to be fairly
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accurate, as evidenced by comparison to the empirical standard errors and coverage

probabilities.

The proposed methods were applied to national transplant registry data to evaluate

OPOs with respect to average probability of receiving a kidney transplant. From

the perspective of each individual OPO, an estimate of the cumulative incidence of

transplantation is a meaningful metric of quality of delivered care. It answers the

question, how would these same patients have done elsewhere, on average? It gives

an OPO valuable information since the evaluation is done based on that particular

OPO’s case mix. Applied to the country, this method would allow us to see which

parts of the country are under-served or well-served, taking into account that the

profiles of wait-listed patients of each OPO can be different. Each effect estimate

is specific to an OPO’s demographics, so the effect estimates from different OPOs

generally cannot be compared to each other meaningfully.

The OPO is responsible for allocating organs to patients on a wait-list for organ

transplants. It would be considered optimal if the greatest number of patients even-

tually receive an organ before an event can occur that prevents a transplant. Thus,

the performance of an OPO is crucial for the patients whose health depends on these

time sensitive transplants.

We constructed a measure that uses the CIF to quantify the center effect. An

alternative to modeling the CIF is to base the effect measure on the cumulative

cause-specific hazard. The CIF incorporates information from all causes to give a

natural interpretation in the competing risks setting. In our motivating example,
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we want to take into account the entire patient experience, and not just his/her

transplant experience, to determine the probability of receiving a transplant. For

example, patients in a particular OPO may be getting transplanted at a faster rate

while alive, but are also dying on the wait-list at a faster rate. We would want to use

both pieces of information in the comparison. However, if interest lies in estimating

the event rate of one specific cause without the input of the other causes which are

not of direct interest, then the CSH is more apt. For example, the cumulative CSH

would be more appropriate for comparing the rate of transplants among surviving

patients.
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CHAPTER III

Comparing Cumulative Incidence Functions using

Weighted Counting Processes

3.1 Introduction

In observational studies, the goal is often to compare groups with respect to a certain

outcome or measure. Such groups can be defined by any categorical variable such as

sex, age group, race, and geographic area. Since these groups are not assigned using

a randomization scheme, but rather are observed, adjustments need to be made to

account for the potentially disparate covariate distributions across groups.

Time-to-event data are often of interest in observational studies and, within this

framework, competing risks survival analysis is often appropriate. In the competing

risks setting, a subject may experience one of many outcomes, where the occurrence of

any one type of event prevents all others from happening. In practice, investigators

may be only interested in the relationship between the group and one particular
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health outcome, even in settings where the event of interest is just one of many

for which each subject is at risk. A function which is often of primary interest in

the competing risks setting is the cumulative incidence function (CIF), which reflects

the cumulative probability that the event of interest occurs, explicitly acknowledging

that the occurrence of one of the competing causes precludes subsequent occurrence

of the cause of interest.

The motivating example concerns the evaluation of organ procurement organiza-

tions (OPO) with respect to kidney transplantation. A patient in need of a kidney

transplant and deemed medically suitable will typically have to wait until an organ

becomes available by being on a wait-list. There are 58 OPOs in the United States,

with each responsible for administering a wait-list and executing the allocation of

available deceased-donor organs procured from a geographically defined donation

service area. An OPO usually serves a state or an area smaller than a state. A pa-

tient on the wait-list can receive a transplant, or die, or be removed from the waiting

list. The latter two outcomes are the competing risks because, if death or removal

occurs, the patient cannot subsequently receive a transplant. Patients are removed

from the wait-list often because their general health has declined to the extent that

they are not likely to survive the transplantation surgery. The distribution of pa-

tient characteristics across OPOs may differ considerably due to differences in the

underlying demographics across the United States. Since different demographics can

contribute to differences in death rates while on the wait-list, confounding is likely

to be present unless differences in the covariate distribution among OPOs are taken

into account.
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Ultimately, an OPO aims to maximize the number of transplants among patients

on its wait-list, with the underlying goal of minimizing the number of deaths among

patients in its donation service area. A meaningful comparison may be how each

OPO performs relative to the national average, with performance quantified by the

likelihood that a patient’s eventual outcome is receiving a transplant. The CIF cap-

tures the probability that a transplant occurs, accounting for the possibility of death

and removal from the wait-list. This chapter develops methods for comparing cen-

ters, but using center as a grouping variable is only for concreteness. Any categorical

variable can be used to create groups within the study population.

Competing risks and the cumulative incidence function have been the focus of a large

number of previous reports. For example, Cheng et al. (1998) developed methods to

predict the CIF in the case of dependent competing risks and proportional hazards.

Various methods for competing risks are explored by Pepe and Mori (1993), who

make a strong case for using the CIF to make treatment decisions. Zhang and Fine

(2008) presented non-parametric inference procedures for medically useful functions

of the CIF, such as the difference, relative risk, and odds ratio between two groups.

Scheike et al. (2008) developed a method that allows the effect of covariates on the

CIF to be directly assessed. Their semi-parametric model also incorporates time

dependent effects.

There are few methods for comparing groups or centers in the presence of competing

risks, adjusted for covariates. Gray (1988) developed a non-parametric test for group

differences in CIFs for one specific cause of failure. Gray makes the comparison
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between the CIF for a particular group and an unspecified distribution. Lin (1997)

developed non-parametric methods for estimating CIFs and proposed resampling-

based procedures to construct confidence bands and tests of comparison. Fine and

Gray (1999) introduced regression methods for the hazard function corresponding to

the CIF. Previously, most of the competing risks methodology was focused on the

cause-specific hazards and, if ultimate interest lies in the CIFs, then inference would

be carried out by integrating the cause-specific hazard functions and the survival

function. There is also some existing work comparing the CIFs of different causes,

such as tests by Aly et al. (1994). However, in this chapter the objective is to

estimate group effects with respect to CIFs of the same cause; hence, the nature of

the comparison is quite different from that of interest to Aly et al. (1994).

This chapter proposes an effect estimate to contrast the population average cumu-

lative incidence under two scenarios: (i) subjects are distributed across groups as

per the existing population and (ii) all subjects are members of a particular group.

In terms of the target quantity, the methods are akin to direct standardization.

The CIF is estimated non-parametrically, using counting processes instead of via

modeling the cause-specific hazards. Inverse Probability of Treatment Weighting

(IPTW) and Inverse Probability of Censoring Weighting (IPCW) are employed to

create comparable empirical covariate distributions across the centers and to account

for censoring, respectively.

The remainder of the chapter consists of the formalization of the afore-listed data

elements and description of the proposed method in Section 3.2. Results from simu-
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lation studies are presented in Section 3.3 to evaluate the finite-sample performance.

Section 3.4 includes results from the application of the proposed method to address

the motivating question.

3.2 Proposed Methods

Let Ti and Ci be the event time and censoring time, respectively. The minimum

of Ti and Ci is the observation time, Xi. Individuals are denoted by i = 1, . . . , n,

centers by j = 1, . . . , J , and cause by k = 1, . . . , K. The observed event indicator is

∆i = kI(Ti < Ci). The variable for center is Ai (Ai = 1, . . . , J), so that if individual

i is in center j, then Ai = j and the center j indicator is Aij = I(Ai = j) = 1, where

I(·) is the indicator function. The covariate vector is denoted by Zi. A random

sample of size n consists of data {Xi,∆i,Zi, Ai} for i = 1, . . . , n. The unobserved

counting process for individual i for cause k is N∗ik(t) = I(Ti ≤ t,∆i = k), while the

observed counting process is Nik(t) =
∫ t

0 I(Ci > s)dN∗ik(s) for cause k. Further, we

define Nijk(t) = AijNik(t). We assume the Ti and Ci are conditionally independent,

given Zi and Ai, such that

lim
ε↓0

1
ε
P (t ≤ Ti < t+ ε|Ti ≥ t, Ci > t,Zi) = lim

ε↓0

1
ε
P (t ≤ Ti < t+ ε|Ti ≥ t,Zi). (3.1)

The cumulative incidence function for cause k is given by

Fijk(t) = P (Ti ≤ t,∆i = k|Ai = j,Zi) = E

 t∫
0

dN∗ijk(s)
 , (3.2)
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which can be interpreted as the cumulative probability that an event of type k

happens by time t, taking into account of other events that are competing to occur.

We define the effect of center j on the CIF of cause k as follows,

δjk(t) = Fjk(t)− Fk(t), (3.3)

where Fjk(t) = EZ [Fijk(t)] and Fk(t) = EZ [EA[FiAk(t)]]. The effect measure is anal-

ogous to direct standardization, where both expectations are taken with respect to

the marginal distribution of the covariates Zi, instead of the conditional distribution

of the covariates given center j, [Zi|Ai = j]. The effect can be seen as terms rep-

resenting an expected value subtracting an observed value, with expectation taken

over the distribution of the centers. The first term is center-specific and represents

what the national average would have been if all patients were subjected to a center

with CIF equal to that of center j. For patients who are not actually observed to be

at center j, this is contrary to fact. The second term is not center-specific, since we

have already taken the expectation with respect to center. It can be interpreted as

the national or overall average CIF.

We now describe how to estimate δjk(t) from (3.3), using the relationship set out in

(3.2). To begin, we consider the case where covariate adjustment does not need to be

considered. Since dN∗ijk(s) is not observable, it is useful to develop an estimator of

δjk(t) in terms of the observable quantity, Nijk(t) =
∫ t

0 I(Ci > s)dN∗ijk(s). In the case

of right-censored survival data, the censoring times are unknown if an event of any

type is observed. The often used Inverse Probability of Censoring Weighting (IPCW)
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technique (Robins and Rotnitzky, 1992; Robins, 1993) can be applied to obtain the

unobserved counting process from the observed counting process via weighting. The

IPCW technique weights each observation by the inverse of the survival function for

Ci, conditional on the covariates P (Ci > t|Ai = j,Zi). We can write E[dN∗ijk(s)] =

E[dNijk(s)P (Ci > t|Ai = j,Zi)−1] due to the independent censoring assumption

(3.1) stated above and, integrating both sides over (0, t], we obtain

Fijk(t) = E

 t∫
0

dNijk(s)
P (Ci > t|Ai = j,Zi)

 . (3.4)

An estimator for the CIF for type k in center j is then given by

F̂ijk(t) =
t∫

0

dNijk(s)
Ĝij(s)

= Aij

t∫
0

dNik(s)
Ĝij(s)

,

where Gij(t) = P (Ci > t|Ai = j,Zi) with estimator Ĝij(t) = exp{−Λ̂C
ij(t)}. The esti-

mated cumulative hazard for censoring Λ̂C
ij(t) is obtained by the proportional hazards

Cox (1972) model stratified on center, λCij(t) = λC0j(t) exp(αTZi). The estimate for

the cumulative incidence is based on the observed counting process for events of type

k in center j.

Given the focus on observational studies, confounding is likely to be an issue and the

estimator of the effect may be biased if the differences in covariate distributions are

not taken into account. Inverse Probability of Treatment Weighting (Robins et al.,

2000; Hernan et al., 2000) is a technique that allows valid comparisons to be made

across groups (or treatments) in observational studies by eliminating any group-
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specific covariate patterns in the analysis step. For each individual, IPTW assigns

a weight that is inversely related to the probability that the individual belongs to

his/her actual observed group given his/her covariates values. Thus, if a patient,

given his/her covariate pattern, is unlikely to be in the particular center that he/she is

observed to be in, then that patient’s experience gets more weight. The denominator

of this weight, P (Ai = j|Zi) ≡ pij(θ), is assumed to follow the generalized logit

model,

log
{
pij(θ)
piJ(θ)

}
= θTj Zi,

for j = 1, . . . , J − 1. The proposed estimator of δjk(t) is then given by

δ̂jk(t) = 1
n

n∑
i=1

Aij

pij(θ̂)

t∫
0

dNik(s)
Ĝij(s)

− 1
n

n∑
i=1

J∑
l=1

Ail

t∫
0

dNik(s)
Ĝil(s)

. (3.5)

The first term only uses information from subjects in center j due to the term

I(Ai = j). The subject-specific observed counting process for events of type k,

dNik(s), is weighted by the probability pij(θ̂) so that the resulting empirical covariate

distribution that is used for center j is the same as that of the entire study sample.

The contribution of each individual in center j is also weighted by the inverse of

the estimated conditional censoring survival distribution given the covariate Ĝij(t),

which handles the censoring. Thus the first term is doubly weighted by IPTW and

IPCW.

The estimator is non-parametric in the sense that no models are assumed for the
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cause-specific hazards or subdistribution. However, modeling is involved due to the

IPCW and IPTW methods.

The second term utilizes the entire sample by summing through everyone in each

center, and then summing through all of the centers. Each individual’s contribution

to the CIF is weighted by the quantity Ĝij(t) that is also used in the first term. Thus

the second term is an overall average of the observed cause k counting processes of

all subjects in the study weighted by IPCW.

A direct consequence of applying IPTW to the first term is that the resulting em-

pirical covariate distribution used for the first term is the same as the (unweighted)

empirical covariate distribution of the second term. The center-specific first term can

be interpreted as the estimated average CIF if everyone in the sample were at center

j. The second term, which is not center-specific, can be thought of as an estimator

of the overall average CIF.

By (3.4), we can show that

E

I(Ai = j)
pij(θ)

t∫
0

dNik(s)
Gij(s)

 = EZ [Fijk(t)].

By known properties of Cox regression, Ĝij(t) converges in probability to Gij(t)

(Anderson and Gill, 1982). Assuming that the center assignment model is correct,

established properties of maximum likelihood imply that pij(θ̂) is a consistent es-

timator for pij(θ). Since the summands are all individuals from center j, they are

independent and identically distributed (i.i.d.) and applying the Weak Law of Large
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Numbers gives

1
n

n∑
i=1

Aij

pij(θ̂)

t∫
0

dNik(s)
Ĝij(s)

p−→ EZ [Fijk(t)],

which is the first term of δjk(t) in (3.3).

Similarly, we can show that

E

 J∑
l=1

Ail

t∫
0

dNik(s)
Ĝil(s)

 = EZ [EA[FiAk(t)]]. (3.6)

In (3.6), there is an additional step where the expectation with respect to the centers

is taken.

3.3 Asymptotic Properties

We describe the asymptotic distribution of δ̂jk(t) by the following result.

Theorem 3.1: As n → ∞, δ̂jk(t) converges in probability to δjk(t), for t ∈ [0, τ ].

In addition, n 1
2
{
δ̂jk(t)− δjk(t)

}
converges to a Normal distribution with asymptotic

variance E
[
{φ`jk(t)}2

]
, where we define φ`jk(t) = φ

(1)
`jk(t)+φ(2)

`jk(t)+φ(3)
`jk(t)+φ(4)

`jk(t)−
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{
φ

(5)
`k (t) + φ

(6)
`k (t) + φ

(7)
`k (t)

}
with

φ
(1)
`jk(t) = dTjk(t)IIPTW (θ)−1U IPTW

` (θ)

φ
(2)
`jk(t) = E

 Aij
pij(θ)

t∫
0

exp(ΛC
ij(s))


s∫

0

{
Zi − z̄Cj (u; α)

}T
dΛC

ij(u; α)

 dNik(s)


IC(α)−1UC
` (α)

φ
(3)
`jk(t) =

t∫
0

E [Fjk(t)− Fjk(u)]Y C
ij (u) exp(αTZi)s(0)

j (u; α)−1dMC
`j (u; α)

φ
(4)
`jk(t) = A`j

p`j(θ)

t∫
0

dN`k(s)
G`j(s)

− Fjk(t)

φ
(5)
`k (t) = E

 J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))


s∫

0

{
Zi − z̄Cm(u; α)

}T
dΛC

im(u; α)

 dNik(s)


IC(α)−1UC
` (α)

φ
(6)
`k (t) =

J∑
m=1

t∫
0

E

Aim t∫
u

exp(ΛC
im(s))dNik(s)Yim(s)

 exp(αTZi)s(0)
m (u; α)−1

dMC
`m(u; α),

where we define

dTjk(t) = E
[
−Aijp−2

ij (θ)Zi

∫ t
0
dNik(s)
Ĝij(s;α̂)∆

T
ij(θ)

]

U IPTW
i (θ) = ∂li(θ)

∂θ
=



∂li(θ)
∂θ1

∂li(θ)
∂θ2

...
∂li(θ)
∂θJ−1


=



Ui1(θ)

Ui2(θ)
...

Ui,J−1(θ)


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for j = 1, . . . , J − 1, with

Uij(θ) = ∂li(θ)
∂θl

= Zi (Aij − pij(θ)) .

IIPTW (θ) = −E
[
∂2li(θ)
∂θ∂θT

]

= −E



I11(θ) I12(θ) · · · I1,J−1(θ)

I12(θ) I22(θ)
... . . .

I1,J−1(θ) IJ−1,J−1(θ)



where for j = 1, 2, ..., J − 1 and l = 1, 2, ..., J − 1 and j 6= l we define the follow-

ing:

Ill(θ) = − ∂li(θ)
∂θl∂θTl

= Z⊗2
i

 exp(ZT
i θl)

1 +∑J−1
m=1 exp(ZT

i θm)
− exp(2ZT

i θl)(
1 +∑J−1

m=1 exp(ZT
i θm)

)2


= Z⊗2

i pil(θ) {1− pil(θ)}

Ijl(θ) = − ∂li(θ)
∂θj∂θTl

= Z⊗2
i

exp
{
ZT
i (θl + θj)

}
{

1 +∑J−1
m=1 exp(ZT

i θm)
}2

= −Z⊗2
i pil(θ)pij(θ)

dMC
ij (t) = dNC

ij (t)− Yij(t)dΛC
ij(t)

s
(d)
j (t; βk) = E

[
Yij(t)Z⊗di exp(βT

kZi)
]

d = 0, 1, 2.
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∆ij(θ) = −Zi



pij(θ)pi1(θ)

pij(θ)pi2(θ)
...

pij(θ)(1− pij(θ))
...

pij(θ)pi,J−1(θ)



.

We can write n 1
2
{
δ̂jk(t)− δjk(t)

}
= n−

1
2
∑n
`=1 φ`jk(t), where the φ`jk(t) are indepen-

dent and identically distributed zero-mean variates. Then, Var
(
n

1
2
{
δ̂jk(t)− δjk(t)

})
=

E
[
{φ`jk(t)}2

]
and an estimator for Var(δ̂jk(t)) is V̂ar(δ̂jk(t)) = n−2∑n

`=1

{
φ̂`jk(t)

}2
.

As introduced in Theorem 3.1, the expression for the variance is very involved and,

thus, calculating the estimated variance is quite demanding in terms of coding and

computation. However, the estimator can be calculated very fast using standard

software such as SAS, and so the bootstrap method is suggested for estimating the

variance of the estimate.

3.4 Simulation Studies

We studied the performance of the proposed estimator through simulations from

the competing risks setting with two causes, with cause k = 1 being of inter-

est. The failure times Tij1 and Tij2 follow exponential distributions with λijk(t) =

λ0jk exp{βT
kZi},Zi = (Zi1, Zi2, Zi3)T where λ0j1 = 0.08 and λ0j2 = 0.01. The base-
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line hazards are center- and cause-specific. The censoring was also exponential with

λC(t) = λC0 exp{αTZi}, with administrative censoring at t = 10 and baseline cen-

soring hazard λC0 = 0.011. There were three covariates: Zi1 ∼ Ber(θ1j), Zi2|Zi1 ∼

Ber(Zi1θ21 + (1 − Zi1)θ22), and Zi3|Zi2 ∼ Ber(Zi2θ31 + (1 − Zi2)θ32), where Ber

denotes Bernoulli distribution with covariate effects implied by βT
1 = [0.4; 0.5; 0.6],

and βT
2 = [−0.1; 0.3; 0.2]. The values of the parameters for generating the covariates

were θT1j = [0.55, 0.75, 0.6, 0.65, 0.5], θ21 = 0.55, θ22 = 0.45, θ31 = 0.45, and θ32 = 0.65.

There were J = 5 centers, each with 200 individuals. The bootstrap method was

employed to estimate variability, with 25 bootstrap samples used per replicate. We

evaluated the performance of the estimator at times t = 1, t = 3, and t = 5. Simula-

tion results in Table 3.1 are obtained by replicating each data structure 500 times.

At t = 5, on average across the iterations, there were still between 23% and 40% of

subjects at risk across the five centers.

In the first set of simulations, the estimator δ̂j1(t) performed quite well and has

relatively small bias, as seen in Table 3.1. Although bias was quite low uniformly, it

tended to be larger at later time points (t = 5) relative to earlier time points. This

is likely due to the fact that there are more data at the earlier stages of follow-up.

The value of δj1(t) also seems to affect the bias of δ̂j1(t). The larger the displacement

from having no effect, or in other words, the larger the absolute value of δj1(t), the

larger the bias. For example, center j = 1 performs much better than the overall

average, and the bias is larger compared to that of center j = 3 which performs at a

level appropriately equal to the overall average.
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Table 3.1: Simulation results using Configuration 1: estimate for effect of center j
on CIF of cause k = 1, with bias, empirical standard deviation (ESD),
bootstrap standard error (BSE), and 95% confidence interval coverage
probabilities (CP).

j t δj1(t) BIAS ESD BSE CP
1 1 0.07 -0.001 0.024 0.023 0.94

3 0.16 -0.008 0.030 0.031 0.93
5 0.21 -0.018 0.033 0.032 0.90

2 1 0.04 -0.000 0.023 0.023 0.93
3 0.08 -0.005 0.031 0.032 0.94
5 0.10 -0.015 0.036 0.035 0.91

3 1 0.02 0.000 0.022 0.021 0.93
3 0.04 0.000 0.031 0.030 0.92
5 0.06 0.002 0.031 0.032 0.94

4 1 -0.06 0.000 0.015 0.015 0.93
3 -0.14 0.009 0.023 0.023 0.92
5 -0.18 0.019 0.028 0.027 0.89

5 1 -0.06 0.000 0.016 0.016 0.93
3 -0.14 0.005 0.026 0.024 0.93
5 -0.19 0.013 0.030 0.029 0.91
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Table 3.2: Simulation results using Configuration 2: estimate for effect of center j
on CIF of cause k = 1, with bias, empirical standard deviation (ESD),
bootstrap standard error (BSE), and 95% confidence interval coverage
probabilities (CP).

j t δj1(t) BIAS ESD BSE CP
1 1 0.01 -0.000 0.02 0.021 0.95

3 0.04 -0.003 0.031 0.029 0.92
5 0.06 -0.006 0.031 0.032 0.94

2 1 0.02 0.001 0.021 0.031 0.93
3 0.04 0.000 0.029 0.021 0.94
5 0.04 -0.001 0.032 0.031 0.94

3 1 0.001 -0.000 0.020 0.020 0.92
3 0.002 -0.001 0.028 0.028 0.93
5 0.002 -0.001 0.032 0.031 0.94

4 1 -0.02 0.000 0.018 0.019 0.95
3 -0.04 0.003 0.028 0.027 0.93
5 -0.06 0.001 0.028 0.03 0.93

5 1 -0.01 0.003 0.031 0.03 0.93
3 -0.04 0.005 0.019 0.018 0.93
5 -0.05 0.006 0.030 0.031 0.94
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The second set of simulations, shown in Table 3.2, contain center effects of smaller

magnitudes compared to those of the first set. As can be seen, when the effects are

closer to 0, the bias tends to be smaller, consistent with Table 3.1. The coverage

probabilities are also closer to the nominal value of 0.95, though there does not seem

to be a trend of lower coverage probabilities at later follow-up times.

3.5 Application

Data were obtained from the Scientific Registry of Transplant Recipients (SRTR). We

applied our methods to assess each (OPO) with respect to the average probability

that a patient received a kidney transplant, relative to the regional average. For

organ allocation purposes, the 58 OPOs are grouped into 11 regions. We selected

the J = 6 OPOs that comprise Region 10, which contains Michigan. Patients wait-

listed during the last decade (i.e., between January 1, 2000 and December 31, 2009)

were included in the study. The resulting sample consisted of n = 22, 685 subjects

from J = 6 OPOs. The observation period ended on December 31, 2009.

Wait-listed patients leave the wait-list due to death, receipt of a kidney transplant,

or being removed. The cause of interest is transplant with a deceased donor, and

the competing risks are removal and death. The adjustment covariates were age,

sex, body mass index (BMI), race, hypertension status, blood type, diabetes, and

panel reactive antibodies. Living donor transplantation was treated as (independent)

censoring, an issue to which we return in Section 3.6. Figure 3.1 shows the trend of
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Figure 3.1: Analysis of SRTR data: δ̂j1(t) for various t ∈ [0, 5] years post wait-listing,
for j = 1, . . . , 6.
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δ̂j1(t) over 5 years of follow-up for j = 1, . . . , 6. OPOs 1, 2, and 3 perform better

than expected, while OPOs 5 and 6 perform worse than expected. Interestingly,

for the OPOs with elevated cumulative incidence of transplantation, δ̂j1(t) increases

early; usually peaking between t = 2 and t = 4 years before dipping slightly during

the last couple years of follow-up. In general, the differences in performance among

OPOs first become larger as follow-up time increases, and then decrease slightly

after year 3, where many of the estimated effects stabilize. The OPOs are sorted

in ascending sample size, with 1,434 and 9,269 patients on the wait-list in OPO

j = 1 and OPO j = 6, respectively. There emerged a pattern where the larger

OPOs performed worse than the smaller OPOs. This could be due to disparities

in organ donation rates across the OPOs. Since donations reflect one aspect of the

OPO’s efforts and performance in allocating organs, adjusting for it would attenuate,

perhaps inappropriately, some of the OPO effect. Figures 3.2 and 3.3 are similar to

Figure 3.1, but with a 95% confidence limits for δ̂j1(t) at the selected time points.

OPO 1 was put into a separate figure because its confidence limits overlap with

those of OPO 2. As expected, the confidence limits are narrower at the start of

follow-up and are wider at the end of the follow-up period, due to sparser data at

the later times. In addition, larger OPOs have narrower confidence limits. Figure 3.4

shows the change in δ̂j1(t) for each time interval for OPO 1. The bars represent the

difference over time in the difference between OPOs. From the start of follow-up to 3

months after start of follow-up, δ̂11(t) increased by 0.07. From the start of follow-up

until year 1, δ̂11(t) is increasing at a decreasing rate. Starting from end of year 3,

δ̂11(t) decreases, though still remains greater than 0. Figures 3.5 and 3.6 are similar
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Figure 3.3: Analysis of SRTR data: δ̂j1(t) with 95% confidence interval of for various
t ∈ [0, 5] years post wait-listing, for j = 2, . . . , 6.
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Figure 3.4: Analysis of SRTR data: Change in δ̂11(t) over various time intervals, for
t ∈ [0, 5] years post wait-listing.
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Figure 3.5: Analysis of SRTR data: Change in δ̂41(t) for various t ∈ [0, 5] years post
wait-listing.
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Figure 3.6: Analysis of SRTR data: Change in δ̂61(t) for various t ∈ [0, 5] years post
wait-listing.
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to Figure 3.4, but for OPOs 4 and 6, respectively. The δ̂41(t) increases at an almost

constant rate from start of follow-up until end of year 4. Then, during year 5 there

is almost no change. From Figure 3.6, the effect of OPO 6 decreases at a decreasing

rate until end of year 4.

Another analysis was also carried out using all J = 58 OPOs in the SRTR. The

results, shown via two figures, are included in Appendix B.

3.6 Discussion

In this chapter, we develop methods for comparing subgroups to the overall average

based on cumulative incidence. The cumulative incidence itself is estimated non-

parametrically, while being weighted by IPCW and IPTW semi-parametrically and

parametrically, respectively. The effect of each subgroup on cumulative incidence

is quantified as the difference between the subgroup-specific cumulative incidence

and the overall average. For each subgroup, patients are inverse weighted to reflect

the marginal covariate distribution, while the marginal covariate distribution is used

explicitly in the computation of the overall average CIF. Simulation results indicate

that the proposed method has negligible bias with empirical coverage probability,

based on bootstrapped standard errors, being approximately equal to (although,

persistently, slightly below) the nominal value. The method is applied to registry

data to identify Donation Service Areas in Region 10 that are under-served with

respect to deceased-donor kidney transplantation.
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Similar to direct standardization, methods proposed in this chapter use the marginal

covariate distribution in measuring the group effect. Therefore, it is valid to compare

δ̂j1(t) across different values of j. Comparing δ̂j1(t) across OPOs would not be valid

if indirect standardization was used, which involves the covariate distribution given

a particular subgroup. The method described can be useful to a governing or regu-

latory body that wants to make direct comparisons between groups. In applying the

proposed methods, an issue is the possibility of unstable weights. This was more of a

concern for the IPTW than for IPCW, since we do not expect the covariates to have

very strong effects on censoring. A simple stabilizer based on the proportion of total

subjects in each OPO did not improve the estimation and precision of the estimator

noticeably. The simulation results indicated that the bias and confidence interval

coverage probabilities are acceptable without any stablization for the IPTW.

The IPCW is semi-parametric efficient since it is based on the partial likelihood. The

IPTW is based on the maximum likelihood, and is therefore efficient. Therefore, this

method should not lose much efficiency compared to using the cause-specific hazards

(which is also estimated efficiently by Cox regression) to model the CIF.

The methods outlined in Fine and Gray (1999) can be applied to compare subgroups

by using indicator functions to represent each subgroup, giving the subdistribution

hazard ratios. In the example of the SRTR data used in this chapter, one OPO

would have to be selected as the reference, lending the coefficients to meaningful

interpretation. Using this approach, proportionality of hazards across the OPOs

also needs to be plausible. Thus, the methods proposed in this chapter are more
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flexible in that no proportionality needs to be assumed. Another possible approach

to apply Fine and Gray (1999) to the set up of interest in this chapter would be to

stratify by group, then average the resulting fitted values. An advantage of Fine and

Gray (1999) may be efficiency gains due to more parametrization compared to the

methods in this chapter.

We considered living donor transplantation as independent censoring since it can be

argued that living donors do not reflect either positively nor negatively on the effort

of the OPO to obtain and allocate kidneys. This is because most living organ donors

know their recipients, being either a relative or friend, and thus are specifically

donating the kidney for that recipient. Therefore, the recipient of a living donor

transplant is not determined by the OPO. That said, it is possible that, in OPOs

with low rates of deceased-donor transplantation, patients have increased motivation

to seek out a living donor. If this were the reality, it may be more appropriate to

treat living donor transplantation as a competing risk. Another possibility would

be to treat living donor transplantation as dependent censoring, which would fall

outside the scope of the methods proposed in this chapter.
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CHAPTER IV

Semi-Parametric Methods for Modeling the

Subdistribution Hazard using Multiple Imputation

4.1 Introduction

In many biomedical studies, interest lies in the relationship between certain factors

and the time until a particular event. Often, the subject is at risk for several mu-

tually exclusive health outcomes, one of which is of chief interest. For example,

consider an observational study that tries to identify factors correlated with cancer

recurrence. Patients in that study can also experience death and, if so, cancer recur-

rence cannot subsequently occur. Since recurrence is of chief interest, death serves

as a competing risk, which may be of at most secondary interest to this study. In

these cases, standard survival analysis methods are not appropriate and methods

that account for competing risks are required for valid inference. A popular quantity

in the competing risks landscape is the cumulative incidence function (CIF), which
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is the probability that a particular outcome occurs by a certain time, in the presence

of other events which compete to occur (Kalbfleisch and Prentice, 2002). Another

important quantity in the competing risks setting is the cause-specific hazard (CSH),

which is the hazard of a particular event occurring at a certain time t, conditional

on being at risk (i.e., have not experienced any cause) as of time t.

A frequently employed method of estimating the CIF involves estimating the cause-

specific hazard for each cause, then using the relationship between the CSHs and the

CIF to obtain an estimate of the latter. Nonetheless, there has been some work in

the competing risks literature where the focus was on estimation of the CIF without

explicitly estimating the CSHs. For example, Gray (1988) proposed tests comparing

group-specific cumulative incidence functions via the subdistribution hazard. Pepe

(1991) developed methods for the estimation and inference of the Kaplan-Meier sur-

vival function (Kaplan and Meier , 1958) and cumulative incidence function as sums

of independent and identically distributed random variables. Two sample tests were

also introduced, along with the asymptotic null distribution of the test statistics.

Fine and Gray (1999) developed methods that involve applying a regression model

to the subdistribution hazard for the cause of interest. This approach allows the

covariate effects on the cause of interest to be evaluated without having to consider

models for the causes not-of-interest. The method involves a variant of Inverse Prob-

ability of Censoring Weighting (IPCW; Robins and Rotnitzky (1992)), which may be

computationally intensive using standard software. In particular, fitting the model

using standard Cox regression (Cox , 1972) software would often involve expanding

the original data set to include separate records for each subject at each time the
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weight changes. In addition, the estimates may be unstable due to the possibility of

large weights, a phenomenon familiar to IPCW.

In addition to the method of Fine and Gray (1999), other methods have been de-

veloped for subdistribution regression. Scheike et al. (2008) proposed a binomial

regression method that directly models the CIF. Procedures for estimation and in-

ference were presented for time-dependent effects. Recently, Klein and Andersen

(2005) also developed methods for direct regression on the CIF using pseudovalues

based on a jackknife statistic.

Censoring-complete data are observed when the event times are subject to censor-

ing, but the censoring times are all known. In such cases, even when a subject’s

failure time is observed (and, hence not censored), the potential censoring time is

still known for that subject. Censoring-complete survival data arise when there is

only administrative censoring and no random censoring caused by loss to follow-up.

An example of a setting which would generate such data would be a clinical trial

where patients are followed very closely, so that no patients are lost to follow-up.

For instance, the trial may be designed so that the patients can enter at different

chronological times, but the trial ends on a pre-determined specific calendar date

upon which follow-up ends for all patients. Thus, even if an event is observed, the

potential censoring time is still known through its correspondence to the planned end

date of the trial. As another example, consider a study that follows patients who

are hospitalized, with death while hospitalized or discharge from the hospital being

the two events that compete to occur. Since the patients are hospitalized, they will
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not be lost to follow-up. Censoring-complete data arise from this setting if the end

of study date has already been decided at the start of the study. Even if an event

were observed, the potential censoring time (i.e., the planned end of study) is still

known.

Although censoring-complete data are more convenient, most real-world applications

involve random loss to follow-up. Fine and Gray (1999) framed their inverse weight-

ing method as the replacement of an unobserved indicator function by a weighted

quantity with the same expectation. Although the method proposed by Fine and

Gray (1999) involves IPCW, the use of the inverse weight is motivated by consider-

ations very different from the IPCW methods used for dependent censoring (Robins

and Rotnitzky, 1992). However, the inverse weighting used in subdistribution haz-

ard modeling shares the considerable added computational burden with other time-

dependent weighting methods. For this reason, it would be desirable to have an

alternative to inverse weighting.

In the context of proportional hazards modeling of the subdistribution function, one

advantage of censoring-complete data over ordinary censored data is that standard

software can be applied without a weight function. Multiple imputation is a tech-

nique that can be used when the analysis dataset contains missing, incomplete data

(Little and Rubin, 2002; Rubin, 1987). The imputation procedure essentially replaces

the missing data with imputed values so that the resulting dataset, called an aug-

mented dataset, is complete. The missing data are generated independently using

the same procedure multiple times, creating a set of augmented datasets. Usually
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between five and ten augmented datasets are enough to provide acceptable results.

The analysis is done on each augmented dataset separately. Valid parameter es-

timates and corresponding standard errors can be calculated by combining results

across augmented datasets, with an additional step for the variance estimator due to

variability introduced by the multiple imputes (Little and Rubin, 2002). The imputes

can be drawn from distributions that are estimated by parametric or non-parametric

methods; for example, Rubin (1987) uses imputation to analyze data obtained from

surveys, which often contain missing data.

In standard univariate time-to-event data, multiple imputation has been used in cases

with missing failure times due to censoring. For observations that are censored, the

imputed value replaces the censoring time. Thus, the imputed value represents what

failure time would have been observed if censoring did not occur. Taylor et al.

(2002) developed non-parametric multiple imputation procedures with the end goal

of estimating and testing survival functions. The imputed time replaces the censored

time, creating a new dataset where failures are observed for all subjects.

The motivating example for this chapter is based on kidney transplantation. In the

United States, a patient who is in need of a kidney transplant is included on a waiting

list that is maintained by an organ procurement organization (OPO). The patient,

while on the wait-list, also faces death and being removed from the wait-list for being

of very ill-health. If either removal or death occurs, the patient will not receive a

transplant. Thus, in the context of our motivating example, the cause of interest is

receiving a kidney transplant while on the wait-list, with the competing risks being
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pre-transplant death and removal from the wait-list.

Our interest in this chapter primarily lies in determining the covariates that correlate

with receiving a kidney transplant. Specifically, since blood type affects the likelihood

of being matched with a donor kidney, it has been suggested that certain blood

types place a patient at a disadvantage in terms of the probability of receiving a

transplant. This has been referred to as the type O problem (Barone et al., 2008;

Stanford et al., 2008; Glander et al., 2010) since patients with type O blood can be

donors for all other blood types but can only receive an organ with blood type O.

Note that the set up in this chapter is different from those mentioned above, in that

we are working with individuals who are exposed to more than one cause of failure

and we will not observe the censoring time if an event (of any type) has happened.

Thus, from the perspective of censoring-completeness, the would-be censoring time

for an observation can be considered as missing data and one option is to impute

the unobserved censoring times. In this case, failure times for causes not-of-interest

would be replaced by an imputed censoring time. Thus, because of the competing

risks setting, the censoring time is considered missing in this chapter; whereas in the

examples two paragraphs ago, the failure times were the missing data.

Our proposed method has similarities to the imputation algorithm developed by

Schaubel and Zhang (2010), where imputation aided in the estimation of treatment

effects on the marginal recurrent event mean. Values of unobserved censoring times

were imputed for the patients who were observed to die. Ruan and Gray (2008)

developed a similar method to the one proposed in this chapter, specifically, imputing
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censoring times for observations that experienced a competing event. However, the

censoring distribution was estimated via Kaplan-Meier methods (Kaplan and Meier ,

1958), thus assuming that censoring is not affected by the covariates. A more flexible

approach would be to let censoring depend on the covariates.

In this chapter, we propose methods that use imputation to create censoring-complete

data from a standard right-censored survival setting with competing risks. For ob-

servations that experience a competing risk, a time is imputed which represents the

would-be censoring time if the competing risk had not been observed. The imputa-

tion will incorporate information from the covariates with a Cox model assumed for

censoring hazard. We also use an interpolation method to reflect the continuity of

the assumed baseline hazard for the censoring variable.

The remainder of the chapter is structured as follows. Section 4.2 sets up the notation

and introduces the imputation method and interpolation technique. Section 4.3

presents simulation results to assess the performance of the imputation procedure in

finite samples. Section 4.4 presents results of the proposed method applied to the

motivating example and Section 4.5 completes the chapter with a discussion.
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4.2 Proposed Methods

4.2.1 Set-up and Models

We begin by formalizing the data structure and assumed models. Let Ti and Ci be

the event and censoring times, respectively, for individual i (i = 1, . . . , n). Cause will

be denoted by k (k = 1, . . . , K), and let ∆i = kI(Ti < Ci), where I(·) is the indicator

function. The observation time is defined as Xi = Ti ∧ Ci. Thus, the observed data

consist of {Xi,∆i,Zi}, where Zi is a vector of covariates which is assumed to be time

constant. The at-risk indicator is given by Yi(t) = I(Xi ≥ t) and the counting process

for subject i cause k is denoted by Nik(t) = I(Xi ≤ t,∆i = k). For concreteness, the

rest of this chapter we will take k as the cause of interest. We assume that Ti and Ci

are conditionally independent given Zi, and that the time scale is continuous. We

also assume proportional hazards for the censoring variable,

λCi (t) = λC0 (t) exp(αTZi). (4.1)

The proposed method is an alternative to inverse weighting for fitting the propor-

tional subdistribution hazards model proposed by Fine and Gray (1999), who de-

veloped methods for directly testing the effect of covariates on the subdistribution

hazard. Fine and Gray (1999) posit that, in the case of censoring-complete compet-

ing risks data, unweighted methods can be applied to fit their model. With standard

right censored data, the censoring times are not known if a competing event has
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occurred. To estimate the proportional subdistribution hazards model proposed by

Fine and Gray (1999), we create imputed datasets that are then censoring-complete.

We consider the censoring times for the subjects that were observed to experience one

of the competing risks as missing data and impute potential censoring times.

The CIF is defined as Fik(t) = P (Ti ≤ t,∆i = k|Zi) and typically expressed as

Fik(t) =
∫ t
0 λ

#
ik(s)Si(s)ds, where Si(t) = P (Ti > t|Zi). The quantity Fik(t) represents

the probability that an event of type k has occurred by time t, allowing for the

presence of competing events (Kalbfleisch and Prentice, 2002); while λ#
ik(t) is the

cause-specific hazard (CSH),

λ#
ik(t) = lim

ε↓0

1
ε
P (t ≤ Ti < t+ ε,∆i = k|Xi ≥ t,Zi). (4.2)

Gray (1988) defined the improper random variable

T ∗i = TiI(∆i = k) +∞I(∆i 6= k),

which has the associated risk set I(Ti ≥ t ∪ {Ti ≥ t,∆i 6= k}). The variate T ∗i is

not proper because if a subject experiences a competing event, the failure time due

to the event of interest is infinity. Fine and Gray (1999) extended the risk set to

incorporate the presence of censoring,

Ri(t) = I (Xi ≥ t ∪ {Ti ≤ t,∆i 6= k, Ci ≥ t}) .
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The subdistribution hazard as defined by Fine and Gray (1999) is given by

λik(t) = − d

dt
log {1− Fik(t)}

= λ#
ik(t)Sik(t)
1− Fik(t)

= lim
dt→0

1
dt
P (t ≤ Ti < t+ dt,∆i = k|Xi ≥ t ∪ {Ti ≤ t,∆i 6= k, Ci ≥ t} ,Zi) .

The improper random variable creates an improper risk set in the subdistribution

hazard since if a competing risk has already occurred, it is still considered at risk

for the event of interest. In the standard survival set up, I(Xi ≥ t) is the risk-set

indicator. Therefore, the individual is defined to be at risk until the occurrence of the

earliest of any event or censoring. In this improper risk set, the at-risk indicator Ri(t)

considers the individual to be at risk until the event of interest or censoring happens,

so that being censored removes an individual from the risk set for experiencing the

event of interest, but experiencing a competing event does not. Thus, if a competing

event has occurred, the individual is defined to be at risk even though the event of

interest will never happen.

The proportional subdistribution hazard model for the event of interest k proposed

by Fine and Gray (1999) is

λik(t) = λ0k(t) exp(βT
kZi), (4.3)

where βk serves as the parameter of interest and λ0k(t) is an unspecified baseline

subdistribution hazard. From Fine and Gray (1999), the estimating function for
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censoring-complete data is

Uk(β) =
n∑
i=1

∞∫
0

[
Zi −

∑n
j=1 Yjk(s)Zj exp{βTk Zj}∑n
j=1 Yjk(s) exp{βTk Zj}

]
dNik(s), (4.4)

where Yik(t) = I(Ci ≥ t){1 − Nik(t−)}. The equation in (4.4) can be used only

when Ci is known. If not, a variant of IPCW has been suggested (Fine and Gray,

1999). As an alternative to inverse weighting, we propose imputing the unknown Ci

through a procedure that we now describe.

4.2.2 Imputing Censoring Times

The censoring times can be considered as a special case of missing data. One often-

used method for dealing with missing data is multiple imputation (Rubin, 1987),

where procedures impute censoring times for the observations which experienced a

competing event (i.e., an event not-of-interest). In the context of an observational

study, it is quite possible that covariates affect censoring. Therefore, we incorporate

covariate information when imputing censoring times.

The censoring-complete data consist of {Zi, X
m
i ,∆i}, for i = 1, . . . , n and m =

1, . . . ,M , with

Xm
i = I(∆i = k) ·Xi + I(∆i = 0) ·Xi + I(∆i 6= k,∆i 6= 0) · Cm

i ,

where Cm
i is the mth imputed censoring time for subject i and M indexes the aug-

66



mented dataset. Thus a censoring time is imputed when the subject experiences a

competing risk. If the subject experienced the event of interest or was censored, then

no values are imputed for that subject since the observed data are already considered

complete in such cases. From the censoring-complete data perspective, a competing

event is classified as censored. If an individual experiences an event l 6= k at time

Ti, then that individual is still considered to be at risk for the event of interest until

its imputed censoring time, Cm
i .

The following steps detail the imputation procedure.

1. Take a bootstrap sample, with replacement, of the original observed data. Esti-

mate the distribution of the censoring variable by fitting a Cox (1972) proportional

hazards model on the censoring times, λCi (t) = λC0 (t) exp(αTZi). In this censoring

model, all observed failure events are considered to be ‘censored’, since the time of

interest is considered to be Ci.

2. Suppose subject i is observed to experience a competing event (∆i = l, where

l 6= k and l 6= 0) at time Ti. Randomly draw Cm
i from Ĝi(t;Ti), where

Gi(t;Ti) ≡ P (Ci > t|Ci > Ti,Zi, Ti) = Gi(t)I(t > Ti)
Gi(Ti)

with Gi(t) = P (Ci > t|Zi) = exp{−ΛC
i (t)}. The quantity Gi(t;Ti) is the conditional

survival function for censoring given the censoring time is greater than Ti and ΛC
i (t) =∫ t

0 λ
C
i (s)ds. We use the conditional survival distribution instead of the marginal

survival distribution to take into account of the fact that, although the exact value
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of the censoring time is unobserved, Ci is known to be greater than Ti, the observed

failure time.

Instead of using a step function to estimate the baseline cumulative censoring hazard

function, we use a linear interpolation based on the step function. This approach

is thought to more accurately reflect the true baseline hazard function, since it is

unlikely that the true censoring hazard function is a series of fnon-zero values at the

observed censoring times and zero elsewhere.

The following steps describe the linear interpolation:

2A. Let s1 and s2 be censoring times such that s1 < Ti < s2 and no other censoring

occurs between s1 and s2. Then, calculate Λ̂C
0 (Ti) as follows,

Λ̂C
0 (Ti) = Λ̂C

0 (s1) + (Ti − s1)Λ̂C
0 (s2)− Λ̂C

0 (s1)
s2 − s1

.

2B. Compute

Λ̂0(t∗i ) =
− log

{
[1− Ui] exp

(
−Λ̂C

0 (Ti) exp(α̂TZi)
)}

exp(α̂TZi)
,

where Ui is a random draw from a Uniform(0,1) distribution.

2C. Suppose that Λ̂C
0 (t1) < Λ̂C

0 (t) < Λ̂C
0 (t2) where t1 and t2 are times when censoring

has occurred and that no censoring occurs between t1 and t2. Then the imputed
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censoring time for subject i is

Cm
i = t1 + (t2 − t1)Λ̂C

0 (t∗i )− Λ̂C
0 (t1)

Λ̂C
0 (t2)− Λ̂C

0 (t1)
.

3. To generate one imputed dataset consisting of {Zi, X
m
i ,∆i}, i = 1, ..., n, repeat

Step 2 for all subjects who experience a competing event. This dataset only contains

the event of interest and censoring, resembling the univariate survival setting with

no competing risks.

4. Apply methods for subdistribution hazard regression to the resulting dataset,

{Zi, X
m
i ,∆i}, i = 1, ..., n. We fit the model proposed by Fine and Gray (1999) by

using standard software for fitting Cox proportional hazard models to estimate βm
k

as the solution to Um
k (β) = 0, where

Um
k (β) =

n∑
i=1

τ∫
0

[
Zi −

∑n
j=1 Y

m
jk (s)Zj exp{βTZj}∑n

j=1 Y
m
jk (s) exp{βTZj}

]
dNik(s),

with Y m
ik (t) = I(Cm

i ≥ t)(1 − Nik(t−)). An estimator of V (β̂m

k ) is given by the

estimated covariance matrix

Σ̂
m

k =
 n∑
i=1

τ∫
0


∑n
j=1 Z⊗2

j Y m
jk (t) exp(β̂k)TZj∑n

j=1 Y
m
jk (t) exp(β̂k)TZj

− Z̄⊗2(t; β̂k)

 dNik(t)
−1

,

where

Z̄(t; βk) =
∑n
i=1 ZiY

m
ik (t) exp(βT

kZi)∑n
i=1 Y

m
ik (t) exp(βT

kZi)
.
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The event of interest is I(∆i = k).

5. Repeat Steps 2 through 4 a total of M times, to produce M sets of parameter

estimates {β̂1
k, . . . , β̂

M

k } and covariance estimators {Σ̂1
k, . . . , Σ̂

M

k }.

4.2.3 Inference Procedures

Results from the M imputed datasets are then combined according to appropri-

ate procedures for imputed data to provide the relevant estimates and inference.

Specifically, the well-established variance formula of Rubin (1987) was developed for

proper imputation and can then be applied in our set up. The parameter estimate

will be the mean of the parameter estimates from Step 1 across the M augmented

datasets,

β̂k = 1
M

M∑
m=1

β̂
m

k .

The variance estimator is calculated by combining the within- and between-imputation

variation as follows,

1
M

M∑
m=1

Σ̂
m

k +
(

1 + 1
M

) [ 1
m− 1

M∑
m=1

(
β̂
m

k − β̂k

)⊗2
]
.

Note that the imputation steps proposed in this chapter randomly draw from the

estimated censoring distribution, Ĝi. Standard imputation requires that the imputed

censoring times are drawn from the asymptotic distribution of the censoring distri-
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bution. Our imputation scheme introduces additional variability, which comes from

the estimation of the censoring distribution. Therefore it is necessary to develop

a variance estimator that takes into account this additional variability. Instead of

drawing from the distribution of the censoring variable, we bypass the parametriza-

tion aspect by using the bootstrap method by drawing with replacement from the

observed data. The parameter coefficients resulting from the bootstrap datasets are

used as the draws in a proper imputation.

4.3 Simulation Studies

Simulation studies were carried out to evaluate the performance of the imputation

procedure in finite samples. Data were generated according to the structure de-

scribed in the simulation study of Fine and Gray (1999), except instead of using two

covariates, we used three binary covariates. There are two causes of failure, with

cause k = 1 serving as the cause of interest. The cumulative incidence function for

cause k = 1 is given by

P (Ti ≤ t,∆i = 1|Zi) = 1− {1− p [1− exp(−t)]}exp(βT
1 Zi) ,

where p ∈ (0, 1) and with p = P (∆i = 1|Zi = 0). For events of cause k = 2,

the conditional cumulative incidence function is given by P (Ti ≤ t|∆i = 2,Zi) =

1 − exp− exp(βT
1 Zi) t, which is an exponential distribution with rate exp(βT

2 Zi). The

covariate vector was specified as Zi = [Zi1, Zi2, Zi3]T , where Zi1 ∼ Ber(θ1), Zi2|Zi1 ∼
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Ber(Zi1θ21 + (1 − Zi1)θ22), and Zi3|Zi2 ∼ Ber(Zi2θ31 + (1 − Zi2)θ32). The values

of the parameters are θ1 = 0.05, θ21 = 0.55, θ22 = 0.45, θ31 = 0.45, and θ32 = 0.65.

Censoring is dependent on the covariates and follows an exponential distribution with

λCi (t) = λC0 exp(α1Z1 +α2Z2 +α3Z3), with λC0 = 0.09. The administrative censoring

is set at t = 10 andM = 10 imputes were used. Several configurations were included,

where the extent of the censoring and cause k = 2 events were varied.

Table 4.1: Simulation results for proposed estimator for five configurations, with bias,
asymptotic standard error (ASE), empirical standard deviation (ESD),
and 95% confidence interval coverage probabilities (CP).

Configuration True value BIAS ASE ESD CP
1 Censored: 15.3 % β11 0.2 0.032 0.49 0.46 0.95

Event 1: 57.6 % β12 0.3 0.014 0.21 0.19 0.96
Event 2: 27.1 % β13 0.4 -0.006 0.22 0.20 0.98

2 Censored: 15.0 % β11 0.4 0.018 0.45 0.46 0.94
Event 1: 59.4 % β12 0.3 0.009 0.21 0.18 0.97
Event 2: 25.5 % β13 0.46 0.003 0.22 0.20 0.96

3 Censored: 14.1 % β11 0.5 -0.000 0.43 0.42 0.95
Event 1: 64.2 % β12 0.4 -0.001 0.20 0.19 0.96
Event 2: 21.7 % β13 0.65 0.017 0.21 0.19 0.96

4 Censored: 32.2 % β11 0.5 -0.040 0.47 0.45 0.96
Event 1: 50.8 % β12 0.4 0.004 0.22 0.21 0.97
Event 2: 17.1 % β13 0.65 0.019 0.23 0.22 0.95

5 Censored: 9.1 % β11 0.5 0.023 0.41 0.41 0.95
Event 1: 67.9 % β12 0.4 0.017 0.19 0.20 0.95
Event 2: 23.0 % β13 0.65 0.005 0.20 0.19 0.96

Table 4.1 summarizes the performance of the proposed parameter estimators. The
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bias of the estimated coefficients is generally quite low. As the percent of observations

that were censored increased, the bias increased slightly. The coverage probabilities

generally attain and sometimes exceed the nominal value. The percent censored may

affect the imputation since the censoring distribution is estimated from the observa-

tions that were censored. In addition, the percent of observations that were of cause

k = 2 also affected the bias. The more cause k = 2 events, the more imputations

need to be made, which could affect the accuracy of the resulting estimate.

4.4 Application

We applied the proposed method to kidney transplant data from the Scientific Reg-

istry of Transplant Recipients (SRTR). Patients who were waitlisted at any of the 6

OPOs in Region 10, which contains Michigan, were eligible to be included. The final

study sample consisted of the n = 22, 685 patients who were wait-listed for a kid-

ney transplant between January 1, 2000 and December 31, 2009. We are primarily

interested in the probability of receiving a transplant from a deceased donor, with re-

moval from the wait-list and death on the wait-list as competing risks. The covariate

vector contained terms representing OPO, age, sex, body mass index (BMI), race,

hypertension status, blood type, diabetes, and panel reactive antibody. Since there

were six OPOs, five indicator variables were used to estimate the OPO effect.

The reference categories are OPO 6 for location, glomerulonephritis for the primary

renal disease diagnosis, between 25 and 30 for BMI, female for sex, Caucasian for
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Table 4.2: Analysis of SRTR data using proposed method with M = 10.

Covariate Mean, Parameter P-value Hazard Ratio
n, % estimate

Age at listing 48.1 -0.008 < 0.001 0.99
Panel reactive antibody 17.9 -0.008 < 0.001 0.99
Location:
OPO 1 1434 0.43 < 0.001 1.53
OPO 2 1551 0.70 < 0.001 1.99
OPO 3 2420 0.27 < 0.001 1.32
OPO 4 3462 0.60 < 0.001 1.81
OPO 5 4549 -0.02 0.54 0.97
OPO 6 9269 0 - 1

BMI
Less than 20 5.2 % 0.01 0.059 1.11
20 to 25 26.5 % 0.03 0.30 1.03
25 to 30 32.5 % 0 - 1
30 to 35 23.2 % -0.12 < 0.001 0.89
Greater than 35 12.6 % -0.34 < 0.001 0.71

Primary renal disease diagnosis:
Polycystic kidney disease 7.7 % 0.08 0.22 1.09
Diabetes 14.7 % 0.17 0.004 1.19
Hypertension 17.9 % 0.05 0.43 1.05
Other diagnosis 54.4 % 0.08 0.16 1.08
Glomerulonephritis 5.28 % 0 - 1

Sex:
Male 59.5 % -0.02 0.44 0.98
Female 40.5% 0 - 1

Race:
African American 30.4 % -0.23 < 0.001 0.79
Hispanic 2.6 % -0.08 0.28 0.93
Asian 1.6 % 0.01 0.90 1.02
Caucasian 64.9 % 0 - 1

Blood type:
Blood type A 30.8 % 0.33 < 0.001 1.38
Blood type AB 3.7 % 0.71 < 0.001 2.02
Blood type B 13.8 % -0.06 0.67 0.94
Blood type O 46.7 % 0 - 1
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race, and type O for blood type. From Table 4.2, age at listing, BMI greater than

30, panel reactive antibody, and being African American have significant negative

effects on the overall probability of receiving a kidney transplant. Being in OPO 1

through OPO 4, being diagnosed with diabetes, and having blood type A or AB have

significant positive effect on the overall probability of receiving a kidney transplant.

The effects of being in OPO 5, male, being Hispanic, and having blood type B,

although negative, are not significant, while the effects of being Asian, BMI less

than 25, being diagnosed either with polycystic kidney disease, hypertension, or any

other primary renal disease diagnosis are positive but not significant.

To revisit the motivating question, compared to individuals with blood type O, those

with blood types A or AB are significantly more likely to receive a kidney transplant,

after adjusting for relevant covariates. Interestingly, those with blood type B actually

have a lower probability of receiving a transplant compared to those with type O,

though this advantage is not significant. Thus, we do have evidence that patients

with blood type O are disadvantaged in terms of kidney transplantation, relative to

types A and AB.

4.5 Discussion

In this chapter we present a method of creating censoring-complete data from right-

censored survival data by imputing potential censoring times for the subjects ob-

served to experience a competing risk. Censoring-complete data do not occur very
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frequently in biomedical data since random loss to follow-up is often present. How-

ever, by generating censoring-complete data, the subdistribution hazard models pro-

posed by Fine and Gray (1999) can be fitted without inverse weighting. The imputed

time is drawn from the conditional survival function of the censoring random vari-

able given the censoring time is greater than the observed time of the competing risk.

The cumulative baseline hazard function is estimated by interpolating the values at

which events of interest occurs, presumably more realistically reflecting the true form

than a step function.

The procedures outlined in this chapter allow for the imputation step to incorporate

the effect of the covariates. The variance is estimated by Rubin’s method (Rubin,

1987), with its application justified by obtaining parameter estimates by bootstrap-

ping the observed data. The simulation results demonstrated that the point estimator

has relatively small bias and that the variance estimator provides confidence inter-

vals with satisfactory coverage. The performance of the proposed method was found

to be consistent across various percentages of censoring and percentages of events

not-of-interest.

The imputation procedures described in this chapter consider the would-be censoring

time as missing data and impute censoring times for subjects observed to experience

a competing risk. In most cases where multiple imputation techniques are applied

to univariate survival data, event times are imputed for censored observations and

the potential event times are considered to be missing data.

The methods presented in this chapter can be thought of as a generalization of
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methods developed by Ruan and Gray (2008). A difference between the two methods

is the way in which the censoring distribution is estimated. This chapter proposes

a Cox regression model, hence allowing censoring to depend on covariates, whereas

Ruan and Gray (2008) uses the Kaplan-Meier estimator.
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CHAPTER V

Conclusion

This dissertation develops three methods for the competing risks data structure,

which arises naturally in organ transplantation as well as numerous other biomedical

settings. The patient experience while on the wait-list for kidney transplantation

provides the motivating medical application area for this dissertation, and we apply

each of the proposed methods to data from the Scientific Registry of Transplant Re-

cipients (SRTR). In this context, a patient is entered into a wait-list when he/she has

a need for a kidney transplant and is determined to be healthy enough to undergo the

transplant surgery. While on the wait-list, a patient can experience death, removal

(due to the deterioration of health), or receipt of a transplant. If either death or

removal from the wait-list occurs, then a transplant cannot occur.

This dissertation focuses on the cumulative incidence function (CIF), which has re-

ceived a fair amount of attention in survival literature in recent years. The cumulative

incidence can be thought of as the probability of a particular event occurring after

taking into account the possibility of competing events. The first two methods aim
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to compare subgroups with respect to the cumulative incidence of the event of chief

interest. The methods are designed for observational studies, in which the factor

defining subgroups is not randomized. The third method imputes censoring times,

so that unweighted methods can then be applied for parameter estimation. Large

sample properties are derived and simulation results are carried out for each of the

proposed methods.

In Chapter II, we established a method that compares group-specific CIFs. The

cause-specific hazard of each cause is modeled through Cox regression, stratified by

group. Subsequently, the CSHs are combined to provide an estimated CIF for the

cause of interest. Averaging the CIF fitted values provides an estimate of the average

cumulative incidence given the patient profile of a particular group. Analogous to

indirect standardization, the effect estimate for a particlar group captures the differ-

ence between the scenarios where patients from that group are (i) actually members

of that group, versus (ii) members of a hypothetical group that reflects the overall

average cumulative incidence.

Chapter III developed a method with a similar goal to Chapter II, but employing

direct standardization. Thus, the key comparison is between the current overall av-

erage, and what the average would be if all subjects were in fact members of the

index subgroup. Estimators of group effects on cumulative incidence are nonpara-

metric and based on a weighted version of the counting process for the event of

interest. In particular, Inverse Probability of Censoring Weighting (IPCW) is em-

ployed due to the presence of right censoring, while Inverse Probability of Treatment
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Weighting (IPTW) is used to account for differences in covariate distributions across

groups.

In Chapter IV, we developed a multiple imputation approach to analyzing competing

risks data, through which factors affecting cumulative incidence of the cause of inter-

est can be identified. A censoring-complete dataset is created by imputing censoring

times for subjects who were observed to experience a competing event. The Cox

proportional hazards model is then used to estimate the censoring distribution that

provides the potential censoring times. Methods developed for the subdistribution

hazard can be applied, with a specific example being the proportional subdistribution

hazard model developed by Fine and Gray (1999).

Chapters II and III propose approaches to estimate group effects. There are not many

existing methods that compare covariate-adjusted group-specific CIFs, and the meth-

ods in these two chapters make a contribution in such settings with direct and indirect

standardization. In Chapter IV, we have developed a covariate-adjusted computa-

tional technique for competing risks data that may be preferable to other methods

involving inverse weighting. The inverse weighting procedures are computationally

intensive and the weight changes as a function of time for each individual.

In Chapters II and III, we have used the bootstrap method to estimate the vari-

ability of the point estimators. Another option would be to program the respective

theoretical variances. Since this would be very computationally intensive, it may be

possible to ignore some terms that can be empirically demonstrated to be negligi-

ble. For example, the terms associated with the variability of the IPTW and IPCW
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in Chapter III may be relatively minor compared to the variability of the counting

process elements. Additionally, in Chapter IV, it would be desirable to devise a

technique to sample from the joint distribution of β̂ and Λ̂C
0 in the imputation step.

This may save computation time compared to the currently proposed bootstrap (the

latter being infinite dimensional).

We used the Cox proportional hazards model to model the cause-specific hazards

in Chapter II, and to model the censoring distribution in Chapters III and IV. The

Cox model was chosen due to its flexibility and widespread popularity. However, it

is possible that the covariates act additively, as opposed to multiplicatively, in which

case the additive hazards models of
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APPENDIX A

Proof of Theorem 2.1

To begin, we review the essential notation. The models assumed for the cause-

specific hazard are given by λijk(t) = λ0jk exp{βT
kZi} and the risk-set and counting

process-related quantities are as follows:
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Yi(t) = I(Xi ≥ t)

Yij(t) = Yi(t) · I(Ai = j)

∆i = kI(Ti < Ci)

∆ik = I(∆i = k)

Nik(t) = I(Xi ≤ t)∆ik

Nijk(t) = Nik(t)I(Ai = j)

R
(d)
jk (t; βk) = 1

n

n∑
i=1

Yij(t)Z⊗di exp(βT
kZi)

r
(d)
jk (t; βk) = E

[
Yij(t)Z⊗di exp(βT

kZi)
]

Z̄jk(t; βk) =
R

(1)
jk (t; βk)

R
(0)
jk (t; βk)

z̄jk(t; βk) =
r

(1)
jk (t; βk)
r

(0)
jk (t; βk)

dMijk(t) = dNijk(t)− Yij(t)dΛ#
ijk(t).

The processesMijk(t; β1), k = 1, 2 are martingales with respect to the filtration

Fij(t) = σ {Yij(s),Zi; s ∈ (0, t]} .

The proof of Theorem 2.1 revolves around asymptotic expansions of the following

quantities.

1. n 1
2 (β̂k − βk)
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2. n 1
2
{

Λ̂#
0jk(t)− Λ#

0jk(t)
}

3. n 1
2
{

Λ̂#
ijk(t)− Λ#

ijk(t)
}

4. n 1
2
{
Ŝij(t)− Sij(t)

}

5. n 1
2
{
F̂ijk(t)− Fijk(t)

}

6. n 1
2
{
δ̂jk(t)− δjk(t)

}

For the remainder of the proof, we assume k is the cause of interest.

[1.] n 1
2 (β̂k − βk)

By a Taylor expansion of Uk(β) around βk,

Uk(β̂k)− Uk(βk) = ∂

∂βT
k

[Uk(β)]βk
(β̂k − βk)

n
1
2 (β̂k − βk) = I−1

k (βk)n−
1
2Uk(βk)

= I−1
k (βk)n−

1
2

n∑
i=1

Uik(βk) + op(1),

where

Uik(βk) =
J∑
j=1

τ∫
0

{Zi − z̄j(t; βk)} dMijk(t)
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and

Ik(βk) = E

 J∑
j=1

τ∫
0

r
(2)
j (t; βk)
r

(0)
j (t; βk)

− z̄j(t; βk)⊗2

 dNijk(t)
 .

The result follows from standard Martingale theory; e.g., as described in Fleming

and Harrington (1991).

[2.] n 1
2
{

Λ̂#
0jk(t)− Λ#

0jk(t)
}

We decompose the quantity as follows,

n
1
2
{

Λ̂#
0jk(t)− Λ#

0jk(t)
}

= n
1
2
{

Λ̂#
0jk(t; β̂k)− Λ#

0jk(t; βk)
}

= n
1
2
{

Λ̂#
0jk(t; β̂k)− Λ̂#

0jk(t; βk)
}

(A.1)

+n 1
2
{

Λ̂#
0jk(t; βk)− Λ#

0jk(t; βk)
}
. (A.2)

Since Λ̂#
0jk(t) is the Breslow-Aalen analog of Λ#

0jk(t), we adapt results derived for

the Breslow-Aalen estimator (Fleming and Harrington, 1991). From this perspec-

tive,

(A.1) = n
1
2 n−1

n∑
i=1

t∫
0

[
R

(0)
jk (s; β̂)−1 −R(0)

jk (s; β)−1
]
dNijk(s).

86



Taylor expanding the function Λ̂#
0jk(t; β̂k) around βk yields

Λ̂#
0jk(t; β̂k) = Λ̂#

0jk(t; βk) + ∂

∂βk

Λ̂#
0jk(t; βk)

∣∣∣∣∣
βk

(β̂k − βk)

n
1
2
[
Λ̂#

0jk(t; β̂k)− Λ̂#
0jk(t; βk)

]
= ∂

∂βk

Λ̂#
0jk(t; βk)

∣∣∣∣∣
βk

n
1
2 (β̂k − βk) + op(1). (A.3)

The required derivative is as follows:

∂

∂βk

Λ̂#
0jk(t; βk)

∣∣∣∣∣
βk

= 1
n

n∑
i=1

t∫
0

∂

∂βk

R
(0)
jk (s; βk)−1dNijk(s)

= − 1
n

n∑
i=1

t∫
0

R
(0)
jk (s; βk)−2 R

(1)
jk (s; βk) dNijk(s)

= − 1
n

n∑
i=1

t∫
0

R
(1)
jk (s; βk)

R
(0)
jk (s; βk)

R
(0)
jk (s; βk)−1 dNijk(s)

= −
t∫

0

R
(1)
jk (s; βk)

R
(0)
jk (s; βk)

1
n

n∑
i=1

dNijk(s)
R

(0)
jk (s; βk)

= −
t∫

0

Z̄j(s; βk)dΛ̂0jk(t; βk)

≡ ĥjk(t; βk).

The vector Z̄j(s; βk)
p−→ z̄j(s; βk) by repeated applications of the Continuous Map-

ping Theorem (CMT). In addition, Λ̂#
0jk(t; βk)

p−→ Λ#
0jk(t; βk) due to established

properties of the Breslow-Aalen estimator (e.g., Andersen and Gill, 1982). Thus, by

the CMT and continuity:

ĥjk(t; βk)
p−→ hjk(t; βk),
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where hjk(t; βk) = −
∫ t
0 z̄j(s; βk) · dΛ0jk(t; βk). For the second term on the RHS of

(A.3) we exploit Result [1] such that,

(A.1) = ĥTjk(t; βk)Ik(βk)−1n−
1
2

n∑
i=1

Uik(βk) + op(1)

= hTjk(t; βk)Ik(βk)−1n−
1
2

n∑
i=1

Uik(βk) + op(1),

where the last equality holds by Slutsky’s Theorem. With respect to (A.2), we can

write

(A.2) = n
1
2
{

Λ̂#
0jk(t; βk)− Λ#

0jk(t; βk)
}

= n
1
2

 1
n

n∑
i=1

t∫
0

R
(0)
jk (s; βk)−1dNijk(s)−

1
n

n∑
i=1

t∫
0

R
(0)
jk (s; βk)

R
(0)
jk (s; βk)

dΛ#
0jk(s; βk)


= n−

1
2

n∑
i=1


t∫

0

R
(0)
jk (s; βk)−1dNijk(s)×

−
t∫

0

R
(0)
jk (s; βk)−1Yij(s) exp(βT

kZi)dΛ#
0jk(s; βk)


= n−

1
2

n∑
i=1


t∫

0

R
(0)
jk (s; βk)−1dMijk(s; βk)


= n−

1
2

n∑
i=1

t∫
0

r
(0)
jk (s; βk)−1dMijk(s; βk) + op(1),

where the last equality holds because R(0)
jk (t) p−→ r

(0)
jk (t). Putting (A.1) and (A.2)

together, we get:

n
1
2
{

Λ̂#
0jk(t)− Λ#

0jk(t)
}

= n−
1
2

n∑
i=1

Φijk(t; βk) + op(1),
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where Φijk(t; βk) = −hTjk(t; βk)Ik(βk)−1Uik(βk) +
t∫

0

r
(0)
jk (s; βk)−1dMijk(s; βk).

[3.] n 1
2
{

Λ̂#
ijk(t)− Λ#

ijk(t)
}

We can write the following,

[3] = n
1
2


t∫

0

Yij(s) exp(β̂T

kZi)dΛ̂#
0jk(s; β̂k)

−
t∫

0

Yij(s) exp(βT
kZi)dΛ̂#

0jk(s; β̂k)

 (A.4)

+n 1
2


t∫

0

Yij(s) exp(βT
kZi)dΛ̂#

0jk(s; β̂k)

−
t∫

0

Yij(s) exp(βT
kZi)dΛ#

0jk(s; βk)

 . (A.5)

We can express the first term as follows,

(A.4) = n
1
2

t∫
0

{
exp(β̂T

kZi)− exp(βT
kZi)

}
Yij(s)dΛ̂#

0jk(s; β̂k).

Doing a Taylor expansion on the function exp(β̂T

kZi) around the value βk,

exp(β̂T

kZi) = exp(βT
kZi) + Zi exp(βT

kZi)
[
β̂k − βk

]
+ op(1).
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Then, using Result [1],

n
1
2

{
exp(β̂T

kZi)− exp(βT
kZi)

}
= ZT

i exp(βT
kZi)Ik(βk)−1n−

1
2

n∑
i=1

Uik(βk) + op(1).

We can then write

(A.4) =
t∫

0

ZT
i exp(βT

kZi)Ik(βk)−1n−
1
2

n∑
l=1

Ulk(βk)Yij(s)dΛ̂#
0jk(s; β̂k)

=
t∫

0

Yij(s)ZT
i dΛ̂#

ijk(s; β̂k)Ik(βk)−1n−
1
2

n∑
l=1

Ulk(βk)

=
t∫

0

ZT
i Yij(s)dΛ#

ijk(s; βk)Ik(βk)−1n−
1
2

n∑
l=1

Ulk(βk) + op(1),

where the last equality holds by the convergence in probability of Λ̂#
ijk(t) to Λ#

ijk(t).

We re-express (A.5) as

(A.5) = n
1
2

t∫
0

Yij(s) exp(βT
kZi)

{
dΛ̂#

0jk(s; β̂k)− dΛ#
0jk(s; βk)

}

= n
1
2

t∫
0

Yij(s) exp(βT
kZi)d

{
Λ̂#

0jk(s; β̂k)− Λ#
0jk(s; βk)

}

=
t∫

0

Yij(s) exp(βT
kZi)

{
n−

1
2

n∑
l=1

dΦljk(t; βk)
}

+ op(1),

where the last line involves use of Result [2], and we define

dΦijk(t; βk) = [−z̄j(s; βk)dΛ0jk(s; βk)]
T Ik(βk)−1Uik(βk) + r

(0)
jk (s; βk)−1dMijk(s; βk).
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Combining (A.4) and (A.5), we get:

[3] =
t∫

0

ZiYij(s)dΛ#
ijk(s; βk)Ik(βk)−1n−

1
2

n∑
l=1

Ulk(βk)

+
t∫

0

Yij(s) exp(βT
kZi)n−

1
2

{
n∑
l=1

dΦljk(s; βk)
}

+ op(1)

=
t∫

0

ZiYij(s)dΛ#
ijk(s; βk)Ik(βk)−1n−

1
2

n∑
l=1

Ulk(βk)

+
t∫

0

Yij(s) exp(βT
kZi)n−

1
2

−
n∑
l=1

{
z̄j(s; βk)dΛ0jk(s; βk) In(βk)−1Uik(βk)

+r(0)
jk (s; βk)−1dMljk(s; βk)

}
=

t∫
0

ZiYij(s)dΛ#
ijk(s; βk)Ik(βk)−1n−

1
2

n∑
l=1

Ulk(βk)

−n−
1
2

t∫
0

dΛ#
ijk(s; βk)z̄j(s; βk)

n∑
l=1
Ik(βk)−1Ulk(βk)

+n− 1
2

t∫
0

Yij(s) exp(βT
kZi)

{
n∑
l=1

r
(0)
jk (s; βk)−1dMljk(s; βk)

}

=
t∫

0

{Zi − z̄j(s; βk)}
T dΛ#

ijk(s; βk)Ik(βk)−1n−
1
2

n∑
l=1

Ulk(βk)

+n− 1
2

n∑
l=1

t∫
0

Yij(s) exp(βT
kZi)r(0)

jk (s; βk)−1dMljk(s; βk)

= DT
ijk(t; βk)Ik(βk)−1n−

1
2

n∑
l=1

Ulk(βk) + n−
1
2

n∑
l=1

Jiljk(t; βk),
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where we let

Dijk(t; βk) =
t∫

0

{Zi − z̄j(s; βk)} dΛ#
ijk(s; βk)

Jiljk(t; βk) =
t∫

0

Yij(s) · exp(βT
kZi)r(0)

jk (s; βk)−1dMljk(s; βk).

[4.] n 1
2
{
Ŝij(t)− Sij(t)

}
We decompose [4] as follows,

[4] = −
K∑
m=1

Sij(t)n−1/2
{

Λ̂#
ijm(t)− Λ#

ijm(t)
}
,

due to the Functional Delta Method, combined with the convergence, e−Λ̂#
ijm(s;β̂m) p−→

e−Λ#
ijm(s;βm), by the CMT. Using Result [3], we obtain

[4] = −Sij(t)
K∑
m=1

{
DT
ijm(t; βm)Im(βm)−1n−

1
2

n∑
l=1

Ulm(βm) + n−
1
2

n∑
l=1

Jiljm(t; βm)
}
.

[5.] n 1
2
{
F̂ijk(t)− Fijk(t)

}
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We can write

[5] = n
1
2


t∫

0

Ŝij(s; β̂)dΛ̂#
ijk(s; β̂k)−

t∫
0

Sij(s; β)dΛ#
ijk(s; βk)


= n

1
2


t∫

0

Ŝij(s; β̂)dΛ̂#
ijk(s; β̂k)−

t∫
0

Sij(s; β)dΛ̂#
ijk(s; β̂k)

 (A.6)

+ n
1
2


t∫

0

Sij(s; β)dΛ̂#
ijk(s; β̂k)−

t∫
0

Sij(s; β)dΛ#
ijk(s; βk)

 , (A.7)

where βT = [βT
1 , . . . ,β

T
K ]. Note that equation (A.6) will eventually give rise to

φ1
iljk(t,β), φ2

iljk(t,β) as defined in Theorem 2.1, while (A.7) will give rise to φ3
iljk(t,β)

and φ4
iljk(t,β). We can write (A.6) as

(A.6) =
t∫

0

n
1
2
[
Ŝij(s; β̂)− Sij(s; β)

]
dΛ̂#

ijk(s; β̂k)

= −
K∑
m=1

t∫
0

Sij(s)DT
ijm(s; βm)dΛ̂#

ijk(s; β̂k)×

Im(βm)−1n−
1
2

n∑
l=1

Ulm(βm) (A.8)

−n−
1
2

K∑
m=1

t∫
0

Sij(s)
n∑
l=1

Jiljm(s; βm)dΛ̂#
ijk(s; β̂k), (A.9)

where we have used Result [4]. Focusing on (A.8), we have,

(A.8) = −
K∑
m=1

t∫
0

DT
ijm(s; βm)dFijk(s) Im(βm)−1n−

1
2

n∑
l=1

Ulm(βm) + op(1),

by the fact that Λ̂#
ijk(s; βk)

p−→ Λ#
ijk(s; βk), and β̂k

p−→ βk and so, by the CMT,
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Λ̂#
ijk(s; β̂k)

p−→ Λ#
ijk(s; βk). Therefore, from (A.8), define

φ1
iljk(t,β) = −

K∑
m=1

t∫
0

DT
ijm(s; βm)dFijk(s) Im(βm)−1Ulm(β1) + op(1)

= −
K∑
m=1

t∫
0

{Zi − z̄j(u; βk)}
T dFijk(s)Im(βm)−1Ulm(βm)

= −
K∑
m=1

t∫
0

{Zi − z̄j(u; βk)}
T {Fijk(t)− Fijk(u)} Im(βm)−1Ulm(βm)

=
K∑
m=1


t∫

0

{Zi − z̄j(u; βk)}
T Fijk(u)

−Fijk(t)
t∫

0

{Zi − z̄j(u; βk)}
T dΛ#

ijk(u; βk)

 Im(βm)−1Ulm(βm).
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(A.9) = −
K∑
m=1

n−
1
2

n∑
l=1

t∫
0

e−
∑2

k=1 Λijk(s;βk)Jiljm(s; βm)dΛ̂#
ijk(s; β̂k)

= −
K∑
m=1

n−
1
2

n∑
l=1

t∫
0

e−
∑2

k=1 Λijk(s;βk)


s∫

0

Yij(u) exp(βT
mZi)r(0)

jk (u; βm)−1dMljm(u; βm)


dΛ̂#

ijk(s; β̂k) + op(1) (A.10)

= −
K∑
m=1

n−
1
2

n∑
l=1

t∫
0


t∫
u

e−
∑2

k=1 Λijk(s;βk)dΛ̂#
ijk(s; β̂k)

×
Yij(u) exp(βT

mZi)r(0)
jk (u; βm)−1dMljm(u; βm)

= −
K∑
m=1

n−
1
2

n∑
l=1

t∫
0

{Fijk(t)− Fijk(u)} Yij(u) exp(βT
mZi)r(0)

jk (u; βm)−1dMljm(u; βm)

= −
K∑
m=1

n−
1
2

n∑
l=1

 Fijk(t)
t∫

0

Yij(u) exp(βT
mZi)r(0)

jk (u; βm)−1dMljm(u; βm)

−
t∫

0

Fijk(u)Yij(u) exp(βT
mZi)r(0)

jk (u; βm)−1dMljm(u; βm)

 ,

where (A.10) holds by the properties of Λ̂#
ijk(s; βk) and β̂k. Thus, from (A.9) de-

fine:

φ2
iljk(t,β1) = −

K∑
m=1

t∫
0

{Fijk(t)− Fijk(u)} Yij(u) exp(βT
mZi)r(0)

jk (u; βm)−1dMljm(u; βm).
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Now shifting to (A.7):

(A.7) = n
1
2

t∫
0

Sij(s; β)
{
dΛ̂#

ijk(s; β̂k)− dΛ#
ijk(s; βk)

}

=
t∫

0

Sij(s; β) d
[
n

1
2
{

Λ̂#
ijk(s; β̂k)− Λ#

ijk(s; βk)
}] t∫

0

Sij(s; β)
[
Ik(βk)−1n−

1
2

n∑
l=1

Ulk(βk)dDT
ijk(s; βk)

+ n−
1
2

n∑
l=1

dJiljk(s; βk)
]

(A.11)

=


t∫

0

Sij(s; β)dDT
ijk(s; βk)

 Ik(βk)−1n−
1
2

n∑
l=1

Ulk(βk) (A.12)

+n− 1
2

t∫
0

Sij(s; β)
n∑
l=1

dJiljk(s; βk). (A.13)

For equation (A.11) we have used Result [3]. We can then write

(A.12) =


t∫

0

Sij(s; β) [Zi − z̄j(s; βk)]
T dΛ#

ijk(s; βk)

 Ik(βk)−1n−
1
2

n∑
l=1

Ulk(βk).

Corresponding to (A.12), we define:

φ3
iljk(t,β) =


t∫

0

Sij(s; β) [Zi − z̄j(s; βk)]
T dΛ#

ijk(s; βk)

 Ik(βk)−1Ulk(βk).

We can re-express (A.13) as follows,

(A.13) = n−
1
2

n∑
l=1

t∫
0

Sij(s; β)Yij(s) exp(βT
kZi)r(0)

jk (s; βk)−1dMljk(s; βk),
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and, correspondingly redefine

φ4
iljk(t,β) =

t∫
0

Sij(s; β1)Yij(s) exp(βT
kZi)r(0)

jk (s; βk)−1dMljk(s; βk).

Combining results derived in this subsection, we obtain,

n
1
2
{
F̂ijk(t)− Fijk(t)

}
= n−

1
2

n∑
l=1

{ 4∑
d=1

φdiljk(t,β)
}

+ op(1),

where the ∑4
d=1 φ

d
iljk(t,β) are asymptotically independent and identically distributed

variates with mean 0.

[6.] n 1
2
{
δ̂jk(t)− δjk(t)

}

We now complete the proof by averaging over i = 1, . . . , n to obtain the limiting

distribution of the proposed estimator. Setting nj = ∑n
i=1Aij and pj = E[Aij], we
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have

[6] = n
1
2

[
1
nj

n∑
i=1

AijF̂ijk(t)−
1
nj

n∑
i=1

Aij

{
1
n

J∑
r=1

F̂irk(t)nr
}

−
{

1
nj

n∑
i=1

AijFijk(t)−
1
nj

n∑
i=1

Aij

[
1
n

J∑
r=1

Firk(t)nr
] } ]

= 1
nj

n∑
i=1

Aij
[
n

1
2
{
F̂ijk(t)− Fijk(t)

}]

− 1
nj

n∑
i=1

Aij

{
1
n

J∑
r=1

n
1
2
[
F̂irk(t)− Firk(t)

]
nr

}

= 1
nj

n∑
i=1

Aij

[
n−

1
2

n∑
l=1

{ 4∑
d=1

φdiljk(t,β)
}]

− 1
nj

n∑
i=1

Aij

{
n−

1
2

n∑
l=1

[
1
n

J∑
r=1

{ 4∑
d=1

φdilrk(t,β)
}
nr

]}

= 1
nj

n∑
i=1

Aij

{
n−

1
2

n∑
l=1

[ 4∑
d=1

φdiljk(t,β)− 1
n

J∑
r=1

{ 4∑
d=1

φdilrk(t,β)
}
nr

]}

= n−
1
2

n∑
l=1

{
1
nj

n∑
i=1

Aij

[ 4∑
d=1

φdiljk(t,β)− 1
n

J∑
r=1

{ 4∑
d=1

φdilrk(t,β)
}
nr

]}

= n−
1
2

n∑
l=1

{ 4∑
d=1

[
1
nj

n∑
i=1

Aijφ
d
iljk(t,β)

− 1
nj

n∑
i=1

Aij
1
n

J∑
r=1

φdilrk(t,β)nr
]}

. (A.14)

Focusing on each component in (A.14), we have the following for the expression
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involving φ1
iljk(t; β),

1
nj

n∑
i=1

Aijφ
1
iljk(t; β)

= − 1
pj
E

 K∑
m=1

Aij

t∫
0

DT
ijm(s; βm)dFijk(s; βk)

 Im(βm)−1Ulm(βm)

= φ1
ljk(t; β),

since nj/n
p−→ pj by the Weak Law of Large Numbers (WLLN), continuity, and

Slutsky’s Theorem. The simplification for the term involving φ3
iljk(t; β) unfold in a

similar way. The term involving φ2
iljk(t; β) can be written as the following:

1
nj

n∑
i=1

Aijφ
2
iljk(t; β)

= −
K∑
m=1

t∫
0

[
1
pj

1
n

n∑
i=1

Aij {Fijk(t)− Fijk(u)}Yij(u) exp(βT
mZi)r(0)

jk (u; βm)−1
]
dMljm(u; βm)

= −
K∑
m=1

t∫
0

1
pj
E
[
{Fijk(t)− Fijk(u)}Yij(u) exp(βT

mZi)r(0)
jk (u; βm)−1

]
dMljm(u; βm)

= φ2
ljk(t; β),

by the WLLN, continuity, and Slutsky’s Theorem. The term involving φ4
iljk(t; β)

unfold in a similar way. The term involving φ1
ilrk(t; β) can be written as the follow-
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ing:

1
nj

n∑
i=1

K∑
m=1

Aij

{
1
n

J∑
r=1

φ1
ilrk(t; β)nr

}

= − 1
pj

J∑
r=1

prE

 K∑
m=1

Aij

t∫
0

DT
irm(s; βm)dFirk(s; βk)

 Im(βm)−1Ulm(βm)

= φ1
lk(t; β).

The term involving φ3
ilrk(t; β) can be expressed in a similar way. The term involving

φ2
ilrk(t; β) can be written as,

1
nj

n∑
i=1

K∑
m=1

Aij

{
1
n

J∑
r=1

φ3
ilrk(t; β) · nr

}

=
K∑
m=1

t∫
0

J∑
r=1

1
pj
prE

[
Aij {Firk(t)− Firk(u)}Yir(u) · exp(βT

mZi)r(0)
rk (u; βm)−1

]
dMlrm(u; βm)

= φ2
lk(t; β).

The term involving φ4
ilrk(t; β) can be expressed analogously. Therefore, we can

write

[6] = n−
1
2

n∑
l=1

{ 4∑
d=1

(
φdljk(t; β) + φdlk(t; β)

)}
. (A.15)

All summands across l have mean 0 since the φ’s have mean 0. If we apply the

Functional Central Limit Theorem to [6], where each component is independent
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across l, we have

V ar
(
n

1
2
{
δ̂jk(t)− δjk(t)

})
= E

{ 4∑
d=1

(
φdljk(t; β)− φdlk(t; β)

)}2 , (A.16)

with the corresponding estimator given by

V̂ ar
(
n

1
2
{
δ̂jk(t)− δjk(t)

})
= 1
n

n∑
l=1

{ 4∑
d=1

(
φ̂dljk(t; β)− φ̂dlk(t; β)

)}2

. (A.17)
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APPENDIX B

Analysis of SRTR data utilizing J = 58 OPOs for

Chapter III
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Figure B.1: Analysis of SRTR data: Boxplot of δ̂j1(t) for t = 1, t = 3, and t = 5
years. Whiskers represent minimum and maximum.
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Estimated Effects at 5 Years
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Figure B.2: Analysis of SRTR data: Histogram of δ̂j1(t) at t = 5 years post wait-
listing.
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APPENDIX C

Proof of Theorem 3.1

Recall that the effect of group j on the cumulative incidence for cause k is given

by

δjk(t) = Fjk(t)− Fk(t),

where Fjk(t) = EZ [Fijk(t)] and Fk(t) = EZ [EA [FiAk(t)]]. We estimate δjk through

δ̂jk(t; Λ̂C
0 , α̂, θ̂) = 1

n

n∑
i=1

Aij

pij(θ̂)

t∫
0

dNik(s)
Ĝij(s; α̂)

− 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

dNik(s)
Ĝim(s; α̂)

= F̂jk(t; Λ̂C
0 , α̂, θ̂)− F̂k(t; Λ̂C

0 , α̂).

In order to prove Theorem 3.1, we derive the influence function for δ̂jk(t; Λ̂C
0 , α̂, θ̂)
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through Taylor series expansions of the following quantity,

n
1
2
{
δ̂jk(t; Λ̂C

0 , α̂, θ̂)− δjk(t)
}

(C.1)

= n
1
2
{
F̂jk(t; Λ̂C

0 , α̂, θ̂)− Fjk(t) (C.2)

−
[
F̂k(t; Λ̂C

0 , α̂)− Fk(t)
]}
. (C.3)

We will focus on the first and second terms separately, with the first term expressed

more explicitly by

(C.2) = n
1
2
{
F̂jk(t; Λ̂C

0 , α̂, θ̂)− Fjk(t)
}

(C.4)

= n
1
2

 1
n

n∑
i=1

Aij

pij(θ̂)

t∫
0

dNik(s)
Ĝij(s; α̂)

− EZ [Fijk(t)]

 ,
and the second term by

(C.3) = n
1
2
{
F̂k(t; Λ̂C

0 , α̂),−Fk(t)
}

(C.5)

= n
1
2

 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

dNik(s)
Ĝim(s; α̂)

− EZ [EA [FiAk(t)]}

 .
Recall that, based on the assumed generalized logit model (multinomial logistic re-

gression), with center J as the reference, we have

pij(θ) = exp(ZT
i θj)

1 +∑J−1
m=1 exp(ZT

i θm)

piJ(θ) = 1
1 +∑J−1

m=1 exp(ZT
i θm)

,
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for j = 1, . . . , J − 1 and where we define

Zi =



Zi1

Zi2
...

Zip


,θj =



θ1j

θ2j

...

θpj


,θ =



θ1

θ2

...

θJ−1


.

Under the assumption that Ci follows a proportional hazards model stratified on

center, we can write

Gij(t) ≡ P (Ci > t|Ai = j,Zi) = exp(−ΛC
ij(t)) = exp(−ΛC

0j(t) exp(ZT
i α)).

In linearizing (C.1), we derive iid expansions for the following quantities:

1. n 1
2 (θ̂ − θ)

2. n 1
2
{
p−1
ij (θ̂)− p−1

ij (θ)
}

3. n 1
2 {α̂−α}

4. n 1
2
{

Λ̂C
0j(t; α̂)− ΛC

0j(t)
}

5. n 1
2
{

Λ̂C
ij(t; α̂)− ΛC

ij(t)
}

6. n 1
2
{
Ĝ−1
ij (t; α̂)−G−1

ij (t)
}

7. n 1
2
{
F̂jk(t; Λ̂C

0 , α̂, θ̂)− F̂jk(t; Λ̂C
0 , α̂,θ)

}
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8. n 1
2
{
F̂jk(t; Λ̂C

0 , α̂,θ))− F̂jk(t; ΛC
0 ,α,θ))

}

9. n 1
2
{
F̂jk(t; ΛC

0 ,α,θ)− Fjk(t)
}

10. n 1
2
{
F̂k(t; Λ̂C

0 , α̂)− F̂k(t; ΛC
0 ,α)

}

11. n 1
2
{
F̂k(t; ΛC

0 ,α)− Fk(t)
}

12. n 1
2
{
δ̂jk(t)− δjk(t)

}

We can write (C.2) as

(C.2) = n
1
2
{
F̂jk(t; Λ̂C

0 , α̂, θ̂)− F̂jk(t; Λ̂C
0 , α̂,θ)

}
(C.6)

+n 1
2
{
F̂jk(t; Λ̂C

0 , α̂,θ)− F̂jk(t; ΛC
0 ,α,θ)

}
(C.7)

+n 1
2
{
F̂jk(t; ΛC

0 ,α,θ)− Fjk(t)
}
, (C.8)

while (C.3) can be expressed as

(C.3) = n
1
2
{
F̂k(t; Λ̂C

0 , α̂)− F̂k(t; ΛC
0 ,α)

}
(C.9)

+n 1
2
{
F̂k(t; ΛC

0 ,α)− Fk(t)
}
. (C.10)

[1.] n 1
2 (θ̂ − θ)

By a Taylor expansion,

[1] = IIPTW (θ)−1n−
1
2

n∑
i=1

U IPTW
i (θ) + op(1), (C.11)
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which can be derived by first considering the likelihood and log-likelihood contribu-

tions,

Li(θ) =
J∏
j=1

p
Aij

ij (θ)

li(θ) =
J∑
j=1

Aij log pij(θ)

=
J−1∑
j=1

Aij log
[

exp(ZT
i θj)

1 +∑J−1
m=1 exp(ZT

i θm)

]
+ AiJ log

[
1

1 +∑J−1
m=1 exp(ZT

i θm)

]

=
J−1∑
j=1

AijZT
i θj

− log
(

1 +
J−1∑
m=1

exp(ZT
i θm)

)
.

The score function contribution for subject i is then given by

U IPTW
i (θ) = ∂li(θ)

∂θ
=



∂li(θ)
∂θ1

∂li(θ)
∂θ2

...
∂li(θ)
∂θJ−1


=



Ui1(θ)

Ui2(θ)
...

Ui,J−1(θ)



for j = 1, . . . , J − 1, with

Uij(θ) = ∂li(θ)
∂θl

= Zi (Aij − pij(θ)) .
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The information matrix is given by

IIPTW (θ) = −E
[
∂2li(θ)
∂θ∂θT

]

= −E



I11(θ) I12(θ) · · · I1,J−1(θ)

I12(θ) I22(θ)
... . . .

I1,J−1(θ) IJ−1,J−1(θ)


,

where for j = 1, 2, ..., J − 1 and l = 1, 2, ..., J − 1 and j 6= l:

Ill(θ) = − ∂li(θ)
∂θl∂θTl

= Z⊗2
i

 exp(ZT
i θl)

1 +∑J−1
m=1 exp(ZT

i θm)
− exp(2ZT

i θl)(
1 +∑J−1

m=1 exp(ZT
i θm)

)2


= Z⊗2

i pil(θ) {1− pil(θ)}

Ijl(θ) = − ∂li(θ)
∂θj∂θTl

= −Z⊗2
i

exp
{
ZT
i (θl + θj)

}
{

1 +∑J−1
m=1 exp(ZT

i θm)
}2

= −Z⊗2
i pil(θ)pij(θ).

[2.] n 1
2
{
wij(θ̂)− wij(θ)

}

Let the IPTW component of the weight be denoted by wij(θ) = Aij/pij(θ). By the

Delta method,

[2] = ∂

∂θ
[wij(θ)]IIPTW (θ)−1n−

1
2

n∑
i=1

U IPTW
i (θ),
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where we have

∂

∂θ
[wij(θ)] = ∂

∂θ

[
Aij
pij(θ)

]
= −Aijp−2

ij (θ) ∂
∂θ

[pij(θ)] ,

with

∂

∂θ
[pij(θ)] =



∂
∂θ1

[pij(θ)]
∂
∂θ2

[pij(θ)]
...

∂
∂θJ−1

[pij(θ)]


=



−Zipij(θ)pi1(θ)

−Zipij(θ)pi2(θ)
...

Zipij(θ)(1− pij(θ))
...

−Zipij(θ)pi,J−1(θ)



≡ ∆ij(θ).

So n 1
2
{
wij(θ̂)− wij(θ)

}
can be written as

[2] = −Aijp−2
ij (θ)∆T

ij(θ)IIPTW (θ)−1n−
1
2

n∑
i=1

U IPTW
i (θ) + op(1).

[3.] n 1
2 {α̂−α}

By a Taylor expansion of UC(α) around α:

UC(α̂)− UC(α) = ∂

∂α′

[
UC(α)

]
α

(α̂−α)

n
1
2 (α̂−α) = IC(α)−1n−

1
2UC(α)

= IC(α)−1n−
1
2

n∑
i=1

UC
i (α),
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where UC
i (α) p→ ∑J

j=1
∫ τ

0 {Zi − z̄j(t; α)} dMC
ij (t) and dMC

ij (t) = dNC
ij (t)−Yij(t)dΛC

ij(t).

The information matrix is given by

IC(α) = E

 J∑
j=1

τ∫
0

s
(2)
j (t; α)
s

(0)
j (t; α)

− z̄j(t; α)⊗2

 dNC
ij (t)

 .
Properties of [3] as n → ∞ are based on standard martingale theory (e.g., as de-

scribed in Fleming and Harrington, 1991).

[4.] n 1
2
{

Λ̂C
0j(t)− ΛC

0j(t)
}

[4] = n
1
2
{

Λ̂C
0j(t; α̂)− ΛC

0j(t; α)
}

= n
1
2
{

Λ̂C
0j(t; α̂)− Λ̂C

0j(t; α)
}

(C.12)

+n 1
2
{

Λ̂C
0j(t; α)− ΛC

0j(t)
}
. (C.13)

Applying a Taylor expansion and the Continuous Mapping Theorem (CMT),

(C.12) = ĥCj (t; α)TIC(α)−1n−
1
2

n∑
i=1

UC
i (α) + op(1)

p−→ hCj (t; α)TIC(α)−1n−
1
2

n∑
i=1

UC
i (α) + op(1),

with

hCj (t; α) = −
t∫

0

z̄Cj (s; α) · dΛC
0j(t; α), (C.14)

which holds by Slutsky’s Theorem. In addition, n 1
2
{

Λ̂C
0j(t; α)− ΛC

0j(t)
}
can be writ-
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ten as

(C.13) = n−
1
2

n∑
i=1

t∫
0

s
(0)
j (s; α)−1dMC

ij (s; α) + op(1). (C.15)

Putting (C.14) and (C.15) together, we get:

n
1
2
{

Λ̂C
0j(t; α̂)− ΛC

0j(t)
}

= n−
1
2

n∑
i=1

ΦC
ij(t; α) + op(1),

where ΦC
ij(t; α) = −hCj (t; α)TIC(α)−1UC

i (α) +
t∫

0

s
(0)
j (s; α)−1dMC

ij (s; α).

[5.] n 1
2
{

Λ̂C
ij(t; α̂)− ΛC

ij(t)
}

[5] = n
1
2


t∫

0

Yij(s) exp(α̂TZi)dΛ̂C
0j(s; α̂)

−
t∫

0

Yij(s) exp(αTZi)dΛ̂C
0j(s; α̂)

 (C.16)

+n 1
2


t∫

0

Yij(s) exp(αTZi)dΛ̂C
0j(s; α̂)

−
t∫

0

Yij(s) exp(αTZi)dΛC
0j(s)

 . (C.17)
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We can express the first component as

(C.16) = n
1
2

t∫
0

Yij(s)
{

exp(α̂TZi)− exp(αTZi)
}
dΛ̂C

0j(s; α̂)

=
t∫

0

ZidΛC
ij(s; α)IC(α)−1n−

1
2

n∑
l=1

UC
l (α) + op(1), (C.18)

obtained by a Taylor expansion and Result [3]. Using Result [4], the second expres-

sion can be written as follows,

(C.17) = n
1
2


t∫

0

Yij(s) exp(αTZi)dΛ̂C
0j(s; α̂)−

t∫
0

Yij(s) exp(αTZi)dΛC
0j(s; α)


=

t∫
0

Yij(s) exp(αTZi)
{
n−

1
2

n∑
l=1

dΦC
ljk(t; α)

}
+ op(1). (C.19)

Combining (C.18) and (C.19), we get:

n
1
2
{

Λ̂C
ij(t; α̂)− ΛC

ij(t)
}

= DC
ij(t; α)TIC(α)−1n−

1
2

n∑
l=1

UC
l (α) + n−

1
2

n∑
l=1

JCilj(t; α),

where DC
ij(t; α) =

t∫
0

{
Zi − z̄Cj (s; α)

}
dΛC

ij(s; α)

and JCilj(t; α) =
t∫

0

Yij(s) exp(αTZi)s(0)
j (s; α)−1dMC

lj (s; α).

[6.] n 1
2
{
Ĝ−1
ij (t; α̂)−G−1

ij (t)
}
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We can write

[6] = n
1
2
[
exp

{
Λ̂C
ij(t; α̂)

}
− exp{ΛC

ij(t)}
]

= n
1
2 exp

{
ΛC
ij(t)

}{
Λ̂C
ij(t; α̂)− ΛC

ij(t)
}

= exp(ΛC
ij(t))

{
DC
ij(t; α)TIC(α)−1n−

1
2

n∑
l=1

UC
l (α) + n−

1
2

n∑
l=1

JCilj(t; α)
}
,

where we have used the Delta method as well as Result [5].

[7.] n 1
2
{
F̂jk(t; Λ̂C

0 , α̂, θ̂)− F̂jk(t; Λ̂C
0 , α̂,θ)

}

We carry out the following calculations,

[7] = n
1
2

 1
n

n∑
i=1

Aij

pij(θ̂)

t∫
0

dNik(s)
Ĝij(s; α̂)

− 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

dNik(s)
Ĝij(s; α̂)


= 1

n

n∑
i=1

n
1
2
{
wij(θ̂)− wij(θ)

} t∫
0

dNik(s)
Ĝij(s; α̂)

= − 1
n

n∑
i=1

{
Aijp

−2
ij (θ)Zi∆T

ij(θ)
[
IIPTW (θ)−1n−

1
2

n∑
l=1

U IPTW
l (θ)

]} t∫
0

dNik(s)
Ĝij(s; α̂)

= −

 1
n

n∑
i=1

{
Aijp

−2
ij (θ)Zi∆T

ij(θ)
} t∫

0

dNik(s)
Ĝij(s; α̂)

 [IIPTW (θ)−1n−
1
2

n∑
l=1

U IPTW
l (θ)

]
,

where we define

dTjk(t) = −E
[
Aijp

−2
ij (θ)Zi

∫ t
0
dNik(s)
Ĝij(s;α̂)∆

T
ij(θ)

]
.

After using the Weak Law of Large Numbers (WLLN), continuity, and the fact that
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Ĝij(t; α̂) p→ Gij(t), we can write

[7] = dTjk(t)IIPTW (θ)−1n−
1
2

n∑
l=1

U IPTW
l (θ).

We then let φ1
ljk(t) = dTjk(t)IIPTW (θ)−1U IPTW

l (θ), an element quoted in Theorem

3.1.

[8.] n 1
2
{
F̂jk(t; Λ̂C

0 , α̂,θ))− F̂jk(t; ΛC
0 ,α,θ))

}

We start by writing

[8] = n
1
2

 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

dNik(s)
Ĝij(s; α̂)

− 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

dNik(s)
Gij(s)


= 1

n

n∑
i=1

Aij
pij(θ)

t∫
0

n
1
2
{
Ĝ−1
ij (s; α̂)−G−1

ij (s)
}
dNik(s)

= 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

exp(ΛC
ij(s))

{
DC
ij(s; α)TIC(α)−1n−

1
2

n∑
l=1

UC
l (α) (C.20)

+n− 1
2

[
n∑
l=1

JCilj(s; α)
}]

dNik(s). (C.21)
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Now, the first line of the last equation can be decomposed as follows:

(C.20) = 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

exp(ΛC
ij(s))

{
DC
ij(s; α)TIC(α)−1n−

1
2

n∑
l=1

UC
l (α)

}
dNik(s)

= 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

exp(ΛC
ij(s))×

s∫
0

{
Zi − z̄Cj (u; α)

}T
dΛC

ij(u; α)IC(α)−1n−
1
2

n∑
l=1

UC
l (α)

 dNik(s)

= 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

exp(ΛC
ij(s))


s∫

0

{
Zi − z̄Cj (u; α)

}T
dΛC

ij(u; α)

 dNik(s)×{
IC(α)−1n−

1
2

n∑
l=1

UC
l (α)

}

p−→ E

 Aij
pij(θ)

t∫
0

exp(ΛC
ij(s))


s∫

0

{
Zi − z̄Cj (u; α)

}T
dΛC

ij(u; α)

 dNik(s)
×

IC(α)−1n−
1
2

n∑
l=1

UC
l (α)

= E

 t∫
0

{
Zi − z̄Cj (u; α)

}T
{Fijk(t)− Fijk(u)} dΛC

ij(u; α)
 IC(α)−1n−

1
2

n∑
l=1

UC
l (α).

We then define

φ2
ljk(t) = E

 t∫
0

{
Zi − z̄Cj (u; α)

}T
{Fijk(t)− Fijk(u)} dΛC

ij(u; α)
 IC(α)−1UC

l (α),

which is among the non-zero elements listed in Theorem 3.1. The second line, (C.21),
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can be written as

(C.21) = 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

exp(ΛC
ij(s))

{
n−

1
2

n∑
l=1

JCilj(s; α)
}
dNik(s)

= 1
n

n∑
i=1

Aij
pij(θ)

t∫
0

exp(ΛC
ij(s))×n− 1

2

n∑
l=1

s∫
0

Yij(u) exp(αTZi)s(0)
j (u; α)−1dMC

lj (u; α)

 dNik(s)

= n−
1
2

n∑
l=1

t∫
0

 1
n

n∑
i=1

Aij
pij(θ)

t∫
u

exp(ΛC
ij(s))dNik(s)

×
Yij(u) exp(αTZi)s(0)

j (u; α)−1dMC
lj (u; α)

p→ n−
1
2

n∑
l=1

t∫
0

E

 Aij
pij(θ)

t∫
u

exp(ΛC
ij(s))dNik(s)

×
Yij(u) exp(αTZi)s(0)

j (u; α)−1dMC
lj (u; α)

= n−
1
2

n∑
l=1

t∫
0

E [Fijk(t)− Fijk(u)]Yij(u) exp(αTZi)s(0)
j (u; α)−1dMC

lj (u; α).

In arriving at the last expression, we have switched the order of summation and order

of integration so that the outer integral is a martingale transform. Then, we used

the consistency of the estimators and replaced them with the limiting values, Fijk(t).

We then let φ3
ljk(t) =

t∫
0

E [Fijk(t)− Fijk(u)]Yij(u) exp(αTZi)s(0)
j (u; α)−1dMC

lj (u; α),

which also appears in Theorem 3.1. Combining expressions for (C.20) and (C.21)

then yields

[8] = n−
1
2
{
φ2
ljk(t) + φ3

ljk(t)
}
.
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[9.] n 1
2
{
F̂jk(t; ΛC

0 ,α,θ)− Fjk(t)
}

[9] = n
1
2

 1
n

n∑
i=1

Aij
pij(θj)

t∫
0

dNik(s)
Gij(s)

− EZ [Fijk(t)]


= n−

1
2

n∑
i=1

 Aij
pij(θ)

t∫
0

dNik(s)
Gij(s)

− Fjk(t)

 .

Let φ4
ljk(t) = Aij

pij(θ)

t∫
0

dNik(s)
Gij(s)

−Fjk(t), which has mean 0 since E
[
Aij

pij(θ)
∫ t

0
dNik(s)
Gij(s)

]
=

Fjk(t).

[10.] n 1
2
{
F̂k(t; Λ̂C

0 , α̂)− F̂k(t; ΛC
0 ,α)

}
We start by writing

[10] = n
1
2

 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

dNik(s)
Ĝim(s; α̂)

− 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

dNik(s)
Gim(s)


= 1

n

n∑
i=1

J∑
m=1

Aim

t∫
0

n
1
2
{
Ĝ−1
im(s; α̂)−G−1

im(s)
}
dNik(s)

= 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))×

{
DC
im(s; α)TIC(α)−1n−

1
2

n∑
l=1

UC
l (α) + n−

1
2

n∑
l=1

JCilm(s; α)
}
dNik(s)

= 1
n

n∑
i=1

J∑
m=1

Aim ×

t∫
0

exp(ΛC
im(s))

{
DC
im(s; α)TIC(α)−1n−

1
2

n∑
l=1

UC
l (α)

}
dNik(s) (C.22)

+ 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))

{
n−

1
2

n∑
l=1

JCilm(s; α)
}
dNik(s). (C.23)
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(C.22) can be further written as

(C.22) = 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))×


s∫

0

{
Zi − z̄Cm(u; α)

}T
dΛC

im(u; α)IC(α)−1n−
1
2

n∑
l=1

UC
l (α)

 dNik(s)

= 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))


s∫

0

{
Zi − z̄Cm(u; α)

}T
dΛC

im(u; α)

 dNik(s)×[
IC(α)−1n−

1
2

n∑
l=1

UC
l (α)

]

p−→ E

 J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))


s∫

0

{
Zi − z̄Cm(u; α)

}T
dΛC

im(u; α)

 dNik(s)
×

IC(α)−1n−
1
2

n∑
l=1

UC
l (α).

Let

φ5
lk(t) = E

 J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))


s∫

0

{
Zi − z̄Cm(u; α)

}T
dΛC

im(u; α)

 dNik(s)
 IC(α)−1UC

l (α).

120



(C.23) can be written as

(C.23) = 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))×

n− 1
2

n∑
l=1

s∫
0

Y C
im(u) exp(αTZi)s(0)

m (u; α)−1dMC
lm(u; α)

 dNik(s)

= n−
1
2

n∑
l=1

J∑
m=1

t∫
0

 1
n

n∑
i=1

Aim

t∫
u

exp(ΛC
im(s))dNik(s)

×
Y C
im(u) exp(αTZi)s(0)

m (u; α)−1dMC
lm(u; α)

p−→ n−
1
2

n∑
l=1

J∑
m=1

t∫
0

E

Aim t∫
u

exp(ΛC
im(s))dNik(s)

×
Y C
im(u) exp(αTZi)s(0)

m (u; α)−1dMC
lm(u; α).

We then define

φ6
lk(t) =

J∑
m=1

t∫
0

E

Aim t∫
u

exp(ΛC
im(s))dNik(s)

Y C
im(u) exp(αTZi)s(0)

m (u; α)−1dMC
lm(u; α),

which is quoted in Theorem 3.1. So

[10] = n−
1
2

n∑
l=1

{
φ5
lk(t) + φ6

lk(t)
}
.

[11.] n 1
2
{
F̂k(t; ΛC

0 ,α)− Fk(t)
}
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We can write, asymptotically, that

[11] = n
1
2

 1
n

n∑
i=1

J∑
m=1

Aim

t∫
0

dNik(s)
Gim(s) − EZ [EA [Fimk(t)]}


= n−

1
2

n∑
i=1


J∑

m=1
Aim

t∫
0

dNik(s)
Gim(s) − Fk(t)

 ,
which motivates us to define

φ7
lk(t) =

J∑
m=1

Alm

t∫
0

dNlk(s)
Glm(s) − Fk(t),

used in Theorem 3.1.

[12.] n 1
2
{
δ̂jk(t)− δjk(t)

}
As the culmination of Results [1] to [11], we set φljk(t) = φ1

ljk(t) + φ2
ljk(t) + φ3

ljk(t) +

φ4
ljk(t)−

{
φ5
lk(t) + φ6

lk(t) + φ7
lk(t)

}
, which yields the final step in the proof of Theorem

3.1,

n
1
2
{
δ̂jk(t)− δjk(t)

}
= n−

1
2

n∑
l=1

φljk(t),
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where we have defined

φ1
ljk(t) = dTjk(t)IIPTW (θ)−1U IPTW

l (θ)

φ2
ljk(t) = E

 t∫
0

{
Zi − z̄Cj (u; α)

}T
{Fijk(t)− Fijk(u)} dΛC

ij(u; α)
 IC(α)−1n−

1
2

n∑
l=1

UC
l (α)

φ3
ljk(t) =

t∫
0

E [Fjk(t)− Fjk(u)]Yij(u) · exp(αTZi)s(0)
j (u; α)−1dMC

lj (u; α)

φ4
ljk(t) = Alj

plj(θ)

t∫
0

dNlk(s)
Glj(s)

− Fjk(t)

φ5
lk(t) = E

 J∑
m=1

Aim

t∫
0

exp(ΛC
im(s))


s∫

0

{
Zi − z̄Cm(u; α)

}T
dΛC

im(u; α)

 dNik(s)
×

IC(α)−1UC
l (α)

φ6
lk(t) =

J∑
m=1

t∫
0

E

Aim t∫
u

exp(ΛC
im(s))dNik(s)

Yim(u) · exp(αTZi)s(0)
m (u; α)−1dMC

lm(u; α)

φ7
lk(t) =

 J∑
m=1

Alm

t∫
0

dNlk(s)
Glm(s)

− Fk(t).
Therefore, we obtain

V ar
(
n

1
2
{
δ̂jk(t; Ĝil(t; α̂), θ̂)− δjk(t)

})
= E

[
{φljk(t)}2

]
,

with corresponding estimator

V̂ ar
(
n

1
2
{
δ̂jk(t; Ĝil(t; α̂), θ̂)− δjk(t)

})
= n−1

n∑
l=1

{
φ̂ljk(t)

}2
,
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such that

V̂ ar
{
δ̂jk(t; Ĝil(t; α̂), θ̂)

}
= n−2

n∑
l=1

{
φ̂ljk(t)

}2
.

Thus, the proposed variance estimators are:

φ̂1
ljk(t) = d̂Tjk(t)IIPTW (θ̂)−1U IPTW

l (θ̂)

φ̂2
ljk(t) = 1

n

n∑
i=1

 t∫
0

{
Zi − z̄Cj (u; α̂)

}T {
F̂ijk(t)− F̂ijk(u)

}
dΛ̂C

ij(u; α̂)
×

IC(α̂)−1n−
1
2

n∑
l=1

UC
l (α̂)

φ̂3
ljk(t) =

t∫
0

1
n

n∑
i=1

[
F̂ijk(t)− F̂ijk(u)

]
Yij(u) exp(α̂TZi)ŝ(0)

j (u; α̂)−1dM̂C
lj (u; α̂)

φ̂4
ljk(t) = Alj

plj(θ̂)

t∫
0

dNlk(s)
Ĝlj(s; α̂)

− F̂jk(t)

φ̂5
lk(t) = 1

n

n∑
i=1

 J∑
m=1

Aim

t∫
0

exp(Λ̂C
im(s; α̂))


s∫

0

{
Zi − z̄Cm(u; α̂)

}T
dΛ̂C

im(u; α̂)

 dNik(s)
×

IC(α̂)−1UC
l (α̂)

φ̂6
lk(t) =

J∑
m=1

t∫
0

1
n

n∑
i=1

Aim t∫
u

exp(Λ̂C
im(s; α̂))dNik(s)

×
Yim(u)× exp(α̂TZi)s(0)

m (u; α̂)−1dMC
lm(u; α̂)

φ̂7
lk(t) =

 J∑
m=1

Alm

t∫
0

dNlk(s)
Ĝlm(s; α̂)

− F̂k(t),
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where

F̂jk(t) = ÊZ [F̂ijk(t)]

= 1
n

n∑
i=1

Aij

p̂ij(θ̂)

t∫
0

dNik(s)
Ĝij(s; α̂)

F̂ijk(t) = Aij

t∫
0

dNik(s)
Ĝij(s; α̂)

dM̂C
lj (u; α̂) = dNijk(t)− Yij(t)dΛ̂#

ijk(t)

F̂k(t) =
J∑

m=1

1
n

n∑
l=1

Alm

t∫
0

dNlk(s)
Ĝlm(s; α̂)

.

For the purposes of estimating V ar(δ̂jk(t)), we will treat the weights as fixed and,

hence, ignore the variability due to the use of IPCW and IPTW. As such, the perti-

nent components are as follows:

n
1
2
{
δ̂jk(t; Λ̂C

0 ,α,θ)− δjk(t)
}

= n−
1
2

n∑
l=1

{
φ4
ljk(t)− φ7

lk(t)
}

Ṽ ar(δ̂jk(t)) = 1
n
E
[{
φ4
ljk(t)− φ7

lk(t)
}2
]

̂̃
V ar(δ̂jk(t)) = n−2

n∑
l=1

{
φ̂4
ljk(t)− φ̂7

lk(t)
}2
,

where

φ̂4
ljk(t) = Alj

p̂lj(θ̂)

t∫
0

dNlk(s)
Ĝlj(s; α̂)

− 1
n

n∑
i=1

Aij

p̂ij(θ̂)

t∫
0

dNik(s)
Ĝij(s; α̂)

φ̂7
lk(t) =

 J∑
m=1

Alm

t∫
0

dNlk(s)
Ĝlm(s; α̂)

− J∑
m=1

1
n

n∑
i=1

Aim

t∫
0

dNik(s)
Ĝim(s; α̂)

.
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