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Abstract 

Geneticists have been working for decades to identify genetic factors that 

underlie variation in complex traits. Yet much of the variance attributed to additive 

genetic factors remains unaccounted for, the so-called “missing heritability problem.” 

Factors that may account for some of the missing heritability include the following: rare 

variants, structural variants, gene-gene interactions, and gene-environment 

interactions. In this dissertation, I evaluate the contribution of rare variants and gene-

gene interactions to the missing heritability problem. Specifically, I develop and evaluate 

research strategies that take advantage of complex pedigree information. I apply these 

strategies to quantitative traits in the Old Order Amish, a population isolate in which 

most individuals are related through a single, complex pedigree.  

In Chapter 2, I describe a new statistical test to identify quantitative traits that 

are likely influenced by rare variants of large effect. I found evidence for the presence of 

rare variants influencing a few traits, including (remarkably) one for which a null 

mutation was previously identified. In Chapter 3, I evaluate the performance of Markov-

chain Monte Carlo (MCMC) algorithms for linkage analysis of quantitative traits with 

complex pedigrees and dense genetic maps. I discovered that current algorithms fail to 

converge, resulting in highly variable LOD (logarithm of the odds) scores between 

MCMC runs. Despite this variability, I found consistent evidence of linkage for one trait 

for which a locus of large effect was previously mapped. Together, results from chapters 



xi 

2 and 3 imply that rare variants of large effect are unlikely to explain much of the 

missing heritability of these traits.  

In Chapter 4, I consider that heritability might be overestimated rather than 

missing. To explore this possibility, I evaluate a new regression-based method to 

estimate heritability that is not inflated by gene-gene interactions. As suggested by Zuk 

et al. (2012), this method is ideal for use in population isolates but has not been 

investigated in realistic data settings. Unexpectedly, I discovered that the method 

produces biased estimates of the narrow-sense heritability, even for purely polygenic 

traits. Thus, caution should be exercised before using this method and attributing the 

missing heritability to gene-gene interactions.     
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Chapter 1  

Introduction 

1.1 Gene Mapping and the Missing Heritability Problem  

The major goal of human geneticists is to understand how genetic variation 

contributes to phenotypic variation in the population. To this end, geneticists have been 

mapping genes for traits and diseases in humans and model organisms since well before 

the sequencing of the first human genome. Ultimately, these studies can lend insights 

into human health and disease by learning about the genetic basis for traits and 

diseases. For example, gene mapping studies have uncovered a substantial overlap in 

the genetic factors that are associated with risk of many autoimmune and inflammatory 

diseases [1]. The links between many of these diseases were not previously appreciated.   

Advances in microarray technologies since the sequencing of the first human 

genome have facilitated a dramatic increase in the rate of discovery of genes for both 

Mendelian diseases and complex traits [2-4]. Simultaneously genotyping millions of 

single nucleotide polymorphisms (SNPs) cheaply and efficiently using microarrays has 

allowed researchers to assess genetic variation genome-wide to identify variants 

associated with quantitative traits and complex diseases. These genome-wide 

association studies (GWAS’s) are now a common approach to identifying common 

variants (minor allele frequency, MAF > 5%) associated with complex traits without prior 

biological candidates. The underlying hypothesis for these GWAS’s is that risk for 
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common diseases will be associated with variants that are common the population [5, 

6]. Thus, by testing common variants for association with common diseases and 

quantitative traits, GWAS’s have identified >9,000 loci associated with >700 traits [7].  

Despite this success, perhaps one of the biggest lessons from GWAS’s over the 

last 8 years has been that the genetic architecture of complex diseases is far more 

complex than we anticipated. In other words, there are likely many more variants 

spanning the allele frequency spectrum that influence trait variation or disease risk in 

more complicated ways than previously anticipated. Even with sample sizes on the 

order of 100,000 individuals, much of the genetic component, or heritability of many 

complex traits remains unaccounted for. For example, the nearly 180 common loci 

associated with height collectively explain only 12% of the heritability of height [4]. In 

fact, some studies suggest that there may be 1,000s of loci for height distributed 

uniformly across the genome [8]. Thus, like most complex traits, height is extremely 

polygenic, influenced by variation at numerous loci, most with individually weak effects.  

The inability to account for much of the heritability of complex traits by common 

variants has been deemed the “missing heritability problem” [9]. Many have 

hypothesized about where the missing heritability might be found: rare variants, 

structural variants, gene-gene interactions, and gene-environment interactions are all 

possible sources of genetic variation that could further explain the heritability of 

complex traits [10, 11]. It is likely that a combination of these factors will play a role in 

complex traits; however, the relative importance of each class of variation will likely be 

trait specific. Different study designs and strategies will be necessary to identify and 
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associate variants in these different classes with complex traits. Therefore prior insights 

into the contribution of different types of genetic variation to specific complex traits can 

inform the design of studies and enable future gene mapping efforts. 

A current challenge in the field is to evaluate the potential contribution of 

different types of genetic variation to quantitative traits. I evaluate the potential 

contribution of rare variants of large effect to the missing heritability in Chapters 2 and 

3 of this dissertation. In Chapter 4, I set out to evaluate the contribution of gene-gene 

interactions to the missing heritability.  

1.1.1 Rare Variants and the Missing Heritability Problem 

Nearly a decade of GWAS’s has clearly identified a role for common variants in 

complex traits. However, these variants alone have not fully accounted for the 

heritability of complex traits. Therefore, scientists have put forth alternative hypotheses 

to the common disease, common variant hypothesis that was largely the basis for 

GWAS’s [5, 6]. One such hypothesis, the common disease, rare variant hypothesis 

suggests that rare variants may account for much of the missing heritability [12]. Rare 

variants, defined here as genetic variants with a MAF <5%, tend to have a larger impact 

when they are associated with phenotypic variation [10]. In the context of quantitative 

traits, this means that carriers of a rare, trait-associated variant may have a trait value 

substantially displaced from the population mean. By definition, carriers are rare in the 

general population. However, studying individuals with extreme phenotypes and/or 

large families can enrich for many more copies of the rare variant, and therefore making 

them easier to discover in gene mapping studies [13, 14]. 
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While the potential for rare variants to account for the heritability of complex 

traits has been appreciated for over a decade, it was not until recent advances in DNA 

sequencing technologies that their role of could be assessed. While the cost of next-

generation sequencing is decreasing [15, 16], it is not yet practical to sequence all 

individuals in a large study to identify rare variants. Therefore, the goal of the methods 

in Chapter 2 and 3 is to prioritize traits, individuals, and loci for sequencing studies to 

identify rare variants. The approaches developed in these two chapters may facilitate 

the discovery of rare trait-associated variants. Therefore, by applying these methods to 

numerous quantitative traits, I evaluate the potential for rare variants to account for 

more of the missing heritability. 

For quantitative traits, one approach to discovering rare, trait-associated 

variants is to sequence individuals with extreme phenotypes. For this approach to be 

cost effective, it is important to carefully select the trait and individuals to sequence. In 

Chapter 2 of this dissertation, I describe a novel statistical test to prioritize traits and 

individuals in family-based studies for sequencing by identifying traits likely to be 

influenced by rare variants of large effect using only phenotype and pedigree 

information. Another, classical approach to identifying loci harboring rare, trait-

associated variants is genome-wide linkage analysis. In Chapter 3, I evaluate a Markov-

chain Monte Carlo (MCMC) method for linkage analysis with complex pedigrees and 

dense genetic marker maps. This MCMC approach has not previously been evaluated 

with pedigrees as large as our Amish pedigrees (bitsize up to 100) or a dense genetic 

marker map (1 SNP/cM).  
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1.1.2 Gene-Gene Interactions and the Missing Heritability Problem 

The non-additive effects at alleles at multiple loci, or gene-gene interactions, 

may also contribute to the missing heritability. In fact, a number of models have been 

put forth that demonstrate how gene-gene interactions may explain some of the 

missing heritability [17-21]. While these theoretical models are plausible, detecting 

interacting loci in humans has been extremely challenging. Genome-wide interaction 

studies are incredibly underpowered due to the multiple testing burden of testing 

millions combinations of variants across the genome [22, 23]. For example, to conduct 

all pair-wise tests between ~2.5million common SNPs genome-wide requires ~1012 tests, 

therefore the multiple testing is substantially worse than a single marker genome-wide 

association study (2.5x106 tests). Despite the challenges and results of interaction 

studies in humans, model organism studies have shown that the effects of gene-gene 

interactions can be quite significant, accounting for up to half of trait heritabilities in 

some instances [24-26].  

 As an alternative to detecting specific interacting loci, I set out to assess the 

potential contribution of gene-gene interactions to the missing heritability. I do this by 

comparing estimates of trait heritabilities with and without the influence of interactions. 

I used a newly proposed regression-based estimator of heritability that is not 

confounded by the effects of interactions [21]. In Chapter 4 of this dissertation I apply 

this regression-based estimator and evaluate the statistical properties of the estimator 

via simulations.  
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1.2 The Old Order Amish 

The motivation and data for the studies in this dissertation come from our on-

going efforts to map genes related to mammographic density and cardiovascular 

disease risk factors in our studies in the Old Order Amish population. The unique 

population, traits, and studies are described below. 

1.2.1 Population History 

The Old Order Amish originated as followers of Jakob Ammann, a Mennonite 

bishop who split from the church in 1693. After splitting from the Mennonites, the 

Amish migrated to Switzerland and Eastern France. In the 1700’s, the Amish began 

migrating to the United States to escape religious persecution. The first wave of ~500 

Amish immigrants, known today as the Old Order Amish, founded the settlement in 

Lancaster County, PA [27-29]. Throughout this dissertation, ‘Amish’ refers specifically to 

the Old Order Amish population. 

Today, the Amish remain a closed population. There is little, if any, influx of 

outsiders into the population because the Amish do not believe in spreading their faith 

[30]. Furthermore, 10% of Amish children leave the community each generation [30].  

Despite this, the high birth rate among the Amish has resulted in constant population 

growth [27, 31]. An Amish woman has, on average, ~7 children [32]. Thus, from the 

original ~500 founders, the Amish have grown to 30,000-50,000 in and around Lancaster 

County, PA [28, 33]. 
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1.2.2 Genetics Research within the Amish Population 

It has long been recognized that the Amish population is particularly well suited 

for genetic studies. The Amish are a genetically closed population with extensive 

genealogical records [34, 35], a high standard of living, and a willingness to participate in 

medical genetics research [29]. The first genetic studies in this population began in 1962 

when Victor McKusick and John Hostetler became interested in recessive metabolic 

conditions in the population [36]. Since then, the Amish have contributed to advances in 

our understanding of numerous Mendelian disorders (reviewed in [33, 37]) and complex 

traits [for examples, [38-52]).  

The closed population and demographic history of the Amish have resulted in 

elevated inbreeding within the population. On average, any two Amish individuals are 

more closely related than 2nd cousins but less than 1st cousins, once removed. The 

bottleneck at the time of population founding suggests that the spectrum of rare 

genetic variation will be compressed. Specifically, we expect fewer rare variants 

segregating and that these variants may be in higher copy number in the Amish than 

more cosmopolitan European populations. Based on gene dropping simulations 

conditional on the pedigree structure from our study of mammographic density 

(described in  Section 1.2.2.1 ), we expect ~17% of variants with a minor allele frequency 

(MAF) ≤ 5% in the population founders to have a MAF > 5% in the current day 

population. Therefore, the Amish may be ideally suited for gene mapping studies to 

identify rare, trait-associated variants. In fact, to-date there are a few examples of rare 
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variants associated with quantitative traits that have increased in frequency in the 

Amish [39, 45, 48].  

The work in this dissertation is motivated by our gene mapping efforts in the 

Amish population. Specifically, I will use data from our study of mammographic density 

and the Heredity and Phenotype Intervention (HAPI) Heart study to apply the methods 

discussed in the subsequent chapters. Both of these are studies of complex quantitative 

traits related to disease risk. Details about each study are given below.  

1.2.2.1  Family-Based Study of Mammographic Density  

The primary goal of our study was to map genes related to mammographic 

density. Mammographic density is a well-established, heritable risk factor for breast 

cancer. This area appears light on a mammogram and likely represents the ductal, 

epithelia, and connective tissue of the breast. Women with greater than 75% density 

have a 4-6 fold increased risk of breast cancer compared to women with less than 25% 

density [53]. Starting in 2005, we began recruiting healthy Amish women to participate 

in our study of mammographic density with the goal of identifying genetic factors that 

are associated with density, and potentially to breast cancer risk more generally.  

In total, we recruited 1,521 women over 5 years to participate in our study. 

These women represent nearly half of the current census population of Amish women 

aged 40-80 years old in Lancaster County, PA. Initially, women ≥ 40 years old were only 

eligible for our study if they had a living sister ≥ 40 years old. We later dropped this 

criterion to recruit all women ≥ 40 years old, regardless of whether they had an eligible 

sister. Recruitment was done primarily through word-of-moth and door-to-door 
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interviews. Therefore, while we sampled nearly have of the eligible population, the 

sample is likely not a random sample from the population. Specific inclusion and 

exclusion criteria are described elsewhere [54].  

The final sample included complete phenotype information on 1,481 women. In 

addition to mammographic density, we collected and analyzed a number of other 

quantitative traits related to breast cancer risk including measures of body size, 

reproductive and menstrual traits, and several serum hormones and growth factors. 

Details about the traits are in Appendix 1.The women in our study were also genotyped 

at ~2.5 million SNPs genome-wide. After quality control of our genome-wide SNP data, 

we had 1,472 women with phenotype and genotype information.  

All of the women in our study were connected into a single 13-generation 

pedigree using the extensive genealogical records from the Anabaptist Genealogical 

Database (AGDB) [34, 35]. Our study sample includes many closely related women, 

specifically 274 parent-offspring pairs and 1,254 sibling pairs. The women in our study 

are divided between pre- and post-menopausal women (728 and 753, respectively). As 

is typical of the Amish, these women were highly parous (91%) and rarely used 

exogenous hormones (10%).  

1.2.2.2 Heredity and Phenotype Intervention Heart Study 

The goal of the Heredity and Phenotype Intervention (HAPI) Heart study was to 

identify genetic and environmental factors that are related to cardiovascular disease 

risk. This study, started in 2002, was designed and conducted in collaboration with 

colleagues at the University of Michigan and the University of Maryland. In addition to 



10 

measuring baseline cardiovascular risk, the study participants also participated in a 

series of intervention studies. The interventions were designed as short term challenges 

that mimic long term explosions that affect cardiovascular disease risk. 

Amish men and women over the age of 20 and generally healthy enough to 

participate in the interventions were eligible for the study. Participants were initially 

recruited through participation in other studies, word-of-moth, community mailings, 

and local physicians. Eligible family members of participants were also requested to 

participate. Thus the sample was enriched for close relatives. Specific eligibility criteria 

for the study and each intervention are detailed elsewhere [55]. In total, 1,003 

individuals identified to participate in the study, but 123 individuals refused to 

participate or did not meet all of the general eligibility criteria. Therefore, in total, the 

final sample included 868 individuals.  

The men and women in the HAPI Heart study were phenotyped for a large 

number of baseline cardiovascular risk factors and participated in a number of 

interventions, including a high-fat diet challenge, a cold pressor stress test (CPT), a 

dietary salt intervention, and a low-dose aspirin therapy treatment. Multiple measures 

of cardiovascular response and health were measured during and after the intervention 

studies. Details about the baseline phenotyping methods and intervention studies are 

described in detail elsewhere [55]. For the purposes of this dissertation, I focused only 

on baseline quantitative traits related to cardiovascular disease risk, detailed in 

Appendix 3. The study participants were also genotyped at ~500,000 SNPs genome-

wide.  
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All of the individuals in the study can be connected into a single extended 

pedigree. Consistent with the recruiting strategy, there were any close relative pairs 

including 314 parent-offspring pairs and 592 sibling pairs. The sample included 460 men 

and 408 women. Also consistent with the eligibility criteria, the study participants were 

generally healthy, with < 1% having diabetes and ~1% on lipid lowering medications 

prior to the study [55].  
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Chapter 2  

A Method to Prioritize Quantitative Traits and Individuals for Sequencing in 

Family-Based Studies1 

Owing to recent advances in DNA sequencing, it is now technically feasible to 

evaluate the contribution of rare variation to complex traits and diseases. However, it is 

still cost prohibitive to sequence the whole genome (or exome) of all individuals in each 

study. For quantitative traits, one strategy to reduce cost is to sequence individuals in 

the tails of the trait distribution. However, the next challenge becomes how to prioritize 

traits and individuals for sequencing since individuals are often characterized for dozens 

of medically relevant traits. In this article, we describe a new method, the Rare Variant 

Kinship Test (RVKT), which leverages relationship information in family-based studies to 

identify quantitative traits that are likely influenced by rare variants.  

Conditional on nuclear families and extended pedigrees, we evaluate the power 

of the RVKT via simulation. Not unexpectedly, the power of our method depends 

strongly on effect size, and to a lesser extent, on the frequency of the rare variant and 

the number and type of relationships in the sample. As an illustration, we also apply our 

method to data from two genetic studies in the Old Order Amish, a founder population 

with extensive genealogical records. Remarkably, we implicate the presence of a rare 

                                                      
1
Shah KP, Douglas JA (2013) A Method to Prioritize Quantitative Traits and Individuals for Sequencing 

in Family-Based Studies. PLoS ONE 8(4): e62545. doi:10.1371/journal.pone.0062545 
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variant that lowers fasting triglyceride levels in the Heredity and Phenotype Intervention 

(HAPI) Heart study (p=0.044), consistent with the presence of a previously identified null 

mutation in the APOC3 gene that lowers fasting triglyceride levels in HAPI Heart study 

participants. 

2.1 Introduction 

The genetic architecture of most complex traits and diseases is poorly 

understood. Indeed, genome-wide association studies (GWAS’s) have identified 

hundreds of loci with relatively weak effects on complex traits and diseases, leaving 

much of their heritability unaccounted for [10]. This is expected (in part) since the 

genotyping technology used in these studies captures primarily common sequence 

variation, namely, single nucleotide polymorphisms (SNPs) with minor allele frequencies 

(MAFs) of at least 5%. Rare variants (MAF<5%), which are poorly captured by standard 

GWA arrays [56], may have larger effect sizes than common variants and may make an 

important contribution to complex traits and diseases. In fact, results from large-scale 

sequencing studies (n>10,000) suggest a much higher load of rare variants than was 

previously appreciated and may bear on the heritability unexplained by GWAS [57, 58]. 

Recent advances in DNA sequencing technology have dramatically increased the 

capacity to discover rare variants. However, it is still cost prohibitive to sequence whole 

genomes (or even whole exomes) on the scale of a GWAS, e.g., by sequencing all study 

participants. For studies of quantitative traits, one strategy to reduce cost is to sequence 

individuals with extreme phenotypes. Simulation studies [59, 60] and empirical studies 

of candidate genes suggest that this is a powerful approach for identifying rare trait-
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associated alleles. For example, this approach has been successfully used to identify rare 

variants in candidate genes associated with body mass index (BMI) [61], high-density 

lipoprotein (HDL) [62], low-density lipoprotein (LDL) [63, 64], and sterol absorption [63].  

The power of extreme-trait sequencing or selective genotyping, originally 

introduced by Lander and Botstein [65], derives from the fact that rare trait-influencing 

alleles with modest to large effects will be enriched in frequency in the upper or lower 

tail of the trait distribution. The success of this strategy, however, depends (in part) on 

the careful selection of traits and individuals to sequence. In theory, the most powerful 

approach is to select and sequence the most extreme individuals from each tail of the 

trait distribution. In practice, however, power may be lost by sequencing too few or too 

many individuals or by choosing a suboptimal trait. To optimize the selection of traits 

and individuals for an extreme-trait sequencing study, we develop a new statistical test, 

the Rare Variant Kinship Test (RVKT). Our test is designed for use in family-based studies 

in which individuals have already been phenotyped – but not necessarily genotyped – 

for dozens of quantitative traits relevant to human health and disease.  

Briefly, the RVKT leverages the relatedness of individuals in family-based studies 

to identify quantitative traits that are most likely to be influenced by rare variants. The 

premise of our test is that rare variants with at least modest effects will be enriched in 

the tails of the trait distribution and preferentially carried by closely related individuals. 

Unlike complex segregation analysis, which attempts to identify a particular mode of 

inheritance, our approach makes few assumptions about the trait architecture. We 
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assess the power of our test via simulation and apply it to dozens of quantitative traits 

from two of our studies in the Old Order Amish population. 

2.2 Methods 

2.2.1 Ethics Statement 

All human subject research was previously reviewed and approved by the 

Institutional Review Boards at the University of Michigan and the University of 

Maryland. Written informed consent was obtained from all study participants. 

2.2.2 Overview 

Here we describe the RVKT, simulations to assess power, and applications to two 

family-based studies. The RVKT requires a sample of families with pedigree and 

phenotype data and assumes that each of the quantitative traits to be tested has a 

narrow-sense heritability that is significantly different from zero. The null hypothesis of 

the RVKT is that a given trait is purely polygenic, meaning influenced by multiple 

additive, independent loci of small effect. Under the null hypothesis, individuals in the 

tail of the trait distribution carry trait-influencing alleles at many loci. The alternative 

hypothesis of the RVKT is that at least one locus of modest to large effect influences the 

trait, and accordingly, that the trait-associated allele(s) is necessarily rare (the rare 

variant). Under the alternative hypothesis, individuals in the tail of the trait distribution 

should preferentially carry the rare variant and thus may be more closely related when 

measured against the null hypothesis.  
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2.2.3 The Rare Variant Kinship Test 

For each trait, we define and calculate the RVKT statistic as the mean of the pair-

wise kinship coefficients between individuals in the tail of the quantitative trait 

distribution. Tail membership is determined by ordering individual trait values. 

Conditional on the pedigrees in the sample, the kinship coefficient between two 

individuals is the probability that a randomly chosen allele from one individual and a 

randomly chosen allele from the other individual at an autosomal locus are inherited 

identical by descent from a recent, common ancestor. We calculate pair-wise kinship 

coefficients using the matrix method described by Lange [66] and implemented in 

MENDEL version 10.0.0. Since the kinship coefficient depends only on the structure of 

the pedigree connecting a pair of individuals, the RVKT requires pedigree data but no 

genetic data. Thus, it can be applied before carrying out expensive genotyping or 

sequencing experiments.  

To assess statistical significance, we compare the observed RVKT statistic for 

each trait to its expected distribution under a purely polygenic model (the null 

hypothesis) (described below). Under the alternative hypothesis, the observed RVKT 

statistic may exceed its expected value, meaning individuals in the tail of the trait 

distribution may be more closely related than expected under the null hypothesis. Thus, 

we use a one-sided test. Because the genetic architecture of each trait is unknown, we 

conduct the RVKT for both tails of the trait distribution (upper and lower) and multiple 

tail sizes. Tail size is the proportion of individuals in the tail of the trait distribution. We 

then select the RVKT statistic with the minimum p-value in each tail (pmin). 
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The expected distribution of the RVKT statistic depends on the actual pedigrees 

and the narrow-sense heritability of the trait. Thus, we use simulation to generate an 

empirical null distribution for each trait. Specifically, using MORGAN version 3.0 [67] we 

simulate 10,000 replicates of a purely polygenic trait with heritability equal to the 

narrow-sense heritability estimated from the observed data. Simulations are done 

conditional on the observed pedigrees. We calculate the RVKT statistic for each replicate 

using the same tail sizes tested in the observed data. The resulting RVKT statistics form 

an empirical null distribution for each trait and tail size. From this distribution, we 

determine a rejection region based on the prescribed size of the test (false-positive 

rate).  

2.2.4 Assessment of the Test by Computer Simulation 

To evaluate the power of our test, we conducted gene dropping simulations 

conditional on our Amish pedigrees (described below), and for comparison, four-person 

nuclear families (two parents and two offspring) with sample sizes corresponding to our 

Amish studies. Specifically, we simulated a single additive, bi-allelic locus with a trait-

influencing allele frequency of 0.5, 1, 2, 3, or 4% (the rare variant) that accounted for 2, 

5, 10, 20, or 30% of the total trait variance. In each simulation, we assumed that 

multiple additive, independent genetic factors, including the rare variant, accounted for 

40, 60, or 80% of the trait variance (the narrow-sense heritability). For each set of 

parameters, we simulated 1,000 replicates using MORGAN version 3.0 and tested tail 

sizes of 1, 2, 4, 6, and 8%. For each tail size, power was calculated as the proportion of 

replicates for which the RVKT statistic equaled or exceeded the 95th percentile of the 
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empirical null distribution, i.e., using a significance level of 0.05. We generated a single 

null distribution (as described above) for narrow-sense heritabilities of 40, 60, and 80% 

and repeatedly compared each replicate under the alternative hypothesis to this 

distribution. 

A subset of the simulations above were conducted on pedigree structures 

connecting 1,481 women from our genetic study of mammographic density [54] and 868 

men and women from the Heritability and Phenotype Intervention (HAPI) Heart study, a 

genetic and environmental study of cardiovascular risk factors [55]. Individuals in both 

studies were from the Old Order Amish population of Lancaster County, Pennsylvania. 

Using the extensive genealogical information available from the Anabaptist Genealogical 

Database [34, 35], we were able to connect subjects within each study into a single, 13-

generation pedigree. Table 2.1 gives the number and types of pair-wise relationships 

after merging in only two generations from the complete pedigree, i.e., by merging in 

the parents and grandparents of all study subjects, and trimming the resulting pedigrees 

using PedCut [68] with a maximum bit size of 100. To assess the impact of pedigree 

complexity on power, we repeated simulations using the complete 13-generation 

pedigree. 

2.2.5 Application of the Test to Empirical Data 

We applied the RVKT to dozens of quantitative traits from the two genetic 

studies described above, with the goal of prioritizing traits and individuals for extreme-

trait sequencing. Specifically, we applied the RVKT to 35 quantitative traits from our 

study of mammographic density (n=1,481), including absolute measures of the dense 
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and non-dense area of the breast, percent mammographic density, total breast size, 

measures of body size, reproductive and menstrual traits, and several serum hormones 

and growth factors (Appendix 1). These traits, all of which are heritable, are of interest 

because of their associations with breast cancer risk. Prior to testing, we transformed 

each trait to approximate univariate normality, when necessary, and adjusted for age 

and menopausal status. For the hormones and growth factors, we carried out 

menopausal-specific analyses using batch-specific z-scores adjusted for age.  

We also applied the RVKT to 37 quantitative traits from the HAPI Heart study 

(n=868), including measures of body size, fasting lipid levels, and measures of vascular 

health and arterial stiffness (Appendix 3). These traits, which are also heritable, are of 

interest because of their associations with cardiovascular disease. Prior to testing, we 

transformed each trait to approximate univariate normality, when necessary, and 

adjusted for age and sex.  

As in our simulations, we tested tail sizes of 1, 2, 4, 6, and 8%, corresponding to 

15, 30, 59, 89, and 118 subjects from our study of mammographic density and 9, 17, 34, 

51, and 68 subjects from the HAPI Heart study. We then selected the RVKT statistic with 

the minimum p-value (pmin) in the upper and lower tail of each trait distribution. To 

control for multiple testing of traits, some of which may be correlated, we calculated 

the effective number of tests using the method described by Li and Ji [69] and applied a 

Bonferroni correction to pmin, denoted pmin, corrected.  



20 

2.3 Results 

2.3.1 Size of the Rare Variant Kinship Test 

To assess power, we used simulation to generate the null distribution of the 

RVKT statistic and determine the size (false-positive rate) of the test. As expected, the 

cumulative distribution function (CDF) was discrete. However, it became increasingly 

discrete as the number and types of relative pairs in the tail or sample decreased. For 

example, Figure 2.1 shows the top quintile of the CDF for a purely polygenic trait with a 

narrow-sense heritability of 40% and two sample structures: four-person nuclear 

families (n=1,484) and trimmed Amish pedigrees from our study of mammographic 

density (n=1,481). In the top quintile, the RVKT statistic assumed 36 values for the 

trimmed Amish pedigrees (Figure 2.1C) but only 6 values for nuclear families (Figure 

2.1A), assuming a tail size of 1%. None of these values, however, coincided with the 95th 

percentile of the CDF. Thus, in our power calculations below, we selected a rejection 

region having size as close as possible to 0.05, without exceeding 0.05, in order to 

maintain a significance level of 0.05.  

2.3.2 Power of the Rare Variant Kinship Test 

Under the alternative hypothesis, power was generally maximized when the tail 

size matched the expected carrier frequency of the rare variant (data not shown). In 

other words, if q denotes the frequency of the rare variant, power was greatest for a tail 

size of 2(1-q)q+q2. Thus, we report results below for tail sizes that maximized power.  

As expected, power of the RVKT increased as the effect size increased, meaning 

as the rare variant accounted for an increasing proportion of the trait variance. For 
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example, using the trimmed pedigrees from our study of mammographic density (Table 

2.1) and assuming a narrow-sense heritability of 40% and a rare variant frequency of 

2%, power ranged from approximately 6 to 87% for effect sizes of 2 to 30%, respectively 

(Figure 2.2A). Similarly, based on the trimmed pedigrees from the HAPI Heart study and 

the same set of parameters, power ranged from approximately 7 to 61% (Figure 2.2B). 

As expected, power also increased as the sample size increased (Figure 2.2) and/or the 

rare variant frequency decreased (Figure 2.3). Power did not change much as the 

narrow-sense heritability of the trait varied from 40 to 80% (Figure 2.4).  

Power degraded substantially as pedigree complexity increased, meaning as the 

number and types of distantly related pairs in a sample increased. For example, consider 

a sample of 1,481 individuals, a narrow-sense heritability of 40%, and a rare variant with 

frequency 2% and effect size 20%. Under these parameters, power decreased from 64% 

for the trimmed Amish pedigrees to 26% for the complete 13-generation pedigree (grey 

versus black bars in Figure 2.2A). In fact, power was actually higher with four-person 

nuclear families (n=1,484 individuals; white bars in Figure 2.2A) than with our trimmed 

Amish pedigrees (75% versus 64%). Pedigree complexity also reduced power for smaller 

effect sizes (Figure 2.2) and for pedigree structures in the HAPI Heart study (Figure 

2.2B).  

2.3.3 Application of the Rare Variant Kinship Test 

After evaluating the power of the RVKT via simulation, we applied our test to 

dozens of quantitative traits from our two Amish studies. Figure 2.5 and Figure 2.6 

summarize RVKT p-values (pmin) from our study of mammographic density and the HAPI 
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Heart study, respectively. The RVKT statistic was nominally significant for 8 of the 35 

traits in the density study (pmin≤0.05). After correcting for multiple testing (26 effective 

tests), the RVKT remained significant for 3 of the 8 traits, including free estradiol and 

prolactin in pre-menopausal women and estradiol in post-menopausal women (pmin, 

corrected≤0.05). Similarly, in the HAPI Heart study, the RVKT was nominally significant for 

14 of the 37 traits, one of which, namely, fasting triglyceride levels, remained significant 

after correcting for 22 effective tests (pmin, corrected=0.044).  

In total, after multiple test correction, the RVKT statistic was significant for 4 of 

72 quantitative traits across our two genetic studies. Table 2.2 gives results for each of 

these 4 traits for the tail size corresponding to the smallest empirical p-value (pmin). For 

example, in pre-menopausal women from our study of mammographic density, pmin, 

which corresponded to a tail size of 2% (14 of 728 women), was 0.0004 for prolactin. 

These 14 women had the lowest batch-standardized and age-adjusted levels of prolactin 

and a mean pair-wise kinship coefficient of 0.080 compared to an expected value of 

0.068 under a purely polygenic model (approximate 95% confidence interval of 0.067 to 

0.070). For each of the other 3 traits, the RVKT statistic was also significant when testing 

the lower but not upper tail of the trait distribution.  

2.4 Discussion 

The advantage of using the RVKT to prioritize traits and individuals for 

sequencing in family-based studies is best illustrated by results from the HAPI Heart 

study. In testing 37 quantitative traits, many of which are established risk factors for 

cardiovascular disease, we found significant evidence of excess relatedness between 
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individuals in the lower tail of the distribution for fasting triglycerides. For tail sizes of 1 

to 8%, the mean pair-wise kinship coefficient ranged from 0.114 to 0.020, respectively, 

and was significantly different from the kinship coefficient expected under a purely 

polygenic model of trait architecture (p≤0.05). Although differences between 

significance levels were not pronounced for different tail sizes, the significance of the 

RVKT was minimized for the 17 individuals with the lowest age- and sex-adjusted 

triglyceride levels, or equivalently, for a tail size 0of approximately 2%. 

Remarkably, Pollin et al. [45] previously identified a null mutation in the APOC3 

gene (R19X, rs76353203) with a frequency of 0.024 that lowers fasting triglyceride levels 

in HAPI Heart study participants. This mutation was discovered because it was tagged by 

another SNP (rs10892151, MAF = 0.028) in the context of a GWAS (p=4.1x10-13, r2=0.85 

between rs76353203 and rs10892151). Had we sequenced the 17 individuals in the 

lower tail of the age- and sex-adjusted triglyceride distribution, we would have 

discovered APOC3 R19X since 7 of these individuals were mutation carriers, an 8-fold 

enrichment compared to the ~5% of individuals who were carriers in the overall sample. 

Notably, none of the 17 individuals in the upper tail of the distribution carried the 

mutation.  

As expected, the power of the RVKT was low for small to modest effect sizes. In 

fact, the power of our test to implicate the presence and influence of APOC3 R19X on 

fasting triglycerides in the HAPI Heart study was less than 25%. As such, it cannot be 

used to exclude the presence of rare trait-associated alleles, unless these alleles account 

for a large proportion of the phenotypic variance. However, when multiple medically 
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relevant quantitative traits are available, the RVKT may be a valuable starting point for 

prioritizing traits and individuals for sequencing. For example, even though APOC3 R19X 

carriers in the HAPI Heart study had cardio-protective profiles for several lipids, 

including higher HDL and lower LDL cholesterol and lower triglyceride levels, Pollin et al. 

[45] discovered R19X because its tag SNP had an exclusive genome-wide significant 

association with fasting triglyceride levels. Consistent with their findings, we singled out 

fasting triglycerides – out of 37 traits – as the basis for an extreme-trait sequencing 

study by applying the RVKT.  

The power of the RVKT is heavily influenced by the number and types of 

relationships in a sample. Specifically, the power of the RVKT increases as the number of 

closely related pairs increases. In contrast, power is lost as the number of distantly 

related pairs multiplies. For instance, in our simulations (Figures Figure 2.2, Figure 2.3, 

and Figure 2.4), power was actually greater with the trimmed Amish pedigrees than 

with the complete 13-generation pedigree, with differences as great as 20-30% for large 

effect sizes. To understand why, it’s helpful to consider the impact of trimming on the 

mean kinship coefficient under the null and alternative hypotheses. Under both 

hypotheses, trimming decreases the mean since individuals who are distantly related, 

say third cousins, appear to be unrelated. However, it does so to a lesser extent under 

the alternative hypothesis. This is because the mean under the alternative is dominated 

by closely related pairs, which are maintained regardless of trimming. As a result, the 

difference between the mean kinship coefficient under the null and alternative 

hypotheses is larger – and in turn, power is greater – with trimming than without. 
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Although trimming increases power, the RVKT may actually be conservative 

when pedigrees are too simple. In fact, it may be impossible to choose a rejection region 

from the empirical null distribution of the RVKT statistic such that the size of the test 

does not exceed the significance level. For example, consider a single pair of siblings 

from each of 741 families (n=1,482). To obtain the null distribution, we simulated 1,000 

replicates of a purely polygenic trait with a narrow-sense heritability of 40%. However, 

when we tested a 1% tail size, we obtained only three values of the RVKT statistic (data 

not shown). The largest value occurred 17 times; therefore, the smallest possible test 

size was 0.017. In other words, it would have been impossible to conduct a 0.01 level 

test. This problem was especially pronounced for modest sample sizes and small tail 

sizes due to discontinuities in the empirical null distribution of the mean pair-wise 

kinship coefficient (data not shown). 

An implicit assumption of the RVKT is that – within each family – a specific allele 

at the same locus has an effect on the trait of interest. In other words, the power of the 

test depends on the extent of allelic and locus homogeneity within each family but does 

not require homogeneity between families. For example, if multiple rare variants 

influence a trait, then phenotypically extreme individuals from the same family are 

more likely to share the same trait-influencing alleles than phenotypically extreme 

individuals from different families. Thus, the RVKT statistic may still exceed its expected 

value since individuals in the tail of the trait distribution may be more closely related 

than expected under the null hypothesis. From this perspective, isolates like the Amish 

are an ideal population in which to apply the RVKT and carry out extreme-trait 
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sequencing since many copies of the same rare trait-associated allele are likely to be 

segregating within a family due to a combination of founder effect and genetic drift.  

In our simulations, we considered rare variant frequencies ranging from 0.5 to 

4%. We did so for two reasons. First, the Old Order Amish population of Lancaster 

County, PA derives from a small number of European ancestors (~500) who immigrated 

nearly 250 years ago and has since increased in size to approximately 45,000 individuals 

(census size) [28]. Thus, many alleles that were initially rare or private in the ancestral 

population, e.g., MAF<0.5% in HapMap or 1KG projects, have either been eliminated 

from the Amish or increased in frequency due to founder effect and/or genetic drift. 

Second, even in the presence of the allelic heterogeneity typical of non-founder 

populations, the aggregate trait-associated allele frequency at a single locus may still be 

greater than 0.5% and thus potentially amenable to detection by the RVKT. 

Prioritizing traits and individuals for sequencing using the RVKT requires only 

pedigree and phenotype data and thus can be done before carrying out costly 

sequencing experiments. This process, however, requires accurate pedigree and 

phenotype data. Likewise, it is important to consider the impact of adjusting for 

covariates or stratifying the analysis by subgroups before identifying individuals with 

extreme trait values. For example, in our study of mammographic density, we found 

significant evidence for the presence of rare variants influencing the dense area of the 

breast in post- but not pre-menopausal women. Specifically, after adjustment for age, 

pmin for the RVKT was 0.018 and 0.031 for the lower and upper tails, respectively 
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(Appendix 4). These results suggest the presence of at least one variant that lowers 

density and another variant that increases density in post-menopausal women.  

We developed the RVKT to inform the selection of traits and individuals for 

sequencing and rare variant discovery. Predictably, the power of our test depended – 

above all – on the effect size of the rare variant. Indeed, it was underpowered to detect 

rare variants unless those variants had large effects. However, our analysis of over 70 

quantitative traits from our Amish studies suggests that the results may still be 

informative to prioritize sequencing efforts. 
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Table 2.1: Pair-wise relationships between individuals from our study of 
mammographic density (n=1,481) and the HAPI Heart study (n=868) after pedigree 
trimming 

 
Number of Pairs 

Relationship Pair 

Mammographic 
density study 

HAPI Heart 
study 

Parent-offspring 276 314 
Siblings 1,254 592 

Grandparent-grandchild 0 21 
Avuncular 1,125 732 

1st cousins 4,676 1,379 
1st cousins, once removed 2,993 1,508 

2nd cousins 1,345 905 
Other 871 807 

Note – Pedigree trimming yielded 177 families with 1-44 study participants per family 
(average of 8) in our study of mammographic density and 138 families with 1-46 study 
participants per family (average of 6) in the HAPI Heart study 
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Table 2.2: Rare variant kinship test (RVKT) results from two genetic studies in the Amish 

Trait Tail size (n) 
Observed mean pair-wise 

kinship coefficient 

Expected mean pair-wise 
kinship coefficient 

(approximate 95% CI)d P-valued 

  Lower tail Upper tail  Lower tail Upper tail 

Prolactina 2% (14) 0.080 0.067 0.068 (0.067-0.070) 0.0004 1.0000 
Free estradiola 8% (57) 0.021 0.019 0.018 (0.017-0.019) 0.0008 0.1650 

Estradiolb 6% (44) 0.026 0.025 0.024 (0.022-0.025) 0.0015 0.0737 
Fasting triglyceridesc 2% (17) 0.074 0.056 0.058 (0.056-0.063) 0.0020 0.7999 

aBased on 728 pre-menopausal women from our study of mammographic density, and after standardizing by batch and adjusting for 
age, an estimated narrow-sense heritability of approximately 24% (for prolactin) and 34% (for free estradiol) 

bBased on 753 post-menopausal women from our study of mammographic density, and after standardizing by batch and adjusting 
for age, an estimated narrow-sense heritability of approximately 35% 

cBased on 868 men and women from the HAPI Heart study, and after adjusting for age and sex, an estimated narrow-sense 
heritability of approximately 49% 

dBased on 10,000 simulations under the null hypothesis of a purely polygenic trait architecture 
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Figure 2.1: Top quintile of the cumulative distribution function of the RVKT statistic 
Distribution is based on 1,000 replicates of a purely polygenic trait with a narrow-sense 
heritability of 40% and (panels A and B) four-person nuclear families (n=1,484) or 
(panels C and D) trimmed pedigrees from our study of mammographic density 
(n=1,481). Panels A and C are based on a tail size of 1% (15 individuals), and panels B 
and D are based on a tail size of 8% (118 individuals). Dashed line denotes the 95th 
percentile. 
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Figure 2.2: Power of the RVKT as a function of effect size 
Effect size is the proportion of the trait variance explained by the rare variant. Results 
are based on 1,000 simulations of a quantitative trait and assume a rare variant allele 
frequency of 2%, a narrow-sense heritability of 40%, and pedigrees from (panel A) our 
study of mammographic density (n=1,481) or (panel B) the HAPI Heart study (n=868). 
Power is shown for trimmed Amish pedigrees (gray bars) and the complete 13-
generation Amish pedigree (black bars). For comparison, power is also shown for four-
person nuclear families (two parents and two offspring), with sample sizes equivalent to 
the sizes of our Amish studies (white bars). The significance level was set at 0.05. 
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Figure 2.3: Power of the RVKT as a function of the rare variant allele frequency (RAF) 
Results are based on 1,000 simulations of a quantitative trait and assume a rare variant 
that accounts for 5% of the trait variance, a narrow-sense heritability of 40%, and 
pedigrees from (panel A) our study of mammographic density (n=1,481) or (panel B) the 
HAPI Heart study (n=868). Power is shown for trimmed Amish pedigrees (gray bars) and 
the complete 13-generation Amish pedigree (black bars). For comparison, power is also 
shown for four-person nuclear families (two parents and two offspring), with sample 
sizes equivalent to the sizes of our Amish studies (white bars). The significance level was 
set at 0.05. 
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Figure 2.4: Power of the RVKT as a function of the narrow-sense heritability 
Results are based on 1,000 simulations of a quantitative trait and assume a rare variant 
with an allele frequency of 2% that accounts for 1/8th of the genetic variance and 
pedigrees from (panel A) our study of mammographic density (n=1,481) or (panel B) the 
HAPI Heart study (n=868). Power is shown for trimmed Amish pedigrees (gray bars) and 
the complete 13-generation Amish pedigree (black bars). For comparison, power is also 
shown for four-person nuclear families (two parents and two offspring), with sample 
sizes equivalent to the sizes of our Amish studies (white bars). The significance level was 
set at 0.05. 
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Figure 2.5: RVKT p-values (pmin) for 35 quantitative traits from our study of 
mammographic density 
Each bar represents the result for a single trait. Black bars, significant (pmin≤0.05); gray 
bars, not significant. Dashed line denotes p-value threshold corrected for multiple 
testing. Before applying the RVKT, traits were transformed to approximate normality, 
when necessary, and adjusted for age and menopausal status, except for the hormones 
and growth factors, which were standardized by batch, adjusted for age, and analyzed 
separately for pre- and post-menopausal women. 
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Figure 2.6: RVKT p-values (pmin) for 37 quantitative traits from the HAPI Heart study 
Each bar represents the result for a single trait. Black bars, significant (pmin≤0.05); gray 
bars, not significant. Dashed line denotes p-value threshold corrected for multiple 
testing. Traits were transformed to approximate normality, when necessary, and 
adjusted for age and sex. Traits are ordered such that highly correlated traits are closer 
together. 
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Chapter 3  

Multipoint Linkage Analysis Using Markov-Chain Monte Carlo Methods Fails to 

Converge for Complex Pedigrees and Dense Genetic Maps2 

Dense arrays of SNPs are routinely genotyped and used to conduct association 

analyses of complex traits. In the context of family-based studies, these arrays also 

afford the opportunity to carry out genome-wide linkage analyses. However, exact 

calculation of identity by decent (IBD) sharing probabilities for linkage analysis becomes 

computationally intractable when dense genetic maps are used with complex pedigrees. 

Here we apply a Markov-chain Monte Carlo (MCMC) sampling method to estimate IBD 

sharing probabilities in complex pedigrees with considerable missing data and a dense 

genetic map. To our knowledge, the performance of MCMC-based methods has not 

been tested in this setting.  

Our goal is to analyze quantitative traits from our genetic study of 

mammographic density in the Old Order Amish. Although the women from this study 

can be connected into a single 13-generation pedigree, we analyze them as a set of 177 

trimmed pedigrees. We found substantial variation in LOD scores between MCMC runs 

due to a lack of convergence of the MCMC algorithm. For example, based on 12 

                                                      
2
Shah KP and Douglas JA (2013) Multipoint Linkage Analysis Using Markov-Chain Monte Carlo Methods 

Fail to Converge for Complex Pedigrees and Dense Genetic Maps. In preparation 
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independent MCMC runs, the maximum LOD score for mammographic density ranged 

from 1.3 to 3 (mean of 1.9).  

To improve the precision of our LOD score estimates while remaining 

computationally feasible, we adopt a combined strategy of windowing and averaging 

across the genome.  Even with non-converged IBD sharing probability estimates, we 

were able to detect a previously validated linkage peak for serum matrix 

metalloproteinase (MMP1) levels (LOD score ranged from 9 to 11). While we were able 

to detect large linkage signals, improved MCMC methods are necessary to detect 

weaker signals that may still be informative for prioritizing association and sequencing 

studies.    

3.1 Introduction 

Dense arrays of SNPs are routinely used to conduct association analyses of 

complex traits. In the context of family-based studies, these arrays also afford the 

opportunity to carry out genome-wide linkage analyses. Although linkage analysis of 

complex traits is underpowered to detect common variants with modest effects, it may 

be useful in conjunction with sequencing and association analyses to identify rare 

variants with larger effects. For example, linkage information can be used to filter the 

variants discovered from whole exome or whole genome sequencing [14, 70, 71]. This 

approach has been successful both in the context of Mendelian disease [72] and 

complex quantitative traits [73, 74]. Similarly, Roeder et al. showed that the power of a 

genome-wide association study may be improved when linkage information is used to 

weight association p-values [75].  



38 

Multipoint linkage analysis can be broken down into two steps: 1) estimate allele 

sharing probabilities conditional on pedigree and genotype data and 2) test for linkage 

by modeling the trait as a function of these allele sharing probabilities. For each pair of 

study participants, we need to estimate the probability that they inherited 0, 1, or 2 

alleles identical by decent (IBD) from a recent common ancestor. The choice of method 

to estimate IBD sharing probabilities depends on the pedigree complexity and marker 

density. Pedigree complexity is commonly measured as the bitsize, or twice the number 

of non-founders (n) in the pedigree minus the number of founders (f) or 2n-f. A founder 

is defined as an individual with no parents in the pedigree. In contrast, a non-founder 

has both parents present in the pedigree. For large, complex pedigrees (bitsize ≥ 32) 

with only a few genetic markers (5-10 microsatellites), exact IBD sharing probabilities 

can be calculated efficiently via the Elston-Stewart algorithm [76]. Similarly, with small 

pedigrees (bitsize < 32) and many markers (>100 SNPs along a full chromosome), exact 

IBD sharing probabilities can be calculated via the Lander-Green algorithm [77]. For 

large, complex pedigrees and many markers, as is the case in our study, Markov-chain 

Monte Carlo (MCMC) sampling methods are necessary to estimate IBD sharing 

probabilities.  

Previous efforts to evaluate the performance of MCMC methods for linkage 

analysis have focused on evaluating accuracy by comparison to exact methods [78-81]. 

Therefore, they were limited to evaluating only small pedigrees or only a few genetic 

markers. In 2006, Wijsman et al. evaluated the accuracy of MCMC-based IBD sharing 

probability estimates using their combined locus and meiosis sampler, implemented in 
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the program lm_markers in the MORGAN software package [81]. They found small 

differences in LOD score estimates by comparing MCMC-based results to exact methods 

for a small pedigree and dense marker map and for a large pedigree and sparse marker 

map. For example, with a large pedigree (bitsize = 124) and sparse microsatellite marker 

map (1 marker/10 cM), the MCMC-based LOD score was on average 6% different than 

the exact LOD score [81]. MCMC-based methods, however, have yet to be evaluated 

using both large, complex pedigrees and a dense SNP marker map.  

We set out to conduct genome-wide linkage analysis of mammographic density 

and known or suspected breast cancer risk factors from our study in the Amish 

population of Lancaster County, PA. For this study, we use a set of trimmed Amish 

pedigrees (up to a bitsize of 100) and a dense SNP marker map (~1 SNP/cM). Therefore, 

we evaluate the mixing performance of current MCMC methods for linkage analysis. 

Specifically, conditional on real and simulated data from our mammographic density 

study, we evaluate both LOD score variability and concordance of IBD sharing 

probability estimates.  

3.2 Methods 

3.2.1 Family-Based Study of Mammographic Density 

We recruited 1,521 healthy Amish women between 2005 and 2010 to participate 

in our study of mammographic density. These women represent nearly half of the 

current census population of Amish women aged 40-80 years old in Lancaster County, 

PA. Our study design focused on recruitment of sibships. Initially, women ≥ 40 years old 

were only eligible for our study if they had a living sister ≥ 40 years old. We later 
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dropped this criterion to recruit all women ≥ 40 years old, regardless of whether they 

had an eligible sister. Additional study design details, including eligibility criteria, are 

described elsewhere [54].  

Our primary goal was to conduct linkage analysis to identify genetic factors 

related to mammographic density and selected quantitative traits related to breast 

cancer risk (listed in Appendix 5). Prior to analysis, we transformed the traits to 

approximate normality, when necessary, and adjusted for age and menopausal status. 

Our final analysis ready data set for linkage included phenotype and genotype 

information on 1,472 women. These women can be connected into a single 13-

generation pedigree using the extensive genealogical records from the Anabaptist 

Genealogical Database (AGDB) [34, 35].  

3.2.2 Linkage Methods 

Here we describe the genetic marker map, pedigree structures, and MCMC 

method used for linkage analysis.  

3.2.2.1 Genetic Map 

The women in our study were genotyped on the Illumina HumanOmni2.5-4v1_B 

Array (2,443,179 SNPs) by the Center for Inherited Disease Research (CIDR). After 

extensive quality control (see Appendix 2 for details), we retained 1,452,421 SNPs with a 

minor allele frequency (MAF) ≥ 1% in our Amish sample. In order to conduct multipoint 

linkage analysis, we selected a set of SNPs in low linkage disequilibrium (LD). To select 

these SNPs, we first estimated pair-wise LD between SNP using a set of 400 minimally 

related women. These women were optimally selected using PedMine [82]. We then 
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used the --indep-pairwise option in Plink V1.07 [83] to prune SNPs based on linkage 

disequilibrium. In Plink, we used a 5,000 SNP window, with 1 SNP step size and retained 

SNPs with a pair-wise R2 < 7%. After pruning, we retained 3,523 SNPs for linkage 

analysis. These SNPs were densely spaced across the genome (mean spacing = 1.1 cM), 

highly polymorphic (mean MAF = 0.42), and nearly uncorrelated (mean pair-wise R2 = 

1%, maximum pair-wise R2 = 13%).  

To determine a unique position for each SNP in our genetic map, we used the 

Rutgers V2 sex-averaged genetic map [84] and linear interpolation. We converted the 

Kosambi map positions in the original Rutgers map to Haldane units in SOLAR V4.3.1 

[85]. Linkage analysis using the variance components model in SOLAR requires using a 

Haldane map function. The Haldane map function assumes no crossover interference, 

i.e. it assumes recombination events are independent. Thus we can use a Markov-chain 

to model the IBD process along the chromosome (see Section 3.2.2.3 ).  

3.2.2.2 Pedigree Trimming 

The 1,472 women in our study can be connected into a single 13-generation 

5,044-member pedigree, including 201 founders and 4,843 non-founders. Because this 

pedigree is not computationally tractable to estimate IBD sharing probabilities, we use a 

set of trimmed pedigrees to estimate IBD sharing probabilities and conduct linkage 

analysis. We created these pedigrees by merging in the parents and grandparents of all 

study participants and then trimming the pedigrees with PedCut [68] to a maximum 

bitsize of 100. PedCut was developed to trim pedigrees to a constrained bitsize while 

maximizing the number of phenotyped individuals per pedigree [68]. Using a bitsize of 
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100 maintained most first- and second- degree relationships between study 

participants. Extensive trimming (bitsize ≤ 32) would have allowed exact calculation of 

IBD sharing probabilities; however, many first-degree relative pairs would have been 

lost in the trimming process. Ignoring these close relationships can falsely increase [86] 

or decrease [87] linkage evidence. Therefore, our choice of bitsize was a trade-off 

between computational practicality and the accuracy of linkage results.  

3.2.2.3 Estimation of IBD Sharing Probabilities 

Estimating the probability that a pair of individuals inherited 0, 1, or 2 alleles IBD 

at a specific locus from a recent common ancestor is done by enumerating all the 

possible inheritance patterns at that locus that are consistent with the known pedigree 

and marker data. The IBD process along a chromosome can be modeled as a Markov-

chain, where the hidden states correspond to the true IBD at each position along the 

chromosome and the transition probabilities between states are related to genetic 

distance between adjacent loci, i.e., the probability of a recombination event. Meiosis 

indicators, Sij, are used to track the IBD state through the pedigree for i = 1 .. n 

individuals at each j = 1 .. m markers along the chromosome. Sij is 0 when the gamete 

inherits the parent’s paternal allele and 1 when the gamete inherits the parent’s 

maternal allele.  A meiosis vector, SM, represents the complete IBD state for all 

individuals, i, and markers, j. In other words, SM is the vector of all Sij’s for i = 1 .. n 

individuals at each j = 1 .. m markers. The number of different possible meiosis vectors 

that are consistent with the data grows has the number of individuals, n, and markers, 

m, increases.  
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As pedigree complexity (bitsize) and marker density increases, it is 

computationally impossible to enumerate all possible meiosis patterns that are 

consistent with the observed data. Instead, MCMC methods can be used to sample 

meiosis vectors conditional on the observed marker data and pedigree configurations to 

estimate IBD sharing probabilities. We used the combined locus and meiosis sampler, 

lm-sampler, implemented in Loki V2.4.7.4 [88] to estimate IBD sharing conditional on 

our Amish pedigrees and genetic marker map. This implementation of the MCMC 

algorithm is equivalent to the lm_markers program in the MORGAN software package 

[67, 81]. The lm-sampler uses a block-Gibbs MCMC sampler that updates a subset of 

parameters during each iteration. At each iteration, either S.j, all meioses at a single 

locus (l-step) [88], or Si., all loci at a single meiosis (m-step) [89] are updated. The l-

sampler has poor mixing performance with tightly linked markers, while the m-sampler 

has poor mixing performance with large pedigrees with a lot of missing data in the 

parental generations. In order to deal with both of these challenges in our Amish data, 

we used a 1:1 ratio of l- to m- steps. We ran the MCMC algorithm using 500,000 burn-in 

iterations and 1 million or 30 million total iterations. We estimated genome-wide IBD 

sharing probabilities for all pairs of women along a 1cM.  

3.2.2.4 Comparison of IBD Sharing Probabilities between MCMC Runs 

To evaluate convergence of the MCMC algorithm, we ran the algorithm with 

multiple random start seeds and compared results. We calculated the difference in local 

kinship estimates, φj, along chromosome 10 between the two MCMC runs. The kinship 

coefficient, φj, is defined as the probability that at locus j, an allele sampled from one 
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individual is IBD with an allele sampled from another individual. We estimated these 

local kinships at a 1cM grid along chromosome 10 from j = 0 … 179 cM for all pairs of 

individuals in our study. Chromosome 10 was used as a representative chromosome 

because it is nearly average length in terms of number of SNP markers. Also, this 

chromosome was of particular interest because our top linkage result for 

mammographic density was on chromosome 10. 

3.2.2.5 Calculation of LOD Scores 

To calculate LOD scores, we used standard multipoint variance components 

methods implemented in SOLAR V4.3.1 [85]. These methods model the quantitative 

trait variance as function of covariates, a major gene at the locus being tested, and the 

residual additive genetic effects. We evaluated the evidence for linkage by comparing 

the likelihood of a model with and without linkage using a standard likelihood ratio test. 

The LOD score is defined as the logarithm, base 10, of the likelihood ratio, or the 

logarithm of the odds of linkage. We calculated LOD scores at a 1cM grid across the 

genome, corresponding to the points at which we estimated IBD sharing probabilities 

using the MCMC algorithm described above.  

3.2.2.6 Averaging LOD Scores 

We ran the MCMC algorithm 12 times, each with a different random start seed, 

to estimate IBD sharing probabilities. We then used each set of IBD sharing probabilities 

to estimate LOD scores. Finally, we combined these 12 LOD scores by averaging them at 

each corresponding grid point across the genome. We used the mean LOD score over 

separate MCMC runs as our measure of evidence for linkage. Using the mean helps to 
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reduce the noise in linkage results that comes from variability in estimating the IBD 

sharing probabilities.  

3.2.2.7 Evaluating the False-Positive Rate 

To evaluate the false-positive rate of our averaging approach to linkage analysis, 

we used gene dropping simulations in MORGAN V3.0.3 [67] conditional on the full 13-

generation Amish pedigree and the genetic map from chromosome 10. Specifically, we 

assigned genotypes for each marker on chromosome 10 to the pedigree founders 

conditional on the observed marker allele frequencies. We then simulated meioses 

through the pedigree to create marker genotypes for all non-founders in the pedigree. 

For each set of simulated genotypes, we also simulated a polygenic quantitative trait 

with total heritability equal to 40%. The quantitative trait was simulated under a null 

model of no linkage to the simulated chromosome. We created 50 replicate data sets 

with genotype and quantitative trait values for all phenotyped study participants. During 

the simulations, we kept track of actual IBD sharing and used these values to calculate 

‘actual LOD scores’ across the chromosome. We then compared the LOD scores from a 

single MCMC run and the average over 12 MCMC runs to the actual LOD scores.  

Our gene dropping simulations allowed us to evaluate chromosome-wide 

significance only for linkage peaks on chromosome 10. Ideally, we would have 

conducted gene dropping simulations genome-wide to determine appropriate empirical 

significance thresholds, however, this was computationally impossible. As an alternative 

to extensive gene dropping simulations, we used the thresholds set forth by Lander and 

Kruglyak (1995) to determine genome-wide significance. A LOD score greater than 1.9 
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indicates suggestive evidence for linkage and a LOD score greater than 3.3 indicates 

significant evidence for linkage. Under the null hypothesis of no linkage, we expect to 

observe a LOD score ≥ 1.9 once across the genome and a LOD score ≥ 3.3 only 1 in 20 

times.  

3.2.3 Computing Resources 

3.2.3.1 Cluster Configuration 

All analyses were run on our shared Linux compute cluster. The full cluster is 

comprised of 65 compute nodes with a total of 588 cores. Forty-one of the compute 

nodes have an Intel Xeon Processor (X5680), dual 6-cores (12 cores), a processor speed 

of 3.3GHz, and 48 GBs of RAM. The remaining 24 compute nodes have an Intel Xeon 

Processor (5160), dual 2-cores (8 cores), a processor speed of 3.00GHz, and 16GB of 

RAM. Each of the 588 cores works as a single central processing unit, or CPU.  

3.2.3.2 Windowing 

MCMC processes are computationally intensive, especially as pedigree 

complexity and marker density increase. Computing time is therefore an important and 

practical consideration when using MCMC methods to estimate IBD sharing 

probabilities. In order to run the MCMC algorithm multiple times genome-wide in a 

reasonable amount of time, we need to use our full compute cluster. However, we had 

limited access to all 588 cores because our compute cluster is a shared lab resource. 

Consequently, we adopted the windowing strategy to maximize use of our available 

computing resources. The benefits of windowing will depend on individual computing 

resources; however, windowing did not change the overall results of our linkage 
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analysis. Specifically, the distribution of the differences in local kinship estimates along 

chromosome 10 was similar with and without windowing (data not shown).  

To estimate IBD sharing probabilities we divided the genome into 20-SNP 

windows with a 10-SNP overlap. To cover the genome once required 361 windows. Each 

window was run in parallel on a single CPU to estimate IBD sharing across the genome. 

Prior simulation work showed a minimal loss in information content using a 20-SNP 

window compared to a full chromosome of SNP data (personal communication with 

Albert Levin, data not shown). Without windowing, each chromosome could be run in 

parallel, however, this would not fully utilize our computing resources and each 

individual process would take longer to run. 

For each trait in our linkage analysis, we calculated LOD scores at a 1cM grid 

within each window. For the overlapping regions of each window, we averaged LOD 

scores across windows. This resulted in a single LOD score at each point along the 

genome. After repeating this process 12 times, we averaged the replicate runs as 

described in section 3.2.2.6  

3.3 Results 

3.3.1 Trimming Amish Pedigrees  

We trimmed our Amish pedigrees in order to create a set of computationally 

tractable pedigrees while maintaining the close relative pairs that are informative for 

linkage analysis. An example pedigree after trimming (bitsize = 96) is shown in Figure 

3.1. This 84-member pedigree had 42 phenotyped individuals in the bottom two 

generations. Large sibships without genotype information for individuals in the 
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preceding generations are especially challenging for estimating IBD sharing probabilities 

via MCMC methods. This pattern of missing data is characteristic of our example 

pedigree (Figure 3.1) and our Amish pedigrees more generally. Consistent with our 

recruiting strategy, there were a large number of sibling pairs (1,254) and many fewer 

parent-offspring pairs (274) in our trimmed pedigrees (Table 3.1). In total, the 1,472 

women in our study were grouped into 177 trimmed pedigrees with bitsize ≤ 100 

(Figure 3.2a). There were with 1-42 phenotyped individuals (Figure 3.2b) and 1-35 

missing individuals (Figure 3.2c) per pedigree. 

3.3.2 MCMC Convergence 

We found that LOD score estimates were highly variable across different MCMC 

runs. For example, Figure 3.3 shows the LOD scores across chromosome 10 for 

mammographic density, our primary trait of interest, based on IBD sharing probabilities 

from 12 separate MCMC runs (1 million iterations each). At the linkage peak with the 

maximum mean LOD score, we observed LOD scores ranging from 1.3 to 3.1 (Figure 3.3, 

gray lines). 

The observed variation in LOD scores was due to differences in estimates of IBD 

sharing probabilities between MCMC runs. For example, Figure 3.4 shows the 

cumulative distribution function (CDF) of differences in local kinship estimates, φj, for all 

pairs of women in our study at a 1cM grid along chromosome 10 for 2 MCMC runs. After 

1 million iterations, only 13% of φj estimates converged to the same value (Figure 3.4, 

black curve). Surprisingly, the majority of the differences in φj estimates were small. In 

fact, only 3.3% of φj had a difference ≥ 0.125 (Figure 3.4, black curve).  
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The differences in kinship estimates between MCMC runs persisted even after a 

30-fold increase in the number of MCMC iterations. For example, after 30 million 

iterations, 2.3% of local kinship coefficients still had a difference ≥ 0.125 (Figure 3.4, red 

curve). This suggests that the MCMC algorithm is stuck at a local maximum and that 

increasing run time will not substantially improve IBD sharing estimates.  

3.3.3 Linkage Analysis of Mammographic Density and Selected Quantitative Traits 

To evaluate evidence for linkage despite the variability in estimates of IBD 

sharing probabilities between MCMC runs, we averaged LOD scores over 12 separate 

MCMC runs. Our top linkage peak was on chromosome 10, with a mean LOD score of 

1.88 (details in Table 3.2). Genome-wide linkage results for mammographic density are 

shown in Figure 3.5. The same variability in LOD scores that were observed on 

chromosome 10 (Figure 3.3) were observed genome-wide (Figure 3.5).  

The high variability in LOD scores based on different MCMC runs was seen across 

all of the quantitative traits we analyzed. The top linkage peaks (mean LOD score ≥ 1.5) 

for all traits are shown in Table 3.2. Still, when a known locus of large effect was 

present, we were able to detect it. For example, the significant linkage peak on 

chromosome 11 for serum MMP1 levels (mean LOD = 10) (Table 3.2) was previously 

reported in another Amish study [90]. This linkage peak can be accounted for by 3 non-

coding SNPs (rs495366, rs12289128, and rs11226373) near the MMP gene cluster on 

chromosome 11q; collectively, they account for 31% of the phenotypic variance in 

serum MMP1 levels [90]. 
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3.3.4 False-Positive Rate of the Mean LOD Score 

Based on simulations under the null hypothesis of no linkage, conditional on our 

Amish pedigrees, we found that using the mean LOD score had lower LOD scores overall 

compared to the a single LOD score estimate and the actual LOD scores. Table 3.3 shows 

the comparison of actual LOD scores to mean LOD scores over the 180 grid points on 

chromosome 10 for the 50 replicates (9,000 total LOD score estimates). The mean LOD 

score never exceeded 1.5, whereas the actual LOD score was greater than 1.5 under a 

model of no linkage 27 times. Large LOD scores in the absence of an actual trait locus 

are likely a result of using the trimmed pedigrees for analysis. The mean LOD score 

appears to average out some of the biases introduced by pedigree trimming.  

 In our simulations, the maximum mean LOD score on chromosome 10 was 1.2. 

Using this threshold, our maximum mean LOD score for mammographic density (1.88) 

has a chromosome-wide p-value ≤ 0.02. At this threshold (LOD > 1.2), we may have 

additional linkage peaks on chromosomes 8p, 2p, and 22p for mammographic density. 

Details about these linkage peaks are in Table 3.2. It is important to note that the 

linkage peaks for mammographic density would not have met our criterion for genome-

wide suggestive evidence of linkage, i.e. mean LOD scores were all less than 1.9.  

3.3.5 Computing Time 

MCMC processes are computationally intensive. The decision to window was a 

practical one, specific to our compute resources and CPU availability. The run time of 

the MCMC algorithm depends on the pedigree structures, sample size, map density, 

chromosome length, and number of iterations. Using chromosome 10 as a 
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representative chromosome, we extrapolated run times of the MCMC algorithm with 

and without windowing for our study (Table 3.4). The MCMC algorithm ran for 4 

continuous days to estimate IBD sharing probabilities across the full chromosome 10. In 

contrast, each 20-SNP window took 0.5 days to run the MCMC algorithm. Chromosome 

10 breaks down into 16 overlapping windows. If we were only using a single CPU, it 

would be more efficient to run the MCMC algorithm for the full chromosome compared 

to windowing (4 versus 8 days, Table 3.4). However, with multiple available CPUs, we 

improved efficiency by running multiple processes in parallel. Using our full compute 

cluster (588 CPUs), estimating IBD sharing probabilities 12 times genome-wide was 

expected to take 4 days with or without windowing (Table 3.4). In the case of 

windowing, however, the computer run time could be divided over 0.5 day blocks of 

time. In contrast, running full chromosomes would require continuous computer run 

time. Because our compute cluster is a shared lab resource, we chose to estimate IBD 

sharing probabilities genome-wide using the windowing approach. This allowed us 

estimate IBD sharing probabilities genome-wide 12 times over 2 weekends without 

disrupting others using the compute cluster during the week.  

For the same pedigrees and genetic marker map, run time scales linearly with 

the number of MCMC iterations. To evaluate convergence, we ran the MCMC algorithm 

for 30 million iterations for the 16 windows covering chromosome 10. Each window 

took 15 days to run. Therefore, while we were able to evaluate a single chromosome, 

this approach would not be a feasible genome-wide.  
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3.4 Discussion 

In family-based studies, genome-wide SNP markers allow researchers to conduct 

both linkage and association analyses. However, linkage analysis with SNPs requires a 

denser marker map compared to previous microsatellite marker maps in order to be 

informative for estimating IBD sharing probabilities [91]. In combination with large 

pedigrees, dense marker maps require the use of MCMC methods to conduct linkage 

analysis. Therefore, evaluating MCMC methods in this context is an important research 

problem.  

The lm-sampler MCMC algorithm failed to converge on stable estimates of IBD 

sharing probabilities for our complex pedigree structures and dense SNP marker map. 

For our study of mammographic density, regardless of how long we ran the MCMC 

algorithm, only 12-13% of local kinship estimates, φj, were the same between MCMC 

runs. Overall, the majority of estimates showed only small differences in probability 

estimates between MCMC runs. While only a small proportion of pairs had large 

discrepancies in φj estimates, these pairs contribute disproportionately to LOD scores 

because they have higher local kinship estimates. Thus, we suspect that the aggregation 

of many small differences in φj estimates and a few very large differences resulted in 

large differences in LOD score estimates between MCMC runs when conducting linkage 

analysis. In the future, it will be important to identify which types of relative pairs have 

the most variable φj estimates to better understand the observed variability in LOD 

scores.  
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 Prior to this study, an evaluation of MCMC methods had not been done for both 

complex pedigrees (bitsize ≤ 100) and a dense genetic marker map (1 SNP/cM). Our 

results are, however, consistent with previous observations about the performance of 

MCMC methods for linkage analysis, even though these studies used smaller pedigrees 

and/or fewer markers. Wijsman et al. observed differences between MCMC based LOD 

score estimates and exact LOD scores for both a small pedigree with a dense SNP 

marker map and a large pedigree with a sparse set of STR markers [81]. Sieh et al. also 

noted that MCMC-based linkage results were “noisier” and likely contained more false-

positives when using a SNP marker map compared to a microsatellite map [78].  

In 2008, Tong and Thompson also recognized the need to improve MCMC 

methods for IBD estimation [79]. Their approach extends the m-step of the lm-sampler 

by sampling a subset of meioses at each iteration instead of just a single meiosis. While 

the software was not available at the time our study was conducted, the sampler has 

now been implemented as lm_auto in the MORGAN V3.0.3 software package [67]. Tong 

and Thompson showed that with a large pedigree (bitsize of 70) and sparse genetic map 

(0.17 SNP/cM), their multiple-meiosis sampler combined with the locus-sampler gave 

more consistent LOD score estimates compared to the original lm-sampler (used in this 

study) [79]. For example, in the center of the marker map the mean difference between 

the estimated and exact LOD score was 0.3 using the lm-sampler and 0.01 using the 

multiple-meiosis sampler after 1 million MCMC iterations. However, our recent, limited 

evaluation of the lm_auto program using default parameters with our trimmed 

pedigrees and marker data from chromosome 10 showed larger differences in IBD 



54 

sharing probability estimates between MCMC runs than the lm-sampler, e.g. 6% of φj 

had a difference ≥ 0.125 versus 3% with the lm-sampler. In the future, a more extensive 

evaluation of the lm_auto program, including optimizing run parameters and starting 

configurations, will be necessary to determine how this sampler performs with complex 

pedigrees and a dense genetic map in terms of consistency and computing time.  

As an interim approach to conducting linkage analysis using current MCMC 

methods, we averaged LOD scores from multiple MCMC runs. Our averaging approach 

likely provided more reliable evidence for linkage compared to the any single linkage 

scan. Using a single MCMC run to estimate LOD scores could have resulted in very 

different interpretations depending on the run, and in this way could be more 

susceptible to false interpretation of linkage signals. For example, in one MCMC run, the 

maximum LOD score on chromosome 10 for mammographic density was 3, and in 

another run it was 1.3. Thus, in one situation, we would have a nearly genome-wide 

significant result, whereas in the other we would not even have suggestive evidence for 

linkage.    

There is clear room for improvement of MCMC methods for estimating IBD 

sharing probabilities with complex pedigrees and dense genetic maps. A limitation of 

the current study is that it is restricted to pedigrees from our Amish study. In the future, 

an evaluation of MCMC methods with more general, but large, pedigrees may be useful 

to others conducting linkage analysis. Specifically, determining what types of pedigree 

configurations, e.g. sibship sizes and missing data rates result in non-converged 

estimates of IBD sharing probabilities for current MCMC methods. This could provide 
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guidance both in the design of future studies, and making decisions on how to optimally 

trim pedigrees when using MCMC methods to estimate IBD sharing probabilities.  

In our study, we chose to trim pedigrees to a bitsize ≤ 100 while maximizing the 

number of phenotyped individuals per pedigree. Trimming our pedigrees to be small 

enough for exact IBD probability calculations, i.e. bitsize < 32, will likely remove too 

many o close relative pairs between and therefore dramatically reduce the power of our 

linkage analysis. Nonetheless, evaluating the impact of different amounts of trimming, 

e.g. bitsize limits of 75 or 50, may be useful in determining the trade-off between 

accuracy, computing time, and the validity of linkage results.  

 Linkage analysis, and more generally IBD sharing methods to prioritize regions of 

the genome harboring rare variants for complex traits, will be increasingly useful as 

next-generation sequencing costs go down. The vast number of variants discovered in a 

sequencing study will require methods to filter the list of likely candidates prior to 

genotyping and testing in large samples of individuals. In family-based studies, linkage 

analysis has the potential to be a useful filter, provided there are accurate methods to 

conduct linkage analyses with dense SNP maps [73, 74]. Therefore, it is important to 

continue to develop and evaluate methods for conducting linkage analysis with complex 

pedigrees and dense genetic maps.  
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Table 3.1: Selected pair-wise relationships among the 1,472 women in our 
mammographic density study 
Pair-wise relationships were determined using SOLAR V4.3.1 [85] after pedigree 
trimming.  

Relationship Type Number of Pairs 

Parent-offspring 274 
Siblings 1,254 

Avuncular 1,119 
Half siblings 5 
1st cousins 4,638 

1st cousins, once removed 2,948 
2nd cousins 1,341 

Other 866 
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Table 3.2: Linkage peaks with LOD ≥ 1.5 for selected traits 
The mean LOD score is the average LOD score based on 12 separate MCMC runs to 
estimate IBD sharing probabilities. All traits were transformed to approximate 
normality, when necessary, and adjusted for age and menopausal status.  

Trait Chr Position (cM) Mean LOD (range) 

dense area 2 1 1.79 (1.03 - 2.90) 

dense area 8 19 1.78 (1.23 - 2.39) 

dense area 10 89 1.88 (1.34 - 3.01) 

non-dense area 17 52 2.02 (1.46 - 3.04) 

non-dense area 17 108 2.36 (1.73 - 3.21) 

percent density 8 26 1.91 (1.30 - 2.83) 

percent density 11 90 1.60 (1.19 - 1.96) 

total area 17 108 1.59 (1.06 - 2.27) 

age at menarche 1 223 1.79 (1.25 - 2.15) 

age at menarche 12 139 1.65 (1.24 - 2.33) 

age at menarche 16 24 1.82 (1.49 - 2.40) 

age at menarche 19 10 1.64 (1.03 - 2.26) 

live birth no. 3 201 1.78 (1.12 - 2.52) 

live birth no. 16 57 3.38 (2.84 - 4.43) 

live birth no. 21 2 2.98 (2.24 - 3.80) 

live birth no. 23 110 1.61 (1.51 - 1.82) 

live birth no. 23 210 3.49 (3.14 - 3.87) 

BMI 3 126 1.96 (1.23 - 2.67) 

BMI 6 122 2.13 (1.59 - 2.96) 

BMI 9 141 1.72 (1.38 - 2.08) 

hip 6 124 2.12 (1.65 - 2.71) 

hip 9 137 2.02 (1.21 - 5.52) 

waist 5 3 1.66 (0.70 - 3.07) 

waist 6 122 2.84 (2.32 - 3.51) 

waist 9 138 1.64 (1.24 - 2.07) 

waist 10 146 2.45 (1.85 - 3.22) 

waist 17 108 1.57 (1.17 - 2.49) 
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Trait Chr Position (cM) Mean LOD (range) 

weight 3 126 1.71 (1.16 - 2.10) 

weight 4 155 1.51 (1.11 - 1.98) 

weight 6 122 1.79 (1.28 - 2.53) 

MMP1 2 0 2.37 (1.20 - 3.66) 

MMP1 2 99 1.85 (1.23 - 2.82) 

MMP1 3 132 1.78 (1.06 - 2.35) 

MMP1 5 180 1.84 (1.09 - 3.04) 

MMP1 6 84 2.34 (1.76 - 3.01) 

MMP1 8 61 3.77 (3.08 - 4.78) 

MMP1 11 108 10.16 (8.97 - 11.2) 

MMP1 17 84 2.08 (1.20 - 2.96) 
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Table 3.3: Agreement between actual LOD scores and the mean LOD score under the 
null hypothesis of no linkage 
We conducted 50 replicate gene dropping simulations for chromosome 10 based on the 
pedigrees, marker map, and allele frequencies observed in our Amish study under the 
null hypothesis of no linkage. For each replicate, we calculated LOD scores at 180 grid 
points along chromosome 10 (1 point/cM), resulting in 9,000 LOD score estimates.  

    Actual LOD   
  

 
0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 TOTAL 

Mean 
LOD 

0-0.5 8,219 344 54 8 0 8,625 
0.5-1 181 115 34 16 1 347 

1-1.5 14 7 5 2 0 28 
1.5-2 0 0 0 0 0 0 
2-2.5 0 0 0 0 0 0 

  TOTAL 8,414 466 93 26 1 9,000 
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Table 3.4. Number of days to compute IBD sharing probabilities 
Compute run times are extrapolated from the time to estimate IBD sharing probabilities 
for chromosome 10 with and without windowing. Chromosome 10 had a total of 161 
SNPs and was covered by 16 20-SNP overlapping windows. IBD sharing probability 
estimates are based on 1 million iterations of the MCMC algorithm conditional on our 
study sample (N = 1,472) and genetic marker map (3,523 SNPs total).  

 
Without windowing With windowing 

  
Number of CPUs 

 
Number of CPUs 

 
# chrs 1 32 588 # windows 1 32 588 

Chromosome 10 (1 time) 1 4 4 4 16 8 0.5 0.5 

Whole Genome (1 time) 23 92 4 4 361 180.5 6 0.5 
Whole Genome (12 times) 276 1,104 36 4 4332 2,166 68 4 
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Figure 3.1: Example Amish pedigree with a bitsize of 96 
This pedigree contains 84 individuals. The squares are males and circles are females. 
Marriage nodes are shown as small dark circles. Filled in solid circles in the bottom 2 
generations are the 42 women in our study of mammographic density with genotype 
and phenotype information in this family. 
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Figure 3.2: Trimmed Amish pedigree size characteristics 
Estimating IBD sharing probabilities via MCMC methods is more difficult as pedigree 
complexity (bitsize = 2n-f) and missing data increase. These histograms show the 
distribution of pedigree bitsize (A), the number of phenotyped individuals per pedigree 
(B), and the number of individuals in each pedigree with missing data (C) in our 177 
pedigrees after trimming.  
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Figure 3.3: LOD scores for mammographic density on chromosome 10 
Detailed plot of LOD scores across chromosome 10 for log-transformed absolute dense 
area adjusted for age and menopausal status. The 12 gray lines show results from the 
individual MCMC runs, and the red line is the mean LOD score. IBD sharing estimates 
were based on MCMC runs with the lm-sampler in Loki after 1 million iterations. 
Chromosome 10q had the largest mean LOD score at 89cM with a 1-LOD support 
interval of 78-102. 
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Figure 3.4: The cumulative distribution function of differences in pair-wise IBD sharing 
probability estimates between MCMC runs 
The cumulative distribution function of the differences in IBD sharing probabilities, 
Δ(φj), estimated along a 1cM grid on chromosome 10 (j = 0 .. 179) for all pairs of women 
in our study from 2 independent MCMC runs. We evaluated convergence of the lm-
sampler in Loki with 1 million (black solid line) or 30 million (red dashed line) iterations 
[88]. 
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Figure 3.5: Genome-wide LOD scores for mammographic density 
The mean LOD scores (red) are plotted across the genome for log-transformed absolute dense area, adjusted for age and 
menopausal status. Individual chromosomes are alternately shaded. The high variability in LOD scores between MCMC runs was 
seen across the genome. The range of LOD score estimates from the 12 separate MCMC runs is shown as the dark gray shadow.  
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Chapter 4  

Determining Sources of Bias in Estimates of the Narrow-Sense Heritability3 

Since the sequencing of the human genome, gene mapping efforts have 

identified thousands of loci associated with hundreds of medically relevant complex 

traits. Still, a substantial fraction of the estimated heritability of these traits remains to 

be explained. One explanation for this so-called “missing heritability problem” is that 

estimates of the heritability of many traits has been over estimated. It has long been 

appreciated that variance components methods can overestimate the additive genetic 

variance, or narrow-sense heritability of a trait, in the presence of gene-gene 

interactions, gene-environment interactions, and/or gene-environment covariance. 

Furthermore, studies in model organisms suggest that these interactions may underlie 

up to half of the observed phenotypic variation [24]. 

Recently, Zuk et al. proposed a new, regression-based method to estimate the 

narrow-sense heritability that is, in theory, robust to the underlying genetic architecture 

[21]. We applied their regression-based method selected traits from our study of 

mammographic density in the Amish and estimated the heritabilites of all traits to be 

~40% lower than variance components based estimates. Before interpreting these 

results as evidence for pervasive interaction effects, we sought to evaluate the 

                                                      
3Shah KP and Douglas JA (2013) Determining Sources of Bias in Estimates of the Narrow-
Sense Heritability. In preparation  
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statistical properties of the proposed estimator using simulations. We evaluate the 

method conditional on our Amish pedigree and evaluate the sensitivity of the method to 

sources of population structure. This was the first study to use a realistic forward 

genetic simulation model to assess the properties of the proposed regression-based 

estimator of heritability. We found that the estimator showed a downward bias, and 

that this bias increased as the expected trait heritability increased. Our results suggest 

caution when interpreting Zuk et al.’s regression-based estimates of the narrow sense 

heritability.  

4.1 Introduction 

While geneticists have been working for decades to identify genetic variants 

underlying trait heritabilities, much of the variance attributed to additive genetic factors 

has yet to be accounted for, the so-called “missing heritability problem” [9]. To date, 

genome-wide association studies (GWAS) have identified >9,000 loci associated with 

>700 quantitative traits and complex diseases [7]. Yet, these loci only explain a small 

fraction of the heritability for these traits.  

Height is a classic example of the missing heritability problem. The heritability of 

height is estimated to be >80% in most populations, meaning that genetic factors can 

account for 80% of the phenotypic variation of height [92]. Despite this high heritability, 

the ~180 loci associated with height, in total, only explain ~12% of the heritability of the 

trait because each locus has a small effect size [4]. Yang et al. suggests that ~45% of the 

variance of height can be attributed to common variants present on SNP genotyping 

arrays, although the effects of these variants are individually too small to detect via 
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GWAS [8]. Even after incorporating aggregate effects of common variants, half of the 

heritability of height remains unaccounted for. This apparent missing heritability has led 

scientists to question the validity of the heritability estimates themselves.  

One explanation for the missing heritability is that the heritability may have been 

over-estimated. In other words, identified genetic factors cannot account for the 

estimated heritability of most traits, resulting in the appearance of missing heritability. 

The variance of a trait (VT) can be partitioned into the variance explained by additive 

and independent genetic factors (VA), dominant genetic factors (VD), and environmental 

factors (VE). Heritability, in the broad-sense, is the total trait variance explained by all 

genetic factors, H2 = (VA+VD)/VT. In contrast, the narrow-sense heritability is defined as 

the proportion of phenotypic variance attributable to only additive genetic effects, h2 = 

VA/VT. Throughout this chapter, ‘heritability’ refers to the narrow-sense heritability, 

unless otherwise noted. Heritability can be estimated by partitioning the observed 

phenotypic correlations between relative pairs in a variance components model. 

However, the variance components model assumes that there is no gene-gene 

interaction, gene-environment interaction, or gene-environment covariance [93]. In 

reality, ignoring the presence of interactions or gene-environment covariance can lead 

to overestimates of the heritability [17-20, 93].  

Zuk et al. present a new method to estimate h2 that is not confounded by the 

effects of gene-gene interactions, gene-environment interactions, and/or gene-

environment covariance [21]. Their method involves using only distantly related 

individuals to estimate h2. As opposed to close relatives, distant relative pairs share a 
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very small proportion of their genome identical by decent (IBD), and therefore are less 

likely to have inherited many interacting loci IBD. Thus, using these pairs to estimate h2 

captures the additive genetic effects, free from the confounding of gene-gene 

interactions. Zuk et al. proposes estimating h2 by regressing the phenotype similarity for 

pairs of individuals on their genetic similarity [21]. They state that their method is best 

applied in isolated populations where the mean relationship coefficient is non-zero, and 

there are many distantly related pairs of individuals from which to estimate h2. In 

addition to helping explain the apparent missing heritability, large differences between 

the regression-based and variance components based h2 estimates may provide 

evidence that interactions will account for some fraction of trait variance.  

To evaluate the evidence for possible interactions, we set out to apply the 

regression-based estimate of h2 to selected traits from our study of mammographic 

density in the Amish. Our Amish study provides the unique opportunity to compare 

heritability estimates from the variance components and regression methods using the 

same dataset and population. Interestingly, we found that the regression-based 

heritability estimates were, on average, 40% lower than the variance components 

estimates regardless of the trait. Before interpreting these large differences in h2 

estimates as evidence for pervasive gene-gene interactions, it was necessary to evaluate 

the statistical properties of the regression-based h2 estimator using a realistic simulation 

model. We evaluate the regression-based estimator using simulations conditional on the 

pedigree structures from our Amish study. We also assess the effects of non-random 

mating in the population and non-random sampling of study participants on the 
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estimates of h2. This study is the first to evaluate the properties of the regression-based 

h2 estimator proposed by Zuk et al. using a realistic model of IBD sharing between study 

participants.  

4.2 Methods 

4.2.1 Family-Based Study of Mammographic Density 

We applied and evaluated the regression-based estimator of h2 using data from 

our family-based study of mammographic density.  All of the women in our study come 

from the Old Order Amish population in Lancaster County, PA. This is an isolated 

founder population that migrated from Europe in the 1700’s. The Amish originated from 

~500 founder individuals, although approximately 95% of the current population can be 

traced back to just 128 founders [28]. Approximately 10-20% of Amish children leave 

the community each generation [30]. However, the high birth rate among the Amish has 

resulted in overall population growth [27, 31]. The current Amish population is 

approximately 30,000-50,000 individuals [28].  

Our study includes complete phenotype information on 1,481 healthy Amish 

women ≥ 40 years old. These women represent nearly half of the current census 

population of Amish women aged 40-80 years old in Lancaster County, PA. Our study 

design focused on recruitment of sibships. Initially, women ≥ 40 years old were only 

eligible for our study if they had a living sister who was also eligible. We later dropped 

this criterion to recruit all women ≥ 40 years old, regardless of whether they had an 

eligible sister. Recruitment was conducted primarily through word-of-mouth and door-

to-door interviews. Therefore, while we sampled nearly half of the eligible population, 
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our sample is likely not a random sample of the population and is enriched for close 

relatives, e.g., sisters and first cousins. Further details about our recruitment strategy, 

including specific inclusion and exclusion criteria, are detailed elsewhere [54].  

All women in our study can be connected into a single 13-generation pedigree 

using the extensive genealogical records from the Anabaptist Genealogical Database 

(AGDB) [34, 35]. We estimated the heritability of selected quantitative traits (11) from 

our study of mammographic density, including absolute measures of the dense and non-

dense area of the breast, percent density, measures of body size, reproductive, and 

menstrual traits. Traits were transformed to approximate normality, when necessary. 

We used a linear regression model to adjust each trait for age and menopausal status 

and obtained studentized residuals from the regression. This was done with the lm() 

function in R, version 2.15.2 [94]. The studentized residuals were used to estimate 

heritabilites.  

4.2.2 Estimating the Narrow-Sense Heritability, h2 

Our initial goal was to apply and compare regression-based and variance 

components-based estimates of h2 for traits from our Amish study to assess the 

potential contribution of gene-gene interactions to the missing heritability. We also 

apply the h2 estimators to quantitative traits simulated under a purely polygenic model 

in order to evaluate the potential for bias in the estimators. Both estimators are 

expected be unbiased when applied to a purely polygenic trait [21, 95]. Applying the 

variance components estimator in this context allows us to make sure our trait 
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simulations are not biased. We can then assess the statistical properties of the 

regression-based estimator using these trait simulations.   

4.2.2.1 Regression-Based h2 Estimate 

Zuk et al. showed a theoretical proof that the slope of the regression line, β, 

from the regression of phenotypic similarity on genetic similarity using distantly related 

pairs of individuals was a consistent estimator of the narrow-sense heritability, 

regardless of the traits genetic architecture. Because distantly related pairs of 

individuals share very little of their genomes identical by decent (IBD), they are unlikely 

to share alleles at interacting loci. Therefore, using only these pairs to estimate h2, 

should result in an estimate of h2 that is not influenced by the effects of gene-gene 

interactions. The regression only includes pairs of individuals with a relationship 

coefficient in some small neighborhood,  , of the mean relationship coefficient,   . Zuk et 

al. proved that              is a consistent estimator of the heritability as     . 

Following the suggestion of Zuk et al. we defined distantly related pairs as those 

with a relationship coefficient,      , where     . Therefore, the range of relationship 

coefficients we used was 0 to    . The relationship coefficient is defined as the 

proportion of the genome shared identical by decent (IBD) between a pair of individuals, 

or twice the pair-wise kinship coefficient. We calculated pedigree-based pair-wise 

kinship coefficients (and in turn relationship coefficients) using the matrix method 

described by Lange [66] and implemented in MENDEL version 13.0.0.  

We used ordinary least squares regression to model the relationship between 

the products of the trait values between pairs (phenotypic similarity) on their 
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relationship coefficients (genetic similarity) for distantly related pairs of individuals. 

Regression was done using the lm() function in R, version 2.15.2 [94].  

4.2.2.2 Variance Components Estimate of h2 

We used the variance components model as an alternative method to estimate 

h2. The variance components model we used partitions the total trait variance into the 

variance explained by additive genetic factors and residual unshared environmental 

factors. In order to accurately account for marriage loops in our pedigree, we estimated 

the expected probabilities of Jacquard’s condensed identity coefficients (described in 

[66]) using IdCoefs V2.1 [96]. From the 9 identity coefficients, Δ1 – Δ9, we calculate the 

pair-wise kinship coefficients between all pairs of study participants. In order to 

estimate the heritability using the variance components model in SOLAR V4.3.1, we 

need the estimates of the kinship coefficient and Δ7, or the probability a pair of 

individuals shares 2 alleles IBD. We imported these values into the variance components 

model implemented in the polygenic function in SOLAR V4.3.1 [85]. For computational 

reasons, we were only able to estimate h2 using variance components for the traits 

simulated based on our Amish pedigree. The pedigrees from our simulated isolated 

population (described below) were too large and computationally intensive to obtain a 

variance components-based h2 estimate. Specifically, the 48GB of RAM on our shared 

compute cluster nodes was not sufficient to calculate identity coefficients in IdCoefs 

V2.1 on the full simulated pedigrees. There was also insufficient memory to run SOLAR 

V4.3.1 on the full simulated pedigrees.    
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4.2.3 Simulations to Evaluate the Regression-Based Estimator of h2 

4.2.3.1 Simulated Population Isolate 

We used forward genetic simulations to create a set of related individuals from 

which to draw a study sample to evaluate the regression-based estimator of h2. To 

simulate an isolated founder population, we started with a set of 100 unrelated 

founders, and then simulated mating forward in time for 14 non-overlapping 

generations. At each generation, we allowed only 50% of the population to successfully 

reproduce to generate offspring into the next generation. Each pair of individuals that 

successfully reproduces has N offspring, were N ~Poisson (6), meaning the average 

number of offspring is 6. We choose these parameters to create a final population size 

that was similar to the current-day Amish population [30]. Each simulation results in a 

14-generation pedigree connecting all individuals in the population to the original 100 

founders. All of our simulations were done in R version 2.15.2 [94]. 

4.2.3.2 Quantitative Trait Simulations with a Polygenic Model 

In order to evaluate the bias of the regression-based h2 estimator, we simulated 

a purely polygenic quantitative trait using the genedrop function in MORGAN [67]. 

Specifically, we simulated a polygenic trait by sampling from a multivariate normal 

distribution. We repeatedly simulated a quantitative trait with h2 equal to 20, 40, 60, or 

80% of the total trait variance. We chose these simulation parameters to test the full 

range of estimated heritablities from our real data (Table 4.2). To evaluate the 

performance of the regression-based estimator in the context of our mammographic 

density study, we simulated 1,000 replicate traits for each heritability value tested, 
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conditional on our Amish pedigree. To evaluate the effects of non-random mating or 

non-random sampling, we simulated 10 study samples per sampling scheme (described 

below) and then simulated 100 replicate traits per study sample to result in 1,000 

simulations per heritability.  

We standardized each trait to have a mean of 0 and variance of 1 before 

estimating h2. We then estimated the h2 of the trait using the regression-based method 

described by Zuk et al. [21] and in section 4.2.2.1 above. We truncated our h2 estimates 

at 0 and 1 if they were estimated to be < 0 or > 1, respectively. We determined the bias 

by subtracting the mean h2 estimate from the expected (simulated) h2. Since we 

simulated an additive trait using the polygenic model, we expect the estimated h2 to be 

equal to the simulated value. The bias was significantly different from 0 if the mean h2 

estimate ± 1.96 times the standard error of the mean, i.e. the 95% confidence interval 

around the mean, did not include the expected value. In other words, we used a p-value 

threshold 5% to determine significance.  

4.2.3.3 Random Mating, Random Sampling 

Using the scheme described above, we simulated an isolated population with 

random mating. To select a study sample, we then randomly chose 1,500 individuals 

from the final 2 generations. This was meant to mimic the current-day population. In 

our results, we refer to this as the ‘Random’ sample. We simulated 10 replicate study 

samples. For each study sample, we trimmed the pedigree in MENDEL version 13.0.0 

[97] to include only the individuals necessary to relate the 1,500 study participants. We 

calculated kinship coefficients based on the pedigree using MENDEL version 13.0.0 [66].  
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4.2.3.4 Random Mating, Non-Random Sampling 

From our randomly mating simulated populations, we also selected a non-

random study sample to mimic our Amish study recruitment strategy. We selected a 

study sample (N = 1,500) from the final 2 generations of the simulate population based 

on sibships. We sampled sets of siblings in proportion to our observed distribution of 

sibship sizes for our Amish study (Table 4.1). In our results, we refer to this as the 

‘Siblings’ sample.  

To create a more extreme non-random sampling scheme, we also selected a 

study sample around probands. The goal of our proband sampling scheme was to be an 

extreme case of the word-of-mouth recruitment we used in our Amish sample. The 

Amish live in small church districts of ~12 closely related families [98]. Thus, the word-

of-mouth recruitment in our density study likely led to recruiting sets of close relatives. 

To create our study sample, we selected an individual, the proband, at random from the 

final 2 generations of the simulated population, and then sampled all of the proband’s 

relatives out to 2nd cousins. We repeated this process until we had a study sample of 

1,500 individuals. If the sample was over 1,500 individuals, we randomly removed the 

extra individuals from the sample. In our results, we refer to this as the ‘Probands’ 

sample.  

We created 10 replicate study samples each for the ‘Siblings‘ and ‘Probands’ 

simulations. For each of the resulting study samples, we trimmed the pedigree and 

calculated kinship coefficients in MENDEL version 13.0.0 [66, 97]. 
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4.2.3.5 Non-Random Mating, Random Sampling 

Finally, we used forward genetic simulations, with the parameters described 

above, to simulate a structured population with non-random mating. We did this by 

simulating 1 generation of random mating between the 100 founders, followed by 13 

generations of non-random mating. Specifically, after the first generation, we split the 

population into 2 subpopulations and only allowed random mating within each 

subpopulation for the subsequent 13 generations. We then selected a study sample (N = 

1,500) at random from the final 2 generations of the simulated population. Similar to 

the previous simulations, we trimmed the pedigree and calculated kinship coefficients in 

MENDEL version 13.0.0 [66, 97] for 10 replicate study samples. In our results, we refer 

to this as the ‘Structured’ sample.  

4.3 Results 

4.3.1 Pedigree Characteristics 

The distribution of relationship coefficients, r, between all pairs and distantly 

related pairs of individuals from our Amish study is shown in Figure 4.1. Our Amish 

sample had a mean relationship coefficient of 0.0719. Therefore, on average, any two 

Amish individuals were more closely related than 2nd cousins but less than 1st cousins, 

once removed. We classified 98.4% of pairs as distantly related and included them in the 

regression-based estimates of h2 (Figure 4.1B, Table 4.3). The distribution of sibship 

sizes is shown in Table 4.1. On average, the sibships in our Amish study contained 2 

individuals, and 76% of women had at least one sister in the study. This is consistent 

with our emphasis on recruiting sisters early in the study.  
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For each of our simulated study scenarios, the distribution of relationship 

coefficients for 1 of the 10 replicates is shown, as a representative example, in Figure 

4.2 - Figure 4.5. Summary statistics of the relationship coefficient distribution for the 

representative simulated study samples are shown in Table 4.3. Details for all replicate 

study samples are shown in Appendix 6.  

The mean relationship coefficient,   , for all pairs of women was between 0.0557 

– 0.0668 for our simulated study samples. For the randomly mating simulations, as 

expected, the ‘Random’ sample had the lowest mean relationship coefficient because 

this sample was not selected to enrich for close relative pairs (Table 4.3). As with our 

Amish study, greater than 90% of pairs from our simulated pedigrees had a relationship 

coefficient between 0 and   , and were used in the regression-based estimates of h2 

(Table 4.3). 

The sibship size distribution from the ‘Siblings’ sample is similar to our Amish 

sibship size distribution, as intended (Table 4.1). The mean sibship size was 2 for both 

the ‘Siblings’ sample and the Amish sample. Not surprisingly, the ‘Proband’ sample had 

the largest mean sibship size (~5). This is consistent with the sampling of all close 

relatives of the proband in this sampling scheme. For our 10 ‘Proband’ samples, we 

selected, on average, 5 probands, and ~319 close relatives (out to 2nd cousins) around 

each proband to generate a sample of 1,500 individuals. 

 The non-randomly mating, randomly sampled (Structured) simulated sample had 

a mean relationship coefficient similar to that of the randomly mating ‘Random’ sample, 

0.0557 and 0.0608 respectively (Table 4.3). However, the overall distribution of the pair-
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wise relationship coefficients from these two simulated samples is very different (Figure 

4.5 and Figure 4.2, respectively). The distribution of r from the ‘Structured’ sample has 3 

peaks (Figure 4.5). The 2 smaller peaks, centered at 0.15 and 0.07, correspond to the 

within group mean relationship coefficients in the 2 subpopulations (Figure 4.5). By 

chance, one subpopulation was smaller than the other, and therefore had a larger 

within group mean relationship coefficient. The large peak in the relationship coefficient 

distribution at 0.02 corresponds to the pairs of individuals between subpopulations 

(Figure 4.5). Because of the 1st generation of random mating, followed by separation for 

13 generations, these pairs are more distantly related than the within group pairs, and 

therefore are expected to have lower relationship coefficients. 

4.3.2 Heritability Estimates: Amish Study Sample 

We estimated the narrow-sense heritability using the variance components 

model and the regression-based method for 11 quantitative traits from our Amish study 

of mammographic density. The variance components h2 estimates ranged from 0.45-

0.83. In contrast, the regression-based estimates ranged from 0.03-0.47. All of the traits 

had h2 estimates significantly greater than 0 using the variance components model (p < 

0.05, Table 4.2). The regression-based h2 estimates were significantly different from 0 

for all traits, except BMI and age at natural menopause (p < 0.05, Table 4.2). On average, 

the regression-based h2 estimates were 40% lower than the variance components 

estimates (Table 4.2).   

Because we observed consistently lower regression-based h2 estimates for the 

traits from our Amish study, we used simulations to evaluate the potential bias of the 
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regression-based h2 estimator conditional on the Amish pedigrees. Our simulations 

showed that regardless of the simulated h2 of the quantitative trait (20-80%), the 

regression-based estimate was ~60% lower than expected. For example, when we 

simulated a polygenic trait with h2 = 40% conditional on our Amish pedigree, the mean 

regression-based h2 estimate was 16% (standard deviation = 11%) (Figure 4.6). In 

contrast, when we estimated h2 for our simulated traits using the variance components 

model, the mean estimate (from 1,000 replicate simulations) was not significantly 

different from expectation. Specifically, for each mean h2 estimate using the variance 

components method, the 95% confidence interval around the mean included the 

expected simulated value (Figure 4.6). As expected, the variance components model 

was unbiased under additivity. The downward bias of the regression-based h2 estimator, 

conditional on the pedigree from our Amish study, is consistent with the decreased h2 

estimates seen in our real data (Table 4.2).   

4.3.3 Heritability Estimates: Simulated Study Samples 

The regression-based h2 estimator was biased downward for the simulated 

polygenic quantitative traits conditional on our randomly mating, randomly sampled 

(Random) study sample when h2 > 20% (Figure 4.7). When h2 = 20%, there was no 

significant bias. However, as the simulated h2 increased, the bias increased. For 

example, when the simulated h2 was 80%, the estimated h2 was 70.5% (standard 

deviation = 25%), or about 12% lower than expected. This slight downward bias, even 

with the randomly mating, randomly sampled simulated study sample, was consistent 

regardless of sample size. For example, when we doubled the study sample to 3,000 
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individuals, the regression-based h2 estimates were still, on average, 10% lower than 

expected when the trait had a simulated h2 of 80% (data not shown).  

The downward bias of the regression-based h2 estimate was larger when we 

simulated a randomly mating, non-randomly sampled study sample. Again, the bias was 

only seen when the simulated h2 exceeded 20%. For example, with a simulated trait 

with h2 = 80%, the mean regression-based estimate of h2 for the ‘Siblings’ and 

‘Probands’ samples were 66% (standard deviation = 31%) and 56% (standard deviation = 

38%), respectively (Figure 4.7). These estimates are 18% and 30% lower than expected.  

Not surprisingly, the h2 estimates from our non-randomly mating, randomly 

sampled simulations (Structured) had the largest downward bias of our simulated study 

samples. As with our other simulations, the bias increased with h2. For example, the 

mean regression-based h2 estimate was 8% lower than expected when the trait was 

simulated with h2 = 20%, and 42% lower than expected when h2 was set to 80% (Figure 

4.7). For a trait with simulated h2 = 20%, the bias was, however, not significantly 

different from 0 (p-value > 0.05).  

4.4 Discussion 

The goal of this study was to apply a new regression-based estimator of h2 to 

quantitative traits from our Amish study of mammographic density. We set out to 

compare h2 estimates from this new regression-based method, not confounded by 

gene-gene interactions, with the variance components estimates of h2, in order to 

evaluate the potential role of gene-gene interactions in accounting for the missing 

heritability. Motivated by our finding that the regression-based h2 estimates were 
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consistently lower than the variance components-based estimate by ~40%, we used 

simulations to assess the potential bias in the h2 estimators under a purely polygenic 

model.   

We comprehensively evaluated the bias of the estimator, conditional on the 

Amish pedigree from our mammographic density study and simulated pedigrees with 

varying degrees of population structure. Surprisingly, the regression-based h2 estimator 

consistently underestimated the narrow-sense heritability when applied to a 

quantitative trait simulated under a polygenic model. The bias became more 

pronounced as the simulated trait heritability increased. The downward bias was 

highest in our trait simulations conditional on our Amish pedigree; estimates were on 

average 60% lower than expectation. Our simulations confirmed that the lower 

heritability estimates seen for our real data are likely an artifact of the estimation 

method, and therefore should be interpreted with caution.  

Unexpectedly, we found a small but significant bias in the regression-based h2 

estimates with our randomly mating, randomly sampled simulations. These simulations 

were designed to represent an ideal random sample from a randomly mating 

population. However, even in this best-case scenario, there was a downward bias in the 

h2 estimates. In their original description of the regression-based estimator, Zuk et al. 

performed a limited evaluation of the consistency of the estimator using simulations 

[21]. To create a study sample of related individuals, they generated a set of 1,000 

individuals with chromosomes generated as a mosaic of 28 founders. Their approach did 

not fully model mating over many generations to create an isolated population as our, 
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more realistic, simulations did. They simulated a quantitative trait using their limited 

pathway model of interactions with narrow-sense heritability of 25%. Their results 

showed the estimator to be unbiased in this scenario. These results are similar to our 

observation that the estimator is unbiased at a heritability of 20%. However, they did 

not evaluate and report a broader range of heritabilities so we could not make further 

comparisons to the bias we observed as the simulated h2 increased. 

Compared to those of Zuk et al., the simulation models we used are very 

different in terms of how we simulated a study sample and quantitative trait. While 

both methods resulted in a set of distantly related individuals with quantitative trait 

values to estimate the narrow-sense heritability, the distribution of relationship 

coefficients was quite different. The mean relationship coefficient in the simulations 

conducted by Zuk et al. was 3.6%, whereas in our randomly mating, randomly sampled 

(Random) simulation the mean relationship coefficient was 6.1%. Therefore, when 

defining distantly related pairs as those with a relationship coefficient between 0 and 

   , our range was much larger. Specifically, the range of relationship coefficients used 

by Zuk et al. was from 0 to 7.2%, whereas the range for our ‘Random’ sample was 0 to 

12.2%. However, Zuk et al. showed that the regression-based estimator is consistent as 

the neighborhood of relationship coefficients around the mean goes to 0. Interestingly, 

we observed a similar downward bias of the heritability estimates for the ‘Random’ 

sample even when we used a smaller range of relationship coefficients in the regression. 

For example, when we simulated a trait with h2 equal to 80%, the mean regression-
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based estimate was 71% when the range of relationship coefficients was from 0 to 

12.2% and 68% when the range was decreased to 3..1% to 9.2% (Appendix 7).  

The downward bias we observed in our non-randomly mating simulated study 

sample (Structured) was consistent with our expectations. The regression-based method 

assumes that the study sample is selected from a randomly mating population. Our 

structured population was, by design, not randomly mating. These results are consistent 

with previous observations of downward bias when applying the method to a study 

sample from Northern Finland, an isolated population with well documented population 

structure [99]. As observed with our ‘Structured’ population, the higher relationship 

coefficients within subpopulations and lower relationship coefficients between 

subpopulations drive the regression-based heritability estimates toward the null 

hypothesis of 0, and therefore create an overall downward bias. Using our simulated 

data, we also showed that when we split the study sample into homogenous subgroups 

using only pairs of individuals from the same subpopulation, the bias in the h2 estimator 

is reduced and similar to that seen with the randomly mating, randomly sampled study 

sample (data not shown).  

We also observed a downward bias, however to a lesser extent, in our randomly 

mating, but non-randomly sampled study samples (Siblings and Probands). We suspect 

that this bias comes from the small amount of population structure induced by our 

sampling scheme. By over-sampling close relative pairs, we created groups within the 

study sample that are more closely related to each other than individuals from other 

groups, similar to the subpopulations seen with our structured study sample. The 
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‘Probands’ sample was more biased than the ‘Siblings’ sample, likely because of the 

inclusion of many more close relatives in the sample. Therefore, regardless of 

detectable non-random mating in the source population, or non-random sampling of 

study participants, the regression-based h2 estimator increasingly underestimates h2 as 

the expected value of h2 increases. In the case of our Amish study sample, the observed 

bias could be caused by both non-random mating and non-random sampling.  

The regression-based method to estimate h2 was originally proposed for use 

with observed IBD sharing estimated from genome-wide marker data [21]. For this 

study, we use the expected, instead of observed, IBD sharing determined by the 

pedigree relationship between pairs of study participants. In our forward genetic 

simulations, the use of expected relationship coefficients dramatically reduces the 

computational complexity of the simulation model. In our Amish study, we found that 

pedigree-based and genome-based estimates of the relationship coefficient were largely 

consistent (data not shown), and therefore we expect h2 estimates to agree. If IBD 

sharing can be estimated accurately, using the observed sharing between individuals to 

calculate h2 should result in more precise h2 estimates. Thus, while the use of expected 

relationship coefficients increases the overall error of the h2 estimate, it should not 

induce the downward bias we observed in our simulations. 

 Genome-wide association studies have identified 1000’s of variants associated 

with 100’s of traits, however, for most complex traits, much of the heritability remains 

unexplained [4, 10]. A possible explanation for this so-called “missing heritability” 

problem is that the narrow-sense heritability of many traits has been overestimated 
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because of the presence of gene-gene interactions, gene-environment interactions, 

and/or gene-environment covariance. While statistical methods are typically 

underpowered to identify interacting loci in human studies of complex traits [22, 23], 

observations in model organisms suggest that interactions may play a large role in the 

heritability of most traits [24-26]. In order to evaluate the extent to which the 

heritability of traits in our own study of mammographic density have been 

overestimated, we sought to apply a newly proposed regression-based method to 

estimate h2. In theory, the regression-based method should yield an unbiased estimate 

of h2, regardless of the underlying genetic architecture. However, we found that when 

applied to data simulated under a polygenic model, the estimator is biased downward. 

While these results may be specific to our Amish pedigree and/or the parameters of our 

simulation model, they do warrant caution when interpreting the results based on this 

method. In the future, it will be important to use simulations to evaluate the potential 

for bias in specific study samples before applying the regression-based method to 

estimate trait heritabilities. 
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Table 4.1: Distribution of sibship sizes for our Amish sample and simulated samples 
The distribution of sibship sizes for our density study (Amish, N = 1,481) and our 
simulated study samples (N = 1,500): random mating, random sampling (Random), 
random mating, non-random sampling (Siblings and Probands), and non-random 
mating, random sampling (Structured).  

 
Frequency (%) 

Sibship Size Amish Siblings1 Random1 Probands1 Structured1 

1 356 (48) 349 (47) 1159 (88) 6 (2) 1099 (85) 
2 197 (26) 207 (28) 151 (11) 19 (7) 173 (13) 
3 100 (13) 104 (14) 12 (1) 36 (13) 17 (1) 

4 52 (7) 50 (7) 1 (<1) 46 (16) 1 (<1) 
5 25 (3) 25 (3) - 49 (18) 0.2 (<1) 
6 10 (1) 11 (2) - 44 (16) - 
7 3 (<1) 3 (<1) - 35 (12) - 
8 1 (<1) 1 (<1) - 19 (7) - 
9 1 (<1) 1 (<1) - 13 (5) - 

10 - - - 5 (2) - 
11 - - - 4 (2) - 
12 - - - 2 (1) - 
13 - - - 1 (<1) - 

14 - - - 0.2 (<1) - 
15 - - - 0.2 (<1) - 

1Distribution is the mean over 10 replicate simulations 
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Table 4.2: Comparison of heritability estimates for selected traits from our study of 
mammographic density 
We transformed traits to approximate normality, and adjusted for age and menopausal 
status. We estimated h2 using the studentized residuals after covariant adjustment. 
Both methods incorporate the full 13-generation Amish pedigree to determine pair-wise 
relationships. Except where noted, all traits had an estimated narrow-sense heritability 
that was significantly greater than 0 (p-value < 0.05). The sample size for all traits was 
1,481 except where noted. 

 
h2 Estimate (S.E.) Ratio of h2 Estimates: 

Regression/Variance 
Components Trait 

Variance 
Components Regressionc 

Dense Area 0.49 (0.07) 0.20 (0.05) 0.41 

Percent Density 0.45 (0.06) 0.20 (0.05) 0.44 

Nondense Area 0.72 (0.06) 0.31 (0.05) 0.44 

Age at Menarche 0.56 (0.07) 0.21 (0.05) 0.37 

Nat Age at Menoa,b 0.47 (0.11) 0.03 (0.10) 0.06 

Height 0.83 (0.06) 0.40 (0.05) 0.48 

Weight 0.60 (0.07) 0.17 (0.05) 0.28 

BMIb 0.50 (0.07) 0.09 (0.05) 0.18 

Waist 0.51 (0.06) 0.29 (0.05) 0.57 

Hip 0.56 (0.07) 0.12 (0.05) 0.22 

WHR 0.52 (0.06) 0.47 (0.05) 0.89 
aSample size for Nat Age at Meno = 671 

bThe regression-based estimates of h2 for Nat Age at Meno (p = 0.79) and BMI (p = 

0.053) were not significantly different from 0.  
cThe regression-based estimates of h2 included pairs of individuals with a relationship 

coefficient between 0 and    , where    is the mean relationship coefficient in the full 

sample 
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Table 4.3: Summary statistics of the relationship coefficient (r) distribution for our Amish sample and simulated samples 
Summary statistics for all pairs (All) and distantly related pairs (Distant) for each study sample. Summary for the Amish (N = 1,481) 
and simulated study samples (N = 1,500): random mating, random sampling (Random), random mating, non-random sampling 
(Siblings and Probands), and non-random mating, random sampling (Structured). A pair of individuals is defined as distantly related if 
their relationship coefficient,          , where    is the overall mean relationship coefficient. Only distantly related pairs were 
included in the regression-based h2 estimates.  

Sample 
Number of Pairs Mean r (SD) Range of r 

All Distant All Distant All Distant 

Amish 1,095,940 1,078,528 (98.4%) 0.0719 (0.031) 0.0693 (0.019) 0.0009 - 0.5990 0.0009 - 0.1437 
Randoma 1,124,250 1,121,585 (99.8%) 0.0608 (0.011) 0.0604 (0.005) 0.0523 - 0.7870 0.0523 - 0.1216 
Siblingsa 1,124,250 1,120,584 (99.7%) 0.0613 (0.019) 0.0604 (0.005) 0.0530 - 0.6130 0.0530 - 0.1225 

Probandsa 1,124,250 1,103,551 (98.2%) 0.0668 (0.037) 0.0628 (0.010) 0.0536 - 0.6031 0.0536 - 0.1329 
Structureda 1,124,250 1,033,846 (92.0%) 0.0557 (0.038) 0.0475 (0.025) 0.0167 - 0.6264 0.0167 - 0.1112 

aValues for our simulated study samples are based on a single representative sample of the 10 replicates (corresponding to Figure 
4.2 - Figure 4.5). Details for each replicate are given in Appendix 6. 
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Figure 4.1: Distribution of pair-wise relationship coefficients from our study of 
mammographic density 
The distributions of relationship coefficients, r, for all pairs (panel A) or distantly related 
pairs (panel B) from our Amish study of mammographic density. The dashed line shows 
the mean pair-wise relationship coefficient,   , based on all pairs of women.  
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Figure 4.2: Distribution of pair-wise relationship coefficients for the simulated 
‘Random’ sample 
Representative distributions of relationship coefficients, r, for all pairs (panel A) or 
distantly related individuals (panel B) from our randomly mating, randomly sampled 
study sample (Random). The dashed line shows the mean pair-wise relationship 
coefficient,   , based on all pairs of individuals.  
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Figure 4.3: Distribution of pair-wise relationship coefficients for the simulated 
‘Siblings’ sample 
Representative distributions of relationship coefficients, r, for all pairs (panel A) or 
distantly related individuals (panel B) from our randomly mating study sample, sampled 
around sibships (Siblings). The dashed line shows the mean pair-wise relationship 
coefficient,   , based on all pairs of individuals.  
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Figure 4.4: Distribution of pair-wise relationship coefficients for the simulated 
‘Probands’ sample 
Representative distributions of relationship coefficients, r, for all pairs (panel A) or 
distantly related individuals (panel B) from our randomly mating study sample, sampled 
around probands (Probands). The dashed line shows the mean pair-wise relationship 
coefficient,   , based on all pairs of individuals. 
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Figure 4.5: Distribution of pair-wise relationship coefficients for the simulated 
‘Structured’ sample 
Representative distributions of relationship coefficients, r, for all pairs (panel A) or 
distantly related individuals (panel B) from our non-randomly mating, randomly sampled 
study sample (Structured). The dashed line shows the mean pair-wise relationship 
coefficient,   , based on all pairs of individuals.  
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Figure 4.6: Variance components- and regression-based h2 estimates conditional on 
the pedigree from our Amish study of mammographic density 
A comparison of the mean heritability estimates over the 1,000 replicate simulations of 
a purely polygenic quantitative trait for each simulated trait heritability using the 
variance components model and regression method. The error bars represent the 95% 
confidence interval around the mean. 
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Figure 4.7: Regression-based h2 estimates for simulated study samples 
The mean heritability estimate using the regression-based method over the 1,000 
replicate simulations for each sampling scheme (Random, Siblings, Probands, or 
Structured). The error bars represent the 95% confidence interval around the mean.  
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Chapter 5  

Conclusions 

After nearly a decade of genome-wide association studies, with thousands of 

identified loci for hundreds of traits, it is clear that the genetic architecture of complex 

traits is more complicated than previously anticipated. While most traits are heritable, 

finding the individual genetic factors that underlie this heritability has proven to be a 

challenge. The missing heritability will likely be accounted for by a combination of 

common variants with smaller effects, rare variants, structural variants, gene-gene 

interactions, and gene-environment interactions. The studies in this dissertation aimed 

to develop and evaluate strategies to assess possible sources of the missing heritability 

by taking advantage of the relatedness of individuals in family-based studies. In 

Chapters 2 and 3, I evaluated the potential contribution of rare variants to the missing 

heritability of quantitative traits. In Chapter 4, I evaluated the statistical properties of a 

new regression-based heritability estimator with the intention of assessing the 

contribution of gene-gene interactions to the missing heritability of quantitative traits.  

5.1 The Contribution of Rare Variants to the Missing Heritability 

Large scale DNA sequencing projects of thousands of individuals worldwide have 

discovered many more rare variants than previously anticipated [100-102]. Each one of 

us may carry ~10,000 rare non-synonymous variants that alter protein sequence [100]. 

However, the phenotypic consequence of these variants is largely unknown. Gene 
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mapping efforts will allow us to better understand how specific variants relate to 

variation in phenotypes between individuals. The goal of Chapter 2 and 3 was to assess 

the possible contribution of rare variants to the missing heritability of quantitative 

traits.  

In Chapter 2, I developed and evaluated a novel statistical test, the rare variant 

kinship test (RVKT), to prioritize traits likely to be influenced by a rare variant, and are 

thus likely to be successful in an extreme trait sequencing study. The test identifies traits 

with an excess of closely related individuals in the tail of the quantitative trait 

distribution relative to the expected relatedness under a polygenic model. While this 

test was underpowered, I found evidence for a rare variant influencing 4 of the 

quantitative traits from two of our Amish studies. One of the traits, triglyceride levels in 

the HAPI Heart study, served as a proof of principle. A mutation in the APOC3 gene 

associated with lower triglycerides was already identified in this study [45]. The 

remaining 3 traits identified using the RVKT: prolactin, free estradiol, and estradiol, are 

now prime candidates for extreme trait sequencing studies. In the future, sequencing 

the individuals in the tails of the trait distribution for these traits may identify rare, trait-

influencing variants. Therefore, there is the potential to further dissect the heritability of 

these traits. While I had 4 significant results, for the remaining 72 traits I tested across 

both Amish studies had little evidence for the presence of a rare variant of large effect. 

Therefore, for these traits, in this population, rare variants of large effect are unlikely to 

account for the remaining missing heritability. 
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In Chapter 3, I conducted linkage analysis for a number of traits related to breast 

cancer risk and identified some of the major challenges of conducting linkage with 

complex pedigrees and dense SNP marker maps. In general, I found that current 

Markov-chain Monte Carlo (MCMC) methods do not converge on stable estimates of 

IBD sharing probabilities in our study. Furthermore, this led to a high degree of 

variability in LOD score estimates from linkage analyses. As a starting point to conduct 

linkage analysis despite the highly variable LOD score estimates, I used the average LOD 

score over many MCMC runs as our measure of evidence for linkage. Using this 

approach I identified candidate regions for a number of traits, however, very few traits 

had genome-wide significant evidence for linkage (LOD > 3.3). Regardless, the identified 

linkage peaks may be a useful starting place to filter variants identified by DNA 

sequencing in the future.  

As dense SNP markers maps become commonplace for linkage analysis, it will be 

important to continue work in this area to improve methods for linkage analysis. A key 

next step to improving MCMC methods will be to better understand why the linkage 

results were so variable. To do this I will need to identify the individuals and families 

that had largest differences in local kinship estimates between MCMC runs. By knowing 

specifically the types of pedigree configurations and relative pairs that are challenging 

for MCMC methods, I can start to explore potential solutions to the problem. One 

potential way to improve MCMC convergence is by optimizing the multiple-meiosis 

sampler [79]. Unfortunately, at the time that our linkage analysis was conducted, the 

software implementation of the multiple-meiosis sampler was not available. However, 



100 

in the future, I can optimize the multiple-meiosis sampler to sub-sample the types of 

relative pairs that are most challenging for MCMC methods. For example, the multiple-

meiosis sampler currently has the option to sample a full sibship or 3-generation 

pedigree simultaneously [79].  

While the results of Chapters 2 and 3 are not surprising, they may be useful for 

guiding future gene mapping efforts. It is an exceptional case to identify a rare variant 

that has a large effect on a complex trait. While there are few known examples in the 

Amish [39, 45, 48], the work in these two chapters shows that these are likely the 

exception, not the rule. It is therefore important to gain evidence of the presence of a 

rare, trait-associated variant prior to conducting expensive DNA sequencing studies. The 

RVKT described in Chapter 2 allows users to assess the evidence for a rare variant of 

large effect without conducting expensive genotyping or sequencing studies. With the 

addition of genome-wide marker data, linkage analysis too provides evidence for rare 

variants of large effect in a relatively cost effective manner. Therefore, the methods 

developed and evaluated in Chapters 2 and 3 of this dissertation provide valuable 

insights into the genetic architecture of quantitative traits. For most of the traits from 

our Amish studies, it is clear that there are unlikely new rare variants of large effect to 

be discovered.  

5.2 The Contribution of Gene-Gene Interactions to the Missing Heritability 

Our current knowledge about the operation of biological systems in pathways 

suggests that gene-gene interactions may play a role in explaining the missing 

heritability. While genome-wide interaction studies are difficult to undertake in humans, 
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in model organisms it is clear that up to half of the heritability of many gene expression 

quantitative traits can be explained by gene-gene interactions [24]. Therefore, in 

Chapter 4 of this dissertation I set out to evaluate the overall contribution of gene-gene 

interactions to selected quantitative traits from our study of mammographic density. To 

do so, I planned on comparing heritability estimates from a variance components 

model, known to be inflated in the presence of the interactions, and a regression-based 

approach that is not confounded by the presence of interactions. In the process, I 

discovered that the regression-based estimator of heritability had a downward bias for 

even a purely polygenic trait, meaning no gene-gene interactions. Therefore, I could not 

interpret differences between heritability estimates as evidence for the influence of 

gene-gene interactions.  

While the results of Chapter 4 were unable to provide insights into the 

contribution of gene-gene interactions to the missing heritability, the work raises many 

other questions about the utility of the newly proposed regression-based heritability 

estimator. It is clear that the estimator is highly sensitive to population structure; 

however, in the future it will be important to identify a set of population parameters, if 

any, under which the estimator can be unbiased. Only then can we decide if these 

parameters are realistic for any human population. Using the forward genetic simulation 

framework developed in Chapter 4, I can vary the population founder size, reproductive 

success rate, mean number of offspring, or study sample size in order to find a set of 

parameters that result in an unbiased estimator. The small founder size (100 individuals) 

and small sample size (1,500 individuals) used in the simulation study in Chapter 4 may 
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have resulted in some population structure that could be eliminated by increasing either 

of these two parameter values.  

In the case of our Amish study of mammographic density, the estimator was, on 

average, 60% biased downward when applied to a polygenic quantitative trait simulated 

conditional on our Amish pedigree. This is likely due to a combination of undetected 

population structure within the Amish and non-random sampling of our study 

participants. A potential way forward, to apply the regression-based estimator to this 

population, is to identify a subset of individuals from our study for which the estimator 

is unbiased. I could cluster individuals based on their relationship coefficients to get 

subgroups that are similarly related to one another. While this approach would allow us 

to get an estimate of the heritability without the confounding of gene-gene interactions, 

the smaller sample size would reduce power and result in extremely large standard 

errors around the heritability estimates. Therefore, I may be unable to distinguish these 

estimates from 0 or 1, making them potentially uninformative.  

Overall, the work in Chapter 4 to evaluate the statistical properties of the newly 

proposed regression-based estimator of the heritability has opened a door of new 

questions about consistency and utility of the estimator in practice. Further exploration 

using simulations and real data will help us understand under what specific 

circumstances, if any, the estimator can be reliably applied. In the case of our Amish 

study, the estimator cannot yet be applied without substantial bias.  

  



103 

Appendices 

Appendix 1: Trait descriptions from our study of mammographic density 
Trait descriptions for selected quantitative traits from our study of mammographic 
density in the Amish. These traits were used for analysis in Chapter 2.  

Trait Description N h2 

BMI Body Mass Index 1,481 0.48 

Body Fat Percent body fat 1,109 0.52 

Height Height 1,481 0.94 

Hip Hip circumference 1,481 0.21 

Waist Waist circumference 1,481 0.52 

Weight Weight 1,481 0.57 

WHR waist circumference/ hip circumference 1,481 0.54 

Age at Menarche Age at first menstrual period 1,479 0.54 

Age 1st 
Pregnancy 

Age at first child 1,349 0.25 

Live Birth No. Number of live births 1,355 0.40 

Nat Age at Meno Age at natural menopause 671 0.42 

Dense Area Dense breast area  1,481 0.49 

Nondense Area Non-dense breast area 1,481 0.70 

Percent Density Percent density = dense area/total area * 100 1,481 0.45 

Total Area Total breast area  1,481 0.75 

Estradiol-post Estradiol in postmenopausal women 752 0.35 

Free Estradiol-
post 

Estradiol indexed for SHBG in postmenopausal 
women 

752 0.28 

Free Estradiol-
pre 

Estradiol indexed for SHBG in premenopausal women 728 0.34 

Free Testo-post 
Testosterone indexed for SHBG in postmenopausal 
women 

752 0.50 

Free Testo-pre 
Testosterone indexed for SHBG in premenopausal 
women 

728 0.72 

IGF1-post 
Insulin-like growth factor 1 in postmenopausal 
women 

546 0.77 

IGF1-pre Insulin-like growth factor 1 in premenopausal women 477 0.60 
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Trait Description N h2 

IGF1/IGFBP3-
post 

IGF1/IGFBP3 in postmenopausal women 546 0.74 

IGF1/IGFBP3-pre IGF1/IGFBP3 in premenopausal women 477 0.31 

IGFBP3-post 
Insulin-like growth factor binding protein 3 in 
postmenopausal women 

547 0.60 

IGFBP3-pre 
Insulin-like growth factor binding protein 3 in 
premenopausal women 

477 0.69 

MMP1-post 
MMP-1 measured in serum in postmenopausal 
women 

693 0.55 

MMP1-pre MMP-1 measured in serum in premenopausal women 668 0.87 

Prolactin-post Prolactin in postmenopausal women 752 0.26 

Prolactin-pre Prolactin in premenopausal women 728 0.24 

Progesterone-
pre 

Progesterone in premenopausal women 728 0.35 

SHBG-post 
Steroid hormone binding globulin in postmenopausal 
women 

752 0.33 

SHBG-pre 
Steroid hormone binding globulin in premenopausal 
women 

728 0.70 

Testosterone-
post 

Testosterone in postmenopausal women 752 0.50 

Testosterone-pre Testosterone in premenopausal women 728 0.55 

h2 is the narrow sense heritability of each trait after adjusting for age and menopausal 
status, and for the hormones and growth factors, after standardizing by batch, adjusting 
for age, and stratifying analyses by menopausal status; h2 was significantly different 
from 0 (p ≤ 0.05) for all traits except estradiol in premenopausal women and 
progesterone in postmenopausal women 
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Appendix 2: Number of SNPs from our study of mammographic density 
Autosomal and X-chromosome SNPs were genotyped on 1,472 women from our study 
of mammographic density on the Illumina HumanOmni2.5-4v1_B Array at The Center 
for Inherited Disease Research (CIDR). We retained all high quality SNPs with a MAF ≥ 
1% in our sample for analysis.  

Quality Control Filter Total 

Total genotyped 2,443,179 
 >2 duplicate inconsistency1 671 
 >5% missing data2 47,579 
 Mendelian inconsistencies2,3 3,449 
 P < 10-6 for HWE test4 2,032 
 Mitochondrial 93 

Passed QC filter5 2,391,559 
 Duplicate SNPs 9,562 
 Non-uniquely mapped SNPs 2 

Passed QC and unique 2,381,995 
Passed QC  
 Monomorphic2 715,458 
 Non-monomorphic2 1,666,537 

 MAF ≥ 0.01 1,452,421 

 

1Based on 34 Amish and 32 CEU individuals who were genotyped in duplicate; SNPs with 
more than two duplicate genotype discrepancies were excluded. 

2Based on 1,472 Amish individuals. 

3SNPs with > 5 Mendelian inconsistencies. 

4Based on 400 minimally related individuals. 

5SNPs may fail QC in more than one way, so rows do not sum to the subtotal passing QC. 
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Appendix 3: Trait descriptions from the HAPI Heart study 
Trait descriptions for selected quantitative traits from the Heredity and Phenotype 
Intervention (HAPI) Heart study in the Amish. These traits were used for analysis in 
Chapter 2.  

Trait Description N h2 

BMI Body Mass Index 868 0.49 
Height Height  868 0.71 
Hip Hip circumference  868 0.42 
Waist Waist circumference 868 0.51 
Weight Weight  868 0.59 

WHR Waist circumference/ hip circumference 868 0.38 

Cholesterol Fasting Total Cholesterol 858 0.73 
Cholesterol/HDL Total cholesterol/HDL cholesterol 858 0.59 
C-Reactive Protein C-Reactive Protein levels 857 0.33 
HDL Fasting HDL Cholesterol 858 0.58 
HDL2 Fasting HDL sub fraction 2 850 0.51 
HDL3 Fasting HDL sub fraction 3 850 0.50 
IDL Fasting intermediate density lipoprotein 850 0.44 
LDL Fasting LDL Cholesterol 857 0.73 
Lipoprotein A Fasting lipoprotein A 850 0.62 
non-HDL Fasting non-HDL cholesterol 850 0.68 
Remnant 
Lipoprotein 

Fasting remnant lipoprotein cholesterol 849 0.46 

SAA Serum Amyloid A 510 0.34 
Total VLDL Fasting very low density lipoprotein cholesterol 850 0.42 
Triglycerides Fasting triglycerides 858 0.50 
VLDL3 Fasting VLDL sub fraction 3 850 0.44 

Corrected QT 
Interval 

QT Interval from the EKG corrected for heart rate 866 0.52 

DBP Diastolic blood pressure 868 0.14 
HR Heart rate 866 0.19 

MAP Mean arterial pressure = 2/3 DBP + 1/3 SBP 868 0.21 
PR Interval PR Interval from an EKG 799 0.38 
QT Interval QT Interval from the EKG 866 0.26 
SBP Systolic blood pressure 868 0.32 

Carotid Radial 
PWV 

Pulse wave velocity in the radial carotid 664 0.18 

Common Carotid 
IMT 

Common carotid artery Intimal Medial Thickness 819 0.33 

Far Wall IMT 
Common carotid artery Intimal Far Wall Max 
Thickness, mean of 4 measures 

809 0.37 
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Trait Description N h2 

Left Vent Mass Left ventricle mass measured at echocardiogram 835 0.28 
Left Vent Mass 
Index 

Left Ventricular Mass / Body Surface Area 835 0.24 

Luminal Diameter 
Diameter of the common carotid artery at the end 
diastole 

809 0.53 

Ankle Brachial 
Index 

Average of right and left ankle brachial index (mmHg) 861 0.23 

Rel Wall Thickness CommonCarotidIMT / LuminalDiameter 809 0.24 

Vascular Mass 
1.06*pi*((LuminaDiameter/2 + CommonCarotidIMT)2 - 
(LuminalDiameter/2)2) 

809 0.29 

Note – h2 is the narrow sense heritability of each trait after adjusting for age and sex; h2 
was significantly different from 0 (p ≤ 0.05) for all traits 
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Appendix 4: RVKT p-values (pmin) for quantitative traits from our study of 
mammographic density stratified by menopausal status 
Each bar represents the result for a single trait.  Black bars, significant (pmin≤0.05); gray 
bars, not significant.  Before applying the RVKT, traits were transformed to approximate 
normality, when necessary, and adjusted for age. 
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Appendix 5: Trait descriptions from our study of mammographic density used for 
linkage analysis 
 

Trait Description N h2 (S.E.) 

BMI Body Mass Index  1,481 0.48 (0.07) 

Body Fat Percent body fat 1,109 0.52 (0.08) 

Height Height  1,481 0.94 (0.06) 

Hip Hip circumference 1,481 0.21 (0.07) 

Waist Waist circumference 1,481 0.52 (0.07) 

Weight Weight 1,481 0.57 (0.07) 

WHR waist circumference/ hip circumference 1,481 0.54 (0.06) 

Age at Menarche Age at first menstrual period 1,479 0.54 (0.06) 

Age 1st Pregnancy Age at first child 1,349 0.25 (0.08) 

Live Birth No. Number of live births 1,355 0.40 (0.07) 

Nat Age at Meno Age at natural menopause 671 0.42 (0.11) 

Dense Area Dense breast area 1,481 0.49 (0.07) 

Nondense Area Non-dense breast area 1,481 0.70 (0.06) 

Percent Density Percent density = dense area/total area * 100 1,481 0.45 (0.07) 

Total Area Total breast area 1,481 0.75 (0.06) 

MMP1 Matrix metalloproteinase 1 1,361 0.55 (0.06) 

 

Note – h2 is the narrow sense heritability of each trait after adjusting for age and 

menopausal status; h2 was significantly different from 0 (p ≤ 0.05) for all traits. 
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Appendix 6: Relationship coefficient summary statistics for simulated study samples 
Summary statistics for all pairs (All) and distantly related pairs (Distant) for each simulated study sample (N = 1,500): random mating, 
random sampling (Random), random mating, non-random sampling (Siblings and Probands), and non-random mating, random 
sampling (Structured). A pair of individuals is defined as distantly related if their relationship coefficient is between 0 and    , where 
   is the overall mean relationship coefficient. Only distantly related pairs were included in the regression-based h2 estimates. 

Pedigree Rep 

# Pairs 
 

Mean r (SD) Range of r 

All Distant All Distant All Distant 

Random 1 1,124,250 1120,773 (99.7%) 0.0586 (0.010) 0.0582 (0.004) 0.0515 - 0.6008 0.0515 - 0.1172 

 
2 1,124,250 1,122,028 (99.8%) 0.0697 (0.011) 0.0693 (0.005) 0.0605 - 0.6221 0.0605 - 0.1392 

 
3 1,124,250 1,120,417 (99.7%) 0.0545 (0.010) 0.0541 (0.003) 0.0478 - 0.5996 0.0478 - 0.1004 

 
4 1,124,250 1,122,134 (99.8%) 0.0678 (0.011) 0.0674 (0.005) 0.0589 - 0.6098 0.0589 - 0.1354 

 
5 1,124,250 1,121,585 (99.8%) 0.0608 (0.011) 0.0604 (0.005) 0.0523 - 0.7870 0.0523 - 0.1216 

 
6 1,124,250 1,120,403 (99.7%) 0.0503 (0.010) 0.0499 (0.004) 0.0431 - 0.5556 0.0431 - 0.0959 

 
7 1,124,250 1,121,660 (99.8%) 0.0678 (0.012) 0.0674 (0.005) 0.0580 - 0.6104 0.0580 - 0.1356 

 
8 1,124,250 1,120,751 (99.7%) 0.0594 (0.012) 0.0590 (0.005) 0.0511 - 0.5610 0.0511 - 0.1189 

 
9 1,124,250 1,120,439 (99.7%) 0.0592 (0.012) 0.0587 (0.005) 0.0506 - 0.6037 0.0506 - 0.1184 

 
10 1,124,250 1,120,471 (99.7%) 0.0537 (0.010) 0.0533 (0.003) 0.0470 - 0.5998 0.0470 - 0.0988 

Siblings 1 1,124,250 1,120,117 (99.6%) 0.0591 (0.019) 0.0582 (0.004) 0.0511 - 0.6058 0.0511 - 0.1182 

 
2 1,124,250 1,121,015 (99.7%) 0.0703 (0.019) 0.0694 (0.005) 0.0611 - 0.7916 0.0611 - 0.1399 

 
3 1,124,250 1,119,429 (99.6%) 0.0550 (0.019) 0.0541 (0.003) 0.0478 - 0.6023 0.0478 - 0.1057 

 
4 1,124,250 1,120,939 (99.7%) 0.0683 (0.019) 0.0674 (0.005) 0.0589 - 0.6108 0.0589 - 0.1364 

 
5 1,124,250 1,120,584 (99.7%) 0.0613 (0.019) 0.0604 (0.005) 0.0530 - 0.6130 0.0530 - 0.1225 

 
6 1,124,250 1,119,301 (99.6%) 0.0508 (0.019) 0.0499 (0.004) 0.0430 - 0.5986 0.0430 - 0.1000 

 
7 1,124,250 1,120,555 (99.7%) 0.0683 (0.020) 0.0674 (0.005) 0.0584 - 0.6101 0.0584 - 0.1360 

 
8 1,124,250 1,120,253 (99.6%) 0.0599 (0.019) 0.0590 (0.005) 0.0507 - 0.5989 0.0507 - 0.1197 

 
9 1,124,250 1,119,991 (99.6%) 0.0597 (0.019) 0.0588 (0.005) 0.0508 - 0.7888 0.0508 - 0.1195 

 
10 1,124,250 1,119,333 (99.6%) 0.0542 (0.019) 0.0533 (0.003) 0.0473 - 0.5550 0.0473 - 0.0977 
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Pedigree Rep 
# Pairs Mean r (SD) Range of r 

All Distant All Distant All Distant 

Probands 1 1,124,250 1,100,900 (97.9%) 0.0646 (0.038) 0.0603 (0.011) 0.0519 - 0.6008 0.0519 - 0.1262 

 
2 1,124,250 1,098,178 (97.7%) 0.0770 (0.041) 0.0719 (0.011) 0.0608 - 0.7913 0.0608 - 0.1494 

 
3 1,124,250 1,097,778 (97.6%) 0.0619 (0.041) 0.0568 (0.011) 0.0488 - 0.5585 0.0488 - 0.1235 

 
4 1,124,250 1,095,459 (97.4%) 0.0776 (0.042) 0.0723 (0.014) 0.0596 - 0.6146 0.0596 - 0.1481 

 
5 1,124,250 1,103,551 (98.2%) 0.0668 (0.037) 0.0628 (0.010) 0.0536 - 0.6031 0.0536 - 0.1329 

 
6 1,124,250 1,099,417 (97.8%) 0.0583 (0.040) 0.0535 (0.012) 0.0438 - 0.5955 0.0438 - 0.1166 

 
7 1,124,250 1,102,476 (98.1%) 0.0743 (0.037) 0.0701 (0.011) 0.0594 - 0.6082 0.0594 - 0.1479 

 
8 1,124,250 1,100,237 (97.9%) 0.0654 (0.039) 0.0607 (0.010) 0.0518 - 0.7894 0.0518 - 0.1308 

 
9 1,124,250 1,103,132 (98.1%) 0.0652 (0.037) 0.0612 (0.011) 0.0514 - 0.7850 0.0514 - 0.1304 

 
10 1,124,250 1,094,334 (97.3%) 0.0627 (0.042) 0.0572 (0.013) 0.0476 - 0.5590 0.0476 - 0.1214 

Structured 1 1,124,250 1,106,923 (98.5%) 0.0738 (0.054) 0.0720 (0.052) 0.0188 - 0.6560 0.0188 - 0.1475 

 
2 1,124,250 1,025,489 (91.2%) 0.0508 (0.035) 0.0450 (0.030) 0.0145 - 0.5895 0.0145 - 0.1016 

 
3 1,124,250 951,929 (84.7%) 0.0702 (0.050) 0.0545 (0.034) 0.0228 - 0.8358 0.0228 - 0.1405 

 
4 1,124,250 1,016,957 (90.5%) 0.0644 (0.050) 0.0514 (0.030) 0.0170 - 0.7053 0.0170 - 0.1275 

 
5 1,124,250 1,033,846 (92.0%) 0.0557 (0.038) 0.0475 (0.025) 0.0167 - 0.6264 0.0167 - 0.1112 

 
6 1,124,250 1,004,933 (89.4%) 0.0567 (0.045) 0.0448 (0.029) 0.0130 - 0.6654 0.0130 - 0.1133 

 
7 1,124,250 1,099,756 (97.8%) 0.0626 (0.040) 0.0607 (0.037) 0.0214 - 0.6325 0.0214 - 0.1253 

 
8 1,124,250 1,080,522 (96.1%) 0.0629 (0.043) 0.0596 (0.039) 0.0206 - 0.8170 0.0206 - 0.1258 

 
9 1,124,250 1,040,032 (92.5%) 0.0555 (0.039) 0.0481 (0.029) 0.0130 - 0.6572 0.0130 - 0.1111 

 
10 1,124,250 1,060,782 (94.4%) 0.0652 (0.044) 0.0606 (0.039) 0.0213 - 0.8263 0.0213 - 0.1305 
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Appendix 7: Regression-based h2 estimates for the randomly mating, randomly 
sampled simulated sample (Random) with different relationship coefficient ranges 
The mean heritability estimate using the regression-based method over the 1,000 
replicate simulations conditional on the randomly mating, randomly sampled study 
sample (Random). The estimates are based on various ranges of the relationship 
coefficient, r, around the mean relationship coefficient,   , used to include pairs in the 
regression.  

 

 
Mean Estimated h2 (SD) (%) 

 

 
Relationship Coefficient (r) Range 

 

 
                                

Si
m

u
la

te
d

 h
2  

(%
) 

20 22 (21) 21 (19) 20 (18) 

40 36 (27) 36 (24) 36 (22) 

60 52 (30) 54 (27) 55 (25) 

80 68 (29) 71 (25) 72 (23) 
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