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ABSTRACT

Topics in Stochastic Control with Applications to Finance

by
Yu-Jui Huang

Co-Chairs: Erhan Bayraktar and Haitao Li

This thesis is devoted to PDE characterization for stochastic control problems when

the classical methodology of dynamic programming does not work. Under the frame-

work of viscosity solutions, a dynamic programming principle serves as the tool to

associate a (nonlinear) PDE to a stochastic control problem. Furthermore, if the

associated PDE enjoys a comparison principle, then the stochastic control problem

is fully characterized as the unique viscosity solution to the PDE. Unfortunately, a

dynamic programming principle is in general difficult to prove, and may fail to be

true in some cases. In Chapters II, III, and IV, we investigate different scenarios

where classical dynamic programming does not work, and propose various methods

to circumvent this obstacle.

In Chapter II, following the Stochastic Portfolio Theory, we consider quantile

hedging in a market which admits arbitrage. A classical dynamic programming prin-

ciple does not hold as this market allows for non-Lipschitz coefficients with super-

linear growth in the state dynamics. By employing a mixture of convex duality,

elliptic regularization, and stability of viscosity solutions, we characterize the quan-

tile hedging problem as the smallest nonnegative viscosity supersolution to a fully



nonlinear PDE.

In Chapter III, we study robust growth-optimal trading: how to maximize the

growth rate of one’s wealth in a robust manner, when precise dynamics of the un-

derlying assets is not known? This problem falls under the umbrella of ergodic

control, for which the dynamic programming heuristic cannot be directly applied.

By resorting to the spectral theory for fully nonlinear elliptic operators, we identify

a robust trading strategy in terms of the principal eigenvalue of a fully nonlinear

elliptic operator and its associated eigenfunction.

In Chapter IV, we investigate a zero-sum stochastic differential game of control

and stopping. While the stopper intends to minimize her expected cost by choosing

an optimal stopping strategy (a function mapping a control to a stopping time), the

controller manipulates the state process to frustrate the stopper’s effort. Since there

is no measurable selection result for stopping strategies, classical dynamic program-

ming does not work. We instead formulate two suitable weak dynamic programming

principles, and use them to characterize the value of this game as the unique viscosity

solution to an obstacle problem of a Hamilton-Jacobi-Bellman equation.
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CHAPTER I

Introduction

Stochastic control theory is known to be an essential building block of mathemat-

ical finance. Typically, we model the evolution of asset prices by some stochastic

process. Our wealth can then be formulated as another stochastic process, which

can be controlled by choosing different trading strategies. In most applications, our

goal is to optimize the expected value of some functional of the asset price process or

the wealth process, by choosing a suitable control (trading strategy). Following the

standard approach of dynamic programming originated in the theory of deterministic

control, we may derive the corresponding dynamic programming principle under our

stochastic context. With the aid of the theory of viscosity solutions developed by

Crandall, Ishii, & Lions [30], the above dynamic programming principle implies that

the optimal expected value we consider can be characterized as the viscosity solu-

tion to some (fully nonlinear) partial differential equation (PDE). While the above

methodology has now been well-understood (with detailed and readable accounts in

Fleming & Soner [48], Pham [91], and Touzi [107], among others), it is not always

applicable. The main limitation is that deriving a standard dynamic programming

principle requires (i) a priori regularity of the value function, and (ii) the technique

of measurable selection. In general, the regularity required may not be true, and
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measurable selection could be very difficult to implement.

In each of the three chapters, Chapters II-IV, of this thesis, we intend to obtain

a PDE characterization for some optimal expected value, but are faced with the

situation where a standard dynamic programming principle does not hold, due to

some degeneracy inherent in the market we consider. To overcome this, we either

develop a weaker form of a standard dynamic programming principle, or construct

new tools and methods to tackle the problem from a different perspective.

1.1 Outline of this thesis

Chapter II studies the quantile hedging problem in the presence of arbitrage

opportunity. The Stochastic Portfolio Theory (SPT), which began in Fernholz [44],

attempts to describe observable phenomena in equity markets, including the presence

of arbitrage. Following the SPT, we assume only the existence of a local martingale

deflator (instead of an equivalent local martingale measure) such that the market

may admit arbitrage. Moreover, we assume only the existence of a weak solution to

the state dynamics, which allows non-Lipschitz coefficients with super-linear growth.

Our goal is to characterize the smallest initial capital needed for quantile hedging.

First, we notice that the general PDE characterization for quantile hedging prob-

lems introduced in Bouchard, Elie & Touzi [21] cannot be applied here, as their

main tool, the geometric dynamic programming principle, relies on the existence of

a unique strong solution. Instead of performing dynamic programming, we employ

a mixture of convex duality and elliptic regularization to characterize the quantile

hedging problem in our case as the smallest nonnegative viscosity supersolution to a

fully nonlinear PDE.

This chapter is based on Bayraktar, Huang & Song [9]. Parts of this work have
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been presented in the 2010 World Congress of the Bachelier Finance Society (June 23,

2010), the Financial/Actuarial Mathematics Seminar at the University of Michigan

(September 16, 2010), Workshop on Stochastic Analysis in Finance and Insurance

at the University of Michigan (May 18, 2011).

Chapter III considers the problem of robust growth-optimal trading: how to

maximize the growth rate of one’s wealth in a robust manner, when precise dynam-

ics of the underlying assets is not known? If the uncertainty lies only in the drift

coefficient of the underlying assets, this problem was covered in Kardaras & Robert-

son [73]. We intend to study the case where even the covariance structure is not

known precisely. Our goal is to determine a robust trading strategy under which the

corresponding wealth process always attains the robust maximal asymptotic growth

rate, no matter which admissible covariance structure materializes.

First, we observe that the associated differential operator under covariance un-

certainty, denoted by F , is a variant of Pucci’s extremal operator. We define the

“principal eigenvalue” of F , denoted by λ∗, in some appropriate sense. Thanks to

the spectral theory for fully nonlinear elliptic operators, we obtain a Harnack in-

equality for F . By using the Harnack inequality, the stability of viscosity solutions,

and a regularity result for fully nonlinear elliptic operators in Safonov [101], we es-

tablish the relation λ∗ = infc λ
∗,c, where λ∗,c is the principal eigenvalue in [73] (with

the covariance structure c a priori given) and the infimum is taken over all the ad-

missible covariance structures. This implies that we can approximate the current

problem with covariance uncertainty by a sequence of problems in [73] with fixed

covariances. This approximation then enables us to characterize the robust maximal

asymptotic growth rate as λ∗, and identify a robust trading strategy in terms of λ∗

and its corresponding eigenfunction.
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This chapter is based on Bayraktar & Huang [8]. Parts of this work have been

presented in Probability, Control and Finance, a conference in honor of Ioannis

Karatzas at Columbia University (June 5, 2012), the 2012 SIAM Conference on

Financial Mathematics and Engineering (July 9, 2012), Department of Mathematics

at Imperial College London (February 6, 2013), Department of Mathematics and

Statistics at McMaster University (February 13, 2013), and School of Mathematical

Sciences at Dublin City University (February 18, 2013).

Chapter IV investigates a zero-sum stochastic differential game of control and

stopping. The controller affects the state process Xα by selecting the control α;

on the other hand, the stopper decides the duration of this game, but incurs both

running and terminal cost. While the stopper intends to stop optimally so that

her expected discounted cost can be minimized, the controller manipulates Xα to

frustrate the effort of the stopper. Although this type of game has been studied

under several different methods (see e.g. Karatzas & Zamfirescu [71], Hamadène &

Lepeltier [55], and Hamadène [54]), all of them require the diffusion coefficient of Xα

be non-degenerate and control-independent. Without imposing these restrictions, we

intend to determine under what conditions the game has a value, and derive a PDE

characterization for this value when it exists.

Our method is motivated by Bouchard & Touzi [24], where the weak dynamic

programming principle (WDPP) was introduced. First, we give appropriate defini-

tions of the upper (resp. lower) value function U (resp. V ) for the controller-stopper

game. By generalizing [24] to current context, we derive two different WDPPs: one

for V and one for U∗ (here, U∗ is the upper semicontinuous envelope of U). The

WDPP for V implies that V is a viscosity supersolution to an obstacle problem for a

Hamilton-Jacobi-Bellman equation; similarly, the WDPP for U∗ gives the viscosity
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subsolution property of U∗ to the same obstacle problem. Next, by proving a com-

parison theorem for this obstacle problem, we obtain U∗ ≤ V . Recalling that U ≥ V

by definition, we conclude that U∗ = V . This in particular implies U = V , i.e.

the game has a value, and the value function is characterized as the unique viscosity

solution to the associated obstacle problem.

This chapter is based on Bayraktar & Huang [7]. Parts of this work have been

presented in the 2010 Mathematical Finance and Partial Differential Equations Con-

ference at Rutgers University (December 10, 2010), the 2011 International Congress

on Industrial and Applied Mathematics (July 21, 2011), the Financial/Actuarial

Mathematics Seminar at the University of Michigan (September 29, 2011), and the

2012 SIAM Conference on Financial Mathematics and Engineering (July 10, 2012).



CHAPTER II

Outperforming the Market Portfolio with a Given
Probability

2.1 Introduction

In this chapter we consider the quantile hedging problem when the underlying

market may not have an equivalent martingale measure. Instead, we assume that

there exists a local martingale deflator (a strict local martingale which when multi-

plied by the asset prices yields a positive local martingale). We characterize the value

function as the smallest nonnegative viscosity supersolution of a fully non-linear par-

tial differential equation (PDE). This resolves an open problem proposed in the final

section of [40]; also see pages 61 and 62 of [99].

Our framework falls under the umbrella of the Stochastic Portfolio Theory of

Fernholz and Karatzas, see e.g. [45], [47], [46]; and the benchmark approach of Platen

[93]. Under this framework, the linear PDE satisfied by the superhedging price does

not have a unique solution; see e.g. [41], [46], [42], and [100]. Similar phenomena

occur when the asset prices have bubbles : an equivalent local martingale measure

exists, but the asset prices under this measure are strict local martingales; see e.g.

[29], [58], [60], [61], [35], and [13]. A related series of papers [1], [102], [79], [59], [78],

[36], and [12] addressed the issue of bubbles in the context of stochastic volatility

models. In particular, [12] gave necessary and sufficient conditions for linear PDEs

6
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appearing in the context of stochastic volatility models to have a unique solution.

In contrast, we show that the quantile hedging problem, which is equivalent to a

stochastic control problem, is a viscosity supersolution to a fully non-linear PDE. As

in the linear case, this PDE may not have a unique solution. Therefore, a further

characterization for the value function is needed. Our main result shows that the

value function is not only a viscosity supersolution, but the smallest nonnegative one,

to the associated fully nonlinear PDE. Recently, [63], [11], and [43] also considered

stochastic control problems in this framework. The first reference solves the classical

utility maximization problem, the second one solves the optimal stopping problem,

whereas the third one determines the optimal arbitrage under model uncertainty,

which is equivalent to solving a zero-sum stochastic game.

The structure of the chapter is simple: In Section 2.2, we formulate the problem.

In this section we also discuss the implications of assuming the existence of a local

martingale deflator. In Section 2.3, we generalize the results of [50] on quantile

hedging, in particular the Neyman-Pearson Lemma. We also prove other properties

of the value function such as convexity. Section 2.4 is where we give the PDE

characterization of the value function.

2.2 The model

We consider a financial market with a bond which is always equal to 1, and d

stocks X = (X1, · · · , Xd) which satisfy

(2.2.1) dXi(t) = Xi(t)
(
bi(X(t))dt+

∑d
k=1 sik(X(t))dWk(t)

)
, i = 1, · · · d,

with the initial condition X(0) = x = (x1, · · · , xd) ∈ (0,∞)d. Here, W (·) :=

(W1(·), · · · ,Wd(·)) is a d-dimensional Brownian motion.

Following the set up in [41, Section 8], we make the following assumption.
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Assumption II.1. Let bi : (0,∞)d → R and sik : (0,∞)d → R be continuous

functions. Set b(·) = (b1(·), · · · , bd(·))′ and s(·) = (sij(·))1≤i,j≤d, which we assume to

be invertible for all x ∈ (0,∞)d. We also assume that (2.2.1) has a weak solution that

is unique in distribution for every initial value. Let (Ω,F ,P) denote the probability

space specified by a weak solution. Another assumption we will impose is that

(2.2.2)
d∑
i=1

∫ T

0

(
|bi(X(t))|+ aii(X(t)) + θ2

i (X(t))
)
dt <∞, P-a.s,

where θ(·) := s−1(·)b(·), aij(·) :=
∑d

k=1 sik(·)sjk(·).

We will denote by F = {Ft}t≥0 the right-continuous version of the natural filtra-

tion generated by X(·), and by G the P-augmentation of the filtration F. Thanks to

Assumption II.1, the Brownian motion W (·) of (2.2.1) is adapted to G (see e.g. [41,

Section 2]), every local martingale of F has the martingale representation property,

i.e. it can be represented as a stochastic integral, with respect to W (·), of some

G-progressively measurable integrand (see e.g. the discussion on p.1185 in [41]), the

solution of (2.2.1) takes values in the positive orthant, and the exponential local

martingale

(2.2.3) Z(t) := exp

{
−
∫ t

0

θ(X(s))′dW (s)− 1

2

∫ t

0

|θ(X(s))|2ds
}
, 0 ≤ t <∞,

the so-called deflator is well defined. We do not exclude the possibility that Z(·) is

a strict local martingale.

Let H be the set of G-progressively measurable processes π : [0, T ) × Ω → Rd,

which satisfies∫ T

0

(|π(t)′µ(X(t))|+ π(t)′α(X(t))π(t)) dt <∞, P-a.s.,

in which µ = (µ1, · · · , µd) and σ = (σij)1≤i,j≤d with µi(x) = bi(x)xi, σik(x) =

sik(x)xi, and α(x) = σ(x)σ(x)′.



9

At time t, an investor invests πi(t) proportion of his wealth in the ith stock. The

proportion 1 −
∑d

i=1 πi(t) gets invested in the bond. For each π ∈ H and initial

wealth y ≥ 0 the associated wealth process will be denoted by Y y,π(·). This process

solves

dY y,π(t) = Y y,π(t)
d∑
i=1

πi(t)
dXi(t)

Xi(t)
, Y y,π(0) = y.

It can be easily seen that Z(·)Y y,π(·) is a positive local martingale for any π ∈ H.

Let g : (0,∞)d → (0,∞) be a measurable function satisfying

(2.2.4) E[Z(T )g(X(T ))] <∞,

and define

V (T, x, 1) := inf{y > 0 : ∃π(·) ∈ H s.t. Y y,π(T ) ≥ g(X(T ))}.

Thanks to Assumption II.1, we have that V (T, x, 1) = E[Z(T )g(X(T ))]; see e.g. [46,

Section 10]. Note that if g has linear growth, then (2.2.4) is satisfied since the process

ZX is a positive supermartingale.

2.2.1 A Digression: What does the existence of a local martingale deflator entail?

Although, we do not assume the existence of equivalent local martingale measures,

we assume the existence of a local martingale deflator. This is equivalent to the No-

Unbounded-Profit-with-Bounded-Risk (NUPBR) condition; see [63, Theorem 4.12].

NUPBR is defined as follows: A sequence (πn) of admissible portfolios is said to

generate a UPBR if limm→∞ supn P[Y 1,πn(T ) > m] > 0. If no such sequence exists,

then we say that NUPBR holds; see [63, Proposition 4.2]. In fact, the so-called No-

Free-Lunch-with-Vanishing-Risk (NFLVR) is equivalent to NUPBR plus the classical

no-arbitrage assumption. Thus, in our setting (since we assumed the existence of

local martingale deflators), although arbitrages exist they remain on the level of
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“cheap thrills”, which was coined by [80]. (Note that the results of Karatzas and

Kardaras [63] also imply that one does not need NFLVR for the portfolio optimization

problem of an individual to be well-defined. One merely needs the NUPBR condition

to hold.) The failure of no-arbitrage means that the money market is not an optimal

investment and is dominated by other investments. It follows that a short position in

the money market and long position in the dominating assets leads one to arbitrage.

However, one can not scale the arbitrage and make an arbitrary profit because of the

admissibility constraint, which requires the wealth to be positive. This is what is

contained in NUPBR, which holds in our setting. Also, see [72], where these issues

are further discussed.

2.3 On quantile hedging

In this section, we develop new probabilistic tools to extend results of Föllmer and

Leukert [50] on quantile hedging to settings where equivalent martingale measures

need not exist. This is not only mathematically intriguing, but also economically im-

portant because it admits arbitrage in the market, which opens the door to the notion

of optimal arbitrage, recently introduced in Fernholz and Karatzas [41]. The tools in

this section facilitate the discussion of quantile hedging under the context of optimal

arbitrage, leading us to generalize the results of [41] on this sort of probability-one

outperformance.

We intend to determine

(2.3.1) V (T, x, p) = inf{y > 0| ∃π ∈ H s.t. P{Y y,π(T ) ≥ g(X(T ))} ≥ p},

for p ∈ [0, 1]. Note that the set on which we take infimum in (2.3.1) is nonempty.

Indeed, under the condition (2.2.4), there exists π ∈ H such that Y y,π(T ) = g(X(T ))

a.s., where y := E[Z(T )g(X(T ))]; see e.g. [46, Section 10]. It follows that for any
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p ∈ [0, 1],

P{Y y,π(T ) ≥ g(X(T ))} = 1 ≥ p.

Also observe that

Ṽ (T, x, p) :=
V (T, x, p)

g(x)
= inf{r > 0| ∃π ∈ H s.t. P{Y rg(x),π(T ) ≥ g(X(T ))} ≥ p}.

When g(x) =
∑d

i=1 xi, observe that Ṽ (T, x, 1) is equal to equation (6.1) of [41], the

smallest relative amount to beat the market capitalization
∑d

i=1Xi(T ).

Remark 2.3.1. Clearly,

(2.3.2) 0 = V (T, x, 0) ≤ V (T, x, p)↗ V (T, x, 1) ≤ g(x), as p→ 1.

By analogy with [50], we shall present a probabilistic characterization of V (T, x, p).

First, we will generalize the Neyman-Pearson lemma (see e.g. [51, Theorem A.28])

in the next result.

Lemma 2.3.2. Suppose Assumption II.1 holds and g satisfies (2.2.4). Let A ∈ FT

satisfy

(2.3.3) P(A) ≥ p.

Then

(2.3.4) V (T, x, p) ≤ E[Z(T )g(X(T ))1A].

Furthermore, if A ∈ FT satisfies (2.3.3) with equality and

(2.3.5) ess supA{Z(T )g(X(T ))} ≤ ess infAc{Z(T )g(X(T ))},

then A satisfies (2.3.4) with equality.
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Proof. Under Assumption II.1, since g(X(T ))1A ∈ FT satisfies condition (2.2.4), it is

replicable with initial capital y := E[Z(T )g(X(T ))1A]; see e.g. Section 10.1 of [46].

That is, there exists π ∈ H such that Y y,π(T ) = g(X(T ))1A a.s. Now if P(A) ≥ p,

we have P{Y y,π(T ) ≥ g(X(T ))} = P{1A ≥ 1} ≥ p. Then it follows from (2.3.1) that

V (T, x, p) ≤ y = E[Z(T )g(X(T ))1A].

Now, take an arbitrary pair (y0, π0) of initial capital and admissible portfolio that

replicates g(X(T )) with probability greater than or equal to p, i.e.

P{B} ≥ p, where B := {Y y0,π0(T ) ≥ g(X(T ))}.

Let A ∈ FT satisfy p = P(A) ≤ P(B) and (2.3.5). To prove equality in (2.3.4), it is

enough to show that

y0 ≥ E[Z(T )g(X(T ))1A],

which can be shown as follows:

y0 ≥ E[Z(T )Y y0,π0(T )] = E[Z(T )Y y0,π0(T )1B] + E[Z(T )Y y0,π0(T )1Bc ]

≥ E[Z(T )g(X(T ))1B] = E[Z(T )g(X(T ))1A∩B] + E[Z(T )g(X(T ))1Ac∩B]

≥ E[Z(T )g(X(T ))1A∩B] + P(Ac ∩B) ess infAc∩B{Z(T )g(X(T ))}

≥ E[Z(T )g(X(T ))1A∩B] + P(A ∩Bc) ess supA∩Bc{Z(T )g(X(T ))}

≥ E[Z(T )g(X(T ))1A∩B] + E[Z(T )g(X(T ))1A∩Bc ]

= E[Z(T )g(X(T ))1A],

where in the fourth inequality we use the following two observations: First, P(Ac ∩

B) = P(A ∪B)− P(A) ≥ P(A ∪B)− P(B) = P(Bc ∩ A). Second,

ess infAc∩B{Z(T )g(X(T ))} ≥ ess infAc{Z(T )g(X(T ))}

≥ ess supA{Z(T )g(X(T ))}

≥ ess supA∩Bc{Z(T )g(X(T ))},

in which the second inequality follows from (2.3.5).
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Let F (·) be the cumulative distribution function of Z(T )g(X(T )) and for any

a ∈ R+ define

Aa := {ω : Z(T )g(X(T )) < a}, ∂Aa := {ω : Z(T )g(X(T )) = a},

and let Āa denote Aa ∪ ∂Aa; that is,

(2.3.6) Āa = {ω : Z(T )g(X(T )) ≤ a}.

Taking A = Āa in Lemma 2.3.2, we see that (2.3.5) is satisfied. It follows that

(2.3.7) V (T, x, F (a)) = E[Z(T )g(X(T ))1Āa ].

On the other hand, taking A = Aa, we see that (2.3.5) is again satisfied. We therefore

obtain

(2.3.8) V (T, x, F (a−)) = E[Z(T )g(X(T ))1Aa ].

The last two equalities imply the following relationship

(2.3.9)
V (T, x, F (a)) = V (T, x, F (a−)) + aP{∂Aa}

= V (T, x, F (a−)) + a(F (a)− F (a−)).

Next, we will determine V (T, x, p) for p ∈ (F (a−), F (a)) when F (a−) < F (a).

Proposition 2.3.3. Suppose Assumption II.1 holds. Fix an (x, p) ∈ (0,∞)d× [0, 1].

(i) There exists A ∈ FT satisfying (2.3.3) with equality and (2.3.5). As a result,

(2.3.4) holds with equality.

(ii) If F−1(p) := {s ∈ R+ : F (s) = p} = ∅, then letting a := inf{s ∈ R+ : F (s) > p}

we have

(2.3.10)
V (T, x, p) = V (T, x, F (a−)) + a(p− F (a−)).

= V (T, x, F (a))− a(F (a)− p)
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Proof. (i) If there exists a ∈ R such that either F (a) = p or F (a−) = p, then we

can take A = Aa or A = Āa, thanks to (2.3.7) and (2.3.8). In the rest of the proof

we will assume that F−1(p) = ∅.

Let W̃ be a Brownian motion with respect to F and define Bb = {ω : W̃ (T )√
T
< b}.

Let us define f(·) by f(b) = P{∂Aa∩Bb}. The function f satisfies limb→−∞ f(b) = 0

and limb→∞ f(b) = P(∂Aa). Moreover, the function f(·) is continuous and nonde-

creasing. Right continuity can be shown as follows: For ε > 0

0 ≤ f(b+ ε)− f(b) = P(∂Aa ∩Bb+ε)− P(∂Aa ∩Bb) ≤ P(Bb+ε ∩Bc
b).

The right continuity follows from observing that the last expression goes to zero as

ε→ 0. One can show left continuity of f(·) in a similar fashion.

Since 0 < p − P(Aa) < P(∂Aa), thanks to the above properties of f there exists

b∗ ∈ R satisfying f(b∗) = p− P(Aa).

Define A := Aa ∪ (∂Aa ∩ Bb∗). Observe that P(A) = P(Aa) + P(∂Aa ∩ Bb∗) = p

and that A satisfies (2.3.5).

(ii) This follows immediately from (i):

V (T, x, p) = E[Z(T )g(X(T ))1A]

= E[Z(T )g(X(T ))1Aa ] + E[Z(T )g(X(T ))1∂Aa∩Bb∗ ]

= V (T, x, F (a−)) + aP(∂Aa ∩Bb∗)

= V (t, x, F (a−)) + a(p− F (a−)).

Remark 2.3.4. Note that when Z is a martingale, using the Neyman-Pearson

Lemma, it was shown in [50] that

(2.3.11) V (T, x, p) = inf
ϕ∈M

E[Z(T )g(X(T ))ϕ] = E[Z(T )g(X(T ))ϕ∗],
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where

(2.3.12) M =

{
ϕ : Ω→ [0, 1]

∣∣∣∣FT measurable,E[ϕ] ≥ p

}
.

The randomized test function ϕ∗ is not necessarily an indicator function. Using

Lemma 2.3.2 and the fine structure of the filtration FT , we provide in Proposi-

tion 2.3.3 another optimizer of (2.3.11) which is an indicator function.

Proposition 2.3.5. Suppose Assumption II.1 holds. Then, the map p 7→ V (T, x, p)

is convex and continuous on the closed interval [0, 1]. Hence, V (T, x, p) ≤ pV (T, x, 1) ≤

pg(x) for all p ∈ [0, 1].

Proof. By Proposition 2.3.3, for any p ∈ [0, 1] there exists A ∈ FT such that

V (T, x, p) = E[Z(T )g(X(T ))1A] ≤ E[Z(T )g(X(T ))] <∞.

Then thanks to a theorem by Ostroski (see [33, p.12]), to show the convexity it

suffices to demonstrate the midpoint convexity

(2.3.13)
V (T, x, p1) + V (T, x, p2)

2
≥ V

(
T, x,

p1 + p2

2

)
, for all 0 ≤ p1 < p2 ≤ 1.

Denote p̃ := p1+p2

2
. It follows from Proposition 2.3.3 that there exist A1 ⊂ Ã ⊂ A2

with P(A1) = p1 < P(Ã) = p̃ < P(A2) = p2 satisfying (2.3.5),

V (T, x, pi) = E[Z(T )g(X(T ))1Ai ], i = 1, 2,

and

V (T, x, p̃) = E[Z(T )g(X(T ))1Ã].

By (2.3.5),

ess inf{Z(T )g(X(T ))1A2∩Ãc} ≥ ess inf{Z(T )g(X(T ))1Ãc}

≥ ess sup{Z(T )g(X(T ))1Ã}

≥ ess sup{Z(T )g(X(T ))1Ã∩Ac1},
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which implies that E[Z(T )g(X(T ))1A2∩Ãc ] ≥ E[Z(T )g(X(T ))1Ã∩Ac1 ]. As a result,

E[Z(T )g(X(T ))1A2 ]− E[Z(T )g(X(T ))1Ã]

≥ E[Z(T )g(X(T ))1Ã]− E[Z(T )g(X(T ))1A1 ],

which is equivalent to (2.3.13).

Now thanks to convexity, we immediately have that p 7→ V (T, x, p) is continuous

on [0, 1). It remains to show that it is continuous from the left at p = 1; but this is

indeed true because

lim
a→∞

V (T, x, F (a)) = lim
a→∞

E[Z(T )g(X(T ))1{Z(T )g(X(T ))≤a}]

= E[Z(T )g(X(T ))] = V (T, x, 1),

where the second equality is due to the dominated convergence theorem.

Example 2.3.6. Consider a market with a single stock, whose dynamics follow a

three-dimensional Bessel process, i.e.

dX(t) =
1

X(t)
dt+ dW (t) X0 = x > 0,

and let g(x) = x. In this case Z(t) = x/X(t), which is the classical example for a

strict local martingale; see [62]. On the other hand, Z(t)X(t) = x is a martingale.

Thanks to Proposition 2.3.3 there exists a set A ∈ FT with P(A) = p such that

V (T, x, p) = E[Z(T )X(T )1A] = px.

In [50], the following result was proved when Z is a martingale. Here, we generalize

this result to the case where Z is only a local martingale.

Proposition 2.3.7. Under Assumption II.1

(2.3.14) V (T, x, p) = inf
ϕ∈M

E[Z(T )g(X(T ))ϕ],

where M is defined in (2.3.12).
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Proof. Thanks to Proposition 2.3.3 there exists a set A ∈ FT satisfying P(A) = p

and (2.3.5) such that V (T, x, p) = E[Z(T )g(X(T ))1A]. Since 1A ∈M, clearly

V (T, x, p) ≥ inf
ϕ∈M

E[Z(T )g(X(T ))ϕ].

For the other direction, it is enough to show that for any ϕ ∈M, we have

E[Z(T )g(X(T ))1A] ≤ E[Z(T )g(X(T ))ϕ].

Indeed, since the left hand side is actually V (T, x, p), we get the desired result by tak-

ing infimum on both sides over ϕ ∈M. Now, taking M := ess supA{Z(T )g(X(T ))},

we observe that

E[Z(T )g(X(T ))ϕ]− E[Z(T )g(X(T ))1A]

= E[Z(T )g(X(T ))ϕ1A] + E[Z(T )g(X(T ))ϕ1Ac ]− E[Z(T )g(X(T ))1A]

= E[Z(T )g(X(T ))ϕ1Ac ]− E[Z(T )g(X(T ))1A(1− ϕ)]

≥ ess infAc{Z(T )g(X(T ))}E[ϕ1Ac ]−ME[1A(1− ϕ)]

≥ME[ϕ1Ac ]−ME[1A(1− ϕ)] (by (2.3.5))

= ME[ϕ]−ME[1A] ≥ 0.

2.3.1 A Digression: Representation of V as a Stochastic Control Problem

For p ∈ [0, 1], we introduce an additional controlled state variable

(2.3.15) P p
α(s) = p+

∫ s

0

α(r)′dW (r), s ∈ [0, T ],

where α(·) is a G−progressively measurable Rd-valued process satisfying the inte-

grability condition
∫ T

0
|α(s)|2ds < ∞ a.s. such that P p

α takes values in [0, 1]. We

will denote the class of such processes by A. Note that A is nonempty, as the con-

stant control α(·) ≡ (0, · · · , 0) ∈ Rd obviously lies in A. The next result obtains an

alternative representation for V in terms of P p
α.
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Proposition 2.3.8. Under Assumption II.1,

(2.3.16) V (T, x, p) = inf
α∈A

E[Z(T )g(X(T ))P p
α(T )] <∞.

Proof. The finiteness follows from (2.2.4). Define

M̃ :=

{
ϕ : Ω→ [0, 1]

∣∣∣∣FT measurable,E[ϕ] = p

}
.

Thanks to Proposition 2.3.3, there exists a set A ∈ FT satisfying P(A) = p and

(2.3.5) such that

V (T, x, p) = E[Z(T )g(X(T ))1A] ≥ inf
ϕ∈M̃

E[Z(T )g(X(T ))ϕ].

Since the opposite inequality follows immediately from Proposition 2.3.7, we conclude

V (T, x, p) = inf
ϕ∈M̃

E[Z(T )g(X(T ))ϕ].

Therefore, it is enough to show that M̃ satisfies M̃ =
{
P p
α(T )

∣∣α ∈ A} . The

inclusion M̃ ⊃
{
P p
α(T )

∣∣α ∈ A} is clear. To show the other inclusion we will use the

Martingale representation theorem: For any ϕ ∈ M̃ there exists a G−progressively

measurable Rd-valued process ψ(·) satisfying
∫ T

0
|ψ(s)|2ds <∞ a.s. such that

E[ϕ|Ft] = p+

∫ t

0

ψ(s)′dW (s), t ∈ [0, T ].

Note that since ϕ takes values in [0, 1], so does E[ϕ|Ft] for all t ∈ [0, T ]. Then we

see that E[ϕ|Ft] satisfies (2.3.15) with α(·) = ψ(·) ∈ A.

2.4 The PDE characterization

2.4.1 Notation

We denote by X t,x(·) the solution of (2.2.1) starting from x at time t, and by

Zt,x,z(·) the solution of

(2.4.1) dZ(s) = −Z(s)θ(X t,x(s))′dW (s), Z(t) = z.
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Define the process Qt,x,q(·) by

(2.4.2) Qt,x,q(·) :=
1

Zt,x,(1/q)(·)
, q ∈ (0,∞).

Then we see from (2.4.1) that Q(·) satisfies

(2.4.3)
dQ(s)

Q(s)
= |θ(X t,x(s))|2ds+ θ(X t,x(s))′dW (s), Qt,x,q(t) = q.

We then introduce the value function

U(t, x, p) := inf
ϕ∈M

E[Zt,x,1(T )g(X t,x(T ))ϕ],

where M is defined in (2.3.12). Note that the original value function V can be

written in terms of U as V (T, x, p) = U(0, x, p).

We also consider the Legendre transform of U with respect to the p variable. To

make the discussion clear, let us first extend the domain of the map p 7→ U(t, x, p)

from [0, 1] to the entire real line R by setting

U(t, x, p) = 0 for p < 0,(2.4.4)

U(t, x, p) = ∞ for p > 1.(2.4.5)

Then the Legendre transform of U with respect to p is well-defined

(2.4.6) w(t, x, q) := sup
p∈R
{pq−U(t, x, p)} =

 ∞, if q < 0;

supp∈[0,1]{pq − U(t, x, p)}, if q ≥ 0.

From Proposition 2.3.5, we already know that p 7→ U(t, x, p) is convex and continuous

on [0, 1]. Since U(t, x, 0) = 0, we see from (2.4.4) and (2.4.5) that p 7→ U(t, x, p) is

continuous on (−∞, 1] and lower semicontinuous on R. Moreover, considering that

p 7→ U(t, x, p) is increasing on [0, 1], we conclude that p 7→ U(t, x, p) is also convex

on R. Now thanks to [108, §6.18], the convexity and the lower semicontinuity of
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p 7→ U(t, x, p) on R imply that the double transform of U is indeed equal to U itself.

That is, for any (t, x, p) ∈ [0, T ]× (0,∞)d × R,

U(t, x, p) = sup
q∈R
{pq − w(t, x, q)} = sup

q≥0
{pq − w(t, x, q)},

where the second equality is a consequence of (2.4.6).

In this section, we also consider the function

(2.4.7)

w̃(t, x, q) := E[Zt,x,1(T )(Qt,x,q(T )− g(X t,x(T )))+] = E[(q − Zt,x,1(T )g(X t,x(T )))+],

for any (t, x, q) ∈ [0, T ] × (0,∞)d × (0,∞). We will show that w = w̃ and derive

various properties of w̃.

Remark 2.4.1. From the definition of w̃ in (2.4.7), w̃ is the upper hedging price

for the contingent claim (Qt,x,q(T ) − g(X t,x(T )))+, and potentially solves the linear

PDE

(2.4.8) ∂tw̃ +
1

2
Tr(σσ′D2

xw̃) +
1

2
|θ|2q2D2

q w̃ + qTr(σθDxqw̃) = 0.

This is not, however, a traditional Black-Scholes type equation because it is degen-

erate on the entire space (x, q) ∈ (0,∞)d × (0,∞). Consider the following function

v which takes values in the space of (d+ 1)× d matrices:

v(·) :=

 s(·)d×d

θ(·)′1×d


Degeneracy can be seen by observing that v(x)v(x)′ is only positive semi-definite for

all x ∈ (0,∞)d. Or, one may observe degeneracy by noting that there are d + 1

risky assets, X1, · · · , Xd, and Q, with only d independent sources of uncertainty,

W1, · · · ,Wd. As a result, the existence of classical solutions to (2.4.8) cannot be
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guaranteed by standard results for parabolic equations. Indeed, under the setting of

Example 2.3.6, we have

w̃(t, x, q) = E[(q − Zt,x,1(T )X t,x(T ))+] = (q − x)+,

which is not smooth.

2.4.2 Elliptic Regularization

In this subsection, we will approximate w̃ by a sequence of smooth functions w̃ε,

constructed by elliptic regularization. We will then derive some properties of w̃ε and

investigate the relation between w̃ and w̃ε. Finally, we will show that w̃ = w, which

validates the construction of w̃ε.

To perform elliptic regularization under our setting, we need to first introduce a

product probability space. Recall that we have been working on a probability space

(Ω,F,P), given by a weak solution to the SDE (2.2.1). Now consider the sample

space ΩB := C([0, T ];R) and the canonical process B(·). Let FB be the filtration

generated by B and PB be the Wiener measure on (ΩB,FB). We then introduce the

product probability space (Ω̄, F̄, P̄), with Ω̄ := Ω×ΩB, F̄ := F×FB and P̄ := P×PB.

For any ω̄ ∈ Ω̄, we write ω̄ = (ω, ωB), where ω ∈ Ω and ωB ∈ ΩB. Also, we denote

by Ē the expectation taken under (Ω̄, F̄, P̄).

For any ε > 0, introduce the processQt,x,q
ε (·) which satisfies the following dynamics

(2.4.9)
dQε(s)

Qε(s)
= |θ(X t,x(s))|2ds+ θ(X t,x(s))′dW (s) + εdB(s), Qt,x,q

ε = q ∈ (0,∞).

Then under the probability space (Ω̄, F̄, P̄), we have d + 1 risky assets, the d stocks
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X1, · · · , Xd and Qε. Define

s̄ :=



s11 · · · s1d 0

...
. . .

...
...

sd1 · · · sdd 0

θ1 · · · θd ε


, b̄ :=



b1

...

bd

|θ|2


,

and

ā := s̄s̄′ =



a11 · · · a1d |
...

. . .
... sθ

ad1 · · · add |

− θ′s′ − |θ|2 + ε2


.

Since we assume that the matrix s has full rank (Assumption II.1), s̄ has full rank by

definition. It follows that ā is positive definite. Now we can define the corresponding

market price of risk under (Ω̄, F̄, P̄) as θ̄ := s̄−1b̄, and the corresponding deflator Z̄(·)

under (Ω̄, F̄, P̄) as the solution of

(2.4.10) dZ̄(s) = −Z̄(s)θ̄(X t,x(s))′dW̄ (s), Z̄t,x,z(t) = z,

where W̄ := (W1, · · · ,Wd, B) is a (d + 1)-dimensional Brownian motion. Observe

that

θ̄ =

 s−1 Od×1

−1
ε
θ′s−1 1

ε


 b

|θ|2

 =

 θ

0

 .
This implies that (2.4.10) coincides with (2.4.1). Thus, we conclude that Z̄(·) = Z(·).

Finally, let us introduce the function

w̃ε(t, x, q) := Ē[Z̄t,x,1(T )(Qt,x,q
ε (T )− g(X t,x(T )))+],

for any (t, x, q) ∈ [0, T ] × (0,∞)d × (0,∞). By (2.4.9) and (2.4.3), we see that the

processes Qε(·) and Q(·) have the following relation

(2.4.11) Qt,x,q
ε (s) = Qt,x,q(s) exp

{
−1

2
ε2(s− t) + ε(B(s)−B(t))

}
, s ∈ [t, T ].
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It then follows from (2.4.11), the fact that Z̄(·) = Z(·), and the definition of w̃ε that

(2.4.12)

w̃ε(t, x, q) = Ē

[(
q exp

{
−1

2
ε2(T − t) + ε(B(T )−B(t))

}
− Zt,x,1(T )g(X t,x(T ))

)+
]
.

Assumption II.2. The functions θi and sij are locally Lipschitz, for all i, j ∈

{1, · · · , d}.

Lemma 2.4.2. Under Assumption II.2, we have that w̃ε ∈ C1,2,2((0, T )× (0,∞)d ×

(0,∞)) and satisfies the PDE

(2.4.13) ∂tw̃ε +
1

2
Tr(σσ′D2

xw̃ε) +
1

2
(|θ|2 + ε2)q2D2

q w̃ε + qTr(σθDxqw̃ε) = 0,

(t, x, q) ∈ (0, T )× (0,∞)d × (0,∞), with the boundary condition

(2.4.14) w̃ε(T, x, q) = (q − g(x))+.

Proof. Since ā is positive definite and continuous, it must satisfy the following ellip-

ticity condition: for every compact set K ⊂ (0,∞)d, there exists a positive constant

CK such that

(2.4.15)
d+1∑
i=1

d+1∑
j=1

āij(x)ξiξj ≥ CK |ξ|2,

for all ξ ∈ Rd+1 and x ∈ K; see e.g. [57, Lemma 3]. Under Assumption II.2 and

(2.4.15), the smoothness of w̃ε and the PDE (2.4.13) follow immediately from [100,

Theorem 4.7]. Finally, w̃ε satisfies the boundary condition by definition.

Proposition 2.4.3. For any (t, x) ∈ [0, T ] × (0,∞)d, the map q 7→ w̃ε(t, x, q) is

strictly convex on (0,∞). More precisely, the map q 7→ Dqw̃ε(t, x, q) is strictly

increasing on (0,∞) with

lim
q↓0

Dqw̃ε(t, x, q) = 0, and lim
q→∞

Dqw̃ε(t, x, q) = 1.
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Proof. We will first compute Dqw̃ε(t, x, q), and then show that it is strictly increasing

in q from 0 to 1. Let Lε(t, T ) := exp
(
−1

2
ε2(T − t) + ε(B(T )−B(t))

)
and Ãa := {ω̄ :

Zt,x,1(T )g(X t,x(T )) ≤ aLε(t, T )} for a ≥ 0. Fix q > 0. For any δ > 0, define

Eδ := {ω̄ : qLε(t, T ) < Zt,x,1(T )g(X t,x(T )) ≤ (q + δ)Lε(t, T )}.

By construction, Ãq and Eδ are disjoint, and Ãq+δ = Ãq ∪ Eδ. It follows that

1

δ
[w̃ε(t, x, q + δ)− w̃ε(t, x, q)]

=
1

δ

{
Ē
[(

(q + δ)Lε(t, T )− Zt,x,1(T )g(X t,x(T ))
)

1Ãq+δ

]
− Ē

[(
qLε(t, T )− Zt,x,1(T )g(X t,x(T ))

)
1Ãq

]}
=

1

δ

{
Ē
[(

(q + δ)Lε(t, T )− Zt,x,1(T )g(X t,x(T ))
)

1Ãq

]
+ Ē

[(
(q + δ)Lε(t, T )− Zt,x,1(T )g(X t,x(T ))

)
1Eδ
]

− Ē
[
(qLε(t, T )− Zt,x,1(T )g(X t,x(T )))1Ãq

]}
= Ē[Lε(t, T )1Ãq ] +

1

δ
Ē
[(

(q + δ)Lε(t, T )− Zt,x,1(T )g(X t,x(T ))
)

1Eδ
]
.

By the definition of Eδ,

0 ≤ 1

δ
Ē[
(
(q + δ)Lε(t, T )− Zt,x,1(T )g(X t,x(T ))

)
1Eδ ] ≤

1

δ
Ē[δLε(t, T )1Eδ ]

= Ē[Lε(t, T )1Eδ ]→ 0, as δ ↓ 0,

where we use the dominated convergence theorem. We therefore conclude that

Dqw̃ε(t, x, q) = lim
δ↓0

1

δ
[w̃ε(t, x, q + δ)− w̃ε(t, x, q)] = Ē[Lε(t, T )1Ãq ].

Thanks to the dominated convergence theorem again, we have

lim
q↓0

Ē[Lε(t, T )1Ãq ] = 0 and lim
q→∞

Ē[Lε(t, T )1Ãq ] = Ē[Lε(t, T )] = 1.

It remains to prove that Dqw̃ε(t, x, q) = Ē[Lε(t, T )1Ãq ] is strictly increasing in q.

Note that it is enough to show that the event Eδ has positive probability for all
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δ > 0. Under the integrability condition (2.2.2), the deflator Z(·) is strictly positive

with probability 1; see e.g. [4, Section 6]. It follows from our assumptions on g (see

(2.2.4) and the line before it) that 0 < Zt,x,1(T )g(X t,x(T )) <∞ P-a.s. This implies

(2.4.16) −∞ < logZt,x,1(T )g(X t,x(T )) <∞ P̄-a.s.

Now, from (2.4.16) and the definitions Eδ and Lε, we see that P̄(Eδ) equals to the

probability of the event{
ω̄ :

ε

2
(T − t) +

1

ε
log

Zt,x,1(T )g(X t,x(T ))

q + δ
≤ B(T )−B(t)

<
ε

2
(T − t) +

1

ε
log

Zt,x,1(T )g(X t,x(T ))

q

}
.

Thanks to Fubini’s theorem, this probability is strictly positive.

We investigate the relation between w̃ and w̃ε in the following result.

Lemma 2.4.4. The functions w̃ and w̃ε satisfy the following relations:

(i) For any (t, x, q) ∈ [0, T ]× (0,∞)d × (0,∞),

w̃(t, x, q) = lim
ε↓0

w̃ε(t, x, q).

(ii) For any compact subset E ⊂ (0,∞), w̃ε converges to w̃ uniformly on [0, T ] ×

(0,∞)d × E. Moreover, for any (t, x, q) ∈ [0, T ]× (0,∞)d × (0,∞)

(2.4.17) w̃(t, x, q) = lim
(ε,t′,x′,q′)→(0,t,x,q)

w̃ε(t
′, x′, q′).
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Proof. (i) By (2.4.11), we observe that

Ē

[
sup
ε∈(0,1]

Zt,x,1(T )Qt,x,q
ε (T )

]
= Ē

[
sup
ε∈(0,1]

q exp

{
−1

2
ε2(T − t) + ε(B(T )−B(t))

}]

≤ qĒ

[
sup
ε∈(0,1]

exp {ε(B(T )−B(t))}

]

≤ qĒ

[
sup
ε∈(0,1]

exp {ε(B(T )−B(t))} 1{B(T )−B(t)≥0}

]

+ qĒ

[
sup
ε∈(0,1]

exp {ε(B(T )−B(t))} 1{B(T )−B(t)<0}

]

≤ qĒ [exp {B(T )−B(t)}] + q = q

(
exp

{
1

2
(T − t)

}
+ 1

)
<∞.

Then it follows from the dominated convergence theorem that

lim
ε↓0

w̃ε(t, x, q)

= lim
ε↓0

Ē

[(
q exp

{
−1

2
ε2(T − t) + ε(B(T )−B(t))

}
− Zt,x,1(T )g(X t,x(T ))

)+
]

= Ē[(q − Zt,x,1(T )g(X t,x(T )))+] = E[(q − Zt,x,1(T )g(X t,x(T )))+] = w̃(t, x, q),

where the third equality holds as Zt,x,1(T )g(X t,x(T )) depends only on w ∈ Ω.

(ii) From (2.4.7), (2.4.12), and the observation that |(a− b)+− (c− b)+| ≤ |a− c|

for any a, b, c ∈ R,

|w̃ε(t, x, q)− w̃(t, x, q)|

≤ qĒ
∣∣∣∣exp

{
−1

2
ε2(T − t) + ε(B(T )−B(t))

}
− 1

∣∣∣∣
≤ qĒ

[
exp

{
ε2

2
(T − t) + ε|B(T )−B(t)|

}
− 1

]
= q

[(
1 + Φ(ε

√
T − t)− Φ(−ε

√
T − t)

)
eε

2(T−t) − 1
]

≤ q
[(

1 + Φ(ε
√
T )− Φ(−ε

√
T )
)
eε

2T − 1
]
,

(2.4.18)

where Φ(·) is the cumulative distribution function of the standard normal distribu-

tion. Note that the second line of (2.4.18) follows from the inequality |ev−1| ≤ e|v|−1
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for v ∈ R; this inequality holds because if v < 0, |ev − 1| = 1 − ev = (e−v − 1)ev ≤

e−v − 1 = e|v| − 1 and if v ≥ 0, |ev − 1| = ev − 1 = e|v| − 1. We then conclude from

(2.4.18) that w̃ε converges to w̃ uniformly on [0, T ]×(0,∞)d×E, for any compact sub-

set E of (0,∞). Now, by Lemma 2.4.2 w̃ε is continuous on (0, T )× (0,∞)d× (0,∞).

Then as a result of uniform convergence, w̃ must be continuous on the same domain.

Noting that

|w̃ε(t′, x′, q′)− w̃(t, x, q)| ≤ |w̃ε(t′, x′, q′)− w̃(t′, x′, q′)|+ |w̃(t′, x′, q′)− w̃(t, x, q)|,

we see that (2.4.17) follows from the continuity of w̃ and the uniform convergence of

w̃ε to w̃ on [0, T ]× (0,∞)d × E for any compact subset E of (0,∞).

Thanks to the stability of viscosity solutions, we have the next result immediately.

Proposition 2.4.5. Under Assumption II.2, w̃ is a continuous viscosity solution to

(2.4.19) ∂tw̃ +
1

2
Tr(σσ′D2

xw̃) +
1

2
|θ|2q2D2

q w̃ + qTr(σθDxqw̃) = 0,

for (t, x, q) ∈ (0, T )× (0,∞)d × (0,∞), with the boundary condition

(2.4.20) w̃(T, x, q) = (q − g(x))+.

Proof. By Lemmas 2.4.2 and 2.4.4 (ii), the viscosity solution property follows as

a direct application of [106, Proposition 2.3]. And the boundary condition holds

trivially from the definition of w̃.

Now we want to relate w̃ to w. Given (t, x) ∈ [0, T ]× (0,∞)d, recall the notation

in Section 2.3: for any a ≥ 0, Āa := {ω : Zt,x,1(T )g(X t,x(T )) ≤ a}; also, F (·) again

denotes the cumulative distribution function of Zt,x,1(T )g(X t,x(T )). We first present

another representation for w̃ as follows.
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Lemma 2.4.6. For any (t, x, q) ∈ [0, T ]× (0,∞)d × (0,∞), we have

max
a≥0

E[(q − Zt,x,1(T )g(X t,x(T )))1Āa ] = w̃(t, x, q).

Proof. Let us first take a < q. Since Āa ⊂ Āq and q−Zt,x,1(T )g(X t,x(T )) ≥ 0 on Āq,

E[(q − Zt,x,1(T )g(X t,x(T )))1Āa ] ≤ E[(q − Zt,x,1(T )g(X t,x(T )))1Āq ] = w̃(t, x, q).

Now consider a > q. Set F := {ω : q < Zt,x,1(T )g(X t,x(T )) ≤ a}. Observing that Āq

and F are disjoint, and Āa = Āq ∪ F , we have

E[(q − Zt,x,1(T )g(X t,x(T )))1Āa ]

= E[(q − Zt,x,1(T )g(X t,x(T )))1Āq ] + E[(q − Zt,x,1(T )g(X t,x(T )))1F ]

≤ E[(q − Zt,x,1(T )g(X t,x(T )))1Āq ] = w̃(t, x, q),

where the inequality is due to the fact that q − Zt,x,1(T )g(X t,x(T )) < 0 on F .

Next, we argue that w and w̃ are equal.

Proposition 2.4.7. w(t, x, q) = w̃(t, x, q), for all (t, x, q) ∈ [0, T ]× (0,∞)d× (0,∞).

Proof. Given p ∈ [0, 1], there exists a ≥ 0 such that F (a−) ≤ p ≤ F (a). We can

take two nonnegative numbers λ1 and λ2 with λ1 + λ2 = 1 such that

(2.4.21) p = λ1F (a) + λ2F (a−).

Observe that p − F (a−) = λ1(F (a) − F (a−)). Plugging this into the first line of

(2.3.10), we get

(2.4.22) U(t, x, p) = U(t, x, F (a−)) + λ1a(F (a)− F (a−)).

Also note from (2.3.10) that

a(F (a)− F (a−)) = U(t, x, F (a))− U(t, x, F (a−)).
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Plugging this back into (2.4.22), we obtain

(2.4.23) U(t, x, p) = λ1U(t, x, F (a)) + λ2U(t, x, F (a−)).

It then follows from (2.4.21) and (2.4.23) that

pq − U(t, x, p) = λ1[F (a)q − U(t, x, F (a))] + λ2[F (a−)q − U(t, x, F (a−))]

≤ max {F (a)q − U(t, x, F (a)), F (a−)q − U(t, x, F (a−))} .(2.4.24)

Choose a sequence an ∈ [a/2, a) such that an → a from the left as n→∞. Thanks

to Proposition 2.3.5, p 7→ U(t, x, p) is continuous on [0, 1]. We can therefore select a

subsequence of an (without relabelling) such that for any n ∈ N,

F (a−)− F (an) <
1

n
and U(t, x, F (an))− U(t, x, F (a−)) <

1

n
.

It follows that for any n ∈ N

F (a−)q − U(t, x, F (a−)) < F (an)q − U(t, x, F (an)) +
1 + q

n
,

which yields

F (a−)q − U(t, x, F (a−)) ≤ lim sup
n→∞

{
F (an)q − U(t, x, F (an)) +

1 + q

n

}
≤ sup

n∈N
F (an)q − U(t, x, F (an)).(2.4.25)

Combining (2.4.24) and (2.4.25), we obtain

pq − U(t, x, p) ≤ sup
δ∈[a/2,a]

F (δ)q − U(t, x, F (δ)) ≤ sup
δ≥0

F (δ)q − U(t, x, F (δ)).

This implies

w(t, x, q) = sup
p∈[0,1]

{pq − U(t, x, p)} ≤ sup
a≥0
{F (a)q − U(t, x, F (a))}.

Since F (a) ∈ [0, 1] for all a ≥ 0, the opposite inequality is trivial. As a result,

(2.4.26) w(t, x, q) = sup
p∈[0,1]

{pq − U(t, x, p)} = sup
a≥0
{F (a)q − U(t, x, F (a))}.
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Now, thanks to (2.3.7), we have

F (a)q − U(t, x, F (a)) = F (a)q − E[Zt,x,1(T )g(X t,x(T ))1Āa ]

= E[(q − Zt,x,1(T )g(X t,x(T )))1Āa ].(2.4.27)

It follows from (2.4.26), (2.4.27) and Lemma 2.4.6 that

w(t, x, q) = max
a≥0

E[(q − Zt,x,1(T )g(X t,x(T )))1Āa ] = w̃(t, x, q).

Remark 2.4.8. Since w = w̃, we immediately have the following result from Propo-

sition 2.4.5: w is a continuous viscosity solution to (2.4.19) on (0, T )×(0,∞)d×(0,∞)

with the boundary condition (2.4.20).

2.4.3 Viscosity Supersolution Property of U

Let us extend the domain of the map q 7→ w̃ε(t, x, q) from (0,∞) to the entire real

line R by setting w̃ε(t, x, 0) = 0 and w̃ε(t, x, q) =∞ for q < 0. In this subsection, we

consider the Legendre transform of w̃ε with respect to the q variable

Uε(t, x, p) := sup
q∈R
{pq − w̃ε(t, x, q)} = sup

q≥0
{pq − w̃ε(t, x, q)}.

We will first show that Uε is a classical solution to a nonlinear PDE. Then we will

relate Uε to U and derive the viscosity supersolution property of U .

Proposition 2.4.9. Under Assumption II.2, we have that Uε ∈ C1,2,2((0, T ) ×

(0,∞)d × (0, 1)) and satisfies the equation

0 = ∂tUε +
1

2
Tr[σσ′DxxUε] + inf

a∈Rd

(
(DxpUε)

′σa+
1

2
|a|2DppUε − θ′aDpUε

)
+ inf

b∈Rd

(
1

2
|b|2DppUε − εDpUε1

′b

)
,

(2.4.28)
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where 1 := (1, · · · , 1)′ ∈ Rd, with the boundary condition

(2.4.29) Uε(T, x, p) = pg(x).

Moreover, Uε(t, x, p) is strictly convex in the p variable for p ∈ (0, 1), with

(2.4.30) lim
p↓0

DpUε(t, x, p) = 0, and lim
p↑1

DpUε(t, x, p) =∞.

Proof. Since from Proposition 2.4.3 the function q 7→ Dqw̃ε(t, x, q) is strictly increas-

ing on (0,∞) with

lim
q↓0

Dqw̃ε(t, x, q) = 0 and lim
q→∞

Dqw̃ε(t, x, q) = 1,

its inverse function p 7→ H(t, x, p) is well-defined on (0, 1). Moreover, considering

that w̃ε(t, x, q) is smooth on (0, T )×(0,∞)d×(0,∞), Uε(t, x, p) is smooth on (0, T )×

(0,∞)d × (0, 1) and can be expressed as

(2.4.31) Uε(t, x, p) = sup
q≥0
{pq − w̃ε(t, x, q)} = pH(t, x, p)− w̃ε(t, x,H(t, x, p));

see e.g. [98]. By direct calculations, we have

DpUε(t, x, p) = H(t, x, p),

DppUε(t, x, p) = DpH(t, x, p) =
1

Dqqw̃ε(t, x,H(t, x, p))
,

DxUε(t, x, p) = −Dxw̃ε(t, x,H(t, x, p)),

DxxUε(t, x, p) = −Dxxw̃ε(t, x,H(t, x, p)) +
1

DppUε(t, x, p)
(DpxUε)(DpxUε)

′,

DpxUε(t, x, p) = −Dqxw̃ε(t, x,H(t, x, p))DppUε(t, x, p),

∂tUε(t, x, p) = −∂tw̃ε(t, x,H(t, x, p)).

(2.4.32)

In particular, we see that Uε(t, x, p) is strictly convex in p for p ∈ (0, 1) and satisfies
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(2.4.30). Now by setting q := H(t, x, p), we deduce from (2.4.13) that

0 = −∂tw̃ε −
1

2
Tr[σσ′Dxxw̃ε]−

1

2
(|θ|2 + ε2)q2Dqqw̃ε − qTr[σθDxqw̃ε]

= ∂tUε +
1

2
Tr[σσ′DxxUε]−

1

2DppUε
Tr[σσ′(DpxUε)(DpxUε)

′]

− 1

2
(|θ|2 + ε2)

(DpUε)
2

DppUε
+
DpUε
DppUε

Tr[σθDpxUε]

= ∂tUε +
1

2
Tr[σσ′DxxUε] +

(
(DxpUε)

′σa∗ +
1

2
|a∗|2DppUε − θ′a∗DpUε

)
+

(
1

2
|b∗|2DppUε − εDpUε1

′b∗
)

= ∂tUε +
1

2
Tr[σσ′DxxUε] + inf

a∈Rd

(
(DxpUε)

′σa+
1

2
|a|2DppUε − θ′aDpUε

)
+ inf

b∈Rd

(
1

2
|b|2DppUε − εDpUε1

′b

)
,

(2.4.33)

where the minimizers a∗ and b∗ are defined by

a∗(t, x, p) :=
DpUε(t, x, p)

DppUε(t, x, p)
θ(x)− 1

DppU(t, x, p)
σ′(x)DpxUε(t, x, p),

b∗(t, x, p) := ε
DpUε(t, x, p)

DppUε(t, x, p)
1.

Finally, observe that for any p ∈ (0, 1), the maximum of pq− (q− g(x))+ is attained

at q = g(x). Therefore, by (2.4.14)

Uε(T, x, p) = sup
q≥0
{pq − w̃ε(T, x, p)} = sup

q≥0
{pq − (q − g(x))+} = pg(x).

Now we intend to use the stability of viscosity solutions to derive the supersolution

property of U . We first have the following observation.

Lemma 2.4.10. For any (t, x, p) ∈ [0, T ]× (0,∞)d × R, we have

lim inf
(ε,t̃,x̃,p̃)→(0,t,x,p)

Uε(t̃, x̃, p̃) = U(t, x, p).
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Proof. As a consequence of Lemma 2.4.4 (ii), w̃ε(t, x, q) is continuous at (ε, t, x, q) ∈

[0,∞) × [0, T ] × (0,∞)d × (0,∞). This implies that Uε(t, x, p) = supq≥0{pq −

w̃ε(t, x, q)} is lower semicontinuous at (ε, t, x, p) ∈ [0,∞) × [0, T ] × (0,∞)d × R.

It follows that

lim inf
(ε,t̃,x̃,p̃)→(0,t,x,p)

Uε(t̃, x̃, p̃) = sup
q≥0
{pq − w̃(t, x, q)} = sup

q≥0
{pq − w(t, x, q)} = U(t, x, p),

where the second equality follows from Proposition 2.4.7.

Before we state the supersolution property for U , let us first introduce some

notation. For any (x, β, γ, λ) ∈ (0,∞)d × R× R× Rd, define

G(x, β, γ, λ) := inf
a∈Rd

(
λ′σ(x)a+

1

2
|a|2γ − βθ(x)′a

)
.

We also consider the lower semicontinuous envelope of G

G∗(x, β, γ, λ) := lim inf
(x̃,β̃,γ̃,λ̃)→(x,β,γ,λ)

G(x̃, β̃, γ̃, λ̃).

Observe that by definition,

(2.4.34) G∗(x, β, γ, λ) =

 G(x, β, γ, λ), if γ > 0;

−∞, if γ ≤ 0.

Proposition 2.4.11. Under Assumption II.2, U is a lower semicontinuous viscosity

supersolution to the equation

(2.4.35) 0 ≥ ∂tU +
1

2
Tr[σσ′DxxU ] +G∗(x,DpU,DppU,DxpU),

for (t, x, p) ∈ (0, T )× (0,∞)d × (0, 1), with the boundary condition

(2.4.36) U(T, x, p) = pg(x),
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Proof. Note that the lower semicontinuity of U is a consequence of Lemma 2.4.10, and

the boundary condition (2.4.36) comes from the fact that w = w̃ and the definition

of w̃, as the following calculation demonstrates:

U(T, x, p) = sup
q≥0
{pq − w(T, x, p)} = sup

q≥0
{pq − w̃(T, x, p)}

= sup
q≥0
{pq − (q − g(x))+} = pg(x).

Let us now turn to the PDE characterization inside the domain of U . Set x̄ :=

(t, x, p). Let ϕ be a smooth function such that U − ϕ attains a local minimum at

x̄0 = (t0, x0, p0) ∈ (0, T ) × (0,∞)d × (0, 1) and U(x̄0) = ϕ(x̄0). Note from (2.4.34)

that as Dppϕ(x̄0) ≤ 0, we must have G∗(x0, Dpϕ,Dppϕ,Dxpϕ) = −∞. Thus, the

viscosity supersolution property (2.4.35) is trivially satisfied. We therefore assume

in the following that Dppϕ(x̄0) > 0.

Let Fε (x̄, ∂tUε(x̄), DpUε(x̄), DppUε(x̄), DxpUε(x̄), DxxUε(x̄)) denote the right hand

side of (2.4.28). Observe from the calculation in (2.4.33) that as γ > 0,

Fε(x̄, α, β, γ, λ, A) = α +
1

2
Tr[σ(x)σ(x)′A]

− 1

2γ
Tr[σ(x)σ(x)′λλ′]− β2

2γ
(|θ(x)|2 + ε2) +

β

γ
Tr[σ(x)θ(x)λ].

This shows that Fε is continuous at every (ε, x̄, α, β, γ, λ, A) as long as γ > 0. It

follows that for any z = (x̄, α, β, γ, λ, A) with γ > 0, we have

F∗(z) := lim inf
(ε,z′)→(0,z)

Fε(z
′) = F0(z)

= α +
1

2
Tr[σ(x)σ(x)′A] + inf

a∈Rd

(
λ′σ(x)a+

1

2
|a|2γ − θ(x)′aβ

)
.

(2.4.37)

Since we have U(x̄) = lim inf(ε,x̄′)→(0,x̄) Uε(x̄
′) from Lemma 2.4.10, we may use the

same argument in [106, Proposition 2.3] and obtain that

F∗ (x̄0, ∂tϕ(x̄0), Dpϕ(x̄0), Dppϕ(x̄0), Dxpϕ(x̄0), Dxxϕ(x̄0)) ≤ 0.
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Considering that Dppϕ(x̄0) > 0, we see from (2.4.37) and (2.4.34) that this is the

desired supersolution property.

A few remarks are in order:

Remark 2.4.12. Results similar to Proposition 2.4.11 were proved by [22], with

stronger assumptions (such as the existence of an equivalent martingale measure

and the existence of a unique strong solution to (2.2.1)), using the stochastic target

formulation. Here, we first observe that the Legendre transform of U is equal to w̃

and that w̃ can be approximated by w̃ε, which is a classical solution to a linear PDE

and is strictly convex in q; then, we apply the Legendre duality argument, as carried

out in [65], to show that Uε, the Legendre transform of w̃ε, is a classical solution to

a nonlinear PDE. Finally, the stability of viscosity solutions leads to the viscosity

supersolution property of U .

Remark 2.4.13. Instead of relying on the Legendre duality we could directly apply

the dynamic programming principle of [56] for weak solutions to the formulation in

Section 2.3.1. The problem with this approach is that it requires some growth condi-

tions on the coefficients of (2.2.1), which would rule out the possibility of arbitrage,

the thing we are interested in and want to keep in the scope of our discussion.

Remark 2.4.14. Under our assumptions, the solution of (2.4.35) may not be unique

as pointed out below.

(i) Let us consider the PDE satisfied by the superhedging price U(t, x, 1):

0 = vt +
1

2
Tr(σσ′D2

xv), on (0, T )× (0,∞)d,(2.4.38)

v(T−, x) = g(x), on (0,∞)d.(2.4.39)

Unless additional boundary conditions are specified, this PDE may have multi-

ple solutions. The role of additional boundary conditions in identifying (t, x)→
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U(t, x, 1) as the unique solution of the above Cauchy problem is discussed in

Section 4 of [12]. Also see [94] for a similar discussion on boundary conditions

for degenerate parabolic problems on bounded domains.

Even when additional boundary conditions are specified, the growth of σ might

lead to the loss of uniqueness; see for example [13] and Theorem 4.8 of [12]

which give necessary and sufficient conditions on the uniqueness of Cauchy

problems in one and two dimensional setting in terms of the growth rate of its

coefficients. We also note that [41] develops necessary and sufficient conditions

for uniqueness, in terms of the attainability of the boundary of the positive

orthant by an auxiliary diffusion (or, more generally, an auxiliary Itô) process.

(ii) Let ∆U(t, x, 1) be the difference of two solutions of (2.4.38)-(2.4.39). Then both

U(t, x, p) and U(t, x, p) + ∆U(t, x, 1) are solutions of (2.4.35) (along with its

boundary conditions). As a result, whenever (2.4.38) and (2.4.39) has multiple

solutions, so does the PDE (2.4.35) for the value function U .

2.4.4 Characterizing the value function U

We intend to characterize Uε as the smallest solution among a particular class of

functions, as specified below in Proposition 2.4.15. Then, considering that

lim inf
(ε,t̃,x̃,p̃)→(0,t,x,p)

Uε(t̃, x̃, p̃) = U(t, x, p)

from Lemma 2.4.10, this gives a characterization for U . In determining U numeri-

cally, one could use Uε as a proxy for U for small enough ε.

Additionally, we will also characterize U as the smallest nonnegative supersolution

of (2.4.35) in Proposition 2.4.16.

Proposition 2.4.15. Suppose that Assumption II.2 holds. Let u : [0, T ]× (0,∞)d×

[0, 1] 7→ [0,∞) be of class C1,2,2((0, T )× (0,∞)d × (0, 1)) such that u(t, x, 0) = 0 and
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u(t, x, p) is strictly convex in p for p ∈ (0, 1) with

(2.4.40) lim
p↓0

Dpu(t, x, p) = 0 and lim
p↑1

Dpu(t, x, p) =∞.

If u satisfies the following partial differential inequality

0 ≥ ∂tu+
1

2
Tr[σσ′Dxxu] + inf

a∈Rd

(
(Dxpu)′σa+

1

2
|a|2Dppu− θ′aDpu

)
+ inf

b∈Rd

(
1

2
|b|2Dppu− εDpu1′b

)
,

(2.4.41)

where 1 := (1, · · · , 1)′ ∈ Rd, with the boundary condition

(2.4.42) u(T, x, p) = pg(x),

then u ≥ Uε.

Proof. Let us extend the domain of the map p 7→ u(t, x, p) from [0, 1] to the entire

real line R by setting u(t, x, p) = 0 for p < 0 and u(t, x, p) =∞ for p > 1. Then, we

can define the Legendre transform of u with respect to the p variable

wu(t, x, q) := sup
p∈R
{pq − u(t, x, p)} = sup

p∈[0,1]

{pq − u(t, x, p)} ≥ 0, for q ≥ 0,(2.4.43)

where the positivity comes from the condition u(t, x, 0) = 0. First, observe that since

u is nonnegative, we must have

(2.4.44) wu(t, x, q) ≤ sup
p∈[0,1]

pq = q, for any q ≥ 0.

Next, we derive the boundary condition of wu from (2.4.42) as

(2.4.45) wu(T, x, q) = sup
p∈[0,1]

{pq − u(T, x, p)} = sup
p∈[0,1]

{pq − pg(x)} = (q − g(x))+.

Now, since u(t, x, p) is strictly convex in p for p ∈ (0, 1) and satisfies (2.4.40), we can

express wu as

wu(t, x, q) = J(t, x, q)q − u(t, x, J(t, x, q)), for q ∈ (0,∞),
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where q 7→ J(·, q) is the inverse function of p 7→ Dpu(·, p). We can therefore compute

the derivatives of wu(t, x, q) in terms of those of u(t, x, J(t, x, q)), as carried out in

(2.4.32). We can then perform the same calculation in (2.4.33) (but going backward),

and deduce from (2.4.41) that for any (t, x, q) ∈ (0, T )× (0,∞)d × (0,∞),

(2.4.46) 0 ≤ ∂tw
u +

1

2
Tr[σσ′Dxxw

u] +
1

2
(|θ|2 + ε2)q2Dqqw

u + qTr[σθDxqw
u].

Define the process Y (s) := Zt,x,1(s)Qt,x,q
ε (s) for s ∈ [t, T ]. Observing that

Y (s) = q exp{−1

2
ε2(s− t) + ε(B(s)−B(t))},

we conclude Y (·) is a martingale with Ē[Y (s)] = q and Var(Y (s)) = q2(eε
2(s−t) − 1)

for all s ∈ [t, T ], and satisfies the following SDE

dY (s) = εY (s)dB(s) for s ∈ [t, T ], and Y (t) = q.

Thanks to the Burkholder-Davis-Gundy inequality, there is some C > 0 such that

Ē
[

max
t≤s≤T

|Y (s)|2
]
≤ CĒ

[∫ T

t

ε2Y 2(s)ds

]
= Cε2

∫ T

t

q2(eε
2(s−t) − 1) + q2 ds <∞.

(2.4.47)

For all n ∈ N, define the stopping time τn := inf{s ≥ t : |X t,x(s)| > n or |Qt,x,q
ε (s)| >

n}. By applying the product rule to the process Zt,x,1(·)wu(·, X t,x(·), Qt,x,q
ε (·)) and

using (2.4.46), we obtain that for all n ∈ N,

(2.4.48) wu(t, x, q) ≤ Ē[Zt,x,1(T ∧ τn)wu(T ∧ τn, X t,x(T ∧ τn), Qt,x,q
ε (T ∧ τn))].

Now, observe from (2.4.44) that Zt,x,1(s)wu(s,X t,x(s), Qt,x,q
ε (s)) ≤ Y (s) for any s ∈

[t, T ]. Then from (2.4.47), we may apply the dominated convergence theorem to

(2.4.48) and obtain

wu(t, x, q) ≤ Ē[Zt,x,1(T )wu(T,X t,x(T ), Qt,x,q
ε (T ))]

= Ē[Zt,x,1(T )(Qt,x,q
ε (T )− g(X t,x(T )))+] = w̃ε(t, x, q),
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where the first equality is due to (2.4.45). It follows that

u(t, x, p) = sup
q≥0
{pq − wu(t, x, q)} ≥ sup

q≥0
{pq − w̃ε(t, x, q)} = Uε(t, x, p).

Proposition 2.4.16. Suppose Assumption II.2 holds. Let u : [0, T ] × (0,∞)d ×

[0, 1] 7→ [0,∞) be such that u(t, x, 0) = 0, u(t, x, p) is convex in p, and the Legendre

transform of u with respect to the p variable, as defined in the proof of Proposi-

tion 2.4.15, is continuous on [0, T ]×(0,∞)d×(0,∞). If u is a lower semicontinuous

viscosity supersolution to (2.4.35) on (0, T )× (0,∞)d× (0, 1) with the boundary con-

dition (2.4.36), then u ≥ U .

Proof. Let us denote by wu the Legendre transform of u with respect to p. By

the same argument in the proof of Proposition 2.4.15, we can show that (2.4.43),

(2.4.44) and (2.4.45) are true. Moreover, as demonstrated in [22, Section 4], by using

the supersolution property of u we may show that wu is an upper semicontinuous

viscosity subsolution on (0, T )× (0,∞)d × (0,∞) to the equation

(2.4.49) ∂tw
u +

1

2
Tr(σσ′D2

xw
u) +

1

2
|θ|2q2D2

qw
u + qTr(σθDxqw

u) = 0.

Let ρ(t, x, q) be a nonnegative C∞ function supported in {(t, x, q) : t ∈ [0, 1], |(x, q)| ≤

1} with unit mass. Without loss of generality, set wu(t, x, q) = 0 for (t, x, q) ∈

Rd+2 ∩
(
[0, T ]× (0,∞)d × (0,∞)

)c
. Then for any (t, x, q) ∈ Rd+2, define

wuδ (t, x, q) := ρδ ∗wu where ρδ(t, x, q) :=
1

δd+2
ρ

(
t

δ2
,
x

δ
,
q

δ

)
.

By definition, wuδ is C∞. Moreover, it can be shown that wuδ is a subsolution to

(2.4.49) on (0, T )× (0,∞)d × (0,∞); see e.g. (3.23)-(3.24) in [39, Section 3.3.2] and

[5, Lemma 2.7]. Set x̄ = (t, x, q). By (2.4.44), we see from the definition of wuδ that

(2.4.50) wuδ (x̄) =

∫
Rd+2

ρδ(y)wu(x̄− y)dy ≤ (q + δ)

∫
Rd+2

ρδ(y)dy = q + δ.
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Also, the continuity of wu implies that wuδ → wu for every (t, x, q) ∈ [0, T ]×(0,∞)d×

(0,∞). Since wuδ is a classical subsolution to (2.4.49), we have for all n ∈ N0 that

(2.4.51) wuδ (t, x, q) ≤ E[Zt,x,1(T ∧ τn)wuδ (T ∧ τn, X t,x(T ∧ τn), Qt,x,q(T ∧ τn))],

where τn := inf{s ≥ t : |X t,x(s)| > n or |Qt,x,q(s)| > n}. For each fixed n ∈ N,

thanks to (2.4.50) we may apply the dominated convergence theorem as we take the

limit δ → 0 in (2.4.51). We thus get

(2.4.52) wu(t, x, q) ≤ E[Zt,x,1(T ∧ τn)wu(T ∧ τn, X t,x(T ∧ τn), Qt,x,q(T ∧ τn))].

Now by applying the Reverse Fatou’s Lemma (see e.g. [110, p.53]) to (2.4.52),

wu(t, x, q) ≤ E[Zt,x,1(T ) lim sup
n→∞

wu(T ∧ τn, X t,x(T ∧ τn), Qt,x,q(T ∧ τn))]

≤ E[Zt,x,1(T )wu(T,X t,x(T ), Qt,x,q(T ))]

≤ E[Zt,x,1(T )(Qt,x,q(T )− g(X t,x(T )))+] = w(t, x, q),

where the second inequality follows from the upper semicontinuity of wu and the

third inequality is due to (2.4.45). Finally, we conclude that

u(t, x, p) = sup
q≥0
{pq − wu(t, x, q)} ≥ sup

q≥0
{pq − w(t, x, q)} = U(t, x, p),

where the first equality is due to the convexity and the lower semicontinuity of u.

One should note that Uε and U satisfy the assumptions stated in Propositions 2.4.15

and 2.4.16, respectively. Therefore, one can indeed see these results as PDE charac-

terizations of the functions Uε and U .

In this chapter, under the context where equivalent martingale measures need not

exist, we discuss the quantile hedging problem and focus on the PDE characteriza-

tion for the minimum amount of initial capital required for quantile hedging. An

interesting problem following this is the construction of the corresponding quantile

hedging portfolio. We leave this problem open for future research.



CHAPTER III

Robust Maximization of Asymptotic Growth under
Covariance Uncertainty

3.1 Introduction

In this chapter, we consider the problem of how to trade optimally in a market

when the investing horizon is long and the dynamics of the underlying assets are

uncertain. For the case where the uncertainty lies only in the instantaneous ex-

pected return of the underlying assets, this problem has been studied by Kardaras

& Robertson [73]. They identify the optimal trading strategy using a generalized

version of the principle eigenfunction for a linear elliptic operator which depends

on the given covariance structure of the underlying assets. We intend to generalize

their results to the case where even the covariance structure of the underlying as-

sets is not known precisely, which is suggested in [73, Discussion]. More precisely, we

would like to determine a robust trading strategy under which the asymptotic growth

rate of one’s wealth, defined below, can be maximized no matter which admissible

covariance structure materializes.

Uncertainty in variance (or, equivalently, in covariance) has been drawing in-

creasing attention. The main difficulty lies in the absence of one single dominating

probability measure among Π, the collection of all probability measures induced by

variance uncertainty. In their pioneering works, Avellaneda, Levy & Paras [3] and

41
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Lyons [81] introduced the uncertain volatility model (UVM), where the volatility pro-

cess is only known to lie in a fixed interval [σ, σ]. Under the Markovian framework,

they obtained a duality formula for the superhedging price of (non-path-dependent)

European contingent claims. Under a generalized version of the UVM, Denis &

Martini [32] extended the above duality formula, by using the capacity theory, to

incorporate path-dependent European contingent claims. For the capacity theory to

work, they required some continuity of the random variables being hedged. Taking

a different approach based on the underlying partial differential equations, Peng [89]

derived results very similar to [32]. The connection between [32] and [89] was then

elaborated and extended in Denis, Hu & Peng [31]. On the other hand, instead

of imposing some continuity assumptions on the random variables being hedged,

Soner, Touzi & Zhang [103] chose to restrict slightly the collection of non-dominated

probability measures, and derived under this setting a duality formulation for the

superhedging problem. With all these developments, superhedging under volatility

uncertainty has then been further studied in Nutz & Soner [88] and Nutz [87], among

others. Also notice that Fernholz & Karatzas [43] characterized the highest return

relative to the market portfolio under covariance uncertainty. Moreover, a controller-

and-stopper game with controlled drift and volatility is considered in Chapter IV,

which can be viewed as an optimal stopping problem under volatility uncertainty.

While we also take covariance uncertainty into account, we focus on robust growth-

optimal trading, which is different by nature from the superhedging problem. Here,

an investor intends to find a trading strategy such that her wealth process can achieve

maximal growth rate, in certain sense, uniformly over all possible probability mea-

sures in Π, or at least in a large enough subset Π∗ of Π. Previous research on this

problem can be found in [73] and the references therein. It is worth noting that this
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problem falls under the umbrella of ergodic control, for which the dynamic program-

ming heuristic cannot be directly applied; see e.g. Arapostathis, Borkar & Ghosh [2]

and Borkar [19], where they consider ergodic control problems with controlled drift.

Following the framework in [73], we first observe that the associated differential

operator under covariance uncertainty is a variant of Pucci’s extremal operator. We

define the “principal eigenvalue” for this fully nonlinear operator, denoted by λ∗,

in some appropriate sense, and then investigate the connection between λ∗ and the

generalized principal eigenvalue in [73] where the covariance structure is a priori

given. This connection is first established on smooth bounded domains, thanks to

the theory of continuous selection in Michael [85] and Brown [25]. Next, observing

that a Harnack inequality holds under current context, we extend the result to un-

bounded domains. Finally, as a consequence of this connection, we generalize [73,

Theorem 2.1] to the case with covariance uncertainty: we characterize the largest

possible asymptotic growth rate as λ∗ (which is robust among probabilities in a large

enough subset Π∗ of Π) and identify a robust trading strategy in terms of λ∗ and the

corresponding eigenfunction; see Theorem 3.3.14.

The structure of this chapter is as follows. In Section 3.2, we introduce the frame-

work of our study and formulate the problem of robust maximization of asymptotic

growth under covariance uncertainty. In Section 3.3, we first introduce several differ-

ent notions of the generalized principal eigenvalue, and then investigate the relation

between them. The main technical result we obtain is Theorem 3.3.12, using which we

resolve the problem of robust maximization of asymptotic growth in Theorem 3.3.14.

3.1.1 Notation

We collect some notation and definitions here for readers’ convenience.

• | · | denotes the Euclidean norm in Rn, and Leb denotes Lebesgue measure in
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Rn.

• Bδ(x) denotes the open ball in Rn centered at x ∈ Rn with radius δ > 0.

• D̄ denotes the closure of D and ∂D denotes the boundary of D.

• Given x ∈ Rn and D1, D2 ⊂ Rn, d(x,D1) := inf{|x − y| | y ∈ D1} and

d(D1, D2) := inf{|x− y| | x ∈ D1, y ∈ D2}.

• Given D ⊂ Rn, C(D) = C0(D) denotes the set of continuous functions on D.

If D is open, Ck(D) denotes the set of functions having derivatives of order

≤ k continuous in D, and Ck(D̄) denotes the set of functions in Ck(D) whose

derivatives of order ≤ k have continuous extension on D̄.

• Given D ⊂ Rn, Ck,β(D) denotes the set of functions in Ck(D) whose derivatives

of order ≤ k are Holder continuous on D with exponent β ∈ (0, 1]. Moreover,

Ck,β
loc (D) denotes the set of functions belonging to Ck,β(K) for every compact

subset K of D.

• We say D ⊂ Rn is a domain if it is an open connected set. We say D is a smooth

domain if it is a domain whose boundary is of C2,β for some β ∈ (0, 1].

• Given D ⊂ Rn and u : D 7→ R, osc
D

:= sup{|u(x)− u(y)| | x, y ∈ D}.

3.2 The Set-Up

Fix d ∈ N. Consider an open connected set E ⊆ Rd, and two functions θ,Θ :

E 7→ (0,∞). The following assumption will be in force throughout this chapter.

Assumption III.1. (i) θ and Θ are of C0,α
loc (E) for some α ∈ (0, 1], and θ < Θ in

E.

(ii) There is a sequence {En}n∈N of bounded open convex subsets of E such that ∂En

is of C2,α′ for some α′ ∈ (0, 1], Ēn ⊂ En+1 for all n ∈ N, and E =
⋃∞
n=1 En .
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Let Sd denote the space of d× d symmetric matrices, equipped with the norm

(3.2.1) ‖M‖ := max
i=1,··· ,d

|ei(M)|, M ∈ Sd,

where ei(M)’s are the eigenvalues of M . In some cases, we will also consider the

norm ‖M‖max := max |mij|, for M = {mij}i,j ∈ Sd. These two norms are equivalent

with ‖ · ‖max ≤ ‖ · ‖ ≤ d‖ · ‖max.

Definition 3.2.1. Let C be the collection of functions c : E 7→ Sd such that

(i) for any x ∈ E, θ(x)|ξ|2 ≤ ξ′c(x)ξ ≤ Θ(x)|ξ|2, ∀ ξ ∈ Rd \ {0};

(ii) cij(x) is of C1,α
loc (E), 1 ≤ i, j ≤ d.

Let Ê := E∪4 be the one-point compactification of E, where4 is identified with

∂E if E is bounded with ∂E plus the point at infinity if E is unbounded. Following

the set-up in [73, Section 1] or [92, p.40], we consider the space C([0,∞), Ê) of

continuous functions ω : [0,∞) 7→ Ê, and define for each ω ∈ C([0,∞), Ê) the exit

times

ζn(ω) := inf{t ≥ 0 | ωt /∈ En}, ζ(ω) := lim
n→∞

ζn(ω).

Then, we introduce Ω :=
{
ω ∈ C([0,∞), Ê)

∣∣∣ ωζ+t = 4 for all t ≥ 0, if ζ(ω) <∞
}

.

Let X = {Xt}t≥0 be the coordinate mapping process for ω ∈ Ω. Set {Bt}t≥0 to be the

natural filtration generated by X, and denote by B the smallest σ-algebra generated

by
⋃
t≥0 Bt. Similarly, set (Ft)t≥0 to be the right-continuous enlargement of (Bt)t≥0,

and denote by F the smallest σ-algebra generated by
⋃
t≥0Ft.

Remark 3.2.2. For financial applications, X = {Xt}t≥0 represents the (relative)

price process of certain underlying assets, and each c ∈ C represents a possible

covariance structure that might eventually materialize. In view of Definition 3.2.1

(i), the extent of the uncertainty in covariance is captured by the functions θ and
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Θ: they act as the pointwise lower and upper bounds uniformly over all possible

covariance structures c ∈ C.

3.2.1 The generalized martingale problem

For any M = {mij}i,j ∈ Sd, define the operator LM which acts on f ∈ C2(E) by

(LMf)(x) :=
1

2

d∑
i,j=1

mij
∂2f

∂xi∂xj
(x) =

1

2
Tr[MD2f(x)], x ∈ E.

For each c ∈ C, we define similarly the operator Lc(·) as

(Lc(·)f)(x) :=
1

2

d∑
i,j=1

cij(x)
∂2f

∂xi∂xj
(x) =

1

2
Tr[c(x)D2f(x)], x ∈ E.

Given c ∈ C, a solution to the generalized martingale problem on E for the operator

Lc(·) is a family of probability measures (Qc
x)x∈Ê on (Ω,B) such that Qc

x[X0 = x] = 1

and

f(Xs∧ζn)−
∫ s∧ζn

0

(Lc(·)f)(Xu)du

is a (Ω, (Bt)t≥0,Qc
x)-martingale for all n ∈ N and f ∈ C2(E).

The following result, taken from [92, Theorem 1.13.1], states that Assumption III.1

guarantees the existence and uniqueness of the solutions to the generalized martingale

problem on E for the operator Lc(·), for each fixed c ∈ C.

Proposition 3.2.3. Under Assumption III.1, for each c ∈ C, there is a unique

solution (Qc
x)x∈Ê to the generalized martingale problem on E for the operator Lc(·).

Remark 3.2.4. For each c ∈ C, as mentioned in [73, Section 1],

f(Xs∧ζn)−
∫ s∧ζn

0

(Lc(·)f)(Xu)du

is also a (Ω, (Ft)t≥0,Qc
x)-martingale for all n ∈ N and f ∈ C2(E), as f and Lc(·)f are

bounded in each En. Now, by taking f(x) = xi, i = 1, · · · , d and f(x) = xixj with

i, j,= 1 · · · d, we get Xt∧ζn is a (Ω, (Ft)t≥0,Qc
x)-martingale with quadratic covariation

process
∫ ·

0
1{t≤ζn}c(Xt)dt, for each n ∈ N and x ∈ Ê.
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3.2.2 Asymptotic growth rate

For any fixed x0 ∈ E, we will simply write Qc = Qc
x0

for all c ∈ C, when there

is no confusion on the initial value x0 of X. Let us denote by Π the collection of

probability measures on (Ω,F) which are locally absolutely continuous with respect

to Qc (written P �loc Qc) for some c ∈ C, and for which the process X does not

explode. That is,

Π := {P ∈ P (Ω,F) | ∃ c ∈ C s.t. P|Ft � Qc|Ft for all t ≥ 0, and P[ζ <∞] = 0},

where P (Ω,F) denotes the collection of all probability measures on (Ω,F). As

observed in [73, Section 1], for each P ∈ Π, X is a (Ω, (Ft)t≥0,P)-semimartingale

such that P[X ∈ C([0,∞), E)] = 1. Moreover, if we take c ∈ C such that P�loc Qc,

then X admits the representation

X· = x0 +

∫ ·
0

bPt dt+

∫ ·
0

σ(Xt)dW
P
t ,

where W P is a standard d-dimensional Brownian motion on (Ω, (Ft)t≥0,P), σ is the

unique symmetric strictly positive definite square root of c, and bP is a d-dimensional

{Ft}t≥0-progressively measurable process.

Let (Zt)t≥0 be an adapted process. For P ∈ Π, define

P- lim inf
t→∞

Zt := ess supP
{
χ is F -measurable

∣∣∣ lim
t→∞

P[Zt ≥ χ] = 1
}
.

For any d-dimensional predictable process π which is X-integrable under Qc for all

c ∈ C, we can define the process V π
· := 1 +

∫ ·
0
π′tdXt under Qc for all c ∈ C. Let V

denote the collection of all such processes π which in addition satisfy the following:

for each c ∈ C, Qc[V π
t > 0] = 1 ∀ t ≥ 0. Here, π ∈ V represents an admissible trading

strategy and V π represents the corresponding wealth process. Now, for any π ∈ V ,
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we define the asymptotic growth rate of V π under P ∈ Π as

g(π;P) := sup
{
γ ∈ R

∣∣∣ P- lim inf
t→∞

(t−1 log V π
t ) ≥ γ, P-a.s.

}
.

3.2.3 The problem

The problem we consider in this chapter is how to choose a trading strategy π∗ ∈ V

such that the wealth process V π∗ attains the robust maximal asymptotic growth rate

under all possible probabilities in Π, or at least, in a large enough subset of Π which

readily contains all “non-pathological” cases. More precisely, in Theorem 3.3.14

below, we will construct a large enough suitable subset Π∗ of Π, and determine

sup
π∈V

inf
P∈Π∗

g(π;P),

the robust maximal asymptotic growth rate (robust in Π∗). Moreover, we will find

π∗ ∈ V such that V π∗ attains (or surpasses) the maximal growth rate no matter

which P ∈ Π∗ materializes. This generalizes [73, Theorem 2.1] to the case with

covariance uncertainty.

3.3 The Min-Max Result

In this section, we will first introduce generalized versions of the principal eigen-

value for the linear operator Lc(·) and a fully nonlinear operator F defined below.

Then, we will investigate the relation between them on smooth bounded domains,

and eventually extend the result to the entire domain E. The main technical result

we obtain is Theorem 3.3.12. Finally, by using Theorem 3.3.12, we are able to resolve

in Theorem 3.3.14 the problem proposed in Subsection 3.2.3.

Let us first recall the definition of Pucci’s extremal operators. Given 0 < λ ≤ Λ,
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we define for any M ∈ Sd the following matrix operators

M+
λ,Λ(M) := Λ

∑
ei(M)>0

ei(M) + λ
∑

ei(M)<0

ei(M),

M−
λ,Λ(M) := λ

∑
ei(M)>0

ei(M) + Λ
∑

ei(M)<0

ei(M).

(3.3.1)

From [28, p.15], we see that these operators can be expressed as

M+
λ,Λ(M) = sup

A∈A(λ,Λ)

Tr(AM), M−
λ,Λ(M) = inf

A∈A(λ,Λ)
Tr(AM),

where A(a, b) denotes the set of matrices in Sd with eigenvalues lying in [a, b] for

some real numbers a ≤ b. For general properties of Pucci’s extremal operators, see

e.g. [96] and [28, Section 2.2]. Now, let us define the operator F : E × Sd 7→ R by

(3.3.2) F (x,M) :=
1

2
M+

θ(x),Θ(x)(M) =
1

2
sup

A∈A(θ(x),Θ(x))

Tr(AM).

Let D be an open connected subset of E. Fixing c ∈ C, we consider, for any given

λ ∈ R, the cone of positive harmonic functions with respect to Lc(·) + λ as

(3.3.3) Hc
λ(D) := {η ∈ C2(D) | Lc(·)η + λη = 0 and η > 0 in D},

and set

(3.3.4) λ∗,c(D) := sup{λ ∈ R | Hc
λ(D) 6= ∅}.

Note that if D is a smooth bounded domain, λ∗,c(D) coincides with the principal

eigenvalue for Lc(·) on D; see e.g. [92, Theorem 4.3.2]. In our case, since we do

not require the boundedness of D, λ∗,c(D) is a generalized version of the principal

eigenvalue for Lc(·) on D, which is also used in [74]. On the other hand, for any

λ ∈ R, we define

(3.3.5) Hλ(D) := {η ∈ C2(D) | F (x,D2η) + λη ≤ 0 and η > 0 in D},
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and set

(3.3.6) λ∗(D) := sup{λ ∈ R | Hλ(D) 6= ∅},

which is a generalized version of the principal eigenvalue for the fully nonlinear

operator F on D. For auxiliary purposes, we also consider, for any λ ∈ R, the set

(3.3.7) H+
λ (D) := {η ∈ C(D̄) | F (x,D2η) + λη ≤ 0 and η > 0 in D},

where the inequality holds in viscosity sense. From this, we define

(3.3.8) λ+(D) := sup{λ ∈ R | H+
λ (D) 6= ∅}.

For the special case where D is a smooth bounded domain, λ+(D) is the principal

half-eigenvalue of the operator F on D that corresponds to positive eigenfunctions;

see e.g. [97].

Lemma 3.3.1. Given a smooth bounded domain D ⊂ E, there exists ηD ∈ C(D̄)

such that ηD > 0 in D and satisfies in viscosity sense the equation

(3.3.9)


F (x,D2ηD) + λ+(D)ηD = 0 in D,

ηD = 0 on ∂D.

Moreover, for any pair (λ, η) ∈ R× C(D̄) with η > 0 in D which solves

(3.3.10)


F (x,D2η) + λη = 0 in D,

η = 0 on ∂D,

(λ, η) must be of the form (λ+(D), µηD) for some µ > 0.

Proof. Let us introduce some properties of F . By definition, we see that

F (x, µM) = µF (x,M), for any x ∈ E and µ ≥ 0;(3.3.11)

F is convex in M.(3.3.12)
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Also, by [28, Lemma 2.10 (5)], for any x ∈ E and M,N ∈ Sd, we have

(3.3.13)
1

2
M−

θ(x),Θ(x)(M −N) ≤ F (x,M)− F (x,N) ≤ 1

2
M+

θ(x),Θ(x)(M −N).

Finally, we observe from (3.3.1) that F can be expressed as

F (x,M) =
1

2
M+

θ(x),Θ(x)(M) =
1

2

{
Θ(x)

∑
ei(M)>0

ei(M) + θ(x)
∑

ei(M)<0

ei(M)

}
.

From the continuity of θ and Θ in x, and the continuity of ei(M) in M for each i

(see e.g. [84, p.497]), we conclude that

(3.3.14) F is continuous in E × Sd.

Now, thanks to (3.3.11)-(3.3.14) and [97, Lemma 1.1], this lemma follows from [97,

Theorems 1.1, 1.2].

3.3.1 Regularity of ηD

In this subsection, we will show that, for any smooth bounded domain D ⊂ E,

the continuous viscosity solution ηD given in Lemma 3.3.1 is actually smooth up to

the boundary ∂D.

Let us consider the operator J : D̄ × Sd 7→ R defined by

J(x,M) := F (x,M) + λ+(D)ηD(x).

Lemma 3.3.2. ηD belongs to C0,β(D̄), for any β ∈ (0, 1).

Proof. For any x ∈ D̄ and M,N ∈ Sd with M ≥ N , we deduce from (3.3.13) and

(3.3.1) that

θD
2

Tr(M −N) ≤ θ(x)

2
Tr(M −N) =

1

2
M−

θ(x),Θ(x)(M −N)

≤ F (x,M)− F (x,N) ≤ 1

2
M+

θ(x),Θ(x)(M −N)

=
Θ(x)

2
Tr(M −N) ≤ ΘD

2
Tr(M −N),

(3.3.15)
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where θD := minx∈D̄ θ(x) and ΘD := maxx∈D̄ Θ(x). On the other hand, recall that

under Assumption III.1, θ,Θ ∈ C0,α(D̄). Let K be a Hölder constant for both θ and

Θ on D̄. By (3.3.2) and (3.3.1), for any x, y ∈ D̄ and M ∈ Sd,

|F (x,M)− F (y,M)|

≤ 1

2

{
|Θ(x)−Θ(y)|

∑
ei(M)>0

ei(M) + |θ(x)− θ(y)|
∑

ei(M)<0

|ei(M)|
}

≤ Kd‖M‖|x− y|α.

(3.3.16)

Under (3.3.11), (3.3.15), and (3.3.16), [17, Proposition 6] states that every bounded

nonnegative viscosity solution to

(3.3.17) J(x,D2η) = 0 in D, η = 0 on ∂D

is of the class C0,β(D̄) for all β ∈ (0, 1). Thanks to Lemma 3.3.1, ηD is indeed a

bounded nonnegative viscosity solution to the above equation, and thus the lemma

follows.

Lemma 3.3.3. ηD is the unique continuous viscosity solution to (3.3.17).

Proof. By Lemma 3.3.1, we immediately have the viscosity solution property. To

prove the uniqueness, it suffices to show that a comparison principle holds for

J(x,D2η) = 0. For any x ∈ D̄ and M,N ∈ Sd with M ≥ N , we see from the

definition of J and (3.3.15) that

(3.3.18)
θD
2

Tr(M −N) ≤ J(x,M)− J(x,N) ≤ ΘD

2
Tr(M −N).

Thanks to this inequality, we conclude from [75, Theorem 2.6] that a comparison

principle holds for J(x,D2η) = 0.

The following regularity result is taken from [101, Theorem 1.2].

Lemma 3.3.4. Suppose H : D × Sd 7→ R satisfies the following conditions:
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(a) H is lower convex in M ∈ Sd;

(b) there is a ν ∈ (0, 1] s.t. ν|ξ|2 ≤ H(x,M + ξξ′) − H(x,M) ≤ ν−1|ξ|2 for all

ξ ∈ Rd;

(c) there is a K1 > 0 s.t. |H(x, 0)| ≤ K1 for all x ∈ D;

(d) there are K2, K3 > 0 and β ∈ (0, 1) s.t. 〈H(·,M)〉(β)
D ≤ K2

∑
i,j |mij| + K3 for

all M = {mij}i,j ∈ Sd, where 〈u〉(β)
D := sup

x∈D,ρ>0

ρ−β osc
D∩Bρ(x)

u, for any u : D 7→ R.

Then the equation

H(x,D2η) = 0 in D, η = 0 on ∂D,

has a unique solution in the class C2,β(D̄) if β ∈ (0, ᾱ), where the constant ᾱ ∈ (0, 1)

depends only on d and ν.

Proposition 3.3.5. ηD belongs to C2,β(D̄) for any β ∈ (0, α ∧ ᾱ), where ᾱ is given

in Lemma 3.3.4. This in particular implies λ+(D) = λ∗(D), and thus we have

(3.3.19)


F (x,D2ηD) + λ∗(D)ηD = 0 in D,

ηD = 0 on ∂D.

Proof. Let us show that the operator J satisfies conditions (a)-(d) in Lemma 3.3.4.

It is obvious from (3.3.12) that J satisfies (a). Since ξξ′ ≥ 0 and Tr(ξξ′) = |ξ|2 for all

ξ ∈ Rd, we see from (3.3.18) that J satisfies (b). By the continuity of ηD on D̄, (c) is

also satisfied as |J(x, 0)| = 0 + λ+(D)ηD(x) ≤ K1 := λ+(D) maxD̄ ηD. To prove (d),

let us first observe that: for any β ∈ (0, 1) and u ∈ C0,β(D) with a Hölder constant

K, we have osc
D∩Bρ(x)

u ≤ Kρβ, which yields 〈u〉(β)
D ≤ K. Recall that θ,Θ ∈ C0,α(D)

(Assumption III.1) and ηD ∈ C0,β(D̄) for all β ∈ (0, 1) (Lemma 3.3.2). Now, for

any β ∈ (0, α ∧ ᾱ), we have θ,Θ, ηD ∈ C0,β(D). Let K ′ be a Hölder constant for all

the three functions. Then, from the definition of J , the calculation (3.3.16), and the
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fact that ‖M‖ ≤ d‖M‖max ≤ d
∑

i,j |mij| for any M = {mij}i,j ∈ Sd, we conclude

that J(·,M) ∈ C0,β(D) with a Hölder constant d2
(∑

i,j |mij|
)
K ′ + λ+(D)K ′. It

follows that 〈J(·,M)〉(β)
D ≤ d2

(∑
i,j |mij|

)
K ′ + λ+(D)K ′. Thus, (d) is satisfied

for all β ∈ (0, α ∧ ᾱ), with K2 := d2K ′ and K3 := λ+(D)K ′. Now, we conclude

from Lemma 3.3.4 that there is a unique solution in C2,β(D̄) to (3.3.17) for all

β ∈ (0, α ∧ ᾱ). However, in view of Lemma 3.3.3, this unique C2,β(D̄) solution can

only be ηD.

The fact that ηD is of the class C2,β(D̄) and solves (3.3.9) implies that λ+(D) ≤

λ∗(D). Since we have the opposite inequality just from the definitions of λ+(D) and

λ∗(D), we conclude that λ+(D) = λ∗(D). Then (3.3.9) becomes (3.3.19).

3.3.2 Relation between λ∗(D) and λ∗,c(D)

In this subsection, we will show that λ∗(D) = infc∈C λ
∗,c(D) for any smooth

bounded domain D.

Let us first state a maximum principle on small domains for the operator Gδ :

E × R× Sd 7→ R defined by

Gδ(x, u,M) := −F (x,−M)− δ|u| = 1

2
M−

θ(x),Θ(x)(M)− δ|u|,

where δ can be any nonnegative real number.

Lemma 3.3.6. For any smooth bounded domain D ⊂ E, there exists ε0 > 0, de-

pending on D, such that if a smooth bounded domain U ⊂ D satisfies Leb(U) < ε0,

then every η ∈ C(Ū) which is a viscosity solution to
Gδ(x, η,D

2η) ≤ 0 in U,

η ≥ 0 on ∂U,

satisfies η ≥ 0 in U .
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Proof. Consider the operator F̄ : E×R×Sd 7→ R defined by F̄ (x, u,M) := F (x,M)+

δ|u|. For any x ∈ E, u, v ∈ R and M,N ∈ Sd, we see from (3.3.13) that

1

2
M−

θ(x),Θ(x)(M −N)− δ|u− v| ≤ F̄ (x, u,M)− F̄ (x, v,N)

≤ 1

2
M+

θ(x),Θ(x)(M −N) + δ|u− v|.
(3.3.20)

Moreover, by (3.3.14), we immediately have

(3.3.21) F̄ (x, 0,M) = F (x,M) is continuous in E × Sd.

Noting that Gδ(x, u,M) = −F̄ (x,−u,−M), we have Gδ(x, u,M) − Gδ(x, v,N) =

F̄ (x,−v,−N)− F̄ (x,−u,−M). Then, by using (3.3.20), we get

Gδ(x, u− v,M −N)

=
1

2
M−

θ(x),Θ(x)(M −N)− δ|u− v| ≤ Gδ(x, u,M)−Gδ(x, v,N)

≤ 1

2
M+

θ(x),Θ(x)(M −N) + δ|u− v| = F̄ (x, u− v,M −N),

(3.3.22)

which implies that the operator Gδ satisfies the (DF ) condition in [97, p.107] (with

F replaced by F̄ ). Now, thanks to (3.3.20)-(3.3.22), this lemma follows from [97,

Theorem 3.5].

Proposition 3.3.7. For any smooth bounded domain D ⊂ E, λ∗(D) ≤ infc∈C λ
∗,c(D).

Proof. Assume the contrary that λ∗(D) > infc∈C λ
∗,c(D). Then there exists c̄ ∈ C

such that λ∗(D) > λ∗,c̄(D). Take η̄ ∈ C2(D) with η̄ > 0 in D such that
Lc̄(·)η̄ + λ∗,c̄(D)η̄ = 0 in D,

η̄ = 0 on ∂D.

From the definition of F , we see that η̄ is a viscosity subsolution to

(3.3.23) F (x,D2η) + λ∗,c̄(D)η = 0 in D.
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On the other hand, the function ηD, given in Lemma 3.3.1, is a viscosity supersolution

to (3.3.23) as it solves (3.3.19) and λ∗(D) > λ∗,c̄(D). We claim that there exists ` > 0

such that η̄ ≤ `ηD in D. We will show this by following an argument used in the proof

of [97, Theorem 4.1]. Take a compact subset K of D such that Leb(D \ K) < ε0,

where ε0 is given in Lemma 3.3.6. By the continuity of η̄ and ηD, there exists ` > 0

such that `ηD − η̄ > 0 on K. Consider the function f` := `ηD − η̄. By (3.3.13) and

(3.3.11),

Gλ∗,c̄(D)(x, f`, D
2f`) = −F (x,−D2f`)− λ∗,c̄(D)|f`| ≤ −F (x,−D2f`) + λ∗,c̄(D)f`

≤ `F (x,D2ηD)− F (x,D2η̄) + λ∗,c̄(D)(`ηD − η̄) ≤ 0 in D,

where the last inequality follows from the supersolution property of ηD and the

subsolution property of η̄ to (3.3.23). Since f` ≥ 0 on ∂(D \ K), we obtain from

Lemma 3.3.6 that f` ≥ 0 on D \ K. Thus, we conclude that η̄ ≤ `ηD in D. Now,

by Perron’s method we can construct a continuous viscosity solution v to (3.3.23)

on D such that η̄ ≤ v ≤ `ηD. This in particular implies v > 0 in D and the pair

(λ∗,c̄(D), v) solves (3.3.10). Recalling that λ+(D) = λ∗(D) from Proposition 3.3.5,

we see that this is a contradiction to Lemma 3.3.1 as λ∗,c̄(D) < λ∗(D) = λ+(D).

To prove the opposite inequality λ∗(D) ≥ infc∈C λ
∗,c(D) for any smooth bounded

domain D ⊂ E, we will make use of the theory of continuous selection pioneered by

[85], and follow particularly the formulation in [25]. For a brief introduction to this

theory and its adaptation to the current context, see Subsection C.

Proposition 3.3.8. Let D ⊂ E be a smooth bounded domain. If D is convex, then

λ∗(D) ≥ infc∈C λ
∗,c(D).

Proof. We will construct a sequence {c̄′m}m∈N ⊂ C such that lim supm→∞ λ
∗,c̄′m(D) ≤

λ∗(D), which gives the desired result.
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Step 1: Constructing {c̄′m}m∈N. Recall that ηD ∈ C2(D̄) by Proposition 3.3.5.

Then, we deduce from (3.3.1) that there exists κ > 0 such that

max{|λ− λ′|, |Λ− Λ′|} < κ

⇒ |M+
λ,Λ(D2ηD(x))−M+

λ′,Λ′(D
2ηD(x))| < 2/m, for all x ∈ D̄.

(3.3.24)

Also, since ‖·‖max ≤ ‖·‖, the map (M,x) 7→ LMηD(x) is continuous in M , uniformly

in x ∈ D̄. It follows that there exists β > 0 such that

(3.3.25) ‖N −M‖ < β ⇒ |LNηD(x)− LMηD(x)| < 1/m for all x ∈ D̄.

Set ξ := minx∈D̄(Θ − θ)(x) > 0 (recall that Θ > θ in E under Assumption III.1).

Now, by taking γ := θ + κ∧ξ
4

and Γ := Θ − κ∧ξ
4

in Proposition A.9, we obtain that

there is a continuous function cm : D̄ 7→ Sd such that

(3.3.26) cm(x) ∈ A(γ(x),Γ(x)) and Fγ,Γ(x,D2ηD) ≤ Lcm(·)ηD(x) +
1

m
, ∀x ∈ D̄,

where Fγ,Γ(x,M) is defined in (A.0.2). By mollifying the function cm, we can con-

struct a function c̄m : D̄ 7→ Sd such that c̄m ∈ C∞(D̄) and ‖c̄m(x) − cm(x)‖max <

(β ∧ κ∧ξ
4

)/d for all x ∈ D̄ (More precisely, cm ∈ C(D̄) implies that for any open set

D′ containing D̄, there is a function c̃m ∈ C(D′) such that c̃m = cm on D̄; see e.g.

[53, Lemma 6.37]. Then by mollifying c̃m, we get a sequence of smooth functions

converging uniformly to c̃m on D̄). It follows that

(3.3.27) ‖c̄m(x)− cm(x)‖ ≤ d‖c̄m(x)− cm(x)‖max < β ∧ κ ∧ ξ
4

for all x ∈ D̄.

Combining (3.3.24)-(3.3.27), for each x ∈ D̄, we see that c̄m(x) ∈ A(θ(x),Θ(x)) and

F (x,D2ηD) =
1

2
M+

θ(x),Θ(x)(D
2ηD(x)) <

1

2
M+

γ(x),Γ(x)(D
2ηD(x)) +

1

m

= Fγ,Γ(x,D2ηD) +
1

m
≤ Lcm(·)ηD(x) +

2

m
≤ Lc̄m(·)ηD(x) +

3

m
.

(3.3.28)
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Now, take some c̄′m ∈ C such that c̄′m and c̄m coincide on D̄. Then (3.3.28) and the

fact that F (x,D2ηD) + λ∗(D)ηD = 0 in D (Proposition 3.3.5) imply

(3.3.29) |hm| < 3/m in D, where hm := Lc̄
′
m(·)ηD + λ∗(D)ηD.

Step 2: Showing lim supm→∞ λ
∗,c̄′m(D) ≤ λ∗(D). In the following, we will

use the argument in [52, Section 3 (starting from (3.3))]. Let ηm be the eigenfunction

associated with the eigenvalue problem
Lc̄
′
m(·)η + λ∗,c̄

′
m(D)η = 0 in D

η = 0 on ∂D.

Pick x0 ∈ D. We define the normalized eigenfunction η̃m := ηD(x0)
ηm(x0)

ηm. By [95,

Lemma on p.789], there exist k1, k2 > 0, independent of m, such that

(3.3.30) k1d(x, ∂D) ≤ η̃m(x) ≤ k2d(x, ∂D), for all x ∈ D.

Also, thanks to (3.3.11) and (3.3.15), we may apply [17, Proposition 1] and obtain

some δ > 0 and C > 0 such that ηD(x) ≤ Cd(x, ∂D) if d(x, ∂D) < δ. Thus, we

conclude that

(3.3.31) 1 ≤ tm := sup
x∈D

ηD(x)

η̃m(x)
<∞.

Setting sm := tmλ
∗(D)/λ∗,c̄

′
m(D), we deduce from the definitions of tm and sm that

(3.3.32) Lc̄
′
m(·)(smη̃m − ηD) + hm = −tmλ∗(D)η̃m + λ∗(D)ηD ≤ 0 in D.

Let wm be the unique solution of the class C2,α(D) ∩ C(D̄) to the equation

(3.3.33) Lc̄
′
m(·)wm = hm in D, wm = 0 on ∂D.

Note that by [52, Remark 3.1], the convexity of D and (3.3.29) guarantee the exis-

tence of a constant M > 0, independent of m, such that

(3.3.34) |wm(x)| ≤ Md(x, ∂D)

m
, for all x ∈ D.
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Combining (3.3.32) and (3.3.33), we get
Lc̄
′
m(·)(smη̃m − ηD + wm) ≤ 0 in D

smη̃m − ηD + wm = 0 on ∂D.

We then conclude from the maximum principle that smη̃m − ηD + wm ≥ 0 in D.

From the definition of sm, this inequality gives

λ∗(D)

λ∗,c̄′m(D)
≥ ηD(x)

tmη̃m(x)
− wm(x)

tmη̃m(x)
≥ ηD(x)

tmη̃m(x)
− M

k1m
for all x ∈ D,

where the last inequality follows from (3.3.34), (3.3.31), and (3.3.30). Now, take

a sequence {xk}k∈N in D such that ηD(xk)
ηm(xk)

→ tm. By plugging xk into the above

inequality and taking limit in k, we get

λ∗(D)

λ∗,c̄′m(D)
≥ 1− M

k1m
,

which implies λ∗(D) ≥ lim supm→∞ λ
∗,c̄′m(D).

Combining Propositions 3.3.7 and 3.3.8, we have the following result:

Theorem 3.3.9. Let D ⊂ E be a smooth bounded domain. If D is convex, λ∗(D) =

infc∈C λ
∗,c(D).

3.3.3 Relation between λ∗(E) and λ∗,c(E)

In this subsection, we will first characterize λ∗(E) in terms of λ∗(En), and then

generalize Theorem 3.3.9 from bounded domains to the entire space E.

Let us first consider some Harnack-type inequalities. Note that for any D ⊂

Rd and p ∈ [1,∞), we will denote by Lp(D) the space of measurable functions f

satisfying (
∫
D
|f(x)|pdx)1/p <∞.
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Lemma 3.3.10. Let D ⊂ E be a smooth bounded domain. Let H : E × Sd 7→ R be

such that

(3.3.35) ∃ 0 < λ ≤ Λ s.t. M−
λ,Λ(M) ≤ H(x,M) ≤M+

λ,Λ(M) ∀ (x,M) ∈ D × Sd.

If {un}n∈N is sequence of continuous nonnegative viscosity solutions to

(3.3.36) H(x,D2un) + δnun = fn in D,

where {δn}n∈N is a bounded sequence in [0,∞) and fn ∈ Ld(D), then we have:

(i) for any compact set K ⊂ D, there is a constant C > 0, depending only on D,

K, d, λ, Λ, supn δn, such that

(3.3.37) sup
K
un ≤ C

{
inf
K
un + ‖fn‖Ld(D)

}
.

(ii) Suppose H satisfies (3.3.11). Given x0 ∈ D and R0 > 0 such that BR0(x0) ⊂ D,

there exists a constant C > 0, depending only on R0, d, λ, Λ, supn δn, such that

for any 0 < R < R0,

(3.3.38) sup
B̄R(x0)

un ≤ C

{
inf

B̄R(x0)
un +R2‖fn‖Ld(BR0

(x0))

}
As a consequence, if we assume further that {un}n∈N is uniformly bounded and

{fn}n∈N is bounded in Ld(D), then for any compact connected set K ⊂ D and

β ∈ (0, 1), un ∈ C0,β(K) for all n ∈ N, with one fixed Hölder constant.

Proof. (i) Set δ∗ := supn δn <∞. By (3.3.35), we have

M+
λ,Λ(D2un) + δ∗un ≥ H(x,D2un) + δnun ≥M−

λ,Λ(D2un)− δ∗un in D.

In view of (3.3.36), we obtainM+
λ,Λ(D2un) + δ∗un ≥ fn ≥M−

λ,Λ(D2un)− δ∗un in D.

Thanks to this inequality, the estimate (3.3.37) follows from [97, Theorem 3.6].
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(ii) Thanks to the estimate (3.3.37) and [53, Lemma 8.23], we can prove part (ii)

by following the argument in the proof of [18, Corollary 3.2]. For a detailed proof,

see Appendix B.

Proposition 3.3.11. λ∗(E) = ↓ limn→∞ λ
∗(En) and there exists some η∗ ∈ Hλ∗(E)(E)

such that

(3.3.39) F (x,D2η∗) + λ∗(E)η∗ = 0 in E.

Proof. It is obvious from the definition that λ∗(En) is decreasing in n and λ∗(E) ≤

λ∗(En) for all n ∈ N. It follows that λ∗(E) ≤ λ0 := ↓ limn→∞ λ
∗(En). To prove the

opposite inequality, it suffices to show that Hλ0(E) 6= ∅. To this end, we take ηn as

the eigenfunction given in Lemma 3.3.1 with D = En. Pick an arbitrary x0 ∈ E1,

and define η̃n(x) := ηn(x)
ηn(x0)

such that η̃n(x0) = 1 for all n ∈ N.

Fix n ∈ N. In view of Proposition 3.3.5, {η̃m}m>n is a sequence of positive smooth

solutions to

(3.3.40) F (x,D2η̃m) + λ∗(Em)η̃m = 0 in En+1.

From the definition of F , we see that F satisfies (3.3.35) in En with λ = minx∈Ēn θ(x)

and Λ = maxx∈Ēn Θ(x). Thus, by Lemma 3.3.10 (i), there is a constant C > 0,

independent of m, such that

sup
Ēn

η̃m ≤ C inf
Ēn
η̃m ≤ C,

which implies {η̃m}m>n is uniformly bounded in Ēn. On the other hand, given

β ∈ (0, 1), Lemma 3.3.10 (ii) guarantees that η̃m ∈ C0,β(Ēn) for all m > n, with a

fixed Hölder constant. Therefore, by using the Arzela-Ascoli theorem, we conclude

that η̃m converges uniformly, up to some subsequence, to some function η∗ on Ēn.
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Thanks to the stability result of viscosity solutions (see e.g. [48, Lemma II.6.2]), we

obtain from (3.3.40) that η∗ is a nonnegative continuous viscosity solution in En to

(3.3.41) F (x,D2η∗) + λ0η
∗ = 0.

Furthermore, since η∗(x0) = limm→∞ ηm(x0) = 1, we conclude from [17, Theorem 2],

a strict maximum principle for eigenvalue problems of fully nonlinear operators, that

η∗ > 0 in En. Finally, noting that for any β ∈ (0, 1), η∗ ∈ C0,β(Ēn) with its Hölder

constant same as η̃m’s, we may use Lemma 3.3.4, as in the proof of Proposition 3.3.5,

to show that η∗ ∈ C2(Ēn).

Since the results above hold for each n ∈ N, we conclude that η∗ belongs to C2(E),

takes positive values in E, and satisfies (3.3.41) in E. It follows that η∗ ∈ Hλ0(E),

which yields λ0 ≤ λ∗(E). Therefore, we get λ∗(E) = λ0, and then (3.3.41) becomes

(3.3.39).

Now, we are ready to present the main technical result of this chapter.

Theorem 3.3.12. λ∗(E) = infc∈C λ
∗,c(E).

Proof. Thanks to [92, Theorem 4.4.1 (i)], Theorem 3.3.9, and Propositions 3.3.11,

inf
c∈C

λ∗,c(E) = inf
c∈C

inf
n∈N

λ∗,c(En) = inf
n∈N

inf
c∈C

λ∗,c(En) = inf
n∈N

λ∗(En) = λ∗(E).

Remark 3.3.13. For the special case where θ and Θ are merely two positive con-

stants, the derivation of Theorem 3.3.12 can be much simpler. Since the operator

F (x,M) = 1
2
M+

θ,Θ(M) is now Pucci’s operator with elliptic constants θ and Θ, we

may apply [18, Theorem 3.5] and obtain a positive Hölder continuous viscosity solu-

tion η∗ to

F (x,D2η∗) + λ̄(E)η∗ = 0 in E,
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where λ̄(E) := inf{λ+(D) | D ⊂ E is a smooth bounded domain}. Then, Lemma 3.3.4

implies η∗ is actually smooth, and thus λ̄(E) ≤ λ∗(E). Since λ̄(E) ≥ λ∗(E) by def-

inition, we conclude that λ̄(E) = λ∗(E). Now, thanks to [92, Theorem 4.4.1 (i)]

and the standard result λ+(En) = infc∈C λ
∗,c(En) for Pucci’s operator (see e.g. [27,

Proposition 1.1 (ii)] and [95, Theorem I]), we get

inf
c∈C

λ∗,c(E) = inf
c∈C

inf
n∈N

λ∗,c(En) = inf
n∈N

inf
c∈C

λ∗,c(En) = inf
n∈N

λ+(En) = λ̄(E) = λ∗(E).

However, as pointed out in [74, Discussion], it is not reasonable for financial

applications to assume that each c ∈ C is both continuous and uniformly elliptic in

E. Therefore, we consider in this chapter the more general setting where θ and Θ

are functions defined on E, which includes the case without uniform ellipticity.

3.3.4 Application

By Theorem 3.3.12 and mimicking the proof of [74, Theorem 2.1], we have the

following result. Note that, for simplicity, we will write λ∗ = λ∗(E).

Theorem 3.3.14. Take η∗ ∈ Hλ∗(E) and normalize it so that η∗(x0) = 1. Define

π∗t := eλ
∗t∇η∗(Xt) for all t ≥ 0, and set

Π∗ :=
{
P ∈ Π

∣∣∣ P- lim inf
t→∞

(t−1 log η∗(Xt)) ≥ 0, P-a.s.
}
.

Then, we have π∗ ∈ V and g(π∗;P) ≥ λ∗ for all P ∈ Π∗. Moreover,

(3.3.42) λ∗ = sup
π∈V

inf
P∈Π∗

g(π;P) = inf
P∈Π∗

sup
π∈V

g(π;P).

Proof. Set V ∗t := V π∗
t = 1 +

∫ t
0
eλ
∗s∇η∗(Xs)

′dXs, t ≥ 0. By applying Itô’s rule to the

process eλ
∗tη∗(Xt) we see that V ∗t ≥ eλ

∗tη∗(Xt) > 0 P-a.s. for all P ∈ Π. This already

implies π∗ ∈ V . Also, by the construction of Π∗, we have P-lim inft→∞(t−1 log(V ∗t )) ≥

λ∗ P-a.s. for all P ∈ Π∗. It follows that g(π∗;P) ≥ λ∗ for all P ∈ Π∗, which in turn

implies λ∗ ≤ supπ∈V infP∈Π∗ g(π;P).
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Now, for any c ∈ C and n ∈ N, set λ∗,cn = λ∗,c(En), take η∗,cn ∈ Hc
λ∗,cn

(En) with

η∗,cn (x0) = 1, and define the process Ṽ c
n (t) := eλ

∗,c
n tη∗,cn (Xt). Note that under any

P ∈ Π such that P �loc Qc, we have Ṽ c
n (t) = 1 +

∫ t
0
(π∗,cn )′sdXs with (π∗,cn )t :=

eλ
∗,c
n t∇η∗,cn (Xt). This, however, may not be true for general P ∈ Π. As shown

in the proof of [74, Theorem 2.1], for any fixed c ∈ C and n ∈ N, we have the

following: 1. there exists a solution (P∗,cx,n)x∈En to the generalized martingale problem

for the operator Lc(·),η
∗,c
n := Lc(·) + c∇ log η∗,cn · ∇; 2. the coordinate process X under

(P∗,cx,n)x∈En is recurrent in En; 3. P∗,cx,n �loc Qc (note that we conclude from the

previous two conditions that P∗,cx,n ∈ Π∗); 4. the process V π/Ṽ c
n is a nonnegative P∗,cx,n-

supermartingale for all π ∈ V . We therefore have the analogous result g(π;P∗,cn ) ≤

g(π∗,cn ;P∗,cn ) ≤ λ∗,cn for all π ∈ V , which yields infP∈Π∗ supπ∈V g(π;P) ≤ λ∗,cn . Now,

thanks to [92, Theorem 4.4.1 (i)] and Theorem 3.3.12, we have

inf
P∈Π∗

sup
π∈V

g(π;P) ≤ inf
c∈C

lim
n→∞

λ∗,cn = λ∗.

Remark 3.3.15. Note that the normalized eigenfunction η∗ in the statement of

Theorem 3.3.14 may not be unique. It follows that the set of measures Π∗ and the

min-max problem in (3.3.42) may differ with our choice of η∗. In spite of this, we

would like to emphasize the following:

(i) No matter which η∗ we choose, the robust maximal asymptotic growth rate λ∗

stays the same.

(ii) At the first glance, it may seem restrictive to work with Π∗. However, by the

same calculation in [74, Remark 2.2], we see that: no matter which η∗ we choose,

Π∗ is large enough to contain all the probabilities in Π under which X is tight

in E, and thus corresponds to those P ∈ Π such that X is stable.



CHAPTER IV

On the Multidimensional Controller-and-Stopper Games

4.1 Introduction

We consider a zero-sum stochastic differential game of control and stopping under

a fixed time horizon T > 0. There are two players, the “controller” and the “stopper,”

and a state process Xα which can be manipulated by the controller through the

selection of the control α. Suppose the game starts at time t ∈ [0, T ]. While the

stopper has the right to choose the duration of this game (in the form of a random

time τ), she incurs the running cost f(s,Xα
s , αs) at every moment t ≤ s < τ , and the

terminal cost g(Xα
τ ) at the time the game stops. Given the instantaneous discount

rate c(s,Xα
s ), the stopper would like to minimize her expected discounted cost

(4.1.1) E
[∫ τ

t

e−
∫ s
t c(u,X

α
u )duf(s,Xα

s , αs)ds+ e−
∫ τ
t c(u,X

α
u )dug(Xα

τ )

]
over all choices of τ . At the same time, however, the controller plays against her by

maximizing (4.1.1) over all choices of α.

Ever since the game of control and stopping was introduced by Maitra & Sudderth

[82], it has been known to be closely related to some common problems in mathemat-

ical finance, such as pricing American contingent claims (see e.g. [64, 69, 70]) and

minimizing the probability of lifetime ruin (see [16]). The game itself, however, has

not been studied to a great extent except certain particular cases. Karatzas and Sud-

65
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derth [68] study a zero-sum controller-and-stopper game in which the state process

Xα is a one-dimensional diffusion along a given interval on R. Under appropriate

conditions they prove that this game has a value and describe fairly explicitly a sad-

dle point of optimal choices. It turns out, however, difficult to extend their results

to multidimensional cases, as their techniques rely heavily on theorems of optimal

stopping for one-dimensional diffusions. To deal with zero-sum multidimensional

games of control and stopping, Karatzas and Zamfirescu [71] develop a martingale

approach; also see [10], [14] and [15]. Again, it is shown that the game has a value,

and a saddle point of optimal choices is constructed. However, it is assumed to be

that the controller can affect only the drift term of Xα.

There is yet another subtle discrepancy between the one-dimensional game in [68]

and the multidimensional game in [71]: the use of “strategies”. Typically, in a two-

player game, the player who acts first would not choose a fixed static action. Instead,

she prefers to employ a strategy, which will give different responses to different future

actions the other player will take. This additional flexibility enables the player to

further decrease (increase) the expected cost, if she is the minimizer (maximizer).

For example, in a game with two controllers (see e.g. [38, 37, 49, 26, 23]), the

controller who acts first employs a strategy, which is a function that takes the other

controller’s latter decision as input and generates a control. Note that the use of

strategies is preserved in the one-dimensional controller-and-stopper game in [68]:

what the stopper employs is not simply a stopping time, but a strategy in the form

of a random time which depends on the controller’s decision. This kind of dynamic

interaction is missing, however, in the multidimensional case: in [71], the stopper

is restricted to use stopping times, which give the same response to any choice the

controller makes.
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Multidimensional controller-and-stopper games are also covered in Hamadène &

Lepeltier [55] and Hamadène [54], as a special case of mixed games introduced there.

The main tool used in these papers is the theory of backward differential equations

with two reflecting barriers. Interestingly, even though the method in [55, 54] differs

largely from that in [71], these two papers also require a diffusion coefficient which

is not affected by the controller, and do not allow the use of strategies. This is

in contrast with the one-dimensional case in [68], where everything works out fine

without any of the above restrictions. It is therefore of interest to see whether we can

construct a new methodology under which multidimensional controller-and-stopper

games can be analyzed even when the conditions required in [71, 55, 54] fail to hold.

In this chapter, such a methodology is built, under a Markovian framework. On

the one hand, we allow both the drift and diffusion terms of the state process Xα to

be controlled. On the other hand, we allow the players to use strategies. Specifically,

we first define non-anticipating strategies in Definition 4.3.1. Then, in contrast to

two-controller games where both players use strategies, only the stopper chooses to

use strategies in our case (which coincides with the set-up in [68]). This is because

by the nature of a controller-and-stopper game, the controller cannot benefit from

using non-anticipating strategies; see Remark 4.3.5. With this observation in mind,

we give appropriate definitions of the upper value function U and the lower value

function V in (4.3.6) and (4.3.7) respectively. Under this set-up, one presumably

could construct a saddle point of optimal choices by imposing suitable assumptions

on the cost functions, the dynamics of Xα, the associated Hamiltonian, or the control

set (as is done in [68, 71, 54, 55]; see Remark 4.3.7). However, we have no plan to

impose assumptions for constructing a saddle point. Instead, we intend to work

under a rather general framework, and determine under what conditions the game
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has a value (i.e. U = V ) and how we can derive a PDE characterization for this

value when it exists.

Our method is motivated by Bouchard & Touzi [24], where the weak dynamic

programming principle for stochastic control problems was first introduced. By gen-

eralizing the weak dynamic programming principle in [24] to the context of controller-

and-stopper games, we show that V is a viscosity supersolution and U∗ is a viscosity

subsolution to an obstacle problem for a Hamilton-Jacobi-Bellman equation, where

U∗ denotes the upper semicontinuous envelope of U defined as in (4.1.3). More specif-

ically, we first prove a continuity result for an optimal stopping problem embedded in

V (Lemma 4.4.1), which enables us to follow the arguments in [24, Theorem 3.5] even

under the current context of controller-and-stopper games. We obtain, accordingly,

a weak dynamic programming principle for V (Proposition 4.4.2), which is the key

to proving the supersolution property of V (Propositions 4.4.5). On the other hand,

by generalizing the arguments in Chapter 3 of Krylov [77], we derive a continuity

result for an optimal control problem embedded in U (Lemma 4.5.5). This leads to

a weak dynamic programming principle for U (Proposition 4.5.6), from which the

subsolution property of U∗ follows (Proposition 4.5.7). Finally, under appropriate

conditions, we prove a comparison result for the associated obstacle problem. Since

V is a viscosity supersolution and U∗ is a viscosity subsolution, the comparison re-

sult implies U∗ ≤ V . Recalling that U∗ is actually larger than V by definition, we

conclude that U∗ = V . This in particular implies U = V , i.e. the game has a value,

and the value function is the unique viscosity solution to the associated obstacle

problem. This is the main result of this chapter; see Theorem 4.6.3. Note that once

we have this PDE characterization, we can compute the value of the game using a

stochastic numerical scheme proposed in Bayraktar & Fahim [6].
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Another important advantage of our method is that it does not require any non-

degeneracy condition on the diffusion term of Xα. For the multidimensional case in

[71, 55, 54], Girsanov’s theorem plays a crucial role, which entails non-degeneracy of

the diffusion term. Even for the one-dimensional case in [68], this non-degeneracy is

needed to ensure the existence of the state process (in the weak sense). Note that

Weerasinghe [109] actually follows the one-dimensional model in [68] and extends

it to the case with degenerate diffusion term; but at the same time, she assumes

boundedness of the diffusion term, and some specific conditions including twice dif-

ferentiability of the drift term and concavity of the cost function.

It is worth noting that while [71, 55, 54] do not allow the use of strategies and

require the diffusion coefficient be control-independent and non-degenerate, they al-

low for non-Markovian dynamics and cost structures, as well as for non-Lipschitz

drift coefficients. As a first step to allowing the use of strategies and incorporating

controlled, and possibly degenerate, diffusion coefficients in a zero-sum multidimen-

sional controller-and-stopper game, this chapter focuses on proving the existence and

characterization of the value of the game under a Markovian framework with Lip-

schitz coefficients. We leave the general non-Markovian and non-Lipschitz case for

future research.

The structure of this chapter is as follows: in Section 4.2, we set up the framework

of our study. In Section 4.3, we define strategies, and give appropriate definitions

of the upper value function U and the lower value function V . In Sections 4.4 and

4.5, the supersolution property of V and the subsolution property U∗ are derived,

respectively. In Section 4.6, we prove a comparison theorem, which leads to the

existence of the value of the game and the viscosity solution property of the value

function.
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4.1.1 Notation

We collect some notation and definitions here for readers’ convenience.

• Given a probability space (E, I, P ), we denote by L0(E, I) the set of real-valued

random variables on (E, I); for p ∈ [1,∞), let Lpn(E, I, P ) denote the set of Rn-

valued random variables R on (E, I) s.t. EP [|R|p] <∞. For the “n = 1” case,

we simply write Lp1 as Lp.

• R+ := [0,∞) and S := Rd × R+ × R+.

• Md denotes the set of d× d real matrices.

• Given E ⊆ Rn, LSC(E) denotes the set of lower semicontinuous functions de-

fined on E, and USC(E) denotes the set of upper semicontinuous functions

defined on E.

• Let E be a normed space. For any (t, x) ∈ [0, T ] × E, we define two types of

balls centered at (t, x) with radius r > 0 as follows

Br(t, x) := {(t′, x′) ∈ [0, T ]× E | |t′ − t| < r, |x′ − x| < r};

B(t, x; r) := {(t′, x′) ∈ [0, T ]× E | t′ ∈ (t− r, t], |x′ − x| < r}.
(4.1.2)

We denote by B̄r(t, x) and B̄(t, x, ; r) the closures of Br(t, x) and B(t, x; r),

respectively. Moreover, given w : [0, T ]×E 7→ R, we define the upper and lower

semicontinuous envelopes of w, respectively, by

w∗(t, x) := lim
δ↓0

sup{w(t′, x′) | (t′, x′) ∈ ([0, T )× E) ∩Bδ(t, x)};

w∗(t, x) := lim
δ↓0

inf{w(t′, x′) | (t′, x′) ∈ ([0, T )× E) ∩Bδ(t, x)}.
(4.1.3)
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4.2 Preliminaries

4.2.1 The Set-up

Fix T > 0 and d ∈ N. For any t ∈ [0, T ], let Ωt := C([t, T ];Rd) be the canonical

space of continuous paths equipped with the uniform norm ‖ω̃‖t,T := sups∈[t,T ] |ω̃s|,

ω̃ ∈ Ωt. Let W t denote the canonical process on Ωt, and Gt = {Gts}s∈[t,T ] denote

the natural filtration generated by W t. Let Pt be the Wiener measure on (Ωt,GtT ),

and consider the collection of Pt-null sets N t := {N ∈ GtT | Pt(N) = 0} and its

completion N t
:= {A ⊆ Ωt | A ⊆ N for some N ∈ N t}. Now, define Gt

= {Gts}s∈[t,T ]

as the augmentation of Gt by the sets in N t
, i.e. Gts := σ(Gts ∪ N

t
), s ∈ [t, T ]. For

any x ∈ Rd, we also consider Gt,xs := Gts ∩ {W t
t = x}, ∀s ∈ [t, T ]. For Ωt, W t, N t,

N t
, Gts, G

t

s and Gt,xs , we drop the superscript t whenever t = 0.

Given x ∈ Rd, we define for any ω̃ ∈ Ωt the shifted path (ω̃ + x)· := ω̃· + x, and

for any A ⊆ Ωt the shifted set A + x := {ω̃ ∈ Ωt | ω̃ − x ∈ A}. Then, we define the

shifted Wiener measure Pt,x by Pt,x(F ) := Pt(F − x), F ∈ GtT , and let Pt,x denote

the extension of Pt,x on (Ωt,GtT ). For Pt,x and Pt,x, we drop the superscripts t and x

whenever t = 0 and x = 0. We let E denote the expectation taken under P.

Fix t ∈ [0, T ] and ω ∈ Ω. For any ω̃ ∈ Ωt, we define the concatenation of ω and

ω̃ at t as

(ω ⊗t ω̃)r := ωr1[0,t](r) + (ω̃r − ω̃t + ωt)1(t,T ](r), r ∈ [0, T ].

Note that ω ⊗t ω̃ lies in Ω. Consider the shift operator in space ψt : Ωt 7→ Ωt

defined by ψt(ω̃) := ω̃ − ω̃t, and the shift operator in time φt : Ω 7→ Ωt defined

by φt(ω) := ω|[t,T ], the restriction of ω ∈ Ω on [t, T ]. For any r ∈ [t, T ], since ψt

and φt are by definition continuous under the norms ‖ · ‖t,r and ‖ · ‖0,r respectively,

ψt : (Ωt,Gtr) 7→ (Ωt,Gtr) and φt : (Ω,Gr) 7→ (Ωt,Gtr) are Borel measurable. Then, for
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any ξ : Ω 7→ R, we define the shifted functions ξt,ω : Ω 7→ R by

ξt,ω(ω′) := ξ(ω ⊗t φt(ω′)) for ω′ ∈ Ω.

Given a random time τ : Ω 7→ [0,∞], whenever ω ∈ Ω is fixed, we simplify our

notation as

ω ⊗τ ω̃ = ω ⊗τ(ω) ω̃, ξτ,ω = ξτ(ω),ω, φτ = φτ(ω), ψτ = ψτ(ω).

Definition 4.2.1. On the space Ω, we define, for each t ∈ [0, T ], the filtration

Ft = {F ts}s∈[0,T ] by

F ts := J t
s+, where J t

s :=


{∅,Ω}, if s ∈ [0, t],

σ
(
φ−1
t ψ−1

t Gt,0s ∪N
)
, if s ∈ [t, T ].

We drop the superscript t whenever t = 0.

Remark 4.2.2. Given t ∈ [0, T ], note that F ts is a collection of subsets of Ω for each

s ∈ [0, T ], whereas Gts, G
t

s and Gt,xs are collections of subsets of Ωt for each s ∈ [t, T ].

Remark 4.2.3. By definition, Js = Gs ∀s ∈ [0, T ]; then the right continuity of

G implies Fs = Gs ∀s ∈ [0, T ] i.e. F = G. Moreover, from Lemma C.1 (iii) in

Appendix C and the right continuity of G, we see that F ts ⊆ Gs = Fs ∀s ∈ [0, T ], i.e.

Ft ⊆ F.

Remark 4.2.4. Intuitively, Ft represents the information structure one would have

if one starts observing at time t ∈ [0, T ]. More precisely, for any s ∈ [t, T ], Gt,0s

represents the information structure one obtains after making observations on W t

in the period [t, s]. One could then deduce from Gt,0s the information structure

φ−1
t ψ−1

t Gt,0s for W on the interval [0, s].
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We define T t as the set of all Ft-stopping times which take values in [0, T ] P-a.s.,

and At as the set of all Ft-progressively measurable M -valued processes, where M is

a separable metric space. Also, for any F-stopping times τ1, τ2 with τ1 ≤ τ2 P-a.s.,

we denote by T tτ1,τ2 the set of all τ ∈ T t which take values in [τ1, τ2] P-a.s. Again, we

drop the sub- or superscript t whenever t = 0.

4.2.2 The State Process

Given (t, x) ∈ [0, T ] × Rd and α ∈ A, let X t,x,α denote a Rd-valued process

satisfying the following SDE:

(4.2.1) dX t,x,α
s = b(s,X t,x,α

s , αs)ds+ σ(s,X t,x,α
s , αs)dWs, s ∈ [t, T ],

with the initial condition X t,x,α
t = x. Let Md be the set of d × d real matrices. We

assume that b : [0, T ]×Rd×M 7→ Rd and σ : [0, T ]×Rd×M 7→Md are deterministic

Borel functions, and b(t, x, u) and σ(t, x, u) are continuous in (x, u); moreover, there

exists K > 0 such that for any t ∈ [0, T ], x, y ∈ Rd, and u ∈M ,

|b(t, x, u)− b(t, y, u)|+ |σ(t, x, u)− σ(t, y, u)| ≤ K|x− y|,(4.2.2)

|b(t, x, u)|+ |σ(t, x, u)| ≤ K(1 + |x|).(4.2.3)

The conditions above imply that: for any initial condition (t, x) ∈ [0, T ] × Rd and

control α ∈ A, (4.2.1) admits a unique strong solution X t,x,α
· . Moreover, without

loss of generality, we define

(4.2.4) X t,x,α
s := x for s < t.

Remark 4.2.5. Fix α ∈ A. Under (4.2.2) and (4.2.3), the same calculations in [90,

Appendix] and [20, Proposition 1.2.1] yield the following estimates: for each p ≥ 1,
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there exists Cp(α) > 0 such that for any (t, x), (t′, x′) ∈ [0, T ]×Rd, and h ∈ [0, T − t],

E
[

sup
0≤s≤T

|X t,x,α
s |p

]
≤ Cp(1 + |x|p);(4.2.5)

E
[

sup
0≤s≤t+h

|X t,x,α
s − x|p

]
≤ Cph

p
2 (1 + |x|p);(4.2.6)

E
[

sup
0≤s≤T

|X t′,x′,α
s −X t,x,α

s |p
]
≤ Cp

[
|x′ − x|p + |t′ − t|

p
2 (1 + |x|p)

]
.(4.2.7)

Remark 4.2.6 (flow property). By pathwise uniqueness of the solution to (4.2.1),

for any 0 ≤ t ≤ s ≤ T , x ∈ Rd, and α ∈ A, we have the following two properties:

(i) X t,x,α
r (ω) = Xs,Xt,x,α

s ,α
r (ω) ∀ r ∈ [s, T ], for P-a.e. ω ∈ Ω; see [20, Chapter 2] and

[91, p.41].

(ii) By (1.16) in [49] and the discussion below it, for P-a.e. ω ∈ Ω, we have

X t,x,α
r (ω ⊗s φs(ω′)) = Xs,Xt,x,α

s (ω),αs,ω

r (ω′) ∀r ∈ [s, T ], for P-a.e ω′ ∈ Ω;

see also [87, Lemma 3.3].

4.2.3 Properties of Shifted Objects

Let us first derive some properties of F tT -measurable random variables.

Proposition 4.2.7. Fix t ∈ [0, T ] and ξ ∈ L0(Ω,F tT ).

(i) F tT and Ft are independent. In particular, ξ is independent of Ft.

(ii) There exist N,M ∈ N such that: for any fixed ω ∈ Ω\N , ξt,ω(ω′) = ξ(ω′) ∀ω′ ∈

Ω \M .

Proof. See Appendix C.1.

Fix θ ∈ T . Given α ∈ A, we can define, for P-a.e. ω ∈ Ω, a control αθ,ω ∈ Aθ(ω)

by

αθ,ω(ω′) := {αθ,ωr (ω′)}r∈[0,T ] = {αr (ω ⊗θ φθ(ω′))}r∈[0,T ] , ω
′ ∈ Ω;
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see [24, proof of Proposition 5.4]. Here, we state a similar result for stopping times

in T .

Proposition 4.2.8. Fix θ ∈ T . For any τ ∈ Tθ,T , we have τ θ,ω ∈ T θ(ω)
θ(ω),T for P-a.e.

ω ∈ Ω.

Proof. See Appendix C.2.

Let ρ : M × M 7→ R be any given metric on M . By [77, p.142], ρ′(u, v) :=

2
π

arctan ρ(u, v) < 1 for u, v ∈ M is a metric equivalent to ρ, from which we can

construct a metric on A by

(4.2.8) ρ̃(α, β) := E
[∫ T

0

ρ′(αt, βt)dt

]
for α, β ∈ A.

Now, we state a generalized version of Proposition 4.2.7 (ii) for controls α ∈ A.

Proposition 4.2.9. Fix t ∈ [0, T ] and α ∈ At. There exists N ∈ N such that:

for any ω ∈ Ω \ N , ρ̃(αt,ω, α) = 0. Furthermore, for any (s, x) ∈ [0, T ] × Rd,

Xs,x,αt,ω

r (ω′) = Xs,x,α
r (ω′), r ∈ [s, T ], for P-a.e. ω′ ∈ Ω.

Proof. See Appendix C.3.

4.3 Problem Formulation

We consider a controller-and-stopper game under the finite time horizon T >

0. While the controller has the ability to affect the state process Xα through the

selection of the control α, the stopper has the right to choose the duration of this

game, in the form of a random time τ . Suppose the game starts at time t ∈ [0, T ].

The stopper incurs the running cost f(s,Xα
s , αs) at every moment t ≤ s < τ , and

the terminal cost g(Xα
τ ) at the time the game stops, where f and g are some given

deterministic functions. According to the instantaneous discount rate c(s,Xα
s ) for
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some given deterministic function c, the two players interact as follows: the stopper

would like to stop optimally so that her expected discounted cost could be minimized,

whereas the controller intends to act adversely against her by manipulating the state

process Xα in a way that frustrates the effort of the stopper.

For any t ∈ [0, T ], there are two possible scenarios for this game. In the first

scenario, the stopper acts first. At time t, while the stopper is allowed to use the

information of the path of W up to time t for her decision making, the controller has

advantage: she has access to not only the path of W up to t but also the stopper’s

decision. Choosing one single stopping time, as a result, might not be optimal for

the stopper. Instead, she would like to employ a stopping strategy which will give

different responses to different future actions the controller will take.

Definition 4.3.1. Given t ∈ [0, T ], we say a function π : A 7→ Tt,T is an admissible

stopping strategy on the horizon [t, T ] if it satisfies the following conditions:

(i) for any α, β ∈ A, it holds for P-a.e. ω ∈ Ω that

if min{π[α](ω), π[β](ω)} ≤ inf

{
s ≥ t

∣∣∣∣ ∫ s

t

ρ′(αr(ω), βr(ω))dr 6= 0

}
,

then π[α](ω) = π[β](ω).

(4.3.1)

Recall that ρ′ is a metric on M defined right above (4.2.8).

(ii) for any s ∈ [0, t], if α ∈ As, then π[α] ∈ T st,T .

(iii) for any α ∈ A and θ ∈ T with θ ≤ t, it holds for P-a.e. ω ∈ Ω that

π[α]θ,ω(ω′) = π[αθ,ω](ω′), for P-a.e. ω′ ∈ Ω.

We denote by Πt,T the set of all admissible stopping strategies on the horizon [t, T ].

Remark 4.3.2. Definition 4.3.1 (i) serves as the non-anticipativity condition for

the stopping strategies. The intuition behind it should be clear: Suppose we begin
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our observation at time t, and employ a strategy π ∈ Πt,T . By taking the control

α and following the path ω, we decide to stop at the moment π[α](ω). If, up to

this moment, we actually cannot distinguish between the controls α and β , then we

should stop at the same moment if we were taking the control β.

Moreover, as shown in Proposition 4.3.3 below, (4.3.1) is equivalent to:

For any α, β ∈ A and s ∈ [t, T ],

1{π[α]≤s} = 1{π[β]≤s} for P-a.e. ω ∈ {α =[t,s) β},
(4.3.2)

where {α =[t,s) β} := {ω ∈ Ω | αr(ω) = βr(ω) for a.e. r ∈ [t, s)}. This shows that

Definition 4.3.1 (i) extends the non-anticipativity of strategies from two-controller

games (see e.g. [26]) to current context of controller-and-stopper games.

Also notice that (4.3.2) is similar to, yet a bit weaker than, Assumption (C5) in

[23]. This is because in the definition of {α =[t,s) β}, [23] requires αr = βr for all,

instead of almost every, r ∈ [t, s).

Proposition 4.3.3. Fix t ∈ [0, T ]. For any function π : A 7→ Tt,T , (4.3.1) holds iff

(4.3.2) holds.

Proof. For any α, β ∈ A, we set θ(ω) := inf{s ≥ t |
∫ s
t
ρ′(αr(ω), βr(ω))dr 6= 0}.

Step 1: Suppose π satisfies (4.3.1). For any α, β ∈ A, take some N ∈ N such

that (4.3.1) holds for ω ∈ Ω \ N . Fix s ∈ [t, T ]. Given ω ∈ {α =[t,s) β} \ N , we

have s ≤ θ(ω). If π[α](ω) ≤ θ(ω), then (4.3.1) implies π[α](ω) = π[β](ω), and thus

1{π[α]≤s}(ω) = 1{π[β]≤s}(ω). If π[α](ω) > θ(ω), then (4.3.1) implies π[β](ω) > θ(ω)

too. It follows that 1{π[α]≤s}(ω) = 0 = 1{π[β]≤s}(ω), since s ≤ θ(ω). This already

proves (4.3.2).

Step 2: Suppose (4.3.2) holds. Fix α, β ∈ A. By (4.3.2), there exists some
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N ∈ N such that

(4.3.3) for any s ∈ Q ∩ [t, T ], 1{π[α]≤s} = 1{π[β]≤s} for ω ∈ {α =[t,s) β} \N.

Fix ω ∈ Ω \N . For s ∈ Q ∩ [t, θ(ω)], we have ω ∈ {α =[t,s) β}. Then (4.3.3) yields

(4.3.4) 1{π[α]≤s}(ω) = 1{π[β]≤s}(ω), for all s ∈ Q ∩ [t, θ(ω)].

If π[α](ω) ≤ θ(ω), take an increasing sequence {sn}n∈N ⊂ Q ∩ [t, θ(ω)] such that

sn ↑ π[α](ω). Then (4.3.4) implies π[β](ω) > sn for all n, and thus π[β](ω) ≥

π[α](ω). Similarly, by taking a decreasing sequence {rn}n∈N ⊂ Q∩ [t, θ(ω)] such that

rn ↓ π[α](ω), we see from (4.3.4) that π[β] ≤ rn for all n, and thus π[β](ω) ≤ π[α](ω).

We therefore conclude π[β](ω) = π[α](ω). Now, if π[β](ω) ≤ θ(ω), we may argue as

above to show that π[α](ω) = π[β](ω). This proves (4.3.1).

Next, we give concrete examples of strategies under Definition 4.3.1.

Example 4.3.4. Given t ∈ [0, T ], define λt : Ω 7→ Ω by (λt(ω))· := ω·∧t. Recall the

space C([t, T ];Rd) of continuous functions mapping [t, T ] into Rd. For any x ∈ Rd,

we define π : A 7→ Tt,T by

(4.3.5) π[α](ω) := S
(
{X t,x,α

r (ω)}r∈[t,T ]

)
,

for some function S : C([t, T ];Rd) 7→ [t, T ] satisfying {ξ | S(ξ) ≤ s} ∈ λ−1
s X t

T

∀s ∈ [t, T ], where X t
T denotes the Borel σ-algebra generated by C([t, T ];Rd). Note

that the formulation (4.3.5) corresponds to the stopping rules introduced in the

one-dimensional controller-and-stopper game in [68], and it covers concrete exam-

ples such as exit strategies of a Borel set (see e.g. (4.5.13) below). We claim that

Definition 4.3.1 readily includes the formulation (4.3.5).

Let the function π : A 7→ Tt,T be given as in (4.3.5). First, for any α, β ∈ A,

set θ := inf{s ≥ t |
∫ s
t
ρ′(αr(ω), βr(ω))dr 6= 0}. Observing that the strong solutions
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X t,x,α and X t,x,β coincide on the interval [t, θ) P-a.s., we conclude that π satisfies

Definition 4.3.1 (i). Next, for any s ∈ [0, t], since X t,x,α depends on Fs only through

the control α, Definition 4.3.1 (ii) also holds for π. To check Definition 4.3.1 (iii),

let us introduce, for any θ ∈ T with {θ ≤ t} /∈ N , the strong solution X̃ to

the SDE (4.2.1) with the drift coefficient b̃(s, x, u) := 1{s<t}0 + 1{s≥t}b(s, x, u) and

the diffusion coefficient σ̃(s, x, u) := 1{s<t}0 + 1{s≥t}σ(s, x, u). Then, by using the

pathwise uniqueness of strong solutions and Remark 4.2.6 (ii), for P-a.e. ω ∈ {θ ≤ t},

X t,x,α
r (ω ⊗θ φθ(ω′)) = X̃0,x,α

r (ω ⊗θ φθ(ω′)) = X̃
θ(ω),X̃0,x,α

θ (ω),αθ,ω

r (ω′)

= X̃θ(ω),x,αθ,ω

r (ω′) = X t,x,αθ,ω

r (ω′),

∀r ∈ [t, T ], for P-a.e. ω′ ∈ Ω. This implies

π[α]θ,ω(ω′) = S({X t,x,α
r (ω ⊗θ φθ(ω′))}r∈[t,T ]) = S({X t,x,αθ,ω

r (ω′)}r∈[t,T ]) = π[αθ,ω](ω′),

for P-a.e. ω′ ∈ Ω, which is Definition 4.3.1 (iii).

Let us now look at the second scenario in which the controller acts first. In

this case, the stopper has access to not only the path of W up to time t but also

the controller’s decision. The controller, however, does not use strategies as an

attempt to offset the advantage held by the stopper. As the next remark explains,

the controller merely chooses one single control because she would not benefit from

using non-anticipating strategies.

Remark 4.3.5. Fix t ∈ [0, T ]. Let γ : T 7→ At satisfy the following non-anticipativity

condition: for any τ1, τ2 ∈ T and s ∈ [t, T ], it holds for P-a.e. ω ∈ Ω that

if min{τ1(ω), τ2(ω)} > s, then (γ[τ1])r(ω) = (γ[τ2])r(ω) for r ∈ [t, s).

Then, observe that γ[τ ](ω) = γ[T ](ω) on [t, τ(ω)) P-a.s. for any τ ∈ T . This implies
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that employing the strategy γ has the same effect as employing the control γ[T ]. In

other words, the controller would not benefit from using non-anticipating strategies.

Now, we are ready to introduce the upper and lower value functions of the game of

control and stopping. For (t, x) ∈ [0, T ]×Rd, if the stopper acts first, the associated

value function is

U(t, x) := inf
π∈Πt,T

sup
α∈At

E
[ ∫ π[α]

t

e−
∫ s
t c(u,X

t,x,α
u )duf(s,X t,x,α

s , αs)ds

+ e−
∫ π[α]
t c(u,Xt,x,α

u )dug(X t,x,α
π[α] )

]
.

(4.3.6)

On the other hand, if the controller acts first, the associated value function is

V (t, x) := sup
α∈At

inf
τ∈T tt,T

E
[ ∫ τ

t

e−
∫ s
t c(u,X

t,x,α
u )duf(s,X t,x,α

s , αs)ds

+ e−
∫ τ
t c(u,X

t,x,α
u )dug(X t,x,α

τ )

]
.

(4.3.7)

By definition, we have U ≥ V . We therefore call U the upper value function, and V

the lower value function. We say the game has a value if these two functions coincide.

Remark 4.3.6. In a game with two controllers (see e.g. [38, 37, 49, 26]), upper

and lower value functions are also introduced. However, since both of the controllers

use strategies, it is difficult to tell, just from the definitions, whether one of the

value functions is larger than the other (despite their names). In contrast, in a

controller-stopper game, only the stopper uses strategies, thanks to Remark 4.3.5.

We therefore get U ≥ V for free, which turns out to be a crucial relation in the PDE

characterization for the value of the game.

We assume that the cost functions f, g and the discount rate c satisfy the following

conditions: f : [0, T ]×Rd×M 7→ R+ is Borel measurable, and f(t, x, u) is continuous

in (x, u), and continuous in x uniformly in u ∈ M for each t; g : Rd 7→ R+ is

continuous; c : [0, T ] × Rd 7→ R+ is continuous and bounded above by some real
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number c̄ > 0. Moreover, we impose the following polynomial growth condition on

f and g

(4.3.8) |f(t, x, u)|+ |g(x)| ≤ K(1 + |x|p̄) for some p̄ ≥ 1.

Remark 4.3.7. Presumably, by imposing additional assumptions, one could con-

struct a saddle point of optimal choices for a controller-and-stopper game. For ex-

ample, in the one-dimensional game in [68], a saddle point is constructed under

additional assumptions on the cost function and the dynamics of the state process

(see (6.1)-(6.3) in [68]). For the multidimensional case, in order to find a saddle

point, [71] assumes that the cost function and the drift coefficient are continuous

with respect to the control variable, and the associated Hamiltonian always attains

its infimum (see (71)-(73) in [71]); whereas [54] and [55] require compactness of the

control set.

In this chapter, we have no plan to impose additional assumptions for constructing

saddle points. Instead, we intend to investigate, under a rather general set-up,

whether the game has a value and how we can characterize this value if it exists.

Remark 4.3.8. For any (t, x) ∈ [0, T ] × Rd and α ∈ A, the polynomial growth

condition (4.3.8) and (4.2.5) imply that

(4.3.9)

E
[

sup
t≤r≤T

(∫ r

t

e−
∫ s
t c(u,X

t,x,α
u )duf(s,X t,x,α

s , αs)ds+ e−
∫ r
t c(u,X

t,x,α
u )dug(X t,x,α

r )

)]
<∞.

Lemma 4.3.9. Fix α ∈ A and (s, x) ∈ [0, T ]×Rd. For any {(sn, xn)}n∈N ⊂ [0, T ]×

Rd such that (sn, xn)→ (s, x), we have

E
[

sup
0≤r≤T

|g(Xsn,xn,α
r )− g(Xs,x,α

r )|
]
→ 0;(4.3.10)

E
∫ T

0

|1[sn,T ](r)f(r,Xsn,xn,α
r , αr)− 1[s,T ](r)f(r,Xs,x,α

r , αr)|dr → 0.(4.3.11)
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Proof. In view of (4.2.7), we have, for any p ≥ 1,

(4.3.12) E
[

sup
0≤r≤T

|Xsn,xn,α
r −Xs,x,α

r |p
]
→ 0.

Thanks to the above convergence and the polynomial growth condition (4.3.8) on f ,

we observe that (4.3.11) is a consequence of [77, Lemma 2.7.6].

It remains to prove (4.3.10). Fix ε, η > 0. Take a > 0 large enough such that

2C1T (2+|x|)
a

< η
3
, where C1 > 0 is given as in Remark 4.2.5. Since g is continuous, it

is uniformly continuous on B̄a(x) := {y ∈ Rd | |y − x| ≤ a}. Thus, there exists some

δ > 0 such that |g(x)− g(y)| < ε for all x, y ∈ B̄a(x) with |x− y| < δ. Define

A :=

{
sup

0≤r≤T
|Xs,x,α

r − x| > a

}
, Bn :=

{
sup

0≤r≤T
|Xsn,xn,α

r − x| > a

}
,

B′n :=

{
sup

0≤r≤T
|Xsn,xn,α

r − xn| >
a

2

}
, Dn :=

{
sup

0≤r≤T
|Xsn,xn,α

r −Xs,x,α
r | ≥ δ

}
.

By the Markov inequality and (4.2.6),

P(A) ≤ C1

√
T (1 + |x|)
a

<
η

3
, P(B′n) ≤ 2C1

√
T (1 + |xn|)
a

<
η

3
for n large enough.

On the other hand, (4.3.12) implies that P(Dn) < η
3

for n large enough. Noting that

(B′n)c ⊆ Bc
n for n large enough, we obtain

P
(

sup
0≤r≤T

|g(Xsn,xn,α
r )− g(Xs,x,α

r )| > ε

)
≤ 1− P(Ac ∩Bc

n ∩Dc
n) = P(A ∪Bn ∪Dn)

≤ P(A ∪B′n ∪Dn) < η, for n large enough.

Thus, we have hn := sup0≤r≤T |g(Xsn,xn,α
r ) − g(Xs,x,α

r )| → 0 in probability. Finally,

observing that the polynomial growth condition (4.3.8) on g and (4.2.5) imply that

{hn}n∈N is L2-bounded, we conclude that hn → 0 in L1, which gives (4.3.10).
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4.3.1 The Associated Hamiltonian

For (t, x, p, A) ∈ [0, T ] × Rd × Rd ×Md, we associate the following Hamiltonian

with our mixed control/stopping problem:

(4.3.13) H(t, x, p, A) := inf
a∈M

Ha(t, x, p, A),

where

Ha(t, x, p, A) := −b(t, x, a) · p− 1

2
Tr[σσ′(t, x, a)A]− f(t, x, a).

Since b, σ, and f are assumed to be continuous only in (x, a), and M is a separable

metric space without any compactness assumption, the operator H may be neither

upper nor lower semicontinuous. As a result, we will need to consider an upper

semicontinuous version of H defined by

(4.3.14) H(t, x, p, A) := inf
a∈M

(Ha)∗(t, x, p, A),

where (Ha)∗ is the upper semicontinuous envelope of Ha, defined as in (4.1.3); see

Proposition 4.4.5. On the other hand, we will need to consider the lower semicon-

tinuous envelope H∗, defined as in (4.1.3), in Proposition 4.5.7. Notice that H is

different from the upper semicontinuous envelope H∗, defined as in (4.1.3) (in fact,

H ≥ H∗). See Remark 4.4.7 for our choice of H over H∗.

4.3.2 Reduction to the Mayer Form

Given t ∈ [0, T ] and α ∈ At, let us increase the state process to (X, Y, Z), where

dY t,x,y,α
s = −Y t,x,y,α

s c(s,X t,x,α
s )ds, s ∈ [t, T ], with Y t,x,y,α

t = y ≥ 0;

Zt,x,y,z,α
s := z +

∫ s

t

Y t,x,y,α
r f(r,X t,x,α

r , αr)dr, for some z ≥ 0.
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Set S := Rd × R+ × R+. For any x := (x, y, z) ∈ S, we define

Xt,x,α
s :=


X t,x,α
s

Y t,x,y,α
s

Zt,x,y,z,α
s

 ,

and consider the function F : S 7→ R+ defined by

F (x, y, z) := z + yg(x).

Now, we introduce the functions Ū , V̄ : [0, T ]× S 7→ R defined by

Ū(t, x, y, z) := inf
π∈Πt,T

sup
α∈At

E
[
F (X t,x,α

π[α] , Y
t,x,y,α
π[α] , Zt,x,y,z,α

π[α] )
]

= inf
π∈Πt,T

sup
α∈At

E
[
F (Xt,x,α

π[α] )
]
,

V̄ (t, x, y, z) := sup
α∈At

inf
τ∈T tt,T

E
[
F (X t,x,α

τ , Y t,x,y,α
τ , Zt,x,y,z,α

τ )
]

= sup
α∈At

inf
τ∈T tt,T

E[F (Xt,x,α
τ )].

Given τ ∈ Tt,T , consider the function

(4.3.15) J(t,x;α, τ) := E[F (Xt,x,α
τ )].

Observing that F (Xt,x,α
τ ) = z + yF (Xt,x,1,0,α

τ ), we have

(4.3.16) J(t,x;α, τ) = z + yJ(t, (x, 1, 0);α, τ),

which in particular implies

(4.3.17) Ū(t, x, y, z) = z + yU(t, x) V̄ (t, x, y, z) = z + yV (t, x).

Thus, we can express the value functions U and V as

U(t, x) = inf
π∈Πt,T

sup
α∈At

J(t, (x, 1, 0);α, π[α]), V (t, x) = sup
α∈At

inf
τ∈T tt,T

J(t, (x, 1, 0);α, τ).

The following result will be useful throughout this chapter.

Lemma 4.3.10. Fix (t,x) ∈ [0, T ]× S and α ∈ A. For any θ ∈ Tt,T and τ ∈ Tθ,T ,

E[F (Xt,x,α
τ ) | Fθ](ω) = J

(
θ(ω),Xt,x,α

θ (ω);αθ,ω, τ θ,ω
)
, for P-a.e. ω ∈ Ω.

Proof. See Appendix C.4.
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4.4 Supersolution Property of V

In this section, we will first study the following two functions

(4.4.1) Gα(s,x) := inf
τ∈T ss,T

J(s,x;α, τ), G̃α(s,x) := inf
τ∈Ts,T

J(s,x;α, τ),

for (s,x) ∈ [0, T ]×S, where α ∈ A is being fixed. A continuity result of Gα enables

us to adapt the arguments in [24] to current context. We therefore obtain a weak

dynamic programming principle (WDPP) for the function V (Proposition 4.4.2),

which in turn leads to the supersolution property of V (Proposition 4.4.5).

Lemma 4.4.1. Fix α ∈ A.

(i) G̃α is continuous on [0, T ]× S.

(ii) Suppose α ∈ At for some t ∈ [0, T ]. Then Gα = G̃α on [0, t] × S. As a result,

Gα is continuous on [0, t]× S.

Proof. (i) For any s ∈ [0, T ] and x = (x, y, z) ∈ S, observe from (4.3.16) that

G̃α(s,x) = z + yG̃α(s, (x, 1, 0)). Thus, it is enough to prove that G̃α(s, (x, 1, 0)) is

continuous on [0, T ]× Rd. Also note that under (4.2.4), we have

G̃α(s,x) = inf
τ∈Ts,T

J(s,x;α, τ) = inf
τ∈T0,T

J(s,x;α, τ).

Now, for any (s, x) ∈ [0, T ]×Rd, take an arbitrary sequence {(sn, xn)}n∈N ⊂ [0, T ]×

Rd such that (sn, xn) → (s, x). Then the continuity of G̃α(s, (x, 1, 0)) can be seen

from the following estimation∣∣∣G̃α(sn, (xn, 1, 0))− G̃α(s, (x, 1, 0))
∣∣∣

=

∣∣∣∣ inf
τ∈T0,T

E[F (Xsn,xn,1,0,α
τ )]− inf

τ∈T0,T
E[F (Xs,x,1,0,α

τ )]

∣∣∣∣
≤ sup

τ∈T0,T

E
[∣∣F (Xsn,xn,1,0,α

τ )− F (Xs,x,1,0,α
τ )

∣∣]
≤ E

[
sup

0≤r≤T

∣∣F (Xsn,xn,1,0,α
r )− F (Xs,x,1,0,α

r )
∣∣ ]→ 0,
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where the convergence follows from Lemma 4.3.9.

(ii) Suppose α ∈ At for some t ∈ [0, T ]. For any (s,x) ∈ [0, t] × S and τ ∈ Ts,T ,

by taking θ = s in Lemma 4.3.10, we have

J(s,x;α, τ) = E [E[F (Xs,x,α
τ ) | Fs](ω)] = E [J(s,x;α, τ s,ω)]

≥ inf
τ∈T ss,T

J(s,x;α, τ),
(4.4.2)

where in the second equality we replace αs,ω by α, thanks to Proposition 4.2.9. We

then conclude

(4.4.3) inf
τ∈Ts,T

J(s,x;α, τ) = inf
τ∈T ss,T

J(s,x;α, τ),

as the “≤” relation is trivial. That is, G̃α(s,x) = Gα(s,x).

Now, we want to modify the arguments in the proof of [24, Theorem 3.5] to get a

weak dynamic programming principle for V . Given w : [0, T ] × Rd 7→ R, we mimic

the relation between V and V̄ in (4.3.17) and define w̄ : [0, T ]× S 7→ R by

(4.4.4) w̄(t, x, y, z) := z + yw(t, x), (t, x, y, z) ∈ [0, T ]× S.

Proposition 4.4.2. Fix (t,x) ∈ [0, T ] × S and ε > 0. Take arbitrary α ∈ At,

θ ∈ T tt,T and ϕ ∈ USC([0, T ]× Rd) with ϕ ≤ V . We have the following:

(i) E[ϕ̄+(θ,Xt,x,α
θ )] <∞;

(ii) If, moreover, E[ϕ̄−(θ,Xt,x,α
θ )] < ∞, then there exists α∗ ∈ At with α∗s = αs for

s ∈ [0, θ) such that

E[F (Xt,x,α∗

τ )] ≥ E[Y t,x,y,α
τ∧θ ϕ(τ ∧ θ,X t,x,α

τ∧θ ) + Zt,x,y,z,α
τ∧θ ]− 4ε, ∀τ ∈ T tt,T .

Proof. (i) First, observe that for any x = (x, y, z) ∈ S, ϕ̄(t,x) = yϕ(t, x) + z ≤

yV (t, x) + z ≤ yg(x) + z, which implies ϕ̄+(t,x) ≤ yg(x) + z. It follows that

ϕ̄+(θ,Xt,x,α
θ ) ≤ Y t,x,y,α

θ g(X t,x,α
θ ) + Zt,x,y,z,α

θ

≤ Y t,x,y,α
θ g(X t,x,α

θ ) + z +

∫ θ

t

Y t,x,y,α
s f(s,X t,x,α

s , αs)ds,
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the right-hand-side is integrable as a result of (4.3.9).

(ii) For each (s, η) ∈ [0, T ] × S, by the definition of V̄ , there exists α(s,η),ε ∈ As

such that

(4.4.5) inf
τ∈T ss,T

J(s, η;α(s,η),ε, τ) ≥ V̄ (s, η)− ε.

Note that ϕ ∈ USC([0, T ] × Rd) implies ϕ̄ ∈ USC([0, T ] × S). Then by the upper

semicontinuity of ϕ̄ on [0, T ]×S and the lower semicontinuity of Gα(s,η),ε
on [0, s]×S

(from Lemma 4.4.1 (ii)), there must exist r(s,η) > 0 such that

ϕ̄(t′, x′)−ϕ̄(s, η) ≤ ε and Gα(s,η),ε

(s, η)−Gα(s,η),ε

(t′, x′) ≤ ε, for (t′, x′) ∈ B(s, η; r(s,η)),

where B(s, η; r) = {(t′, x′) ∈ [0, T ] × S | t′ ∈ (s − r, s], |x′ − η| < r}, defined as in

(4.1.2). It follows that if (t′, x′) ∈ B(s, η; r(s,η)), we have

Gα(s,η),ε

(t′, x′) ≥ Gα(s,η),ε

(s, η)− ε ≥ V̄ (s, η)− 2ε ≥ ϕ̄(s, η)− 2ε ≥ ϕ̄(t′, x′)− 3ε,

where the second inequality is due to (4.4.5). Here, we do not use the usual topology

induced by balls of the form Br(s, η) = {(t′, x′) ∈ [0, T ]× S | |t′ − s| < r, |x′ − η| <

r}; instead, for the time variable, we consider the topology induced by half-closed

intervals on [0, T ], i.e. the so-called upper limit topology (see e.g. [34, Ex.4 on

p.66]). Note from [34, Ex.3 on p.174] and [86, Ex.3 on p.192] that (0, T ] is a Lindelöf

space under this topology. It follows that, under this setting, {B(s, η; r) | (s, η) ∈

[0, T ] × S, 0 < r ≤ r(s,η)} forms an open covering of (0, T ] × S, and there exists

a countable subcovering {B(ti, xi; ri)}i∈N of (0, T ] × S. Now set A0 := {T} × S,

C−1 := ∅ and define for all i ∈ N ∪ {0}

Ai+1 := B(ti+1, xi+1; ri+1) \ Ci, where Ci := Ci−1 ∪ Ai.
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Under this construction, we have

(θ,Xt,x,α
θ ) ∈ ∪i∈N∪{0}Ai P-a.s., Ai ∩ Aj = ∅ for i 6= j,

Gαi,ε(t′, x′) ≥ ϕ̄(t′, x′)− 3ε for (t′, x′) ∈ Ai, where αi,ε := α(ti,xi),ε.

(4.4.6)

For any n ∈ N, set An := ∪0≤i≤nAi and define

αε,n := α1[0,θ) +

(
α1(An)c(θ,X

t,x,α
θ ) +

n∑
i=0

αi,ε1Ai(θ,X
t,x,α
θ )

)
1[θ,T ] ∈ At.

Note that αε,ns = αs for s ∈ [0, θ). Whenever ω ∈ {(θ,Xt,x,α
θ ) ∈ Ai}, observe that

(αε,n)θ,ω(ω′) = αε,n (ω ⊗θ φθ(ω′)) = αi,ε (ω ⊗θ φθ(ω′)) = (αi,ε)θ,ω(ω′); also, we have

αi,ε ∈ Aθ(ω), as αi,ε ∈ Ati and θ(ω) ≤ ti on Ai. We then deduce from Lemma 4.3.10,

Proposition 4.2.9, and (4.4.6) that for P-a.e. ω ∈ Ω

E[F (Xt,x,αε,n

τ )1{τ≥θ}|Fθ]1An(θ,Xt,x,α
θ )

= 1{τ≥θ}

n∑
i=0

J(θ,Xt,x,α
θ ;αi,ε, τ θ,ω)1Ai(θ,X

t,x,α
θ )

≥ 1{τ≥θ}

n∑
i=0

Gαi,ε(θ,Xt,x,α
θ )1Ai(θ,X

t,x,α
θ )

≥ 1{τ≥θ}[ϕ̄(θ,Xt,x,α
θ )− 3ε]1An(θ,Xt,x,α

θ ).

(4.4.7)

Hence, we have

E[F (Xt,x,αε,n

τ )] = E[F (Xt,x,α
τ )1{τ<θ}] + E[F (Xt,x,αε,n

τ )1{τ≥θ}]

= E[F (Xt,x,α
τ )1{τ<θ}] + E

[
E[F (Xt,x,αε,n

τ )1{τ≥θ}|Fθ]1An(θ,Xt,x,α
θ )

]
+ E

[
E[F (Xt,x,αε,n

τ )1{τ≥θ}|Fθ]1(An)c(θ,X
t,x,α
θ )

]
≥ E[F (Xt,x,α

τ )1{τ<θ}] + E[1{τ≥θ}ϕ̄(θ,Xt,x,α
θ )1An(θ,Xt,x,α

θ )]− 3ε

≥ E[1{τ<θ}ϕ̄(τ,Xt,x,α
τ )] + E[1{τ≥θ}ϕ̄(θ,Xt,x,α

θ )1An(θ,Xt,x,α
θ )]− 3ε,

(4.4.8)

where the first inequality comes from (4.4.7), and the second inequality is due to the
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observation that

F (Xt,x,α
τ ) = Y t,x,y,α

τ g(X t,x,α
τ ) + Zt,x,y,z,α

τ ≥ Y t,x,y,α
τ V (τ,X t,x,α

τ ) + Zt,x,y,z,α
τ

≥ Y t,x,y,α
τ ϕ(τ,X t,x,α

τ ) + Zt,x,y,z,α
τ .

Since E[ϕ̄+(θ,Xt,x,α
θ )] <∞ (by part (i)), there exists n∗ ∈ N such that

E[ϕ̄+(θ,Xt,x,α
θ )]− E[ϕ̄+(θ,Xt,x,α

θ )1An∗ (θ,X
t,x,α
θ )] < ε.

We observe the following holds for any τ ∈ T tt,T

E[1{τ≥θ}ϕ̄
+(θ,Xt,x,α

θ )]− E[1{τ≥θ}ϕ̄
+(θ,Xt,x,α

θ )1An∗ (θ,X
t,x,α
θ )]

≤ E[ϕ̄+(θ,Xt,x,α
θ )]− E[ϕ̄+(θ,Xt,x,α

θ )1An∗ (θ,X
t,x,α
θ )] < ε.

(4.4.9)

Suppose E[ϕ̄−(θ,Xt,x,α
θ )] <∞, then we can conclude from (4.4.9) that for any τ ∈ T tt,T

E[1{τ≥θ}ϕ̄(θ,Xt,x,α
θ )] = E[1{τ≥θ}ϕ̄

+(θ,Xt,x,α
θ )]− E[1{τ≥θ}ϕ̄

−(θ,Xt,x,α
θ )]

≤ E[1{τ≥θ}ϕ̄
+(θ,Xt,x,α

θ )1An∗ (θ,X
t,x,α
θ )] + ε− E[1{τ≥θ}ϕ̄

−(θ,Xt,x,α
θ )1An∗ (θ,X

t,x,α
θ )]

= E[1{τ≥θ}ϕ̄(θ,Xt,x,α
θ )1An∗ (θ,X

t,x,α
θ )] + ε.

Taking α∗ = αε,n
∗
, we now conclude from (4.4.8) and the above inequality that

E[F (Xt,x,α∗

τ )] ≥ E[1{τ<θ}ϕ̄(τ,Xt,x,α
τ )] + E[1{τ≥θ}ϕ̄(θ,Xt,x,α

θ )]− 4ε

= E[ϕ̄(τ ∧ θ,Xt,x,α
τ∧θ )]− 4ε

= E[Y t,x,y,α
τ∧θ ϕ(τ ∧ θ,X t,x,α

τ∧θ ) + Zt,x,y,z,α
τ∧θ ]− 4ε.

We still need the following property of V to obtain the supersolution property.

Proposition 4.4.3. For any (t, x) ∈ [0, T ]× Rd, V (t, x) = supα∈A G̃
α(t, (x, 1, 0)).
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Proof. Thanks to Lemma 4.4.1 (ii), we immediately have

V (t, x) = sup
α∈At

Gα(t, (x, 1, 0)) = sup
α∈At

G̃α(t, (x, 1, 0)) ≤ sup
α∈A

G̃α(t, (x, 1, 0)).

For the reverse inequality, fix α ∈ A and x ∈ S. By a calculation similar to

(4.4.2), we have J(t,x;α, τ) = E[J(t,x;αt,ω, τ t,ω)], for any τ ∈ Tt,T . Observing

that τ t,ω ∈ T tt,T for all τ ∈ Tt,T (by Proposition 4.2.8), and that E[J(t,x;αt,ω, τ t,ω)] =

E[J(t,x;αt,ω, τ)] for all τ ∈ T tt,T (by Proposition 4.2.7), we obtain

inf
τ∈Tt,T

J(t,x;α, τ) = inf
τ∈Tt,T

E[J(t,x;αt,ω, τ t,ω)] = inf
τ∈T tt,T

E[J(t,x;αt,ω, τ)]

≤ sup
α∈At

inf
τ∈T tt,T

E[J(t,x;α, τ)] = sup
α∈At

inf
τ∈T tt,T

J(t,x;α, τ),

where the inequality is due to the fact that αt,ω ∈ At. By setting x := (x, 1, 0) and

taking supremum over α ∈ A, we get supα∈A G̃
α(t, (x, 1, 0)) ≤ V (t, x).

Corollary 4.4.4. V ∈ LSC([0, T ]× Rd).

Proof. By Proposition 4.4.3 and Lemma 4.4.1 (i), V is a supremum of a collection of

continuous functions defined on [0, T ]×Rd, and thus has to be lower semicontinuous

on the same space.

Now, we are ready to present the main result of this section. Recall that the

operator H is defined in (4.3.14).

Proposition 4.4.5. The function V is a lower semicontinuous viscosity supersolu-

tion to the obstacle problem of a Hamilton-Jacobi-Bellman equation

(4.4.10) max

{
c(t, x)w − ∂w

∂t
+H(t, x,Dxw,D

2
xw), w − g(x)

}
= 0 on [0, T )×Rd,

and satisfies the polynomial growth condition: there exists N > 0 such that

(4.4.11) |V (t, x)| ≤ N(1 + |x|p̄), ∀(t, x) ∈ [0, T ]× Rd.
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Proof. The lower semicontinuity of V was shown in Corollary 4.4.4. Observe that

0 ≤ V (t, x) ≤ supα∈At E[F (Xt,x,1,0,α
T )] ≤ supα∈A E[F (Xt,x,1,0,α

T )] =: v(t, x). Since v

satisfies (4.4.11) as a result of [77, Theorem 3.1.5], so does V .

To prove the supersolution property, let h ∈ C1,2([0, T )× Rd) be such that

(4.4.12) 0 = (V − h)(t0, x0) < (V − h)(t, x), ∀ (t, x) ∈ ([0, T )× Rd) \ {(t0, x0)},

for some (t0, x0) ∈ [0, T ) × Rd. If V (t0, x0) = g(x0), then there is nothing to prove.

We, therefore, assume that V (t0, x0) < g(x0). For such (t0, x0) it is enough to prove

the following inequality:

0 ≤ c(t0, x0)h(t0, x0)− ∂h

∂t
(t0, x0) +H(·, Dxh,D

2
xh)(t0, x0).

Assume the contrary. Then, by the definition of H in (4.3.14), there must exist

ζ0 ∈M such that

0 > c(t0, x0)h(t0, x0)− ∂h

∂t
(t0, x0) + (Hζ0)∗(·, Dxh,D

2
xh)(t0, x0).

Moreover, from the upper semicontinuity of (Hζ0)∗ and the fact that (Hζ0)∗ ≥ Hζ0 ,

we can choose some r > 0 with t0 + r < T such that

(4.4.13) 0 > c(t, x)h(t, x)− ∂h

∂t
(t, x) +Hζ0(·, Dxh,D

2
xh)(t, x), ∀ (t, x) ∈ B̄r(t0, x0).

Define ζ ∈ A by setting ζt = ζ0 for all t ≥ 0, and introduce the stopping time

θ := inf
{
s ≥ t0

∣∣ (s,X t0,x0,ζ
s ) /∈ Br(t0, x0)

}
∈ T t0t0,T .

Note that we have θ ∈ T t0t0,T as the control ζ is by definition independent of Ft0 .

Now, by applying the product rule of stochastic calculus to Y t0,x0,1,ζ
s h(s,X t0,x0,ζ

s ) and
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recalling (4.4.13) and c ≤ c̄, we obtain that for any τ ∈ T t0t0,T ,

V (t0, x0) = h(t0, x0)

= E
[
Y t0,x0,1,ζ
θ∧τ h(θ ∧ τ,X t0,x0,ζ

θ∧τ )

+

∫ θ∧τ

t0

Y t0,x0,1,ζ
s

(
ch− ∂h

∂t
+Hζ0(·, Dxh,D

2
xh) + f

)
(s,X t0,x0,ζ

s , ζ0)ds

]
< E

[
Y t0,x0,1,ζ
θ∧τ h(θ ∧ τ,X t0,x0,ζ

θ∧τ ) +

∫ θ∧τ

t0

Y t0,x0,1,ζ
s f(s,X t0,x0,ζ

s , ζ0)ds

]
.(4.4.14)

In the following, we will work towards a contradiction to (4.4.14). First, define

h̄(θ,Xt0,x0,1,0,ζ
θ ) := Y t0,x0,1,ζ

θ h(θ,X t0,x0,ζ
θ ) +

∫ θ

t0

Y t0,x0,1,ζ
s f(s,X t0,x0,ζ

s , ζ0)ds.

Note from (4.4.14) that E[h̄(θ,Xt0,x0,1,0,ζ
θ )] is bounded from below. It follows from

this fact that E[h̄−(θ,Xt0,x0,1,0,ζ
θ )] <∞, as we already have E[h̄+(θ,Xt0,x0,1,0,ζ

θ )] <∞

from Proposition 4.4.2 (i). For each n ∈ N, we can therefore apply Proposition 4.4.2

(ii) and conclude that there exists α∗,n ∈ At0 , with α∗,ns = ζs for all s ≤ θ, such that

for any τ ∈ T t0t0,T ,

E[F (Xt0,x0,1,0,α∗,n

τ )]

≥ E
[
Y t0,x0,1,ζ
θ∧τ h(θ ∧ τ,X t0,x0,ζ

θ∧τ ) +

∫ θ∧τ

t0

Y t0,x0,1,ζ
s f(s,X t0,x0,ζ

s , ζ0)ds

]
− 1

n
.

(4.4.15)

Next, thanks to the definition of V and the classical theory of Snell envelopes (see

e.g. Appendix D, and especially Theorem D.12, in [67]), we have

(4.4.16) V (t0, x0) ≥ Gα∗,n(t0, (x0, 1, 0)) = E[F (Xt0,x0,1,0,α∗,n

τn )],

where

τn := inf
{
s ≥ t0

∣∣ Gα∗,n(s,Xt0,x0,1,0,α∗,n

s ) = g(X t0,x0,α∗,n

s )
}
∈ T t0t0,T .

Note that we may apply [67, Theorem D.12] because (4.3.9) holds. Combining

(4.4.16) and (4.4.15), we obtain

V (t0, x0) ≥ E
[
Y t0,x0,1,ζ
θ∧τn h(θ ∧ τn, X t0,x0,ζ

θ∧τn ) +

∫ θ∧τn

t0

Y t0,x0,1,ζ
s f(s,X t0,x0,ζ

s , ζ0)ds

]
− 1

n
.
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By sending n to infinity and using Fatou’s Lemma, we conclude that

V (t0, x0) ≥ E
[
Y t0,x0,1,ζ
θ∧τ∗ h(θ ∧ τ ∗, X t0,x0,ζ

θ∧τ∗ ) +

∫ θ∧τ∗

t0

Y t0,x0,1,ζ
s f(s,X t0,x0,ζ

s , ζ0)ds

]
,

where τ ∗ := lim infn→∞ τ
n is a stopping time in T t0t0,T , thanks to the right continuity

of the filtration Ft0 . The above inequality, however, contradicts (4.4.14).

Remark 4.4.6. The lower semicontinuity of V is needed for the proof of Proposi-

tion 4.4.5. To see this, suppose V is not lower semicontinuous. Then V should be

replaced by V∗ in (4.4.12) and (4.4.14). The last inequality in the proof and (4.4.14)

would then yield V∗(t0, x0) < V (t0, x0), which is not a contradiction.

Remark 4.4.7. Due to the lack of continuity in t of the functions b, σ, and f , we

use H, instead of H∗, in (4.4.10). If we were using H∗, we in general would not be

able to find a ζ0 ∈M such that (4.4.13) holds (due to the lack of continuity in t). If

b, σ, and f are actually continuous in t, then we see from (4.3.13) and (4.3.14) that

H = H = H∗.

4.5 Subsolution Property of U∗

As in Section 4.4, we will first prove a continuity result (Lemma 4.5.5), which leads

to a weak dynamic programming principle for U (Proposition 4.5.6). Then, we will

show that the subsolution property of U∗ follows from this weak dynamic program-

ming principle (Proposition 4.5.7). Remember that U∗ is the upper semicontinuous

envelope of U defined as in (4.1.3).

Fix s ∈ [0, T ] and ξ ∈ Lpd(Ω,Fs) for some p ∈ [1,∞). For any α ∈ A and

π1, π2 ∈ Πs,T with π1[β] ≤ π2[β] P-a.s. for all β ∈ A, we define

(4.5.1) Bs,ξ,απ1
:=

{
β ∈ A

∣∣∣∣ ∫ π1[α]

s

ρ′(βu, αu)du = 0 P-a.s.

}
,
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and introduce the random variable

Ks,ξ,α(π1, π2) :=

ess supβ∈Bs,ξ,απ1
E

[∫ π2[β]

π1[α]

Y
π1[α],Xs,ξ,β

π1[α]
,1,β

u f(u,Xs,ξ,β
u , βu)du+ Y

π1[α],Xs,ξ,β
π1[α]

,1,β

π2[β] g(Xs,ξ,β
π2[β])

∣∣∣∣∣ Fπ1[α]

]
.

(4.5.2)

Observe from the definition of Bs,ξ,απ1
and Definition 4.3.1 (i) that

(4.5.3) π1[β] = π1[α] P-a.s. ∀β ∈ Bs,ξ,απ1
.

This in particular implies π2[β] ≥ π1[β] = π1[α] P-a.s. ∀β ∈ Bs,ξ,απ1
, which shows

that Ks,ξ,α(π1, π2) is well-defined. Given any constant strategies π1[·] ≡ τ1 ∈ T ss,T

and π2[·] ≡ τ2 ∈ T ss,T , we will simply write Ks,ξ,α(π1, π2) as Ks,ξ,α(τ1, τ2). For the

particular case where ξ = x ∈ Rd, we also consider

Γs,x,α(π1, π2) :=

∫ π1[α]

s

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π1[α] Ks,x,α(π1, π2).

Remark 4.5.1. Let us write Ks,x,α(π1, π2) = ess supβ∈Bs,x,απ1
E[Rs,x,α

π1,π2
(β) | Fπ1[α]] for

simplicity. Note that the set of random variables {E[Rs,x,α
π1,π2

(β) | Fπ1[α]]}β∈Bs,x,απ1

is closed under pairwise maximization. Indeed, given β1, β2 ∈ Bs,x,απ1
, set A :=

{E[Rs,x,α
π1,π2

(β1) | Fπ1[α]] ≥ E[Rs,x,α
π1,π2

(β2) | Fπ1[α]]} ∈ Fπ1[α] and define β3 := β11[0,π1[α]) +

(β11A + β21Ac)1[π1[α],T ] ∈ Bs,x,απ1
. Then, observe that

E[Rs,x,α
π1,π2

(β3) | Fπ1[α]] = E[Rs,x,α
π1,π2

(β1) | Fπ1[α]]1A + E[Rs,x,α
π1,π2

(β2) | Fπ1[α]]1Ac

= E[Rs,x,α
π1,π2

(β1) | Fπ1[α]] ∨ E[Rs,x,α
π1,π2

(β2) | Fπ1[α]].

Thus, we conclude from Theorem A.3 in [67, Appendix A] that there exists a sequence

{βn}n∈N in Bs,x,απ1
such that Ks,x,α(π1, π2) =↑ limn→∞ E[Rs,x,α

π1,π2
(βn) | Fπ1[α]] P-a.s.

Lemma 4.5.2. Fix (s, x) ∈ [0, T ]×Rd and α ∈ A. For any r ∈ [s, T ] and π ∈ Πr,T ,

Ks,x,α(r, π) = Kr,Xs,x,α
r ,α(r, π) P-a.s.
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Proof. For any β ∈ Bs,x,αr , we see from Remark 4.2.6 (i) that Xs,x,β
u = Xr,Xs,x,α

r ,β
u for

u ∈ [r, T ] P-a.s. It follows from (4.5.2) that

Ks,x,α(r, π) =

ess supβ∈Bs,x,αr
E
[ ∫ π[β]

r

Y r,Xs,x,α
r ,1,β

u f(u,Xr,Xs,x,α
r ,β

u , βu)du+ Y r,Xs,x,α
r ,1,β

π[β] g(Xr,Xs,x,α
r ,β

π[β] )

∣∣∣∣ Fr].
Observing from (4.5.1) that Bs,x,αr ⊆ A = Br,X

s,x,α
r ,α

r , we conclude Ks,x,α(r, π) ≤

Kr,Xs,x,α
r ,α(r, π). On the other hand, for any β ∈ A, define β̄ := α1[0,r) + β1[r,T ] ∈

Bs,x,αr . Then, by Remark 4.2.6 (i) again, we have Xs,x,β̄
u = Xr,Xs,x,α

r ,β
u for u ∈ [r, T ]

P-a.s. Also, we have π[β̄] = π[β], thanks to Definition 4.3.1 (i). Therefore,

E
[ ∫ π[β]

r

Y r,Xs,x,α
r ,1,β

u f(u,Xr,Xs,x,α
r ,β

u , βu)du+ Y r,Xs,x,α
r ,1,β

π[β] g(Xr,Xs,x,α
r ,β

π[β] )

∣∣∣∣ Fr]
= E

[ ∫ π[β̄]

r

Y r,Xs,x,β̄
r ,1,β̄

u f(u,Xs,x,β̄
u , β̄u)du+ Y r,Xs,x,β̄

r ,1,β̄

π[β̄]
g(Xs,x,β̄

π[β̄]
)

∣∣∣∣ Fr].
In view of (4.5.2), this implies Kr,Xs,x,α

r ,α(r, π) ≤ Ks,x,α(r, π).

Lemma 4.5.3. Fix (s, x) ∈ [0, T ] × Rd. Given α ∈ A and π1, π2, π3 ∈ Πs,T with

π1[β] ≤ π2[β] ≤ π3[β] P-a.s. for all β ∈ A, it holds P-a.s. that

E
[ ∫ π2[α]

π1[α]

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π2[α] Ks,x,α(π2, π3)

∣∣∣∣ Fπ1[α]

]
≤ Y s,x,1,α

π1[α] Ks,x,α(π1, π3).

Moreover, we have the following supermartingale property:

E[Γs,x,α(π2, π3) | Fπ1[α]] ≤ Γs,x,α(π1, π3) P-a.s.

Proof. By Remark 4.5.1, there exists a sequence {βn}n∈N in Bs,x,απ2
such that

Ks,x,α(π2, π3) =↑ lim
n→∞

E[Rs,x,α
π2,π3

(βn) | Fπ2[α]] P-a.s.
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From the definition of Bs,x,απ2
in (4.5.1), βnu = αu for a.e. u ∈ [s, π2[α]) P-a.s. We can

then compute as follows:

E
[
Y s,x,1,α
π2[α] Ks,x,α(π2, π3)

∣∣∣ Fπ1[α]

]
= E

{
Y s,x,1,α
π2[α] lim

n→∞
E
[ ∫ π3[βn]

π2[α]

Y
π2[α],Xs,x,βn

π2[α]
,1,βn

u f(u,Xs,x,βn

u , βnu )du

+ Y
π2[α],Xs,x,βn

π2[α]
,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣Fπ2[α]

]∣∣∣∣Fπ1[α]

}
= E

{
lim
n→∞

E
[ ∫ π3[βn]

π2[α]

Y s,x,1,βn

u f(u,Xs,x,βn

u , βnu )du+ Y s,x,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣ Fπ2[α]

] ∣∣∣∣ Fπ1[α]

}
= lim

n→∞
E
[ ∫ π3[βn]

π2[α]

Y s,x,1,βn

u f(u,Xs,x,βn

u , βnu )du+ Y s,x,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣ Fπ1[α]

]
,

where the last line follows from the monotone convergence theorem and the tower

property for conditional expectations. We therefore conclude that

E
[ ∫ π2[α]

π1[α]

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π2[α] Ks,x,α(π2, π3)

∣∣∣∣ Fπ1[α]

]
= lim

n→∞
E
[ ∫ π3[βn]

π1[α]

Y s,x,1,βn

u f(u,Xs,x,βn

u , βnu )du+ Y s,x,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣ Fπ1[α]

]
= Y s,x,1,α

π1[α] lim
n→∞

E
[ ∫ π3[βn]

π1[α]

Y
π1[α],Xs,x,βn

π1[α]
,1,βn

u f(u,Xs,x,βn

u , βnu )du

+ Y
π1[α],Xs,x,βn

π1[α]
,1,βn

π3[βn] g(Xs,x,βn

π3[βn])

∣∣∣∣Fπ1[α]

]
≤ Y s,x,1,α

π1[α] Ks,x,α(π1, π3),

where the inequality follows from the fact that βn ∈ Bs,x,απ2
⊆ Bs,x,απ1

. It follows that

E[Γs,x,α(π2, π3) | Fπ1[α]]

=

∫ π1[α]

s

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du

+ E
[ ∫ π2[α]

π1[α]

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π2[α] Ks,x,α(π2, π3)

∣∣∣∣ Fπ1[α]

]
≤
∫ π1[α]

s

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
π1[α] Ks,x,α(π1, π3) = Γs,x,α(π1, π3).
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Lemma 4.5.4. For any (t,x) ∈ [0, T ]× S and π ∈ Πt,T ,

sup
α∈A

J(t,x;α, π[α]) = sup
α∈At

J(t,x;α, π[α]).

Proof. Fix α ∈ A and x ∈ S. For any π ∈ Πt,T , by taking θ = t in Lemma 4.3.10,

J(t,x;α, π[α]) = E
[
E[F (Xt,x,α

π[α] ) | Ft](ω)
]

= E
[
J(t,x;αt,ω, π[αt,ω])

]
≤ sup

α∈At
J(t,x;α, π[α]).

Note that in the second equality we replace π[α]t,ω by π[αt,ω], thanks to Defini-

tion 4.3.1 (iii). Then, the last inequality holds as αt,ω ∈ At for P-a.e. ω ∈ Ω. Now, by

taking supremum over α ∈ A, we have supα∈A J(t,x;α, π[α]) ≤ supα∈At J(t,x;α, π[α]).

Since the reverse inequality is trivial, this lemma follows.

Now, we are ready to state a continuity result for an optimal control problem.

Lemma 4.5.5. Fix t ∈ [0, T ]. For any π ∈ Πt,T , the function Lπ : [0, t]× S defined

by

(4.5.4) Lπ(s,x) := sup
α∈As

J(s,x;α, π[α])

is continuous.

Proof. Observing from (4.3.16) that Lπ(s,x) = yLπ(s, (x, 1, 0)) + z, it is enough to

show the continuity of Lπ(s, (x, 1, 0)) in (s, x) on [0, t]×Rd. By [77, Theorem 3.2.2],

we know that J(s, (x, 1, 0);α, τ) is continuous in x uniformly with respect to s ∈ [0, t],

α ∈ A, and τ ∈ Tt,T . This shows that the map (s, x, α) 7→ J(s, (x, 1, 0);α, π[α]) is

continuous in x uniformly with respect to s ∈ [0, t] and α ∈ A. Then, we see from

the following estimation

sup
s∈[0,t]

|Lπ(s, (x, 1, 0))− Lπ(s, (x′, 1, 0))|

≤ sup
s∈[0,t]

sup
α∈As
|J(s, (x, 1, 0);α, π[α])− J(s, (x′, 1, 0);α, π[α])|
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that Lπ(s, (x, 1, 0)) is continuous in x uniformly with respect to s ∈ [0, t]. Thus,

it suffices to prove that Lπ(s, (x, 1, 0)) is continuous in s for each fixed x. To this

end, we will first derive a dynamic programming principle for Lπ(s, (x, 1, 0)), which

corresponds to [77, Theorem 3.3.6]; the rest of the proof will then follow from the

same argument in [77, Lemma 3.3.7].

Fix (s, x) ∈ [0, t] × Rd. Observe from (4.5.1) that Bs,x,αs = A for all α ∈ A. In

view of (4.5.2), this implies that Ks,x,α(s, π) = ess supβ∈AE[F (Xs,x,1,0,β
π[β] ) | Fs], which

is independent of α ∈ A. We will therefore drop the superscript α in the rest of the

proof. Now, we claim that Ks,x(s, π) is deterministic and equal to Lπ(s, (x, 1, 0)).

First, since π[α] ∈ T st,T for all α ∈ As (by Definition 4.3.1 (ii)), we observe from

Lemma 4.3.10, Proposition 4.2.7 (ii), and Proposition 4.2.9 that

Ks,x(s, π) ≥ ess supα∈AsE[F (Xs,x,1,0,α
π[α] ) | Fs](·)

= ess supα∈AsJ(s, (x, 1, 0);αs,·, π[α]s,·)

= sup
α∈As

J(s, (x, 1, 0);α, π[α]) = Lπ(s, (x, 1, 0)).

(4.5.5)

On the other hand, in view of Remark 4.5.1, there exists a sequence {αn}n∈N in

A such that Ks,x(s, π) =↑ limn→∞ E[F (Xs,x,1,0,αn

π[αn] ) | Fs] P-a.s. By the monotone

convergence theorem,

E[Ks,x(s, π)] = E
[

lim
n→∞

E[F (Xs,x,1,0,αn

π[αn] ) | Fs]
]

= lim
n→∞

E[F (Xs,x,1,0,αn

π[αn] )]

≤ sup
α∈A

E[F (Xs,x,1,0,α
π[α] )] = Lπ(s, (x, 1, 0)),

(4.5.6)

where the last equality is due to Lemma 4.5.4. From (4.5.5) and (4.5.6), we get

Ks,x(s, π) = Lπ(s, (x, 1, 0)). Then, for any α ∈ A, thanks to the supermartingale

property introduced in Lemma 4.5.3, we have for all r ∈ [s, t] that

Lπ(s, (x, 1, 0)) = Ks,x(s, π) = Γs,x,α(s, π) ≥ E[Γs,x,α(r, π)]

≥ E[Γs,x,α(π, π)] ≥ E[F (Xs,x,1,0,α
π[α] )],
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where the last equality follows from the fact that

Ks,x,α(π, π) = ess supβ∈Bs,x,απ
g(Xs,x,β

π[β] ) ≥ g(Xs,x,α
π[α] ) P-a.s.;

see (4.5.2). By taking supremum over α ∈ A and using Lemma 4.5.4, we obtain the

following dynamic programming principle for Lτ (s, (x, 1, 0)): for all r ∈ [s, t],

Lπ(s, (x, 1, 0)) = sup
α∈A

E[Γs,x,α(r, π)]

= sup
α∈A

E
[∫ r

s

Y s,x,1,α
u f(u,Xs,x,α

u , αu)du+ Y s,x,1,α
r Lπ(r, (Xs,x,α

r , 1, 0))

]
,

where the second equality follows from the fact Ks,x,α(r, π) = Kr,Xs,x,α
r ,α(r, π) =

Lπ(r, (Xs,x,α
r , 1, 0)) P-a.s., as a consequence of Lemma 4.5.2. Now, we may apply the

same argument in [77, Lemma 3.3.7] to show that Lπ(s, (x, 1, 0)) is continuous in s

on [0, t].

Proposition 4.5.6. Fix (t,x) ∈ [0, T ] × S and ε > 0. For any π ∈ Πt,T and

ϕ ∈ LSC([0, T ]× Rd) with ϕ ≥ U , there exists π∗ ∈ Πt,T such that

E
[
F (Xt,x,α

π∗[α])
]
≤ E

[
Y t,x,y,α
π[α] ϕ

(
π[α], X t,x,α

π[α]

)
+ Zt,x,y,z,α

π[α]

]
+ 3ε, ∀α ∈ A.

Proof. For each (s, η) ∈ [0, T ]× S, by the definition of Ū , there exists π(s,η),ε ∈ Πs,T

such that

(4.5.7) sup
α∈As

J
(
s, η;α, π(s,η),ε[α]

)
≤ Ū(s, η) + ε.

Recall the definition of ϕ̄ in (4.4.4) and note that ϕ ∈ LSC([0, T ] × Rd) implies

ϕ̄ ∈ LSC([0, T ] × S). Then, by the lower semicontinuity of ϕ̄ on [0, T ] × S and the

upper semicontinuity of Lπ
(s,η),ε

on [0, s] × S (from Lemma 4.5.5), there must exist

r(s,η) > 0 such that

ϕ̄(t′, x′)− ϕ̄(s, η) ≥ −ε and Lπ
(s,η),ε

(t′, x′)− Lπ(s,η),ε

(s, η) ≤ ε,
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for any (t′, x′) contained in the ball B(s, η; r(s,η)), defined as in (4.1.2). It follows

that if (t′, x′) ∈ B(s, η; r(s,η)), we have

Lπ
(s,η),ε

(t′, x′) ≤ Lπ
(s,η),ε

(s, η) + ε ≤ Ū(s, η) + 2ε ≤ ϕ̄(s, η) + 2ε ≤ ϕ̄(t′, x′) + 3ε,

where the second inequality is due to (4.5.7). By the same construction in the proof

of Proposition 4.4.2, there exists a countable covering {B(ti, xi; ri)}i∈N of (0, T ]×S,

from which we can take a countable disjoint covering {Ai}i∈N∪{0} of (0, T ]× S such

that

(π[α],Xt,x,α
π[α] ) ∈ ∪`i=1Ai P-a.s. ∀α ∈ A,

Lπ
i,ε

(t′, x′) ≤ ϕ̄(t′, x′) + 3ε for (t′, x′) ∈ Ai, where πi,ε := π(ti,xi),ε.

(4.5.8)

Now, define π∗ ∈ Πt,T by

π∗[α] :=
∑
i≥1

πi,ε[α]1Ai(π[α],Xt,x,α
π[α] ), ∀α ∈ A.

Fix α ∈ At. Observe that for P-a.e. ω ∈
{

(π[α],Xt,x,α
π[α] ) ∈ Ai

}
⊆ {π[α] ≤ ti},

Definition 4.3.1 (iii) gives

(πi,ε[α])π[α],ω(ω′) = πi,ε[απ[α],ω](ω′) for P-a.e. ω′ ∈ Ω.(4.5.9)

We then deduce from Lemma 4.3.10, (4.5.9), (4.5.4), and (4.5.8) that for P-a.e.

ω ∈ Ω,

E
[
F (Xt,x,α

π∗[α])
∣∣∣ Fπ[α]

]
(ω) 1Ai(π[α](ω),Xt,x,α

π[α] (ω))

= J
(
π[α](ω),Xt,x,α

π[α] (ω);απ[α],ω, πi,ε[απ[α],ω]
)

1Ai(π[α](ω),Xt,x,α
π[α] (ω))

≤ Lπ
i,ε
(
π[α](ω),Xt,x,α

π[α] (ω)
)

1Ai(π[α](ω),Xt,x,α
π[α] (ω))

≤
[
ϕ̄
(
π[α](ω),Xt,x,α

π[α] (ω)
)

+ 3ε
]

1Ai(π[α](ω),Xt,x,α
π[α] (ω)).

It follows from the monotone convergence theorem that

E
[
F (Xt,x,α

π∗[α])
]

=
∑
i≥1

E
[
E
[
F (Xt,x,α

π∗[α])
∣∣∣ Fπ[α]

]
1Ai(π[α],Xt,x,α

π[α] )
]

≤ E
[
ϕ̄(π[α],Xt,x,α

π[α] )
]

+ 3ε,
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which is the desired result by recalling again the definition of ϕ̄ in (4.4.4).

The following is the main result of this section. Recall that the operator H is

defined in (4.3.13), and H∗ denotes the lower semicontinuous envelope of H defined

as in (4.1.3).

Proposition 4.5.7. The function U∗ is a viscosity subsolution to the obstacle prob-

lem of a Hamilton-Jacobi-Bellman equation

max

{
c(t, x)w − ∂w

∂t
+H∗(t, x,Dxw,D

2
xw), w − g(x)

}
= 0 on [0, T )× Rd,

and satisfies the polynomial growth condition (4.4.11).

Proof. We may argue as in the proof of Proposition 4.4.5 to show that U∗ satisfies

(4.4.11). To prove the subsolution property, we assume the contrary that there exist

h ∈ C1,2([0, T )× Rd) and (t0, x0) ∈ [0, T )× Rd satisfying

0 = (U∗ − h)(t0, x0) > (U∗ − h)(t, x), for any (t, x) ∈ [0, T )× Rd, (t, x) 6= (t0, x0),

such that

max

{
c(t0, x0)h(t0, x0)− ∂h

∂t
(t0, x0) +H∗(·, Dxh,D

2
xh)(t0, x0), h(t0, x0)− g(x0)

}
> 0.

Since U∗(t0, x0) = h(t0, x0) and U ≤ g by definition, continuity of g implies that

h(t0, x0) = U∗(t0, x0) ≤ g(x0). Therefore, the above inequality yields

(4.5.10) c(t0, x0)h(t0, x0)− ∂h

∂t
(t0, x0) +H∗(·, Dxh,D

2
xh)(t0, x0) > 0.

Define the function h̃ by

h̃(t, x) := h(t, x) + ε(|t− t0|2 + |x− x0|4).
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Note that (h̃, ∂th̃, Dxh̃, D
2
xh̃)(t0, x0) = (h, ∂th,Dxh,D

2
xh)(t0, x0). Then, by the lower

semicontinuity of H∗, there exists r > 0 with t0 + r < T such that

(4.5.11)

c(t, x)h̃(t, x)− ∂h̃

∂t
(t, x) +Ha(·, Dxh̃, D

2
xh̃)(t, x) > 0, ∀ a ∈M and (t, x) ∈ B̄r(t0, x0).

Now, define η > 0 by

(4.5.12) ηec̄T := min
∂Br(t0,x0)

(h̃− h) > 0.

Take (t̂, x̂) ∈ Br(t0, x0) such that |(U − h̃)(t̂, x̂)| < η/2, and define π ∈ Πt̂,T by

(4.5.13) π[α] := inf
{
s ≥ t̂

∣∣∣ (s,X t̂,x̂,α
s ) /∈ Br(t0, x0)

}
, ∀α ∈ A.

For any α ∈ At̂, applying the product rule of stochastic calculus to Y t̂,x̂,1,α
s h̃(s,X t̂,x̂,α

s ),

we get

h̃(t̂, x̂) = E
[
Y t̂,x̂,1,α
π[α] h̃(π[α], X t̂,x̂,α

π[α] )

+

∫ π[α]

t̂

Y t̂,x̂,1,α
s

(
ch̃− ∂h̃

∂t
+Hαs(·, Dxh̃, D

2
xh̃) + f

)
(s,X t̂,x̂,α

s , αs)ds

]
> E

[
Y t̂,x̂,1,α
π[α] h(π[α], X t̂,x̂,α

π[α] ) +

∫ π[α]

t̂

Y t̂,x̂,1,α
s f(s,X t̂,x̂,α

s , αs)ds

]
+ η,

where the inequality follows from (4.5.12), (4.5.11) and c ≤ c̄. Moreover, by our

choice of (t̂, x̂), we have U(t̂, x̂) + η/2 > h̃(t̂, x̂). It follows that

(4.5.14)

U(t̂, x̂) > E

[
Y t̂,x̂,1,α
π[α] h(π[α], X t̂,x̂,α

π[α] ) +

∫ π[α]

t̂

Y t̂,x̂,1,α
s f(s,X t̂,x̂,α

s , αs)ds

]
+
η

2
, ∀ α ∈ At̂.

Finally, we conclude from the definition of U and Proposition 4.5.6 that there exist

π∗ ∈ Πt̂,T and α̂ ∈ At̂ such that

U(t̂, x̂) = Ū(t̂, x̂, 1, 0) ≤ sup
α∈At̂

E
[
F
(
Xt̂,x̂,1,0,α
π∗[α]

)]
≤ E

[
F
(
Xt̂,x̂,1,0,α̂
π∗[α̂]

)]
+
η

4

≤ E
[
Y t̂,x̂,1,α̂
π[α̂] h(π[α̂], X t̂,x̂,α̂

π[α̂] ) + Z t̂,x̂,1,0,α̂
π[α̂]

]
+
η

2
,

which contradicts (4.5.14).
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4.6 Comparison

In this section, to state an appropriate comparison result, we assume a stronger

version of (4.2.2) as follows: there exists K > 0 such that for any t, s ∈ [0, T ], x, y ∈

Rd, and u ∈M ,

(4.6.1) |b(t, x, u)− b(s, y, u)|+ |σ(t, x, u)− σ(s, y, u)| ≤ K(|t− s|+ |x− y|).

Moreover, we impose an additional condition on f :

(4.6.2) f(t, x, u) is uniformly continuous in (t, x), uniformly in u ∈M.

Note that the conditions (4.6.1) and (4.6.2), together with the linear growth condition

(4.2.3) on b and σ, imply that the operator H defined in (4.3.13) is continuous, and

H = H = H∗.

Proposition 4.6.1. Assume (4.6.1) and (4.6.2). Let u (resp. v) be an upper semi-

continuous viscosity subsolution (resp. a lower semicontinuous viscosity supersolu-

tion), with polynomial growth in x, to

(4.6.3) max

{
c(t, x)w − ∂w

∂t
+H(t, x,Dxw,D

2
xw), w − g(x)

}
= 0 on [0, T )× Rd,

and u(T, x) ≤ v(T, x) for all x ∈ Rd. Then u ≤ v on [0, T )× Rd.

Proof. For λ > 0, define uλ := eλtu(t, x), vλ := eλtv(t, x), and

Hλ(t, x, p, A) := inf
a∈M

{
−b(t, x, a) · p− 1

2
Tr[σσ′(t, x, a)A]− eλtf(t, x, a)

}
.

Note that the conditions (4.6.1) and (4.6.2), together with the linear growth condition

(4.2.3) on b and σ and the polynomial growth condition (4.3.8) on f , imply that

Hλ is continuous. By definition, u (resp. v) is upper semicontinuous (resp. lower

semicontinuous) and has polynomial growth. Moreover, by direct calculations, the
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subsolution property of u (resp. supersolution property of v) implies that uλ (resp.

vλ) is a viscosity subsolution (resp. viscosiy supersolution) to

(4.6.4)

max

{
(c(t, x) + λ)w − ∂w

∂t
+Hλ(t, x,Dxw,D

2
xw), w − eλtg(x)

}
= 0 on [0, T )×Rd.

For any (t, x, r, q, p, A) ∈ [0, T ]× Rd × R× R× Rd ×Md, define

F1(t, x, r, q, p, A) := (c(t, x) + λ) r − q +Hλ(t, x, p, A) and F2(t, x, r) := r − eλtg(x).

Since F1 and F2 are by definition continuous, so is F3 := max{F1, F2}. We can then

write (4.6.4) as F3(t, x, w, ∂w
∂t
, Dxw,D

2
xw) = 0.

From the polynomial growth condition on uλ and vλ, there is a p > 0 such that

sup
[0,T ]×Rd

|uλ(t, x)|+ |vλ(t, x)|
1 + |x|p

<∞.

Define γ(x) := 1 + |x|2p and set ϕ(t, x) := e−λtγ(x). From the linear growth

condition (4.2.3) on b and σ, a direct calculation shows that |b(t, x, a) · Dxγ +

1
2
Tr[σσ′(t, x, a)D2

xγ]| ≤ Cγ(x) for some C > 0. It follows that

(c(t, x) + λ)ϕ− ∂ϕ

∂t
+ inf

a∈M

{
−b(t, x, a)Dxϕ−

1

2
Tr[σσ′(t, x, a)D2

xϕ]

}
= e−λt

(
[c(t, x) + 2λ]γ + inf

a∈M

{
−b(t, x, a)Dxγ −

1

2
Tr[σσ′(t, x, a)D2

xγ]

})
≥ e−λt[c(t, x) + 2λ− C]γ ≥ 0, if λ ≥ C

2
.(4.6.5)

Now, take λ ≥ C
2

and define vλε := vλ + εϕ for all ε > 0. By definition, vλε is

lower semicontinuous. Given any h ∈ C1,2([0, T ) × Rd) and (t0, x0) ∈ [0, T ) × Rd

such that vλε − h attains a local minimum, which equals 0, at (t0, x0), the superso-

lution property of vλ implies either F1

(
·, h(·), ∂h

∂t
(·), Dxh(·), D2

xh(·)
)

(t0, x0) ≥ 0 or

F2 (·, h(·)) (t0, x0) ≥ 0. If the former holds true, we see from (4.6.5) that

F1

(
·, vλε (·), ∂v

λ
ε

∂t
(·), Dxv

λ
ε (·), D2

xv
λ
ε (·)
)

(t0, x0) ≥ 0;
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if the latter holds true, then

F2

(
·, vλε (·)

)
(t0, x0) = vλε (t0, x0)− eλt0g(x0) = F2

(
·, vλ(·)

)
(t0, x0) + εϕ(t0, x0)

= F2 (·, h(·)) (t0, x0) + εϕ(t0, x0) ≥ 0.

Therefore, vλε is a lower semicontinuous viscosity supersolution to (4.6.4).

We would like to show uλ ≤ vλε on [0, T )× Rd for all ε > 0; then by sending ε to

0, we can conclude u ≤ v on [0, T )×Rd, as desired. We will argue by contradiction,

and thus assume that

N := sup
[0,T ]×Rd

(uλ − vλε )(t, x) > 0

From the polynomial growth condition on uλ and vλ and the definition of ϕ, we have

lim
|x|→∞

sup
[0,T ]

(uλ − vλε )(t, x) = −∞.

It follows that there exists some bounded open set O ⊂ Rd such that the maximum

N is attained at some point contained in [0, T ]×O. For each δ > 0, define

Φδ(t, s, x, y) := uλ(t, x)− vλε (s, y)− ηδ(t, s, x, y),

with ηδ(t, s, x, y) :=
1

2δ
[|t− s|2 + |x− y|2].

Since Φδ is upper semicontinuous, it attains its maximum, denoted by Nδ, on the

compact set [0, T ]2 × O2
at some point (tδ, sδ, xδ, yδ). Then, the upper semiconti-

nuity of uλ(t, x) − vλε (s, y) implies that
(
uλ(tδ, xδ)− vλε (sδ, yδ)

)
δ

is bounded above;

moreover, it is also bounded below as

(4.6.6) N ≤ Nδ = uλ(tδ, xδ)− vλε (sδ, yδ)− ηδ(tδ, sδ, xδ, yδ) ≤ uλ(tδ, xδ)− vλε (sδ, yδ).

Then we deduce from (4.6.6) and the boundedness of
(
uλ(tδ, xδ)− vλε (sδ, yδ)

)
δ

the

boundedness of (ηδ(tδ, sδ, xδ, yδ))δ. Note that the bounded sequence (tδ, sδ, xδ, yδ)δ
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converges, up to a subsequence, to some point (t̃, s̃, x̃, ỹ) ∈ [0, T ]2 × O2
. Then the

definition of ηδ and the boundedness of (ηδ(tδ, sδ, xδ, yδ))δ imply that t̃ = s̃ and

x̃ = ỹ. Then, by sending δ to 0 in (4.6.6), we see that the last expression becomes

(uλ − vλε )(t̃, x̃) ≤ N , which implies that

(4.6.7) Nδ → N and ηδ(tδ, sδ, xδ, yδ)→ 0.

In view of Ishii’s Lemma (see e.g. [91, Lemma 4.4.6]) and [91, Remark 4.4.9], for

each δ > 0, there exist Aδ, Bδ ∈Md such that

(4.6.8) Tr(CC ′Aδ −DD′Bδ) ≤
3

δ
|C −D|2 for all C,D ∈Md,

and (
1

δ
(tδ − sδ),

1

δ
(xδ − yδ), Aδ

)
∈ P̄2,+uλ(tδ, xδ),(

1

δ
(tδ − sδ),

1

δ
(xδ − yδ), Bδ

)
∈ P̄2,−vλε (sδ, yδ),

where P̄2,+w(t, x) (resp. P̄2,−w(t, x)) denotes the superjet (resp. subjet) of an upper

semicontinuous (resp. a lower semicontinuous) function w at (t, x) ∈ [0, T ] × Rd;

for the definition of these notions, see e.g. [30] and [91]. Since the function F3 =

max{F1, F2} is continuous, we may apply [91, Lemma 4.4.5] and obtain that

max

{
(c(tδ, xδ) + λ)uλ(tδ, xδ)−

1

δ
(tδ − sδ) +Hλ(tδ, xδ,

1

δ
(xδ − yδ), Aδ),

uλ(tδ, xδ)− eλtδg(xδ)

}
≤ 0,

max

{
(c(sδ, yδ) + λ) vλε (sδ, yδ)−

1

δ
(tδ − sδ) +Hλ(sδ, yδ,

1

δ
(xδ − yδ), Bδ),

vλε (sδ, yδ)− eλsδg(yδ)

}
≥ 0.

Noting that max{a, b} −max{c, d} ≥ min{a− c, b− d} for any a, b, c, d ∈ R, we get

min

{
(c(tδ, xδ) + λ)uλ(tδ, xδ)− (c(sδ, yδ) + λ) vλε (sδ, yδ) +Hλ(tδ, xδ,

1

δ
(xδ − yδ), Aδ)

−Hλ(sδ, yδ,
1

δ
(xδ − yδ), Bδ), u

λ(tδ, xδ)− vλε (sδ, yδ) + eλsδg(yδ)− eλtδg(xδ)

}
≤ 0.



107

Since uλ(tδ, xδ)−vλε (sδ, yδ)+eλsδg(yδ)−eλtδg(xδ) = Nδ+ηδ(tδ, sδ, xδ, yδ)+eλsδg(yδ)−

eλtδg(xδ)→ N > 0, we conclude from the previous inequality that as δ small enough,

(c(tδ, xδ) + λ)uλ(tδ, xδ)− (c(sδ, yδ) + λ) vλε (sδ, yδ)

≤ Hλ(sδ, yδ,
1

δ
(xδ − yδ), Bδ)−Hλ(tδ, xδ,

1

δ
(xδ − yδ), Aδ)

≤ µ(|tδ − sδ|+ |xδ − yδ|+
3

δ
|xδ − yδ|2),

for some function µ such that µ(z) → 0 as z → 0; note that the second inequality

follows from (4.6.1), (4.6.2), and (4.6.8). Finally, by sending δ to 0 and using (4.6.7),

we get (c(t̃, x̃) + λ)N ≤ 0, a contradiction.

Now, we turn to the behavior of V∗, the lower semicontinuous envelope of V

defined as in (4.1.3), at terminal time T .

Lemma 4.6.2. For all x ∈ Rd, V∗(T, x) ≥ g(x).

Proof. Fix α ∈ A. Take an arbitrary sequence (tm, xm) → (T, x) with tm < T for

all m ∈ N. By the definition of V , we can choose for each m ∈ N a stopping time

τm ∈ T tmtm,T such that

V (tm, xm) ≥ inf
τ∈T tmtm,T

E
[∫ τ

tm

Y tm,xm,1,αf(s,X tm,xm,α, αs)ds+ Y tm,xm,1,α
τ g(X tm,xm,α

τ )

]
≥ E

[∫ τm

tm

Y tm,xm,1,αf(s,X tm,xm,α, αs)ds+ Y tm,xm,1,α
τm g(X tm,xm,α

τm )

]
− 1

m
.

Note that τm → T as τm ∈ T tmtm,T and tm → T . Then it follows from Fatou’s lemma

that lim infm→∞ V (tm, xm) ≥ g(x). Since (tm, xm) is arbitrarily chosen, we conclude

V∗(T, x) ≥ g(x).

Theorem 4.6.3. Assume (4.6.1) and (4.6.2). Then U∗ = V on [0, T ] × Rd. In

particular, U = V on [0, T ] × Rd, i.e. the game has a value, which is the unique

viscosity solution to (4.4.10) with terminal condition w(T, x) = g(x) for x ∈ Rd.



108

Proof. Since by definition U(t, x) ≤ g(x) on [0, T ] × Rd, we have U∗(t, x) ≤ g(x)

on [0, T ] × Rd by the continuity of g. Then by Lemma 4.6.2 and the fact that

U∗ ≥ U ≥ V , we have U∗(T, x) = V (T, x) = g(x) for all x ∈ Rd. Recall that under

(4.6.1) and (4.6.2), the function H is continuous, and H = H = H∗. Now, in view of

Propositions 4.4.5 and 4.5.7, and the fact that U∗(T, ·) = V (T, ·) and H = H = H∗,

we conclude from Proposition 4.6.1 that U∗ = V on [0, T ]× Rd, which in particular

implies U = V on [0, T ]× Rd.
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APPENDIX A

Continuous Selection Results for Proposition 3.3.8

The goal of this subsection is to state and prove Proposition A.9, which is used

in the proof of Proposition 3.3.8. Before we do that, we need some preparations

concerning the theory of continuous selection in [85] and [25].

Definition A.4. Let X be a topological space.

(i) We say X is a T1 space if for any distinct points x, y ∈ X, there exist open sets

Ux and Uy such that Ux contains x but not y, and Uy contains y but not x.

(ii) We say X is a T2(Hausdorff) space if for any distinct points x, y ∈ X, there

exist open sets Ux and Uy such that x ∈ Ux, y ∈ Uy, and Ux ∩ Uy = ∅.

(iii) We say X is a paracompact space if for any collection {Xα}α∈A of open sets in

X such that
⋃
α∈AXα = X, there exists a collection {Xβ}β∈B of open sets in X

satisfying

(1) each Xβ is a subset of some Xα;

(2)
⋃
β∈BXβ = X;

(3) given x ∈ X, there exists an open neighborhood of x which intersects only

finitely many elements in {Xβ}β∈B.

Definition A.5. Let X, Y be topological spaces. A set-valued map φ : X 7→ 2Y is
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lower semicontinuous if, whenever V ⊂ Y is open in Y , the set {x ∈ X | φ(x)∩V 6= ∅}

is open in X.

The main theorem in [85], Theorem 3.2′′, gives the following result for continuous

selection.

Proposition A.6. Let X be a T1 paracompact space, Y be a Banach space, and

φ : X 7→ 2Y be a set-valued map such that φ(x) is a closed convex subset of Y for

each x ∈ X. Then, if φ is lower semicontinuous, there exists a continuous function

f : X 7→ Y such that f(x) ∈ φ(x) for all x ∈ X.

Since the lower semicontinuity of φ can be difficult to prove in general, one may

wonder whether there is a weaker condition sufficient for continuous selection. Brown

[25] worked towards this direction, and characterized the weakest possible condition

(it is therefore sufficient and necessary). For the special case where X is a Hausdorff

paracompact space and Y is a real linear space with finite dimension n∗, given a

set-valued map φ : X 7→ 2Y , a sequence {φ(n)}n∈N of set-valued maps was introduced

in [25] via the following iteration:

φ(1)(x) := {y ∈ φ(x) | Given V open in Y s.t. y ∈ V, there is a

neighborhood U of x s.t. ∀x′ ∈ U, ∃ y′ ∈ φ(x′) ∩ V };

φ(n)(x) := (φ(n−1))(1)(x), for n ≥ 2.

(A.0.1)

The following result, taken from [25, Theorem 4.3], characterizes the possibility of

continuous selection using φ(n∗).

Proposition A.7. Let X be a Hausdorff paracompact space, Y be a real linear space

with finite dimension n∗, and φ : X 7→ 2Y be a set-valued map such that φ(x) is a

closed convex subset of Y for each x ∈ X. Then, there exists a continuous function
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f : X 7→ Y such that f(x) ∈ φ(x) for all x ∈ X if and only if φ(n∗)(x) 6= ∅ for all

x ∈ X.

For the application in Chapter III, we would like to takeX = D̄ and Y = Sd, where

D ⊂ E is a smooth bounded domain. Note that D̄ is Hausdorff and paracompact as

it is a metric space in Rd (see e.g. [76, Corollary 5.35]), and Sd is a real linear space

with dimension n∗ := d(d + 1)/2. Fix two continuous functions γ,Γ : E 7→ (0,∞)

with γ ≤ Γ, we consider the operator Fγ,Γ : E × Sd 7→ R defined by

(A.0.2) Fγ,Γ(x,M) :=
1

2
M+

γ(x),Γ(x)(M) =
1

2
sup

A∈A(γ(x),Γ(x))

Tr(AM).

Observe that Fγ,Γ also satisfies (3.3.11)-(3.3.14), and in particular Fθ,Θ = F . Given

m ∈ N, we intend to show that there exists a continuous function cm : D̄ 7→ Sd such

that for all x ∈ D̄, cm(x) ∈ A(γ(x),Γ(x)) and Fγ,Γ(x,D2ηD) ≤ Lcm(·)ηD(x) + 1/m,

with ηD given in Lemma 3.3.1. Note that since ηD ∈ C2(D̄) by Proposition 3.3.5,

D2ηD is well-defined on ∂D. Also, see Proposition 3.3.8 for the purpose of finding

such a function cm. We then define the set-valued map ϕ : D 7→ Sd by

ϕ(x) :=
{
M ∈ Sd

∣∣ M ∈ A(γ(x),Γ(x)) and Fγ,Γ(x,D2ηD) ≤ LMηD(x) + 1/m
}
.

For any x ∈ D̄, we see from the definition of Fγ,Γ that ϕ(x) 6= ∅. Moreover, ϕ(x)

is by definition a closed convex subset of Sd. Then, we define ϕ(n) inductively as

in (A.0.1) for all n ∈ N. In view of Proposition A.7, such a function cm exists if

ϕ(n∗)(x) 6= ∅ for all x ∈ D̄. We claim that this is true. Actually, we will prove a

stronger result in the next lemma: given x ∈ D̄, ϕ(n)(x) 6= ∅ for all n ∈ N.

Recall that Bδ(x) denotes the open ball in Rd centered at x ∈ Rd with radius

δ > 0. In the following, we will denote by BD̄
δ (x) the corresponding open ball in D̄

under the relative topology, i.e. BD̄
δ (x) := Bδ(x) ∩ D̄. Similarly, we will denote by
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BSd
δ (M) the corresponding open ball in Sd under the topology induced by ‖ · ‖ in

(3.2.1).

Lemma A.8. Fix a smooth bounded domain D ⊂ E, two continuous functions

γ,Γ : E 7→ (0,∞) with γ ≤ Γ, and m ∈ N. Let ηD be given as in Lemma 3.3.1.

Then, given x ∈ D̄, if M ∈ ϕ(x) satisfies

(A.0.3) Fγ,Γ(x,D2ηD) < LMηD(x) + 1/m,

then M ∈ ϕ(n)(x) for all n ∈ N.

Proof. Fix M ∈ ϕ(x) such that (A.0.3) holds. We will first show that M ∈ ϕ(1)(x),

and then complete the proof by an induction argument. Take 0 ≤ ζ < 1/m such that

Fγ,Γ(x,D2ηD) = LMηD(x) + ζ. Set ν := 1/m− ζ > 0. Recall that ηD ∈ C2(D̄) from

Proposition 3.3.5. By the continuity of the maps x 7→ Fγ,Γ(x,D2ηD(x)) (thanks to

(3.3.14)) and x 7→ LMηD(x), we can take δ1 > 0 small enough such that the following

holds for any x′ ∈ BD̄
δ1

(x):

(A.0.4) Fγ,Γ(x′, D2ηD) < Fγ,Γ(x,D2ηD)+
ν

3
= LMηD(x)+ζ+

ν

3
< LMηD(x′)+ζ+

2ν

3
.

Since ‖ · ‖max ≤ ‖ · ‖, the map (M, y) 7→ LMηD(y) is continuous in M , uniformly in

y ∈ D̄. It follows that there exists β > 0 such that

(A.0.5) ‖N −M‖ < β ⇒ |LNηD(y)− LMηD(y)| < ν

3
for all y ∈ D̄.

Now, by the continuity of γ and Γ on D̄, we can take δ2 > 0 such that max{|γ(x′)−

γ(x)|, |Γ(x′)− Γ(x)|} < β for all x′ ∈ BD̄
δ2

(x). For each x′ ∈ BD̄
δ2

(x), we pick M ′ ∈ Sd

satisfying

ei(M
′) =



γ(x′) if ei(M) < γ(x′)

ei(M) if ei(M) ∈ [γ(x′),Γ(x′)],

Γ(x′) if ei(M) > Γ(x′).
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By construction, M ′ ∈ A(γ(x′),Γ(x′)) and ‖M ′−M‖ ≤ max{|γ(x′)− γ(x)|, |Γ(x′)−

Γ(x)|} < β, which implies

(A.0.6) |LM ′ηD(y)− LMηD(y)| < ν

3
, for all y ∈ D̄.

Finally, set U := BD̄
δ (x) with δ := δ1 ∧ δ2. Then by (A.0.4) and (A.0.6), for any

x′ ∈ U there exists M ′ ∈ BSd
β (M) such that M ′ ∈ A(γ(x′),Γ(x′)) and

(A.0.7) Fγ,Γ(x′, D2ηD) < LM
′
ηD(x′) + 1/m,

which shows that M ′ ∈ ϕ(x′). Given any open set V in Sd such that M ∈ V , since

we may take β > 0 in (A.0.5) small enough such that BSd
β (M) ⊂ V , we conclude

that M ′ ∈ V also. It follows that M ∈ ϕ(1)(x).

Notice that what we have proved is the following result: for any x ∈ D̄, if M ∈

ϕ(x) satisfies (A.0.3), then M ∈ ϕ(1)(x). Since M ′ ∈ ϕ(x′) satisfies (A.0.7), the

above result immediately gives M ′ ∈ ϕ(1)(x′). We then obtain a stronger result:

for any x ∈ D̄, if M ∈ ϕ(x) satisfies (A.0.3), then M ∈ ϕ(2)(x). But this stronger

result, when applied again to M ′ ∈ ϕ(x′) satisfying (A.0.7), gives M ′ ∈ ϕ(2)(x′).

We, therefore, obtain that: for any x ∈ D̄, if M ∈ ϕ(x) satisfies (A.0.3), then

M ∈ ϕ(3)(x). We can then argue inductively to conclude that M ∈ ϕ(n)(x) for all

n ∈ N.

Proposition A.9. Fix a smooth bounded domain D ⊂ E and two continuous func-

tions γ,Γ : E 7→ (0,∞) with γ ≤ Γ. Let ηD be given as in Lemma 3.3.1. For any

m ∈ N, there exists a continuous function cm : D̄ 7→ Sd such that

cm(x) ∈ A(γ(x),Γ(x)) and Fγ,Γ(x,D2ηD) ≤ Lcm(·)ηD(x) + 1/m, for all x ∈ D̄.

Proof. Fix m ∈ N. As explained before Lemma A.8, D̄ is a Hausdorff paracompact

space, Sd is a real linear space with dimension n∗ := d(d+ 1)/2, and ϕ(x) is a closed
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convex subset of Sd for all x ∈ D̄. For each x ∈ D̄, by the definition of Fγ,Γ in

(A.0.2), we can always find some M ∈ ϕ(x) satisfying (A.0.3). By Lemma A.8, this

implies ϕ(n)(x) 6= ∅ for all n ∈ N. In particular, we have ϕ(n∗)(x) 6= ∅ for all x ∈ D̄.

Then the desired result follows from Proposition A.7.
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APPENDIX B

Proof of Lemma 3.3.10 (ii)

B.1 Proof of (3.3.38)

Pick x0 ∈ D and R0 > 0 such that BR0(x0) ⊂ D. For any 0 < R < R0, define

vn(x) := un (x0 +Rx) and H̄(x,M) := H (x0 +Rx,M) .

Then we deduce from (3.3.11) and (3.3.36) that for any x ∈ BR0/R(0),

H̄(x,D2vn(x)) +R2δnvn(x) = H
(
x0 +Rx,D2vn(x)

)
+R2δnvn(x) = R2fn(x0 +Rx).

Since H̄(x,M) satisfies (3.3.35) in BR0/R(0), we can apply the estimate (3.3.37) to

vn and get

sup
B̄R(x0)

un = sup
B̄1(0)

vn ≤ C

{
inf
B̄1(0)

vn +R2‖fn‖Ld(BR0
(x0))

}
= C

{
inf

B̄R(x0)
un +R2‖fn‖Ld(BR0

(x0))

}
,

where C > 0 depends only on R0, d, λ, Λ, supn δn.

B.2 Proof of the Hölder continuity

Now, fix a compact connected set K ⊂ D. Set R0 := 1
2
d(∂K, ∂D) > 0. By [83,

Lemma 2], there exists some k∗ ∈ N such that the set K ′ := {x ∈ Rd | d(x,K) ≤
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R0} ⊂ D has the following property: any two points in K ′ can be joined by a

polygonal line of at most k∗ segments which lie entirely in K ′. Fix x0 ∈ K ′. By

the definition of R0, we have BR0(x0) ⊂ D. For each n ∈ N, we consider the

nondecreasing function wn : (0, R0] 7→ R defined by

wn(R) := Mn
R −mn

R, where Mn
R := max

B̄R(x0)
un, m

n
R := min

B̄R(x0)
un.

For each R ∈ (0, R0], we obtain from (3.3.36) that {un − mn
R}n∈N is sequence of

nonnegative continuous viscosity solution to

H(x,D2(un −mn
R)) + δn(un −mn

R) = fn − δnmn
R in BR(x0).

By the estimate (3.3.38), there is some C > 0, independent of n and x0, such that

Mn
R/4 −mn

R = sup
B̄R/4(x0)

(un(x)−mn
R) ≤ C inf

B̄R/4(x0)
(un(x)−mn

R) + AR2

= C(mn
R/4 −mn

R) + AR2,

(B.2.1)

where A > 0 is a constant depends on C and R0, but not n (thanks to the uni-

form boundedness of {un}n∈N and the boundedness of {fn}n∈N in Ld(D)). Define

H̄(x,M) := −H(x,−M). Then we deduce again from (3.3.36) that {Mn
R − un}n∈N

is a sequence of nonnegative continuous viscosity solutions to

H̄(x,D2(Mn
R − un)) + δn(Mn

R − un) = −H(x,D2un) + δn(Mn
R − un)

= −fn + δnM
n
R in BR(x0).

Observe that H̄ also satisfies (3.3.11) and (3.3.35). Thus, we can apply the estimate

(3.3.38) and get

Mn
R −mn

R/4 = sup
B̄R/4(x0)

(Mn
R − un(x)) ≤ C inf

B̄R/4(x0)
(Mn

R − un(x)) + AR2

= C(Mn
R −Mn

R/4) + AR2,

(B.2.2)
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where C and A are as above. Summing (B.2.1) and (B.2.2), we get

wn(R/4) = Mn
R/4 −mn

R/4 ≤
C − 1

C + 1
(Mn

R −mn
R) + A′R2 =

C − 1

C + 1
wn(R) + A′R2,

where A′ > 0 depends on C and R0, and is independent of R and n. By applying

[53, Lemma 8.23] to the above inequality, for any β ∈ (0, 1), we can find some C̃ > 0

(depending on C, R0 and A′, but not n) such that wn(R) ≤ C̃Rβ, for all R ≤ R0.

This implies the following result: for any x, y ∈ K ′ with |x − y| ≤ R0, we can take

x0 = x in the above analysis and obtain |un(x) − un(y)| ≤ wn(|x − y|) ≤ C̃|x − y|β

for all n ∈ N. For the case where |x− y| > R0, recall that x and y can be joined by

a polygonal line of k segments which lie entirely in K ′, for some k ≤ k∗. On the j-th

segment, pick points xj1, x
j
2, · · · , x

j
`j

along the segment such that xj1, x
j
`j

are the two

endpoints, |xji − x
j
i+1| = R0 for i = 1, · · · , `j − 2, and |xj`j−1 − x

j
`j
| ≤ R0. Since K ′ is

bounded, there must be a uniform bound `∗ > 0 such that `j ≤ `∗ for all j. Then,

for all n ∈ N, we have

|un(x)−un(y)| ≤
k∑
j=1

`j−1∑
i=1

|un(xji )−un(xji+1)| ≤
k∑
j=1

`j−1∑
i=1

C̃|xji−x
j
i+1|β ≤ k∗`∗C̃|x−y|β.
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APPENDIX C

Properties of Shifted Objects in the Space C([0, T ];Rd)

This appendix is devoted to rigorous proofs for the properties of shifted objects

stated in Propositions 4.2.7, 4.2.8, 4.2.9, and Lemma 4.3.10. To this end, we will

first derive several auxiliary results.

Recall the definitions introduced in Subsection 4.2.1. Fix t ∈ [0, T ]. For any

A ⊆ Ω, Ã ⊆ Ωt, and x ∈ Rd, we set

Ãx := {ω̃ ∈ Ã | ω̃t = x},

and define

At,ω := {ω̃ ∈ Ωt | ω ⊗t ω̃ ∈ A}, At,ωx := (At,ω)x, ω ⊗t Ã := {ω ⊗t ω̃ | ω̃ ∈ Ã}.

Given a random time τ : Ω 7→ [0,∞], whenever ω ∈ Ω is fixed, we simplify our

notation as Aτ,ω = Aτ(ω),ω. We also consider

(C.0.1) Ht
s := ψ−1

t Gt,0s ⊆ Gts, ∀s ∈ [t, T ].

Note that the inclusion follows from the Borel measurability of ψt. Finally, while E

denotes the expectation taken under P, in this appendix we also consider EP, the

expectation taken under P.

Lemma C.1. Fix t ∈ [0, T ] and ω ∈ Ω. For any r ∈ [t, T ], A ∈ Gr, Ã ∈ Gtr, and

ξ ∈ L0(Ω,Gr),
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(i) At,ωx = At,ω0 + x and At,ωx ∈ Gt,xr , ∀x ∈ Rd.

(ii) At,ω = ψ−1
t At,ω0 ∈ Ht

r ⊆ Gtr and Pt(At,ω) = Pt,x(At,ωx ) = Pt,x(At,ω), ∀x ∈ Rd.

(iii) φ−1
t At,ω ∈ φ−1

t Ht
r ⊆ Gr and P(φ−1

t At,ω) = Pt(At,ω).

(iv) ω ⊗t Ãωt ∈ Gr. Hence, ω ⊗t At,ωωt ∈ Gr.

(v) For any Borel subset E of R, (ξt,ω)−1(E) ∈ φ−1
t Ht

r ⊆ Gr. Hence, ξt,ω ∈ L0(Ω,Gr).

Proof. (i) Fix x ∈ Rd. Since ω̃ ∈ At,ω0 ⇔ ω ⊗t ω̃ ∈ A and ω̃t = 0⇔ (ω ⊗t (ω̃ + x))· =

ω·1[0,t](·) + ((ω̃· + x) − (ω̃t + x) + ωt)1(t,T ](·) = (ω ⊗t ω̃)· ∈ A and (ω̃ + x)t = x ⇔

ω̃ + x ∈ At,ωx , we conclude At,ωx = At,ω0 + x.

Set Λ := {A ⊆ Ω | At,ωx ∈ Gt,xr }. Note that Ω ∈ Λ since Ωt,ω
x = {w̃ ∈ Ωt | ω ⊗t ω̃ ∈

Ω, ω̃t = x} = (Ωt)x ∈ Gt,xr . Given A ∈ Λ, we have (Ac)t,ωx = (Ωt)x \{ω̃ ∈ Ωt | ω⊗t ω̃ ∈

A, ω̃t = x} = (Ωt)x \ At,ωx ∈ Gt,xr , which shows Ac ∈ Λ. Given {Ai}i∈N ⊂ Λ, we have(⋃
i∈NAi

)t,ω
x

=
⋃
i∈N{ω̃ ∈ Ωt | ω ⊗t ω̃ ∈ Ai, ω̃t = x} =

⋃
i∈N(Ai)

t,ω
x ∈ Gt,xr , which

shows
⋃
i∈NAi ∈ Λ. Thus, we conclude Λ is a σ-algebra of Ω. For any x ∈ Qd and

λ ∈ Q+, the set of positive rationals, let Oλ(x) denote the open ball in Rd centered

at x with radius λ. Note from [66, p.307] that for each s ∈ [0, T ], Gsr is countably

generated by

(C.0.2)

Csr :=

{ m⋂
i=1

(W s
ti

)−1(Oλi(xi))

∣∣∣∣m ∈ N, ti ∈ Q, s ≤ t1 < · · · < tm ≤ r, xi ∈ Qd, λi ∈ Q+

}
.

Given C =
⋂m
i=1(Wti)

−1(Oλi(xi)) in Cr = C0
r , if tm ≥ t, set k = min{i = 1, · · · ,m |

ti ≥ t}; otherwise, set k = m + 1. Then, if ωti /∈ Oλi(xi) for some i = 1, · · · , k − 1,

we have Ct,ω
x = ∅ ∈ Gt,xr ; if k = m + 1 and wti ∈ Oλi(xi) ∀i = 1, · · · ,m, we have

Ct,ω
x = (Ωt)x ∈ Gt,xr ; for all other cases,

(C.0.3) Ct,ω
x = {W t

t = x} ∩
m⋂
i=k

(W t
ti

)−1 (Oλi(xi − ωt + x)) ∈ Gt,xr .
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Thus, Cr ⊆ Λ, which implies Gr = σ(Cr) ⊆ Λ. Now, for any A ∈ Gr, At,ωx ∈ Gt,xr ⊆ Gtr.

(ii) Observe from part (i) that ω̃ ∈ At,ω ⇔ ω̃ ∈ At,ωω̃t ⇔ ω̃ − ω̃t ∈ At,ω0 i.e.

ψt(ω̃) ∈ At,ω0 ⇔ ω̃ ∈ ψ−1
t (At,ω0 ). Thus, At,ω = ψ−1

t (At,ω0 ) ∈ ψ−1
t (Gt,0r ) = Ht

r ⊆ Gtr,

thanks to part (i) and (C.0.1). Then, using part (i) again, Pt(At,ω) = Pt(At,ω0 ) =

Pt,x(At,ω0 + x) = Pt,x(At,ωx ) = Pt,x(At,ω), ∀x ∈ Rd.

(iii) By part (ii) and the Borel measurability of φt : (Ω,Gr) 7→ (Ωt,Gtr), we imme-

diately have φ−1
t At,ω ∈ φ−1

t Ht
r ⊆ Gr. Now, by property (e”) in [66, p.84] and part

(ii), P[φ−1
t At,ω | Gt+](ω′) = Pt,ω′t(At,ω) = Pt(At,ω) for P-a.e. ω′ ∈ Ω, which implies

P[φ−1
t At,ω] = Pt(At,ω).

(iv) Set Λ := {Ã ⊆ Ωt | ω ⊗t Ãωt ∈ Gr}. Let Ctr be given as in (C.0.2). For any

C =
⋂m
i=1(W t

ti
)−1(Oλi(xi)) in Ctr, we deduce from the continuity of paths in Ω that

ω ⊗t Cωt = {ω′ ∈ Ω | ω′s = ωs ∀s ∈ Q ∩ [0, t) and ω′ti ∈ Oλi(xi) for i = 1, · · · ,m}

=

( ⋂
s∈Q∩[0,t)

(Ws)
−1(ωs)

)
∩
( m⋂
i=1

(Wti)
−1(Oλi(xi))

)
∈ Gr.

Thus, we have Ctr ⊆ Λ. Given {Ãi}i∈N ⊂ Λ, we have ω ⊗t (
⋃
i∈N Ãi)ωt =

⋃
i∈N(ω ⊗t

(Ãi)ωt) ∈ Gr, which shows
⋃
i∈N Ãi ∈ Λ; this in particular implies

Ωt =
⋃
n∈N

(W t
r)
−1(On(0)) ∈ Λ.

Given Ã ∈ Λ, we have ω ⊗t (Ãc)ωt = (ω ⊗t (Ωt)ωt) \ (ω ⊗t Ãωt) ∈ Gr, which shows

Ãc ∈ Λ. Hence, Λ is a σ-algebra of Ωt, which implies Gtr = σ(Ctr) ⊆ Λ. Now, by part

(i), we must have ω ⊗t At,ωωt ∈ Gr.

(v) Since ξ−1(E) ∈ Gr, (ξt,ω)−1(E) = {ω′ ∈ Ω | ξ(ω ⊗t φt(ω′)) ∈ E} = {ω′ ∈ Ω |

ω ⊗t φt(ω′) ∈ ξ−1(E)} = φ−1
t (ξ−1(E))t,ω ∈ φ−1

t Ht
r ⊆ Gr, thanks to part (iii).

In light of Theorem 1.3.4 and equation (1.3.15) in [105], for any G-stopping time

τ , there exists a family {Qω
τ }ω∈Ω of probability measures on (Ω,GT ), called a regular

conditional probability distribution (r.c.p.d.) of P given Gτ , such that
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(i) for each A ∈ GT , the mapping ω 7→ Qω
τ (A) is Gτ -measurable.

(ii) for each A ∈ GT , it holds for P-a.e. ω ∈ Ω that P[A | Gτ ](ω) = Qω
τ (A).

(iii) for each ω ∈ Ω, Qω
τ

(
ω ⊗τ (Ωτ(ω))ωτ

)
= 1.

By property (iii) above and Lemma C.1 (iv), for any fixed ω ∈ Ω, we can define a

probability measure Qτ,ω on
(

Ωτ(ω),Gτ(ω)
T

)
by

Qτ,ω(Ã) := Qω
τ (ω ⊗τ Ãωτ ), ∀Ã ∈ G

τ(ω)
T .

Then, combining properties (ii) and (iii) above, we have: for A ∈ GT , it holds for

P-a.e. ω ∈ Ω that

(C.0.4) P[A | Gτ ](ω) = Qω
τ

(
(ω ⊗τ (Ωτ(ω))ωτ ) ∩ A

)
= Qω

τ (ω ⊗τ Aτ,ωωτ ) = Qτ,ω(Aτ,ω).

Note that the r.c.p.d. {Qω
τ }ω∈Ω is generally not unique. For each (t, x) ∈ [0, T ]×Rd,

observe that the shifted Wiener measure Pt,x can be characterized as the unique

solution to the martingale problem for the operator L := 1
2

∑d
i,j=1

∂2

∂xi∂xj
starting

from time t with initial value x (see [104, Remark 7.1.23] and [105, Exercise 6.7.3]).

Then, thanks to the strong Markov property of solutions to the martingale problem

(see e.g. [105, Theorem 6.2.2]), there exists a particular r.c.p.d. {Qω
τ }ω∈Ω such that

Qτ,ω = Pτ(ω),ωτ(ω) . Now, by (C.0.4) and Lemma C.1 (ii), we have: for A ∈ GT ,

(C.0.5) P[A | Gτ ](ω) = Pτ(ω),ωτ(ω)(Aτ,ω) = Pτ(ω)(Aτ,ω), P-a.s.

So far, we have restricted ourselves to G-stopping times. We say a random variable

τ : Ω 7→ [0,∞] is a G-optional time if {τ < t} ∈ Gt for all t ∈ [0, T ]. In the following,

we obtain a generalized version of (C.0.5) for G-optional times.

Lemma C.2. Fix a G-optional time τ ≤ T . For any A ∈ GT ,

P[A | Gτ+](ω) = Pτ(ω)(Aτ,ω) for P-a.e. ω ∈ Ω.
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Proof. Step 1: By [66, Problem 1.2.24], we can take a sequence {τn}n∈N of G-

stopping times such that τn(ω) ↓ τ(ω) for all ω ∈ Ω. Fix A ∈ GT . For each n ∈ N,

(C.0.5) implies that for any B ∈ Gτn ,

(C.0.6) EP[1A1B] = EP[Pτn(ω)(Aτn,ω)1B].

Then, for any B ∈ Gτ+, we must have (C.0.6) for all n ∈ N, since Gτ+ =
⋂
n∈N Gτn .

Now, by taking the limit in n and assuming that for each ω ∈ Ω

(C.0.7) lim
n→∞

Pτn(ω)(Aτn,ω) = Pτ(ω)(Aτ,ω),

we obtain from the dominated convergence theorem that EP[1A1B] = EP[Pτ(ω)(Aτ,ω)1B].

Since B ∈ Gτ+ is arbitrary, we conclude P[A | Gτ+](ω) = Pτ(ω)(Aτ,ω) for P-a.e. ω ∈ Ω.

Step 2: It remains to prove (C.0.7). Fix ω ∈ Ω and set Λ := {A ⊆ Ω |

(C.0.7) holds}. Since Ωs,ω = Ωs, ∀s ∈ [0, T ], (C.0.7) holds for Ω and thus Ω ∈ Λ.

Given A ∈ Λ, we have Pτn(ω)[(Ac)τn,ω] = Pτn(ω)[(Aτn,ω)c] = 1 − Pτn(ω)(Aτn,ω) → 1 −

Pτ(ω)(Aτ,ω) = Pτ(ω)[(Aτ,ω)c] = Pτ(ω)[(Ac)τ,ω], which shows Ac ∈ Λ. Given a sequence

{Ai}i∈N of disjoint sets in Λ, observe that {As,ωi }i∈N is a sequence of disjoint sets

in Ωs for any s ∈ [0, T ]. Then we have Pτn(ω)[(
⋃
i∈NAi)

τn,ω] = Pτn(ω)[
⋃
i∈NA

τn,ω
i ] =∑

i∈N Pτn(ω)(Aτn,ωi )→
∑

i∈N Pτ(ω)(Aτ,ωi ) = Pτ(ω)[
⋃
i∈NA

τ,ω
i ] = Pτ(ω)[(

⋃
i∈NAi)

τ,ω], which

shows
⋃
i∈NAi ∈ Λ. Thus, we conclude that Λ is a σ-algebra of Ω.

As mentioned in the proof of Lemma C.1 (i), GT is countably generated by CT =

C0
T given in (C.0.2). Given C =

⋂m
i=1(Wti)

−1(Oλi(xi)) in CT , if tm ≥ τ(ω) we set

k := min{i = 1, · · · ,m | ti ≥ τ(ω)}; otherwise, set k := m + 1. We see that: 1. If

ωti /∈ Oλi(xi) for some i = 1, · · · , k−1, then Cs,ω = ∅ ∀s ∈ [τ(ω), T ] and thus (C.0.7)

holds for C. 2. If k = m+ 1 and ωti ∈ O(xi) for all i = 1, · · · ,m, we have Cs,ω = Ωs

∀s ∈ [τ(ω), T ] and thus (C.0.7) still holds for C. 3. For all other cases, Cs,ω
ωs is of the

form in (C.0.3) ∀s ∈ [τ(ω), T ]. Let B be a d-dimensional Brownian motion defined
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on any given filtered probability space (E, I, {Is}s≥0, P ). Then by Lemma C.1 (ii),

Pτn(ω)[Cτn,ω] = Pτn(ω),ωτn(ω) [Cτn,ω
ωτ ] = P [Bti−τn(ω) ∈ Oλi(xi − ωτn(ω)), i = k · · · ,m]

→ P [Bti−τ(ω) ∈ Oλi(xi − ωτ(ω)), i = k · · · ,m] = Pτ(ω),ωτ(ω) [Cτ,ω
ωτ ] = Pτ(ω)[Cτ,ω].

Hence, we conclude that CT ⊆ Λ and therefore GT = σ(CT ) ⊆ Λ.

Now, we want to generalize Lemma C.1 to incorporate F-stopping times.

Lemma C.3. Fix θ ∈ T . We have

(i) For any N ∈ N , N
θ,ω ∈ N θ(ω)

and φ−1
θ N

θ,ω ∈ N for P-a.e. ω ∈ Ω.

(ii) For any r ∈ [0, T ] and A ∈ Fr, it holds for P-a.e. ω ∈ Ω that

if θ(ω) ≤ r, Aθ,ω ∈ Hθ(ω)
r ∪N θ(ω) ⊆ Gθ(ω)

r and φ−1
θ Aθ,ω ∈ Fθ(ω)

r .

(iii) For any r ∈ [0, T ] and ξ ∈ L0(Ω,Fr), it holds for P-a.e. ω ∈ Ω that

if θ(ω) ≤ r, ξθ,ω ∈ L0(Ω,F θ(ω)
r ).

Proof. (i) Take N ∈ N such that N ⊆ N . By [66, Exercise 2.7.11], there exists

a G-optional time τ such that N1 := {θ 6= τ} ∈ N . By Lemma C.2, there exists

N2 ∈ N ⊂ N such that 0 = P[N | Gτ+](ω) = Pτ(ω)(N τ,ω), for ω ∈ Ω \N2. Thus, for

ω ∈ Ω \ (N1 ∪N2), we have 0 = Pτ(ω)(N τ,ω) = Pθ(ω)(N θ,ω), i.e. N θ,ω ∈ N θ(ω). Since

N
θ,ω ⊆ N θ,ω, we have N

θ,ω ∈ N θ(ω) P-a.s.

On the other hand, from Lemma C.1 (iii), P(φ−1
θ N θ,ω) = Pθ(ω)(N θ,ω) = 0 for

ω ∈ Ω \ (N1 ∪N2), which shows φ−1
θ N θ,ω ∈ N P-a.s. Since φ−1

θ N
θ,ω ⊆ φ−1

θ N θ,ω, we

conclude φ−1
θ N

θ,ω ∈ N P-a.s.

(ii) By [66, Problem 2.7.3], there exist Ã ∈ Gr and N ∈ N such that A = Ã ∪N

and Ã ∩ N = ∅. From Lemma C.1 (ii), we know that for any ω ∈ Ω, if θ(ω) ≤ r

then Ãθ,ω ∈ Hθ(ω)
r ⊆ Gθ(ω)

r . Also, from part (i) we have N
θ,ω ∈ N θ(ω) P-a.s. We
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therefore conclude that for P-a.e. ω ∈ Ω, if θ(ω) ≤ r, then Aθ,ω = Ãθ,ω ∪ N θ,ω ∈

Hθ(ω)
r ∪ N θ(ω) ⊆ Gθ(ω)

r . Then, thanks to part (i) and Definition 4.2.1, it holds P-a.s.

that φ−1
θ Aθ,ω = φ−1

θ Ãθ,ω ∪ φ−1
θ N

θ,ω ∈ φ−1
θ H

θ(ω)
r ∪N ⊆ F θ(ω)

r if θ(ω) ≤ r.

(iii) Let E be a Borel subset of R. Since ξ−1(E) ∈ Fr, we see from part (ii) that, for

P-a.e. ω ∈ Ω,
(
ξθ,ω
)−1

(E) = {ω′ ∈ Ω | ξ(ω⊗θ φθ(ω′)) ∈ E} = {ω′ ∈ Ω | ω⊗θ φθ(ω′) ∈

ξ−1(E)} = φ−1
θ (ξ−1(E))θ,ω ∈ Fθ(ω)

r if θ(ω) ≤ r.

Now, we generalize Lemma C.2 to incorporate F-stopping times.

Lemma C.4. Fix θ ∈ T . For any A ∈ FT , P[A | Fθ](ω) = Pθ(ω)
(Aθ,ω), for

P-a.e. ω ∈ Ω.

Proof. Thanks again to [66, Exercise 2.7.11], we may take a G-optional time τ such

that N1 := {θ 6= τ} ∈ N and Fτ = Fθ. Moreover, we have A = Ã ∪ N for some

Ã ∈ GT and N ∈ N with Ã ∩N = ∅, by using [66, Exercise 2.7.3]. Then, in view of

Lemma C.1 (ii), Lemma C.3 (i), and Lemma C.2, we can take some N2 ∈ N such

that for ω ∈ Ω \ (N1 ∪N2),

Pθ(ω)
(Aθ,ω) = Pτ(ω)

(Aτ,ω) = Pτ(ω)
(Ãτ,ω) + Pτ(ω)

(N
τ,ω

) = Pτ(ω)(Ãτ,ω)

= P[Ã | Gτ+](ω) = P[Ã | Gτ+](ω) = P[A | Gτ+](ω).

(C.0.8)

For any B ∈ Fτ , B = B̃ ∪ N ′ for some B̃ ∈ Gτ ⊆ Gτ+ and N
′ ∈ N with B̃ ∩

N
′

= ∅, thanks again to [66, Exercise 2.7.3]. We then deduce from (C.0.8) that

E[1Ã1B] = E[1Ã1B̃] = E
[
Pθ(ω)

(Aθ,ω)1B̃

]
= E

[
Pθ(ω)

(Aθ,ω)1B

]
. Hence, we conclude

Pθ(ω)
(Aθ,ω) = P[A | Fτ ](ω) = P[A | Fθ](ω), for ω ∈ Ω \ (N1 ∪N2).

Finally, we are able to generalize Lemma C.1 (iii) to incorporate F-stopping times.

Proposition C.5. Fix θ ∈ T . We have

(i) for any A ∈ FT , P[A | Fθ](ω) = P[φ−1
θ Aθ,ω], for P-a.e. ω ∈ Ω.
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(ii) for any ξ ∈ L1(Ω,FT ,P), E[ξ | Fθ](ω) = E
[
ξθ,ω
]

for P-a.e. ω ∈ Ω.

Proof. (i) By Lemma C.3 (i) and Lemma C.1 (iii), it holds P-a.s. that

P[φ−1
θ Aθ,ω] = P[φ−1

θ Ãθ,ω] + P[φ−1
θ N

θ,ω
] = P[φ−1

θ Ãθ,ω] = Pθ(ω)[Ãθ,ω]

= Pθ(ω)
[Ãθ,ω] = Pθ(ω)

[Aθ,ω].

The desired result then follows from the above equality and Lemma C.4.

(ii) Given A ∈ FT , observe that for any fixed ω ∈ Ω,

(1A)θ,ω(ω′) = 1A (ω ⊗θ φθ(ω′)) = 1φ−1
θ Aθ,ω(ω′).

Then we see immediately from part (i) that part (ii) is true for ξ = 1A. It follows

that part (ii) also holds true for any FT -measurable simple function ξ. For any

positive ξ ∈ L1(Ω,FT ,P), we can take a sequence {ξn}n∈N of FT -measurable simple

functions such that ξn(ω) ↑ ξ(ω) ∀ω ∈ Ω. By the monotone convergence theorem,

there exists N ∈ N such that E[ξn | Fθ](ω) ↑ E[ξ | Fθ](ω), for ω ∈ Ω \ N . For

each n ∈ N, since ξn is an FT -measurable simple function, there exists Nn ∈ N

such that E[ξn | Fθ](ω) = E
[
(ξn)θ,ω

]
, for ω ∈ Ω \ Nn. Finally, noting that there

exists N
′ ∈ N such that ξθ,ω is FT -measurable for ω ∈ Ω \ N ′ (from Lemma C.3

(iii)) and that (ξn)θ,ω(ω′) ↑ ξθ,ω(ω′) ∀ω′ ∈ Ω (from the everywhere convergence

ξn ↑ ξ), we obtain from the monotone convergence theorem again that for ω ∈

Ω \
(

(
⋃
n∈NNn) ∪N ∪N ′

)
,

E[ξ | Fθ](ω) = lim
n→∞

E[ξn | Fθ](ω) = lim
n→∞

E[(ξn)θ,ω] = E[ξθ,ω].

The same result holds true for any general ξ ∈ L1(Ω,FT ,P) as ξ = ξ+ − ξ−.

C.1 Proof of Proposition 4.2.7

Proof. (i) Set Λ := {A ⊆ Ω | P(A ∩ B) = P(A)P(B) ∀B ∈ Ft}. It can be checked

that Λ is a σ-algebra of Ω. Take A ∈ φ−1
t Ht

T ∪N . If A ∈ N , it is trivial that A ∈ Λ;



127

if A = φ−1
t C with C ∈ Ht

T , then for any B ∈ Ft,

P(A∩B) = P(B ∩φ−1
t C) = E

[
P(B ∩ φ−1

t C | Ft)
]

= E
[
P(B ∩ φ−1

t C | Ft)(ω)1B(ω)
]
.

By Proposition C.5 (i), for P-a.e. ω ∈ Ω, P(B ∩ φ−1
t C | Ft)(ω) = P[φ−1

t (B ∩

φ−1
t C)t,ω] = P[φ−1

t C] = P(A) if ω ∈ B. We therefore have P(A ∩ B) = P(A)P(B),

and conclude A ∈ Λ. It follows that φ−1
t Ht

T ∪N ⊆ Λ, which implies F tT = σ(φ−1
t Ht

T ∪

N ) ⊆ Λ. Thus, F tT and Ft are independent.

(ii) Let ∆ denote the set operation of symmetric difference. Set Λ := {A ⊆ Ω |

(φ−1
t At,ω)∆A ∈ N for P-a.e. ω ∈ Ω}. It can be checked that Λ is a σ-algebra of

Ω. Take A ∈ φ−1
t Ht

T ∪ N . If A ∈ N , we see from Lemma C.3 (i) that A ∈ Λ; if

A = φ−1
t C with C ∈ Ht

T , then φ−1
t At,ω = φ−1

t C = A for all ω ∈ Ω, and thus A ∈ Λ.

We then conclude that F tT = σ(φ−1
t Ht

T ∪N ) ⊆ Λ.

Take a sequence {ξn} of random variables in L0(Ω,F tT ) taking countably many

values {ri}i∈N such that ξn(ω) → ξ(ω) for all ω ∈ Ω. This everywhere convergence

implies that for any fixed ω ∈ Ω, (ξn)t,ω(ω′) → ξt,ω(ω′) for all ω′ ∈ Ω. Now, fix

n ∈ N. For each i ∈ N, since (ξn)−1{ri} ∈ F tT ⊆ Λ, there exists N
n

i ∈ N such that

for ω ∈ Ω \Nn

i , ([
(ξn)t,ω

]−1 {ri}
)

∆(ξn)−1{ri}

=
[
φ−1
t

(
(ξn)−1{ri}

)t,ω]
∆(ξn)−1{ri} =: M

n

i ∈ N ,
(C.1.1)

where the first equality follows from the calculation in the proof of Lemma C.3 (iii).

Then, we deduce from (C.1.1) that: for any fixed ω ∈ Ω \
⋃
i∈NN

n

i , (ξn)t,ω(ω′) =

ξn(ω′) for all ω′ ∈ Ω \
⋃
i∈NM

n

i . It follows that: for any fixed ω ∈ Ω \
⋃
i,n∈NN

n

i ,

(ξn)t,ω(ω′) = ξn(ω′) for all ω′ ∈ Ω \
⋃
i,n∈NM

n

i and n ∈ N. Setting N =
⋃
i,n∈NN

n

i

and M =
⋃
i,n∈NM

n

i , we obtain that for any ω ∈ Ω \N ,

ξ(ω′) = lim
n→∞

ξn(ω′) = lim
n→∞

(ξn)t,ω(ω′) = ξt,ω(ω′), for ω′ ∈ Ω \M.
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C.2 Proof of Proposition 4.2.8

Proof. Take a sequence of stopping times {τi}i∈N ⊂ T such that τi takes values in

{m/2i | m ∈ N} for each i ∈ N and τi(ω) ↓ τ(ω) for all ω ∈ Ω (thanks to [66, Problem

1.2.24]). Set N := {τ < θ} ∈ N . Since τi(ω) ↓ τ(ω) for all ω ∈ Ω, we have τi ≥ θ on

Ω \N for all i ∈ N. For each i ∈ N, let rim := m/2i, m ∈ N. Since {τi ≤ rim} ∈ Frim

for all m ∈ N, we deduce from Lemma C.3 (ii) and the countability of {rim}m∈N that

there exists N
i ∈ N such that for ω ∈ Ω \N i

,

(C.2.1) if θ(ω) ≤ rim, φ
−1
θ {τi ≤ rim}θ,ω ∈ F

θ(ω)

rim
for all m ∈ N.

Fix r ∈ [0, T ]. For any ω ∈ Ω \ (N ∪ N i
), if θ(ω) > r, then τi(ω) ≥ θ(ω) > r and

thus φ−1
θ {τi ≤ r}θ,ω = φ−1

θ ∅ = ∅ ∈ F θ(ω)
r ; if θ(ω) ≤ r, there are two cases: 1. ∃

m∗ ∈ N s.t. rim∗ ∈ [θ(ω), r] and rim∗+1 > r. Then, by (C.2.1), φ−1
θ {τi ≤ r}θ,ω =

φ−1
θ {τi ≤ rim∗}θ,ω ∈ F

θ(ω)

ri
m∗
⊂ F θ(ω)

r ; 2. ∃ m∗ ∈ N s.t. rim∗ < θ(ω) and rim∗+1 > r.

Since τi(ω) ≥ θ(ω) > rim∗ , φ
−1
θ {τi ≤ r}θ,ω = φ−1

θ {τi ≤ rim∗}θ,ω = φ−1
θ ∅ = ∅ ∈ F θ(ω)

r .

Thus, for ω ∈ Ω \ (N ∪N i
), we have φ−1

θ {τi ≤ r}θ,ω ∈ Fθ(ω)
r , and therefore

{τ θ,ωi ≤ r} = {τi (ω ⊗θ φθ(ω′)) ≤ r} = φ−1
θ {τi ≤ r}θ,ω ∈ Fθ(ω)

r , ∀ r ∈ [0, T ].

This shows that τ θ,ωi ∈ T θ(ω)
θ(ω),T for ω ∈ Ω\(N∪N i

). Hence, for ω ∈ Ω\
(
N ∪ (

⋃
i∈NN

i
)
)

,

we have τ θ,ωi ∈ T θ(ω)
θ(ω),T ∀i ∈ N. Finally, since the filtration Fθ(ω) is right-continuous,

τ θ,ω(ω′) =↓ limi→∞ τ
θ,ω
i (ω′) (this is true since τi ↓ τ everywhere) must also be a

stopping time in T θ(ω)
θ(ω),T .

C.3 Proof of Proposition 4.2.9

Recall the metric ρ̃ on A defined in (4.2.8). We say β ∈ A is a step control if

there exists a subdivision 0 = t0 < t1 < · · · < tm = T , m ∈ N, of the interval [0, T ]
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such that βt = βti for t ∈ [ti, ti+1) for i = 0, 1, · · · ,m− 1.

Proof. By [77, Lemma 3.2.6], there exist a sequence {αn} of step controls such that

αn → α. For each n ∈ N, in view of Proposition 4.2.7 (ii), there exist Nn,Mn ∈ N

such that: for any fixed ω ∈ Ω\Nn, (αnr )t,ω(ω′) = αnr (ω′) for (r, ω′) ∈ [0, T ]×(Ω\Mn).

It follows that: for any fixed ω ∈ Ω \
⋃
n∈NNn, (αnr )t,ω(ω′) = αnr (ω′) for all (r, ω′) ∈

[0, T ]× (Ω \
⋃
n∈NMn) and n ∈ N. With the aid of Proposition C.5 (ii), we obtain

0 = lim
n→∞

ρ̃(αn, α) = lim
n→∞

E
[∫ T

0

ρ′(αnr , αr)dr

]
= lim

n→∞
E
(
E
[∫ T

0

ρ′(αnr , αr)dr

∣∣∣∣ Ft] (ω)

)
= lim

n→∞

∫ ∫ (∫ T

0

ρ′(αnr , αr)dr

)t,ω
(ω′) dP(ω′) dP(ω)

= lim
n→∞

∫ ∫ ∫ T

0

ρ′
(

(αnr )t,ω(ω′), αt,ωr (ω′)

)
dr dP(ω′) dP(ω)

= lim
n→∞

∫
ρ̃
(
(αn)t,ω, αt,ω

)
dP(ω) = lim

n→∞

∫
ρ̃(αn, αt,ω)dP(ω)

=

∫
lim
n→∞

ρ̃(αn, αt,ω)dP(ω),

where the last equality is due to the dominated convergence theorem. This implies

that 0 = limn→∞ ρ̃(αn, αt,ω), for P-a.e. ω ∈ Ω. Recalling that αn → α, we conclude

that ρ̃(αt,ω, α) = 0 for P-a.e. ω ∈ Ω. The second assertion follows immediately from

[77, Exercise 3.2.4].

C.4 Proof of Lemma 4.3.10

Proof. By taking ξ = F (Xt,x,α
τ ) in Proposition C.5 (ii) and using Remark 4.2.6 (ii),

E[F (Xt,x,α
τ ) | Fθ](ω) = E

[
F (Xt,x,α

τ )θ,ω
]

=

∫
F
(
Xt,x,α
τ (ω ⊗θ φθ(ω′))

)
dP(ω′)

=

∫
F
(
X
θ(ω),Xt,x,α

θ (ω),αθ,ω

τθ,ω
(ω′)

)
dP(ω′) = J

(
θ(ω),Xt,x,α

θ (ω);αθ,ω, τ θ,ω
)
,

for P-a.e. ω ∈ Ω.
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[50] H. Föllmer and P. Leukert, Quantile hedging, Finance and Stochastics, 3 (1999), pp. 251–
273.
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