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of autocorrelations, Ā, (e) autocorrelation of sum of images, B, (f) normalized
autocorrelation, Ā1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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ABSTRACT

When cold atoms are laser-excited to Rydberg states, the strong interactions be-

tween Rydberg excitations can lead to complex many-body entanglement in the sys-

tem. The excitation process results in spatial correlations between excitations in

the system. In most cases, Rydberg excitation positions are anticorrelated such that

no two excitations are within a “blockade radius” of each other. Such systems are

well-suited for studying basic many-body physics, as well as for future technological

applications such as quantum computation.

This thesis describes an experimental apparatus we constructed to perform spatially-

sensitive detection of Rydberg atoms. We use the apparatus to perform measurements

of the Rydberg-Rydberg pair-correlation function. This results in the first direct spa-

tial images of the Rydberg blockade effect. We measure the blockade radius for a

variety of S and D Rydberg states in rubidium. We investigate the dependence of

the blockade radius on laser detunings and energy level shifts induced by optical po-

tentials due to trapping lasers. Our results have some implications for atom traps

used for neutral atom quantum computation. We also present simulations results

used to characterize the performance of the imaging system.
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CHAPTER I

Introduction

1.1 Rydberg atoms

Rydberg atoms are atoms in highly excited electronic states, having high principal

quantum number n. Rydberg atoms have played a role in atomic physics since the

early days of atomic spectroscopy, when they were used to measure the Balmer lines

and other spectral series [1]. More recently, Rydberg atoms have been of interest

due to their exaggerated properties. Most of these properties stem from a Rydberg

atom’s extremely large size, approaching a micron in radius (see Table 1.1 for refer-

ence). These properties have enabled and inspired research on a rich variety of physics.

A Rydberg atom’s long lifetime allows the study of coherent quantum dynamics over

timescales ranging from 100 ns to as long as 100 µs or 1 ms, which are easy to access

experimentally. The effect of blackbody radiation on Rydberg atom lifetimes shows

their extreme sensitivity to microwave photons. The combination of long lifetimes

and microwave sensitivity has enabled the study of basic quantum optics phenomena,

including nondestructive detection of single microwave photons in a superconducting

cavity [2, 3]. Serge Haroche shared the 2012 Nobel Prize for this work. These prop-

erties also enable precision measurements of the Rydberg contant [4, 5], the most

precisely known physical constant; a recent proposal has been made to improve this

1



Property n-dependence Rb (60s)
orbital radius, xry n2 5399a0 � 0.29 µm
radiative lifetimes

low-ℓ n3 � 250 µs at 0 K� 150 µs with 300 K blackbody
high-ℓ,ml n5 � 700 ms at 0 K� 350 µs with 300 K blackbody

polarizability n7 � �200 MHz/[V/cm]2

dipole moments xnpℓ� 1q|er|nℓy n2

vdW interaction strength n11{R6 8.9 MHz at R � 5 µm

Table 1.1: Dependence of Rydberg atom properties on n. The properties of the 60S1{2 state are
listed at right; they are quite extreme compared to typical ground state atomic properties. Lifetimes
are reduced by blackbody-radiation-induced transitions, but are still quite long compared to typical
nanosecond atomic decay times. For calculating the interaction strength, R is the separation distance
between the two Rydberg atoms.

measurement [6, 7]. Of more direct relevance to my work, the strong polarizabili-

ties of Rydberg states make them excellent electric field detectors (see Chapter III).

Their strong interactions with other Rydberg atoms allow the study of excitation

transport [8–11] (analogous in spirit to excitation transport in photosynthetic sys-

tems [12]), many-body quantum dynamics [13–15], quantum entanglement [16, 17],

and potential quantum information applications.

1.2 Excitation blockade

1.2.1 Applications in quantum information

The strength of Rydberg-Rydberg interactions has led to proposals for using Ryd-

berg atoms in quantum computation schemes [18, 19]. There are many proposed

platforms for quantum computation, including trapped ions (the currently-leading

technology) [20], superconducting quantum qubits [21, 22], linear quantum optics [23],

quantum dots in semiconductors [24–26], and neutral atoms [27]. The reason for the

interest in Rydberg atoms for quantum computation is that the atom-atom interac-

tion can be turned on and off, in that Rydberg-Rydberg interactions have a strength� 1012 greater than ground-ground interactions [28]. We can compare this with

2



trapped ion schemes. In both trapped ion and neutral atom schemes, a qubit is

typically composed of two hyperfine ground state levels of a single ion/atom. The

entanglement operation for ions typically involves coupling the two ions via exciting

a vibrational mode of the ions in an ion trap. The ions are coupled to each other

through their Coulomb interaction. Unfortunately, the Coulomb interaction can also

couple the ions to external perturbations, leading to possible decoherence. This deco-

herence source exists even after the entanglement operation is over. In contrast, the

coupling in a Rydberg atom computing scheme involves only temporary excitation of

atoms to Rydberg states, and after the entanglement operation is over all atoms will

be back in their hyperfine levels with small interaction strengths. This would, one

hopes, avoid that source of decoherence during information storage.

Although not as strong as the Coulomb interactions of ions, Rydberg-Rydberg

interactions are still strong enough to perform fast gate operations (� 1 µs timescales

or faster). In the Rydberg atom quantum computation proposals, the Rydberg-

Rydberg interactions are key to efficiently producing entangled states, via an effect

called an excitation blockade.

1.2.2 Excitation blockade

Most simply explained, in an excitation blockade the excitation of one atom pre-

vents the excitation of its neighbors [29]. However, it is actually a many-body process

that happens all at once, rather than a step-wise process as this would imply. (This

will become clearer in Section 2.2.3.) The Rydberg excitation blockade is the subject

of study in this thesis, so it is worth introducing in some detail here.

I begin by considering a pair of ground state atoms, at fixed positions, which

are to be excited to Rydberg states. The system has energy levels denoted by the

number of Rydberg atoms excited, k. (See Figure 1.1.) In the absence of interactions,
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Figure 1.1: Rydberg excitation ladder for a two interacting atoms, showing zero, one, or two exci-
tations (k � 0, 1, 2). The energy to excite a single Rydberg is WRyd. Dotted lines indicate energy
levels without interactions. Solid lines are energy levels accounting for interactions. The energy shift
of the second excited states are caused by van der Waals interactions, which in Rb have opposite
sign for S and D states. If the energy shift is more than the laser linewidth, the k � 2 level cannot
be excited.

these levels are evenly spaced by the energy required to excite one Rydberg atom.

However, interactions cause energy level shifts due to the interaction energy, of order

10’s of MHz for an atom-atom spacing of a few µm (see Table 1.1). If one resonantly

excites the pk � 0q Ñ pk � 1q transition of the system with a narrow bandwidth laser

(of order 1 MHz or less), the laser will be out of resonance with all further steps on

the energy ladder. Thus, only one Rydberg atom will be produced.

This blockade effect has a range, however. As noted, the interaction strength of

Rydberg atoms depends on their separation distance. With sufficiently large separa-

tion, the energy level shift is small enough to be within the laser bandwidth. Thus,

another Rydberg atom can be excited outside the “blockade radius” of the first.

This excitation process creates entanglement between atoms within a “blockade

radius” because it involves a coherent interaction among the atoms where the state

of one atom depends on the state of the other. The ability to entangle atoms at

large physical separation (¡ 1 µm, based on the blockade radius) is a primary reason

for the interest in this entanglement scheme. If the atoms are used for qubits, this
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separation allows individual qubit addressability, e.g. by focused laser beams.

1.2.3 Experimental work toward neutral atom quantum information

Urban et al. [30] and Gaetan et al. [31] have shown the excitation blockade to be

effective between atoms in spatially-separated optical traps. Each group used a pair

of dipole traps separated by 5 to 10 microns, with one atom in each trap. Since then,

these groups have demonstrated entanglement of atoms in such spatially-separated

traps [16, 17]. This is a significant step toward the implementation of a quantum

computation architecture using neutral atoms [28, 32].

The implementation of quantum gates is one important aspect of quantum com-

putation. Another piece is the ability to couple the information out to photons for

long-distance quantum-information transfer. Rydberg atom systems can also be used

for this purpose, again using the Rydberg blockade as part of the key enabling physics.

Saffman and Walker [33] have proposed a single-photon source with controllable emis-

sion direction, using four-wave mixing in a blockaded system. Dudin and Kuzmich

[34] have implemented essentially this protocol to create a single-photon source, with

the output photon coupled into an optical fiber.

1.3 Thesis outline

As mentioned, a principal reason for the interest in the Rydberg blockade is the

ability to entangle spatially separated qubits. At the outset of my work in 2008 there

were already several experimental demonstrations of the efficacy of the blockade, but

few that studied the spatial aspects of it. I will review a few of these experiments in

Chapter II.

The primary objective of my experiment is to investigate the spatial characteristics

of the blockade. To enable this, a method was developed to image the positions of
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Rydberg atoms. I describe the apparatus and calibration in Chapter III. I present

initial experiments on imaging the Rydberg blockade in Chapter IV.

After these initial experiments, I continued optimizing the performance of my

imaging apparatus. In Chapter V, I present ion trajectory simulations that helped

me determine the expected magnification in my imaging and what improvements

could be made. The results suggest that the greatest improvement can be achieved by

increasing our atom density near the ionization electrode (see Figure 3.1). Chapter VI

describes the implementation of an optical dipole trap (ODT) for this purpose. I

also discuss how the imaging system affects the Rydberg excitation spectrum when

exciting from the ODT.

In Chapter VII, I experimentally investigate the effect of laser detuning and back-

ground potentials on the blockade. The background potential from the ODT causes

spatially-dependent energy level shifts in the Rydberg excitation spectrum. This,

combined with certain laser detunings, can cause enhanced probabilities to excite

Rydberg atoms at particular separation distances.

In Chapter VIII, I give a summary and conclusions about my work as a whole. I

discuss future work that could build off what is presented in this thesis, focusing in

particular on studies that can be done with my Rydberg-imaging apparatus.
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CHAPTER II

Background Theory and Experimental Methods

In this chapter I review the basics of Rydberg-Rydberg interactions which can lead

to an excitation blockade, and give a more thorough introduction to the Rydberg

blockade. I present theoretical predictions for the blockade which are relevant to the

experiments of Chapters IV and VII. Finally, in Section 2.3 I explain our choice of

experimental methods for observing the predicted effects.

2.1 Rydberg-Rydberg interaction strengths

Rydberg atoms interact with each other primarily through electrostatic potentials.

To calculate this interaction energy, each can be considered as a charge distribution

given by the ionic core and the Rydberg electron wavefunction.

To calculate the interaction energy of two charge distributions, one can use the

multipole moments of each charge distribution. To lowest order, the interaction of

two neutral charge distributions with nonzero dipole moments will be given by the

dipole-dipole term:

Vdd � p1 � p2 � 3pn � p1qpn � p2q
R3

(2.1)

where p1 and p2 are the dipole moments, R is the separation vector between the

dipoles, and n is a unit vector pointing along R, as shown in Figure 2.1. Note the
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Figure 2.1: Geometry of the dipole-dipole interaction. The electric field E is along the ẑ axis. The
dipole moments p1 and p2 are oriented along the quantization axis defined by E. (In the absence of
an external electric field, the quantization axis ẑ is defined by the polarization of light used to excite
the Rydberg states |n, ℓ, j,mjy.) The dipole separation vector is R. The angle between R and ẑ is
θ. Reproduced with permission from [36].

above equation is given in atomic units1.

In quantum mechanics we can take Vdd as an operator V̂dd, where p1 and p2 become

dipole moment operators, p̂1 and p̂2. We can then calculate the interaction energy

by perturbation theory. One generally performs laser excitation of a gas such that

each atom is coupled to a Rydberg state |Ay. If there are multiple excitations in the

gas, each will be in state |Ay. Multiple Rydberg atoms in state |Ay can interact. The

initial two-atom state used in the perturbative energy calculation is then |Ay b |Ay.
2.1.1 First- and second-order shifts

The effect of Vdd can be evaluated in first order and higher orders. This is discussed

in the following paragraphs. An electric field applied to the Rydberg atoms will change

the nature of the Rydberg-Rydberg interactions, and therefore how the interactions

1In atomic units, the electron charge, electron mass, reduced Planck’s constant (~), and 4πǫ0 are set to unity. This
in turn sets other units. Length is measured in units of the Bohr radius (a0 � ~

2{mee
2), and energies in terms of the

Hartree (Ehartree � ~
2

mea
2

0

). See Wikipedia and also [35], but note that the latter converts between atomic units and

cgs and thus neglects to mention 4πǫ0 � 1. I will use atomic units for the remainder of this chapter, unless otherwise
noted.
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are calculated from perturbation theory [36, 37].

Electric fields will usually cause the Rydberg states |Ay to have permanent electric

dipole moments. In this case, the interaction energy between the Rydberg atoms can

be calculated with first-order perturbation theory:

∆W p1q � xA| b xA|V̂dd|Ay b |Ay . (2.2)

If the electric field is absent or not strong enough to induce permanent electric

dipole moments, the above will not be the leading term in calculating the Rydberg-

Rydberg interaction. A weak electric field may still cause a first-order shift if it tunes

a two-atom Rydberg state |By b |Cy to have the same energy as state |Ay b |Ay.2
This is called a Förster resonance. In this case we use degenerate perturbation theory

with the three degenerate states |Ay b |Ay, |By b |Cy, and |Cy b |By, and find

∆W p1q � �?2xC| b xB|V̂dd|Ay b |Ay (2.3)

where the
?
2 factor is due to the indistinguishability of |By b |Cy and |Cy b |By.

If the Rydberg states have negligible permanent dipole moments and there are no

electric-field induced Förster resonances, then the first-order shifts vanish and the

energy shift of state |Ay b |Ay is calculated using second order perturbation theory:

∆W p2q � � ¸
B,C;∆�0

|xC| b xB|V̂dd|Ay b |Ay|2
∆

(2.4)

where ∆ is the energy difference between the |By b |Cy and |Ay b |Ay states. This

will hold for weak electric fields and zero electric field. We will see in the next section

that Equation 2.4 represents a van der Waals type of interaction.

2Here, |By and |Cy are each also single-excitation Rydberg states, different from |Ay.
9



2.1.2 Scaling laws and results

We can determine the scaling laws for these interactions by using the scaling laws

of Rydberg atom properties.3 The dipole moment p̂ between nearby states scales as

n�2, and the energy splitting (∆) between nearby states in zero electric field scales as

n��3 (due to the state energies W � � 1
2n�2 ). Therefore first-order shifts will scale as

∆W p1q 9 n�4{R3 (2.5)

and second-order shifts will scale as

∆W p2q 9 n�11{R6 . (2.6)

These scalings correspond to those expected for dipole-dipole and van der Waals

interactions, respectively.

Calculations of the above interaction strengths were performed by Reinhard et al.

[37] (see also [36]) for rubidium. The Rydberg wavefunctions were numerically calcu-

lated to evaluate the matrix elements of V̂dd in all of the above scenarios. I present

here the results which are relevant to my own work. In the experiments presented

in Chapters IV and VII, Rydberg atoms are produced by a two-step excitation from

the rubidium 5S1{2 ground state to nD5{2 and nS1{2 states, through the intermediate

5P3{2 state. In all cases excitation is done in the absence of electric fields, so we have

van der Waals interactions as given by Equation 2.4.

The interaction strengths ∆W̃ p2q shown in Figures 2.2 and 2.3 are scaled to remove

the expected van der Waals scaling of n�11{R6:

∆W̃ p2q � ∆W p2q � pR6{n�11q (2.7)

3In the following discussion I use the quantity n� � n� δℓ, where n is the principal quantum number and δℓ is the
quantum defect [1]. The quantum defect accounts for the interaction of the Rydberg electron with the ionic core and
depends on the angular quantum number ℓ. The interaction strengthens the binding energy of the electronic states
compared to those of Hydrogen (W � � 1

2n2
) and causes a phase shift of the electronic wavefunction.
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Figure 2.2: a) Scaled level shifts, ∆W̃ p2q, of 2 � |nD5{2,mjy states as a function of n, for different
mj quantum numbers and θ � 0. b) dependence on θ for |60D5{2,mjy states. Reproduced with
permission from [36].

Figure 2.3: a) Scaled level shifts, ∆W̃ p2q, of 2�|nS1{2,mj � 1{2y states as a function of n, for θ � 0.
b) dependence on θ for |60S1{2,mj � 1{2y. Reproduced with permission from [36].
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This leaves a dependence on n�, ℓ, j,mj, and θ (where θ is the angle between R and ẑ

in Figure 2.1). The remaining variability in ∆W̃ p2q with n� is largely due to changes

in the energy defects ∆ of Equation 2.4. This is demonstrated in Figure 2.2 for state

nD5{2. In the ranges n Á 50 and n À 35, a single interaction channel

2� nD5{2 Ñ pn� 1qF7{2 � pn � 1qP3{2 (2.8)

constitutes the largest term in the sum in Equation 2.4. The energy detuning ∆ is� 1 GHz which limits the magnitude of the shift ∆W̃ p2q. In the region 35 À n À 50

a different channel

2� nD5{2 Ñ pn� 2qF7{2 � pn � 2qP3{2 (2.9)

comes into near-resonance (∆ � 0), causing a first-order shift. This causes the disper-

sive feature in Figure 2.2(a) near n � 43, as well as a positive sign of the interaction

energy for a few values of n as ∆ tunes through 0.

In contrast, state nS1{2 in Figure 2.3 has four interaction channels which contribute

most of the energy shift ∆W̃ p2q. None of these channels is near resonance, for any

value of n�, and so there is no Förster resonance. The dependence of ∆W̃ p2q on n� is

therefore relatively mild.

For the purposes of particular experimental goals, either the nD5{2 or nS1{2 states
may be more useful. The nD5{2 states have the advantage of higher oscillator strength,
assisting their excitation with a low-power laser in the work described in Chapter IV.

They also have the advantage of tunable interaction character near n � 43 [38, 39];

similar physics in cesium is used by Vogt et al. [40]. For most n-values the D5{2 states
have attractive interactions, which can cause motion-induced collisions leading to

ionization and plasma formation [41–43]. Of more pertinence to this thesis, the nD5{2
interactions depend on the angle θ, which could give interesting angular-dependence to
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the Rydberg blockade. In contrast, the nS1{2 states have nearly-isotropic interactions,
i.e. the interactions do not depend on θ. This would be an advantage for quantum

information applications requiring angle-insensitive entanglement. The interactions

are also uniformly repulsive, which can help avoid ionization due to attractive forces

between atoms [42].

2.2 Excitation Blockade

The interactions described in the previous section can be used to implement a

Rydberg excitation blockade, as described in Chapter I. Knowing the functional

form and strength of the interactions, we can now make a more precise statement

about the expected blockade radius. Equating the energy shift to the laser linewidth

we have for van der Waals interactions (in SI units)

rb � a0 � �
Ehartree �∆W̃ p2qn�11

h� δνL

�1{6
(2.10)

where rb is the blockade radius, and δνL is the laser linewidth. For state 60S1{2 and

a laser linewidth of 1 MHz (typical for our experiments) we have rb � 7.2 µm. See

also the calculated interaction strength in Table 1.1.

In the following sections, I first introduce how the blockade effect works in meso-

scopic atomic systems. I then discuss previous experiments that investigated the

blockade effect, as well as the theoretical calculations that set the stage for the ex-

periments of Chapter IV.

2.2.1 Mesoscopic systems

In Section 1.2.2 I presented the basic theory of why there is an excitation blockade,

but I presented it as being a two-atom process. This may be a sufficient description for

quantum information applications, if qubits are represented by single atoms. However,
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Figure 2.4: At left, a depiction of the “bubble” concept: there is a minimum separation between
two Rydberg excitations. Only one Rydberg excitation will be found in each “bubble,” depicted as
a blue halo. The ground state atoms are pictured as small spheres, and a focused excitation laser
as black curves. At right, the energy levels of the N -atom system are shown. The energy level
diagrams show the energy bands that can be laser-excited for D-states, depending on the nature of
the Rydberg-Rydberg interactions (van der Waals vs. dipole-dipole). (Figure inspired by [39].)

many experiments use a mesoscopic or macroscopic atomic vapor, several µm to� 1 mm in diameter. One must theoretically describe the system as having more

than just two interacting atoms.

One can write the state of an N -atom system as e.g. |g1, ..., ri, ..., rj, ..., gNy where
most atoms are in the ground state |gy and some atoms (here, atoms i and j) are in

the Rydberg state |ry. We label such a state with N atoms and k excitations as apN, kq state, similar to the notation of Figure 1.1. Note that each pN, kq label applies
to a collection of states of the system. The pN, k � 1q states are the N degenerate

states with a single excitation. The pN, k � 2q states have a basis size of
�
N

2

�
and

have energies which depend on the distance between the Rydberg excitations. ThepN, k � 2q states therefore form an energy band, as depicted on the right of Figure 2.4.

When performing laser excitation of the system, tuned to resonance with thepN, k � 0q Ñ pN, k � 1q transition, any k Ñ k � 1 transition will be resonant

unless two Rydberg atoms in the pN, k� 1q state are sufficiently close to have strong

interactions. The number of produced Rydberg atoms then saturates when no fur-
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ther k Ñ k � 1 transitions are resonant. In such a sample, each excitation will occur

then some minimum distance from the others, each thus living in its own “bubble”.

The “bubble” concept is depicted on the left of Figure 2.4, and is commonly used to

describe some of the experiments I treat in the next section.4

2.2.2 Previous experiments

Several initial demonstrations of the blockade effect were based on counting the

number of excitations created in an atomic vapor as a function of the strength of

Rydberg-Rydberg interactions [29, 40]. Rydberg-Rydberg interactions can be varied

by e.g. changing the excited n state or using an electric field to tune to a Förster

resonance. With increased interaction strength, the blockade radius increases and

fewer excitations can fit within the fixed excitation volume. There is therefore a

suppression of the number of detected excitations. We refer to this as excitation

saturation. This first demonstration [29] used a laser with a bandwidth of 100 MHz,

exciting several percent of the atoms in a MOT to state 70P . Hundreds to thousands

of Rydbergs were excited in a volume � 500 µm long and � 200 µm in diameter

(FWHM).

In a considerably smaller excitation region, with fewer excited Rydberg atoms

(� 30), it is possible to measure the effect of the blockade by measuring the statistics

of the number of excitations [36, 44, 45]. In the absence of Rydberg-Rydberg inter-

actions one expects the number of excitations per laser shot to follow a Poissonian

distribution. With the blockade operative one expects this distribution to narrow.

Past a certain laser excitation power one consistently excites the maximum number of

4It should be noted that the “bubbles” are not physically real. They do not have fixed positions in the gas, and
do not have hard boundaries. The “bubbles” concept is merely a convenient shorthand for the following two facts: 1)
When a quantum measurement is made of the positions of the Rydberg excitations, the superposition of numerous
excited many-body pN, kq states will be projected onto a particular basis state pN, kq such that there is a minimum
distance between the positions of the Rydberg atoms. 2) There is a maximum number of Rydberg atoms that can
be excited in a finite volume, based on the blockade radius rb, which can be estimated by packing the volume with
“bubbles” of radius rb.
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Rydberg atoms that can fit in the excitation volume, which is approximately given by

the number of “bubbles” that can fit in the excitation volume. Therefore one expects

a sub-poissonian distribution. This distribution has been measured by Liebisch et al.

[44] as a function of Rydberg-Rydberg interaction strength. Although experimental

fluctuations make the distribution super-poissonian in the absence of interactions, the

statistics are indeed strongly narrowed with the onset of strong interactions [46].

Rather than counting the number of Rydberg excitations to detect the blockade,

Reinhard et al. [39] have directly probed the blockade mechanism. The authors have

spectroscopically investigated the interaction-induced energy level shifts described in

Figure 2.4. Both the van der Waals interactions and the interactions at the 43D5{2
Förster resonance were examined. The observed energy shifts of the second excited

state were in accordance with the expectations of Equations 2.3 and 2.4 .

As mentioned in Chapter I, the blockade was demonstrated to be effective between

spatially-separated atoms in adjacent dipole traps [30, 31]. However, no studies have

been done of the distance- and angle-dependence of the blockade effect by using direct

spatial observation. This is the subject of study in this thesis.

2.2.3 Theoretical background

Here I present theory used to predict the distance- and angle- dependence of the

blockade effect.

Theory for the laser excitation process that leads to the Rydberg blockade is

considered by, for example, Lukin et al. [19], Robicheaux and Hernández [47], Ates

et al. [48], and Hernández and Robicheaux [49].

Typically one represents the state of the system in terms of basis states that

indicate whether each atom is in the ground |gy or Rydberg |ry state. The full state
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of the system can then be written|Ψptqy � agg...g|gg...gy (2.11)� arg...g|rg...gy � pother terms with single excitationq (2.12)� arr...g|rr...gy � pother terms with double excitationq (2.13)� ... (2.14)� arr...r|rr...ry (2.15)�
α̧

aαptq|αy (2.16)

Assuming Rydberg atoms interact with each other only through pair-wise van der

Waals interactions, the Hamiltonian describing the system is (in the dressed state

picture)

Ĥ �
j̧

Ĥ
p1q
j �

j̧ k

Vj,k|rjrkyxrjrk| (2.17)

Ĥ
p1q
j � �∆ωptq|rjyxrj| � Ω

2
p|gjyxrj| � |rjyxgj|q (2.18)

where Ĥ p1q accounts for the interaction of a single atom with the light field and Vj,k

is the interaction between two excited atoms for an atomic pair (j,k). The term ∆ω

is the laser detuning from the |gy Ñ |ry transition, which could be time-dependent

to account for a chirp of the laser pulse. Ω is the single-atom Rabi frequency, which

includes the time-dependence of the laser pulse envelope (e.g. see Equation 2.24).

In a fully blockaded system, we expect only a single Rydberg excitation. The exci-

tation is coherently shared among all atoms, with the fully symmetrized wavefunction|r1y � 1?
N

i̧

|g...ri...gy . (2.19)

It is interesting to note that the Rabi frequency for excitation to this state is enhanced

compared to the Rabi frequency for a single atom. We can see this by applying the
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Hamiltonian between the ground state and |r1y:xr1|Ĥ|gy (2.20)�
ļ

1?
N
xrl|�

j̧

Ω|rjyxgj|� |gy (2.21)� 1?
N
NΩ (2.22)� ?

NΩ (2.23)

Robicheaux and Hernández [47] perform simulations of the excitation process in

a mesoscopic gas. The number of many-body basis states required in the simulation

scales as 2N , where N is the number of ground state atoms. This quickly becomes

an intractable problem for increasing N , so several tricks are used to reduce the

state space in order to simulate a mesoscopic (or infinite) atomic gas. These are

based on the physics of the problem. First, they reduce an infinite system to a

cubic volume, where the Rydberg-Rydberg interactions are calculated with periodic

boundary conditions. The volume is chosen large enough to cover the region of

Rydberg-Rydberg correlation. Second, they reduce the number of atoms to consider

by essentially using the “bubble” concept. Nearby atoms are recursively pooled to

form “super-atoms” which have a Rabi frequency given by equation 2.23. This could

cause errors by artificially forcing correlations among pooled atoms. This can be

controlled by increasing the number of “super-atoms” used, to decrease the number

of atoms pooled per “super-atom.” Third, they eliminate states with more than some

maximum number of Rydberg excitations. One does not expect a large fraction of

atoms to be excited to Rydberg states within the volume, due to the blockade.

From such simulations, the authors can calculate a number of properties of the

Rydberg gas, including excitation fraction (saturation) and excitation statistics. For

the purposes of this thesis, we are interested in their calculations of the Rydberg-
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Figure 2.5: Predictions of the Rydberg-Rydberg pair correlation function (Pee) as a function of
distance between the atoms. Essentially this is the normalized probability of exciting two Rydbergs
at a given separation (see text). For these calculations, S � 0.2 (see Equation 2.24). The solid curve
is for zero detuning between the excitation laser and the Rydberg transition. The dotted line is for
∆ω � �2{τ and the dashed line for ∆ω � �2{τ . Adapted with permission from [47].

Rydberg correlation function. The correlation function is defined as the probability

of exciting two Rydberg excitations at a given separation distance divided by the

square of the probability of exciting a single Rydberg atom. A value of 1 indicates

uncorrelated Rydberg positions, while values of   1 indicate anticorrelation.

For this calculation the authors used repulsive interactions with an interaction

strength approximately equal to that of the 83D5{2 state of rubidium, based on the

interaction strengths calculated by Reinhard et al. [37]. The excitation pulse was

taken to be of the form

Ω � S

τ
e�t2{τ2 (2.24)

where S is the laser amplitude and τ is proportional to the time width of the pulse.

Their results are shown in Figure 2.5. The solid curve is for zero detuning between

the excitation laser and the Rydberg transition. This shows a blockade radius near

11 µm (where the correlation function crosses through the value 1/2) and uncorrelated

Rydberg positions outside this distance, as expected. Also of interest is the effect of
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laser detuning on the correlation function. Somewhat surprisingly, a blue detuning

(∆ω ¡ 0) causes a dramatic increase in the probability of finding Rydberg excitations

separated by slightly less than the blockade radius. When the detuning is in the

same direction as the van der Waals shift, as here, Rydberg pairs are excited with

a separation that tunes the pN, k � 0q Ñ pN, k � 2q transition into two-photon

resonance (c.f. Figure 1.1 for S-states).5

This is the physics that underpins most of the work in this thesis. Measurements

of the Rydberg-Rydberg correlation function for on-resonant excitation are discussed

in the experiments of Chapter IV. The effects of detuning are investigated in the

experiments of Chapter VII.

2.3 Imaging Methods

So far I have reviewed the basics of Rydberg-Rydberg interactions and how this

leads to anticorrelations (or correlations) in the positions of Rydberg excitations.

In order to measure the Rydberg-Rydberg correlation function described above, I

directly image the positions of Rydberg excitations in a cold rubidium gas.

The study of atomic vapors has benefited tremendously from various imaging tech-

niques. Here I present an overview of some techniques used to image atoms, highlight-

ing why the charged particle imaging technique we choose is particularly appealing

for our application.

2.3.1 Shadow imaging, and Electromagnetically Induced Transparency

Shadow imaging (see Appendix A) is another name for absorption imaging. A laser

beam is shone on an atomic vapor, with a light detector (usually a CCD camera) on

the opposite side. The laser is resonant with an atomic transition, so the atoms scatter

5Here, Robicheaux and Hernández [47] consider a single Rydberg atom to be excited by a single photon. Experi-
mentally we use two photons to excite a Rydberg atom, as I will explain in Chapter III. So experimentally this is a
four-photon transition, as we will see in Chapter VII.
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light from the laser beams. A shadow is thereby cast on the CCD based on the spatial

distribution of atoms. The imaging time is based on the scattering rate. For imaging

85Rb atoms in the electronic ground state 5S1{2, a resonant laser beam with 10% of

the intensity required to saturate the 5S1{2 Ñ 5P3{2 transition (so I � 0.1Isat) will

scatter photons at a rate

γp � s0γ{2
1� s0

� 1.7� 106 sec�1 (2.25)

where s0 � I{Isat and γ � 2π � 6 MHz is the transition linewidth. We typically use

imaging times of 20 µs to allow each atom to scatter � 35 photons. Shadow imag-

ing can also be used to indirectly measure velocity distributions in trapped atomic

systems by releasing the atoms from the trap and taking a time-delayed image. The

achievement of Bose Einstein Condensation (BEC) by [50] was thereby readily identi-

fied, showing that at the phase transition the atomic cloud had two components with

distinct velocity distributions.

Clearly, the shadow imaging technique is most useful when the system undergoes

a closed, cycling transition to scatter multiple photons. There are no such transitions

starting from a Rydberg state, so shadow imaging has not been used to date to

detect Rydberg atoms. However, a very interesting and inventive recent paper [52]

proposes using background atoms to assist in the detection of Rydberg atoms or

other impurities in the atomic gas. This would essentially allow the use of shadow

imaging to detect Rydberg atoms. Suppose that the Rydberg atom (or impurity) to

detect is labeled |Ry. The probe (background) atoms are sensitive to the presence

of |Ry because they have Rydberg energy levels |ry that are shifted by interaction

with |Ry. The Rydberg levels |ry do not need to be occupied; one merely needs

to probe their energy shifts to detect |Ry. The energy level shifts are detected by

electromagnetically induced transparency (EIT), which I briefly describe here. In the
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Figure 2.6: Level diagram for background probe atoms used for EIT detection of impurities (Rydberg
atoms) in the atomic vapor. The level diagram assumes the absence of impurities; the effect of their
presence is considered in the text. This description of EIT draws from [51]. The relevant energy
levels are the ground state |gy, an excited state |ey, and a Rydberg level |ry. The states |ey and |ry
are coupled by a strong coupling field with Rabi frequency Ωc and a frequency ωc resonant with the|ey Ñ |ry transition. In the dressed state picture for the Ωc field, depicted at right, the energy levels|ey and |ry are mixed to become |a�y and |a�y, which have an energy splitting of Ωc. In contrast
to the case without a coupling Ωc, a probe field with frequency ωp on-resonant with the |gy Ñ |ey
transition will not be absorbed by the medium. The probe absorption amplitudes to the levels |a�y
and |a�y cancel due to quantum interference. The medium is transparent for resonant ωp.

absence of impurities, the probe atoms have an energy level diagram described on the

right of Figure 2.6. For resonant ωc and ωp, the probe atoms are transparent to the

probe laser. However, the presence of impurities shifts the frequency of the |ey Ñ |ry
transition so that ωc is no longer resonant. Within a small region (radius � 1 µm)

around the impurity, the probe atoms are no longer transparent to the probe laser

and a shadow is formed. The probe atom density must be large to achieve sufficient

absorption from such a small region: in their simulation the authors used a density

equivalent to 2.5�1014{cm3. 6 A temperature less than 10 µK was assumed to neglect

atomic motion during the imaging. This recent proposal has future promise, and an

implementation remains to be seen.

6This is quite high, roughly at the upper limit of workable BEC densities. Around this density BEC lifetimes are
limited to À 1 sec due to three-body collisions. This density is 4 to 5 orders of magnitude larger than my typical
magneto-optic trap (MOT) operating densities.
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2.3.2 Fluorescence imaging

2.3.2.1 Alkali atoms

If the optical depth of a sample would not be sufficient to use shadow imaging,

one may still be able to use fluorescence imaging. In this case, the light that atoms

scatter from the incident laser beam is detected. Fluorescence imaging is routinely

used to detect single ions in ion trapping experiments, and can also be used to detect

single atoms in a magneto-optic trap (MOT) [53]. Scattering rates and solid angle

considerations lead to long illumination times. Recently, experiments have moved

to detecting atoms in two-dimensional optical lattices with single-atom, single-site

resolution [54, 55]. Objectives include the realization of model Hamiltonians from

solid state physics and the study of strongly correlated quantum states.

Again, these methods detect atoms in an electronic ground (or metastable) state by

scattering light that is tuned to resonance with a cycling transition. Alkali Rydberg

atoms do not have such transitions. In order to detect Rydberg atoms, Schauß et al.

[56] have recently prepared a Mott insulator in the lattice, excited Rydberg states,

used a beam resonant with 5S Ñ 5P to push away all the ground state atoms in 10 µs,

and then de-excited the Rydberg atoms via stimulated emission for 2 µs. Fluorescence

imaging can be used once the atoms are back in the ground state. The fluorescence

imaging uses a 0.9 second illumination time; to keep the atoms trapped during this

time, the optical lattice is ramped up in power and optical molasses cooling beams

are used to produce fluorescence. This length of illumination time is competitive with

similar experiments. Bakr et al. [54] use 0.2 sec to 1 sec illumination times in their

optical lattice.

The two experiments mentioned above are very impressive in their capabilities. But

they are not ideal for imaging Rydberg atoms, due to long illumination times and
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the fact that their Rydberg detection requires the removal of all other ground state

atoms from the trap. This means that to repeat the experiment one must prepare a

new atom sample. This significantly slows down the experimental repetition rate, as

a BEC typically takes of order 30 seconds to form and from this BEC one obtains

a single image of Rydberg distributions. This will be compared to charged particle

imaging methods, below.

2.3.2.2 non-Alkali atoms

Another interesting approach to imaging Rydberg atoms is to add extra internal

electronic structure that can be accessed. All experiments I have mentioned thus

far use alkali atoms (mostly, rubidium or cesium). Alkali atoms are convenient for

laser cooling because their cooling (cycling) transition tends to be in the visible wave-

lengths, for which lasers are available. They also produce Rydberg states that behave

in many respects like atomic hydrogen, due to having only a single valence electron

and a nearly point-sized ionic core (in comparison to the Rydberg electron wavefunc-

tion). However, it is possible to use other atoms. For example, there are a number

of possible advantages to using strontium, an alkaline earth metal [57].

If one does not use an alkali atom, it is possible to have a cycling transition in a

Rydberg atom. Rather than de-exciting a Rydberg atom to obtain a cycling transi-

tion, as in Section 2.3.2.1, one can then image the Rydberg atom directly. Alkaline

earths provide this advantage for studying Rydberg-atom physics [58]. After excita-

tion of the Rydberg electron, the presence of the second valence electron yields an

optically active core which can be used for optical trapping or for optical imaging.

Fluorescence imaging can be done directly on the Rydberg atom, using a cycling tran-

sition of the second valence electron. McQuillen et al. [58] use fluorescence imaging

to detect Rydberg atoms of strontium, with a time resolution of 10 ns and an imaging
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time of 500 ns. Their spatial resolution is 200 µm, which could be readily improved by

optimizing the optical setup. Unfortunately7, the interaction of the Rydberg electron

and second valence electron does not give this fluorescence technique clean Rydberg-

state-selective detection. Rather, scattering of the Rydberg electron from an excited

second valence electron causes autoionization for low-ℓ Rydberg states on a timescale

of � 19 ps, causing them to be undetectable by the fluorescence technique. In high-ℓ

states, the wavefunction overlap between the Rydberg electron and ionic core dimin-

ishes such that the autoionization rate drops below the core radiative decay rate.

Atoms in these states can thus be detected with fluorescence imaging.

Rydberg atoms can be forced into high-ℓ states by seeding the Rydberg gas with

an ultracold neutral plasma, which induces ℓ-mixing collisions. The Rydberg atoms

transition to detectable states over the course of a few µs. This technique is well-

suited to studying the evolution of a Rydberg gas to an ultracold neutral plasma,

which is a fascinating system in itself [59]. However, it is not a completely general

tool for detecting all Rydberg states with spatial sensitivity.

2.3.3 Charged particle imaging

The traditional method for detecting Rydberg atoms is to use an electric field to

rip the loosely bound electron from the ionic core, and to detect either the electron or

the ion with a charged particle detector [1]. A simple one-dimensional model (which

works rather well at low ℓ) estimates the Rydberg atom to ionize at a field of (in

atomic units)

E � 1

16pn�q4 , (2.26)

where n� � n� δℓ, n is the principal quantum number and δℓ is the quantum defect,

which accounts for the interaction of the Rydberg electron with the ionic core and
7For those of us in the cheering section, hoping for time-resolved optical detection of Rydberg excitation hopping

through an atomic vapor.
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depends on the angular quantum number ℓ. For the 60S1{2 state E � 30 V/cm, which

is a relatively modest field.

Traditionally, such detection methods have had minimal sensitivity to the spatial

origin of these particles in the Rydberg gas. Most configurations used for ionization

electrodes are not optimized for imaging the positions of Rydberg atoms onto the

charged particle detector. As a modification of this technique, we instead use a nee-

dle tip as an ionization electrode. We call this the “tip imaging probe” (TIP). When

switched to high voltage, the TIP produces a strong, radially divergent electric field.

This field ionizes the Rydberg atoms, and the ions are extracted along the divergent

field lines. The ions are detected approximately 16 cm away by a microchannel plate

detector (MCP) which has a spatial resolution of Á 10 lines/mm. The method re-

sembles field ion microscopy, and leads to magnified ion images of the initial Rydberg

atom locations.

The details of the ion trajectories from TIP to MCP will be considered in Chap-

ter V. For an initial estimate, if we assume that the ions follow straight-line trajec-

tories to the MCP we can calculate the magnification ratio m between separations

of ions in the MCP plane and separations of Rydbergs in the excitation plane. This

ratio should be given by consideration of similar triangles:

m � distance from TIP to MCP

distance from TIP to object plane
(2.27)

where the “object” in question is the collection of Rydberg excitations. As imple-

mented in the experiments of Chapter VII, I have the excitation plane � 200µm

above the TIP. With the MCP approximately 16 cm above the TIP, the estimated

magnification is then m � 800. Our measured magnification is less than this, but

still m � 320. With the spatial resolution of the MCP, even m � 320 affords us

with sub-micron resolution in imaging the Rydberg atom positions. This is highly
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competitive with the diffraction-limited optical detection methods described above.

In addition to spatial resolution, the method has good time resolution. In my

experiment the Rydberg atoms are ionized in   50 ns by the rapidly-switched electric

field. This gives much better time resolution than the optical methods described

above. The relevant comparison here is with the 0.2 to 1 sec imaging time of the

optical lattice experiments, and the required several-µs evolution to high-ℓ states for

imaging strontium.

In addition to my experiment, the Raithel lab has also designed and implemented

several other apparatus with spatially-sensitive Rydberg detection. The use in our

BEC-ion experiment showcases another of the advantages of using field ionization

to detect Rydberg atoms. As mentioned above, it takes on the order of 30 seconds

to produce an ultracold atom cloud. With the ion imaging method, detection of

the produced Rydberg atoms does not destroy the ground state atomic cloud. It is

therefore possible to produce circular Rydberg states8 and watch them oscillate in a

magnetic trap [60], using the same ground state cloud for 1000 experimental cycles

before it is depleted. If our Rydberg imaging method destroyed the ground state

cloud, the experimental repetition rate would slow down by a factor of 1000, making

the experiment completely infeasible.

8These are maximal angular momentum states, with |m| � ℓ � n� 1 and toroidal wavefunctions. Hence the name
“circular” states.
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CHAPTER III

Experimental Setup

In this chapter I present the most important aspects of the experimental setup

and the initial characterization of the apparatus, including how certain calibration

factors were derived. At the end of the chapter I describe one of the largest challenges

of the experiment, which is controlling the voltage on the TIP to a precision of one

part in 106. The experimental conditions quoted here are used for the experiments of

Chapter IV.

3.1 TIP and electrodes

The experimental setup is sketched in Fig. 3.1. As mentioned in Section 2.3.3,

the key feature enabling spatial resolution of the Rydberg sample is the ionization

electrode: a beryllium-copper needle with a rounded tip of diameter 125 µm.1 This tip

imaging probe (TIP) is surrounded by a closed cage of electrodes whose voltages can

be controlled to a precision of several millivolts. These electrodes allow independent

control of the electric field in three orthogonal directions. To provide temporal and

spatial electric-field stability, the apertures in the electrodes are covered with wire

mesh2 which has 0.51 mm grid spacing and 88% transparency.

1The needle is from Signatone, model SE-BCB.
2The mesh is made by TWP Inc, product number: 050X050T0012W48T.
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Figure 3.1: (a) Overview of the excitation region and ion detection (not to scale). (b) To-scale
drawing of the TIP and surrounding electrode package, as well as the guide tube (red) through
which the ions travel to reach the microchannel plate (MCP) ion detector (light blue). The TIP is
visible through the aperture in the dark green electrode. See also Figure 5.1 for dimensions.

3.2 Experiment timing

The experiment typically runs at a repetition rate of 30 Hz. I collect 85Rb atoms

for about 30 ms in a MOT located �500 µm above the TIP. After turning off the MOT

light, I optically pump the ground state atoms into the 5S1{2|F � 3, mF � 3y state,
with the quantization axis along the beam direction. I then excite Rydberg atoms in

a two-step process, using counter-propagating 480 nm and 780 nm beams. The exci-

tation region is �300 µm above the TIP. The beams are σ� polarized and resonantly

drive the transitions 5S1{2|F � 3, mF � 3y Ñ 5P3{2|F 1 � 4, m1
F � 4y Ñ nD5{2|F 2 �

5, m2
F � 5y. The red beam has a Gaussian beam parameter of w � 0.75 mm, while the
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blue beam is focused to w0 À8 µm with a theoretical confocal parameter of 0.3 mm.3

Because of the much larger size of the red beam, the intermediate-state population is

uniform across the width of the excitation region. I establish with CCD imaging that

the intensity distribution of the blue focus is only weakly altered by diffraction from

the mesh. Laser linewidths are of order 1 MHz. Typical Rydberg atom densities are�109 cm�3, dependent on atomic state and laser power.

After excitation, the TIP is switched to high voltage to produce a strong, ra-

dially divergent electric field. This field ionizes the Rydberg atoms, and the ions

are extracted along the divergent field lines. The ions are detected approximately

15 cm away by a microchannel plate detector (MCP) which has a spatial resolution

of Á 10 lines/mm. The method resembles field ion microscopy, and leads to magnified

ion images of the initial Rydberg atom locations. This image is captured by a CCD

video camera, synchronized with the experiment.

In most cases I use 100 ns excitation pulses with a subsequent negligible delay

before the field ionization pulse. Under these conditions the atoms can be considered

“frozen” in space during the experiment. In Chapter IV these parameters are varied

to study their effect on the Rydberg-Rydberg correlation function.

3.3 Magnification calibration

The system’s physical magnification factor is determined by the combined ion-

lensing effects of the TIP, pulsed to about 400 V, and the MCP front plate, held at�750 V. (This is discussed in great detail in Chapter V). To experimentally calibrate

the magnification I scan the focused 480 nm beam laterally across the MCP field of
3For the benefit of future graduate students: To do this beam profiling, I programmed a 2-d Gaussian fitting

routine. It allows an arbitrary rotation of the 2-d Gaussian, and finds the angles of the principal axes as well as
the width of the Gaussian along each axis. This is drastically better than using calipers to block the beam, or even
a knife-edge on a hand-operated translation stage: the focal spot is easily found, and the beam width as well as
roundness can be measured in a single shot. Furthermore, the precision is the pixel-size of the camera, 6.7 µm, which
is drastically better than what is achievable with the 1

1000
-inch calipers. This has proven useful for measuring Rayleigh

ranges and also checking astigmatism of focused beams. The program is on the group website.
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10.5µm

Figure 3.2: To calibrate the imaging system, the excitation region is repeatedly displaced by a known
distance. The displacement in pixels on the camera allows us to measure distances from pixels.

view by using a mirror with a piezo actuator on the horizontal axis. This procedure

is shown in Figure 3.2. At each position, 500 pictures are averaged to obtain a good

sense of the position of the excitation beam. Using the known physical displacement

of the beam between images, I determine the scale in the MCP picture. In the

experiments of Chapter IV, 1 µm in the excitation region corresponds to 2.2 pixels

in the digital CCD images, with an uncertainty of 10%.

The calibration of the piezo-driven mirror is done by focusing the laser beam onto

a CCD camera and measuring the beam displacement across the CCD surface. The

beam was also checked for beam focus asymmetries due to displacement across the

focusing lens; asymmetries were minimal. Figure 3.3 shows the calibration of voltage

on the piezo to displacement of the 480 nm beam focus. There is significant hysteresis.

When calibrating the magnification with the method of Figure 3.2, I therefore always

scan from 50 V up to 140 V in 30 V increments. The fit lines shown in Figure 3.3

are fitted over the data in this range only. The nonlinearity shown is an important

source of error in the magnification calibration.

The above magnification calibration between pixels (on the camera) and microns

(in the excitation plane) is sufficient for all data analysis. However, we would like to

compare our physical magnification factor m to the estimate given in Equation 2.27.
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Figure 3.3: Calibration data for displacement of the 480 nm beam using a piezo-driven steering
mirror. Datasets 1 and 2 are for increasing voltage; datasets 3 and 4 are for decreasing voltage.
The data shows hysteresis. Fit lines for each dataset are calculated using the datapoints in the
range 50 V to 140 V, which is the normal operating range used for magnification calibration in the
experiment. See text for details.
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Figure 3.4: Exploded view of electrodes that surround the excitation region, used for electric field
control. The purple, blue, and yellow electrodes allow electric-field control in the z, y, and x

directions, respectively. Green and red electrodes are grounded.

To do this I have calibrated the pixels on the camera to displacements on the MCP

surface. This factor is 40.5 µm on the MCP per pixel on the camera. Based on this

factor, for the experiments of Chapter IV I find a linear magnification factor of 90�
between the excitation region and the MCP front surface. (Later experiments have

higher magnification, as already mentioned under Equation 2.27.)

3.4 Electric field control

To observe an excitation blockade, it is essential to avoid electric fields during the

excitation pulse. Electric fields would cause undesired modifications of the Rydberg-

Rydberg interaction potentials, as discussed in Section 2.1.1. Furthermore, electric

field inhomogeneity would induce inhomogeneous line broadening and alter the many-

body energy level spectrum, potentially breaking the excitation blockade.

Figure 3.4 shows an exploded view of the electrodes used for electric field control.

Each of the 10 electrodes is individually addressable in the experiment, but voltages
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Figure 3.5: Stark maps for excitation to 44D. Electric field scans are done with the x, y, and z

electrode groups, as labeled. White is high count rate, blue is intermediate, and black is zero.

of certain electrodes are linked to each other in the controlling software.4 The pair

of x electrodes have equal and opposite voltages applied to them; likewise for the y

electrodes. The z electrodes all have the same voltage applied, and they pull against

the red and green electrodes which are set to ground. These electrode groups give

control of the electric field in three orthogonal directions px, y, zq.
By measuring the Stark spectra of nD-manifolds as a function of the potentials

on the TIP and the electrodes shown in Fig 3.4, I zero the electric field to below�100 mV/cm. This is low enough to avoid the aforementioned problems of modifica-

tions to the Rydberg-Rydberg interactions [37]. A few sample Stark spectra for state

44D are shown in Figure 3.5. In the scans, the 44D5{2 and 44D3{2 lines all appear,

for 5 lines in total. (Positive and negative mj states are degenerate [1].) The vertical

axis is a scan of the 480 nm laser frequency, while the horizontal axis is a scan of

the voltage on the x, y, and z electrodes (as labeled in Figure 3.4). The excitation

position for these scans is À 1 mm above the TIP.

4For reference: the guide tube, shown in red in Figure 3.1, is physically electrically connected to the uppermost z

electrode in Figure 3.4.
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We determine the condition for zero electric field from a Stark spectrum by finding

the symmetry axis of the Stark spectrum. The electrode voltage around which the

Stark spectrum is symmetric is the electrode voltage that minimizes the electric field.

In general, multiple electrodes may need to be scanned in an iterated scheme to get

the electric field to be zero, rather than a local minimum. In my experimental setup,

the electric fields produced by the x, y, and z electrodes shown in Figure 3.4 are

fortunately in orthogonal directions, so we only need to acquire Stark scans once for

each set of electrodes to obtain zero electric field.

In addition to the x, y, and z electrodes, the TIP also has a strong effect on the

electric field. As mentioned in Section 3.2, for the experiments of Chapter IV the

excitation position is � 300 µm above the TIP. In the later experiments of Chap-

ter VII, the excitation position is closer to the TIP at only � 200 µm above. Under

these conditions the TIP is then the electrode with by far the most significant effect

on the electric field sensed by the atoms. It is necessary to set the voltage on the

TIP to a value controlled at the 1 mV level during the laser excitation pulses. This

is difficult to do, as there are a number of sources of noise. I list a few here so that

future graduate students will not have to find them again.

For the ion imaging scheme to work, the TIP must be switched to a high voltage

(1600 V in the experiments of Chapter VII) in about 50 ns.5 6 To accomplish

this fast switching, we use a high voltage switch (model PVX-4140) from Directed

Energy Incorporated (DEI), which allows voltages of �3500 V. This instrument also,

unfortunately, has a very noisy output, of order 200 mV. We therefore connect the

5The “one part in 106” precision quoted in the introduction to this chapter is from the 1 mV control precision and
this switched value of 1600 V.

6Slower electric field ramps, with timescales of 1 to 100 µs, are are often used for field ionization of Rydberg atoms.
These slow ramps are not useful for ion imaging applications because the ions produced at the ionization electric
field value have low kinetic energy; they leave the excitation region before the ionization field reaches is maximum
value. Their trajectories can then be strongly influenced by other electric fields. A fast electric field ramp will deliver
maximum kinetic energy to the ion, resulting in better imaging characteristics.
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Figure 3.6: Bi-directional diode bridge for the reduction of voltage noise on the TIP. “V” represents
a low-noise voltage source used to fix the voltage on the TIP when the HV switch is off. When the
HV switch is on, the resistor protects the low-noise voltage source from high voltage. The diodes
are 1N4148 small-signal diodes, and the resistor is R � 100 kΩ. The schematic given here is the
simplest conceptually-correct circuit; a more complicated circuit is used in the experiment due to
technical considerations.

switch to the TIP via a bi-directional diode bridge which prevents voltage swings less

than about 1 V from passing through (see Figure 3.6). In addition, the DEI switch

puts noise out from its input, to the low-noise electronics that drive it. This noise

can travel through these electronics to a power supply, then to the other low-noise

electronics that constitute the voltage source (V) shown in Figure 3.6. The noise can

thus travel straight around the clamp switch to the TIP. This discovery led to the

introduction of a bi-directional low pass filter on the DEI switch input.

Another source of problems was a slow electric field drift. Over the � 10 minutes

required to take the Stark scan shown in Figure 3.7, the electric field drifted by about

20 mV/cm. The field continued drifting and settled to a constant value at least an

hour after this scan was taken. The eventual determination was that I had turned

off the high-voltage pulsing from the DEI switch for an hour while eating dinner, and

turned it back on afterwards to resume the experiment. In that hour we believe that

rubidium deposited onto the TIP from the background gas in the vacuum chamber,

changing the contact potential on the TIP. Once the TIP began switching to high

voltage again the equilibrium contact potential changed, leading to the electric field

drift. The implication of this is that the repetition rate of the experiment cannot

be changed once the electric field has been zeroed. In early experiments (with the
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Figure 3.7: Stark map of 57D3{2, scanning the voltage on the TIP. White is high count rate and black
is zero. The Stark map is scanned first in voltage (left to right), then in 480 nm laser frequency
(bottom to top). The asymmetry in the slopes of the Stark line show an electric field drift over
a timescale of � 10 minutes. Yellow lines mark the TIP voltage to zero the electric field at the
beginning of the scan, based on left/right symmetry; the red line marks the same at the end of the
scan.

excitation region further from the TIP, and thus less affected by the TIP contact

potential) it was customary to zero the electric field with Stark scans taken at 120

to 300 Hz repetition rates (such that the scans take on order 10 minutes), and then

to slow the experiment down to the normal 30 Hz operation rates required by the

camera to perform the blockade experiments. This cannot be done if the electric field

begins to drift after the change in timing. In later chapters, all Stark maps and other

procedures are done at 30 Hz to avoid this trouble.

3.5 Conclusion

In this chapter I have described the experimental apparatus, as well as the pa-

rameters used for the experiments in Chapter IV. I have described some calibration

procedures which are necessary for interpreting the data, and also given a flavor of

some of the subtler experimental difficulties.
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CHAPTER IV

Measuring the Blockade

4.1 Motivation

As has been discussed in previous chapters, the Rydberg blockade could be a

valuable tool for quantum computing. It relies on spatially-dependent interactions

between Rydberg atoms, and it is this spatial aspect that I am presently interested

in. Some spatially-resolved studies have been done; both the distance- [11] and angle-

dependence [61] of Rydberg-Rydberg interactions have been examined. The blockade

was shown to be effective between spatially separated atom pairs in adjacent dipole

traps [30, 31], which is the first step toward practical use in quantum computing.

However, no one has previously imaged a system containing multiple Rydberg ex-

citations in order to observe the characteristic minimum spacing between Rydberg

excitations indicative of a blockade. In this chapter, I directly image a system contain-

ing multiple Rydberg excitations to obtain the Rydberg-Rydberg correlation function.

I find evidence of the Rydberg excitation blockade and measure the blockade radius

for several principal quantum numbers n.

4.2 Data acquisition and processing

A direct image of the spatial distribution of Rydberg excitations from a single

excitation event does not, by itself, provide information about the blockade. While
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Figure 4.1: Stages in the image analysis process, using state 44D5{2. All have same scale. (a) Raw
image (cropped), (b) filtered image, X , (c) sum of filtered images, (d) sum of autocorrelations, Ā,
(e) autocorrelation of sum of images, B, (f) normalized autocorrelation, Ā1.

the blockade radius provides a hypothetical minimum spacing between excitations, the

excitations might be spaced considerably farther apart. Furthermore, the projection

of a 3-dimensional distribution onto a 2-dimensional image means that excitations can

appear to be closer together than the blockade would allow. Thus, useful data from

each image is in the form of an autocorrelation: a measure of the distances between

detected excitations. Because there are only a few Rydberg excitations per image,

and because of the range of possible of distances between excitations even with an

effective blockade, I must examine and process of thousands of images.

The procedure of data acquisition and processing begins with taking 10000 CCD

images of the MCP phosphor screen, each image showing the ion impact positions for

a single experimental cycle (as in Figure 4.1(a)). A CCD image consists of these blips
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plus background noise from the camera. To eliminate the background, I determine

the maximum background level and subtract it from the image, setting all negatives

to zero. This procedure yields filtered images, denoted by X (Figure 4.1(b)). The

autocorrelation of each filtered image is calculated, and is denoted A. The individual

autocorrelations A are then added to construct Ā (Figure 4.1(d)). I can write this

as follows, using subscripts for the pixel coordinates and superscript α to enumerate

the images:

Aα
i,j � fpi, j, N,Mq

ņ,m

Xα
n,mX

α
n�i,m�j (4.1)

Āi,j �
α̧

Aα
i,j , (4.2)

where

fpi, j, N,Mq � NMpN � |i|qpM � |j|q , (4.3)

N �M is the image size, and pi, jq is the displacement. The normalization factor

f eliminates finite-array effects in Equations 4.2 and 4.4, as it causes flat images to

have flat autocorrelation functions rather than pyramidal ones.

The signal Ā has three main structures: a central peak due to the correlation of a

blip with itself1, an overall cigar shape due to the geometry of the excitation region,

and structure due to correlations between ion positions. It is this third structure that

I wish to isolate in my analysis. The raw autocorrelation Ā is useful for qualitative

analysis, as it is the easiest to interpret by eye. However, for quantitative analysis I

must eliminate the shape of the beam. To do so I first sum the images (Figure 4.1(c))

and take the autocorrelation (Figure 4.1(e)):

Bi,j � fpi, j,N,Mq
ņ,m

�
α̧

Xα
n,m

��
β̧

X
β
n�i,m�j

�
. (4.4)

1We call this the “self-term.”
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Figure 4.2: Autocorrelations Ā for 44D5{2, 60D5{2, and 70D5{2. In the datasets shown I use a laser
intensity of 3.4 Isat for the lower transition, and the lowest intensity setting (nearest the saturation
knee) for the upper transition.

The autocorrelation B does not contain any information about Rydberg-Rydberg

correlations, but still shows the overall shape of the excitation region. This allows me

to divide out the beam shape by defining a normalized Ā1,

Ā1
i,j � Āi,j{NpBi,j , (4.5)

where Np is the number of pictures in the dataset. The normalization of Ā1 is such

that a value ¡ 1 (  1) should indicate a correlation (anticorrelation) of ion positions.

4.3 Autocorrelation data

I take data at several combinations of red and blue laser powers. For the intensity of

the lower transition beam I use intensities of 1.7 Isat and 3.4 Isat, where the saturation

intensity Isat � 1.6 mW/cm2. For each of these intensities I measure the atom number

as a function of the intensity of the upper transition beam and observe saturation

behavior as in Ref. [29]. To acquire images for the autocorrelation analysis described

above, I select several intensities of the upper transition beam around and beyond

the knee of the measured saturation curves. I find that the autocorrelations nearest

the knee tend to show the clearest correlation-induced structures.

Figure 4.2 shows Ā measured for states 44D5{2, 60D5{2, and 70D5{2. For all three
states, I observe a ring-shaped dip around the central self-correlation peak in the
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Figure 4.3: Angular average of Ā1, Iprq, for 44D5{2, 60D5{2, and 70D5{2. Curves correspond to
images in Figure 4.2.

autocorrelation. Such dips are present in most of my data, with the degree of visibility

depending on excitation parameters. The absence of dips in some data indicates that

they are not artifacts of the imaging or image processing. I find that laser frequency

fluctuations can make the dips change in depth and diameter. Furthermore, a variety

of other parameters affects the results, as will be discussed in Section 4.4.

4.3.1 Extracting a blockade radius

To quantitatively compare the autocorrelations Ā1 of different states, in Figure 4.3

I plot Iprq, defined as the angular average of Ā1. Iprq is analogous to the radial

pair-correlation function calculated by Robicheaux and Hernández [47], described in

Section 2.2.3.2 The self-term fills the region r   5 µm. I do not remove the self

term due to the risk of producing a false blockade signal. Between 5 and 10 µm,

each curve has a dip indicating an anticorrelation in Rydberg atom positions, as was

qualitatively observed in Figure 4.2. The minima of Iprq do not approach zero in

part because I am projecting a 3-dimensional sample onto the detector plane, which

reduces the visibility for even a perfect blockade.

2Here I note the difference between the autocorrelation and the pair-correlation function. The pair-correlation
is the correlation of the position of each ion with the positions of each other ion. The autocorrelation, in contrast,
additionally includes the correlation of an ion with itself, giving rise to the self-term.

42



Figure 4.3 shows that the blockade radius increases with principal quantum number

n. However, there is no obvious choice for a method to measure a blockade radius

from each curve, as the curve’s shape is determined by both the blockade-induced dip

and the self-term.

To determine a good measure for the blockade radius, I simulate the excita-

tion/blockade process for my geometry and z-projection conditions, using a stochastic,

non-quantum model. I find that the inflection point after the minimum of each Iprq
curve is close to the input hard-sphere blockade radius. I thus use this inflection point

as my measure of the blockade radius. I note that in the simulations the self-term

diminishes the dip depth and can shift the dip position. If the input blockade radius

is close to the self-term width, the radius indicated by the inflection point is 1–2 µm

higher than the blockade radius. When the blockade radius is much larger than the

self-term width, the inflection point method underestimates the input blockade radius

by À1 µm.

For the states 44D5{2, 60D5{2, and 70D5{2 I measured the radii on nine, six, and

nine curves. One additional curve was discarded for 70D5{2; although its dip minimum

was consistent with other data, the position of its inflection point was unclear. Five

additional curves for 44D5{2 were thrown out because there was no dip, as discussed

below. The measured blockade radii are shown in Figure 4.4. The error bars indicate

the 10% uncertainty from the magnification calibration; this systematic uncertainty

dominates the uncertainty due to measurement statistics by a factor of at least two.

In Figure 4.4 I compare the measurements to predictions based on an excitation

bandwidth δνL ranging from 5 to 12 MHz and interaction strengths as determined

from Reinhard et al. [37] (see Section 2.1.2). The blockade radius for the van der
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Waals interaction has been calculated to be

rb � a0

�
∆W̃ p2qpn�q11

hpδνLq �1{6
, (4.6)

where a0 is the Bohr radius, n
� � n� δl is the effective principal quantum number, δl

is the quantum defect, and ∆W̃ p2q is a scaled, second-order, state-dependent van der

Waals coefficient as explained in Section 2.1.2. ∆W̃ p2q is scaled such that it would be

independent of n� in the absence of resonant level shifts. The assumed value for δνL

has little effect due to the sixth-root dependence.

Figure 4.4 shows that the measured blockade radii are within a factor of two of the

predictions. Further, the amount by which the blockade radius increases between the

probed n levels is as expected. The measured blockade radii exceed the calculated

radii by 2–3 µm. The difference may be because Equation 4.6 models the interaction

between two atoms and excludes many-body effects [15]. Ates et al. have previously

seen evidence that theory based on pair-wise interactions underestimates the blockade

radius [48].

4.4 Characterizing the blockade

To test if atomic motion or the degree of excitation saturation modifies the ob-

served correlation behavior, I vary laser powers, excitation pulse duration, and field

extraction delays. In general, increasing the laser power, or the excitation duration

at constant power, diminishes the dip depth (defined as the curve asymptote minus

the dip minimum). For instance, increasing the excitation duration for state 70D5{2
from 100 ns to 400 ns causes the dip depth to decrease from 0.24 to 0.04. This behav-

ior could be caused by an increased z-depth of the saturated part of the excitation

region. In my simulations the degree to which the dip depth is diminished depends

on the assumed beam focus quality. Adding wings to a Gaussian focus, as suggested
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Figure 4.4: Comparison of blockade radius measurements (�) with predictions (�) based on Rein-
hard et al. [37].

by Figure 4.1(c), yields better qualitative agreement with my data.

Laser power has a greater effect for the case of excitation to 44D5{2 than for the

other states: in five Iprq curves the dip disappeared entirely. I expect this is partly

due to saturating the atomic transition for 44D5{2 more strongly than for 60D5{2 or

70D5{2. It is also possible that, of the three states I studied, 44D5{2 is the most

susceptible to laser parameters due to having the shallowest dip, closest to the radius

of the self-term. Another possibility is that the blockade efficiency is diminished due

to the proximity of the Förster resonance, as suggested by Younge et al. [15] and

Walker and Saffman [62].

By varying the delay between excitation and field ionization I test the longevity of

the correlations. They are remarkably long-lived. The dip depth decreases by about

half over 10 µs, despite possible atomic motion and ionization during this time [42, 63].

This result awaits a future theoretical explanation.

Some of my data, using linear laser polarization and a few MHz of detuning,

show additional structures. The autocorrelation in Figure 4.5(a) exhibits multiple

rings, indicating long-range Rydberg-Rydberg correlations. The autocorrelation in
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Multiple rings Maxima showing angular structure

a) b)

10µm

Figure 4.5: Some autocorrelations (Ā) showing possible long-range and angular structure for state
44D5{2.
Figure 4.5(b) hints at multiple maxima in a ring about the center, indicating pos-

sible angular dependence of the Rydberg-Rydberg correlation function. There have

been predictions of crystal-like structure in Rydberg systems [64], but the detailed

excitation conditions are important in generating these structures. The possibility of

exciting Rydberg crystals will be discussed further in Chapters VII and VIII.

4.5 Conclusions

In summary, in this chapter I have obtained spatially-resolved images of block-

aded Rydberg atom samples and evaluated the Rydberg-Rydberg correlation func-

tion. This is the first time the Rydberg blockade has ever been observed through

direct spatial imaging. Having observed a blockade, I measured the blockade radius

for several quantum states. I have also tested the dependence of the blockade on

parameters such as laser power, excitation duration, and detection delay. All of the

results are in good qualitative agreement with theory. I have also observed the first

hints of higher-order spatial structure due to the blockade. In later chapters, particu-

larly Chapter VII, I will build on this work, re-examining it with greater ion-imaging

magnification, and examining the effects of various external potentials on the blockade

radius.

46



CHAPTER V

Ion Trajectory Simulations

5.1 Motivation

It is clear from our previous data that we are limited by spatial resolution. We

desire higher magnification to see the blockade more clearly and to resolve smaller

structures, such as a Rydberg crystal [2,3] or Coulomb effects (explained in sec-

tion 5.4). We perform simulations of the ion trajectories in our chamber to see what

limits magnification, and what magnification we should expect.

5.2 Hyperrelaxation method for electric field calculation

The ions travel from the TIP to the MCP in a region fully enclosed by electrodes

with controlled potentials. To determine the ion trajectories through this region

we calculate the electric potential throughout this volume using a hyperrelaxation

method. Hyperrelaxation is an adaptation of the relaxation method [65] often used

to numerically solve the Poisson or Laplace equation.

In the relaxation method, the system is discretized on a rectangular grid and each

grid point pi, jq is assigned a value for the electrostatic potential, Φpi, jq. Boundary

conditions can be set on the electrode surfaces by e.g. fixing the potential for certain

grid points. One then solves for the potential in the rest of the interior volume. An

initial guess is chosen for the Φpi, jq on the interior, e.g. a constant throughout. One
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then iterates over the volume to calculate a new potential for each point, Φnewpi, jq.
This value Φnewpi, jq is chosen as a weighted average of the potential at neighboring

points on the grid. Iteration over the volume is done until the potential at each point

ceases changing between iterations to within some specified accuracy.

We can consider the speed of convergence of the potential at each point on the grid.

The points near the boundary benefit from the known boundary values, and so tend

to obtain accurate potentials in early iterations. Information (about the boundary

values) “flows” across the grid to the interior. If this information flow can be sped

up, the algorithm would converge faster. The hyperrelaxation method we use speeds

up convergence by several methods:

1. We start with a coarse grid, with grid-cell areas � 16� 16 larger than the final

grid. After solving on a coarse grid, we gradually make it finer.

2. On the coarse grids, we have a looser restriction on convergence required for

terminating the iteration: 10�10, instead of 10�12 difference between steps.

3. We overshoot the change in potential at each point when doing each iteration

of the relaxation. This is sometimes referred to as the successive over-relaxation

(SOR) method.

In method 3 a “hyperrelaxation parameter” is used to determine how far to over-

shoot in each step. If this parameter is too large (¥ 2 in two dimensions) it changes

the behavior from a Laplace equation to a wave equation. The potential then oscil-

lates in time rather than converging. We use a hyperrelaxation parameter of � 1.95

to give damped waves, and faster convergence. In addition, there is a “hyper-drop”

parameter which modifies the hyperrelaxation parameter between steps. Correctly

choosing the hyper-drop parameter makes the code run faster at the beginning and

converge a bit better at the end.
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5.2.1 Simulation geometry

We approximate our experimental geometry as cylindrically symmetric in order

to reduce the electric field calculation from 3D to 2D. This helps to fit the hyperre-

laxation grid into available computer memory. The two most critical regions of the

apparatus (concerning their effect on the ion trajectories) actually do have cylindrical

symmetry: the TIP itself, and the volume near the MCP, inside the MCP guard tube.

(See Figure 5.1 for the labeled regions.)

The guide tube, which surrounds the region between the TIP and MCP, has a

square cross section in the experiment. The simulation’s guide tube radius is chosen

to give the same cross-sectional area as inside the experiment’s square guide tube.

For reference, the size of the experimental guard tube is marked in color in Figure 5.1:

the square’s side in red and the diagonal in blue. We do not expect the cylindrical

approximation to have any effect on the ion trajectories inside the guide tube, as the

ions start near the central axis at the TIP and most of their initial change in kinetic

energy occurs in this region. It is possible that the cylindrical approximation has an

effect in the transition between the guide tube and guard tube near the MCP, where

there can be a large voltage step and the ions do tend to be far off-axis. We will see

these results in Section 5.3.

To perform these simulations of ion trajectories, I calculate the electrostatic po-

tential for a variety of voltages set on the TIP and the front plate of the MCP. The

walls of the guide tube (leading from TIP to MCP) are always grounded. The MCP

guard tube is electrically connected to the MCP front plate, and both are held at the

same voltage.

In the next section, I examine the electrostatic potential calculation for a single

voltage setting on TIP and MCP. I return to the ion trajectories in Section 5.3.
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Figure 5.1: At right : To-scale drawing of the geometry used in the simulation, showing positions of
the electrode surfaces. For reference, I have included some of the variable names used for important
dimensions in the simulation. At left : A blown-up diagram of the TIP. Near the top of the TIP,
the geometry in the simulation has been kept identical to the specifications from the manufacturer.
The TIP is a cone on top of a cylinder, where the cone point has been mechanically ground down
to a diameter of 2�R � 125 µm (where R is marked in the diagram). The cone height is 2.03 mm,
which includes the partial-hemisphere from grinding. If we consider the end of the TIP to be the
mathematical union of a sphere with a truncated cone, as drawn, I have recessed the sphere below the
surface of the truncated cone to smoothly match their edges around the circle defined by “r2needle”.
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Figure 5.2: Plots of (a,b) the voltage and (c) the electric field magnitude |E| near the TIP surface,
from simulation. Plot (a) includes the end of the TIP, in white; (b,c) show a further-zoomed in
region just above the tip surface. Note that the top of the TIP is at z � 10mm in the simulation
volume, for comparison with plot axes. All plots are shown with a 1:1 aspect ratio between z and
r. The TIP is set to 1000 V.

5.2.2 Results of simulation

Here I present the results of the electric potential calculation with the TIP at

1000 V and the MCP at 0 V. This allows easy scaling to obtain the results for other

TIP voltages, for regions near the TIP. Figure 5.2(a) shows an excerpt from the

calculated potential used in trajectory and magnification simulations, showing the

region near the TIP. (The rounded end of the TIP can be seen.) Figure 5.2(b) shows

a further-zoomed in region just above the TIP surface, in which the laser-excitation

region resides. Figure 5.2(c) shows the electric field in the same region as the potential

in (b).
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Figure 5.3: Plots of the voltage and electric field vs distance above the TIP. The TIP is at 1000 V.
Note: in contrast to Figure 5.2, here the TIP is taken to be at the origin.

z-distance above TIP (µm) V (Volts) E (V/cm)
185 562 9170
207 543 8230
Interpolated value:
200 545 8500

Table 5.1: Simulation results for the voltage and electric field at the grid points nearest 200 µm
above the TIP, and an interpolated value at 200 µm. Grid points in the simulation are separated in
the vertical direction by 22 µm.
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For the experiments of Chapter VII we use an excitation position � 200 µm above

the TIP, so I quote results for this position. The simulation uses a grid step size in

the z-direction of 22 µm, so the values of V and E at the nearest points are displayed

in Table 5.1, as well as the interpolation at 200 µm. This interpolation provides a

calibration factor between the TIP voltage and the electric field: 1 V on the TIP

gives an electric field of 8.5 V/cm at 200 µm above the TIP. This agrees well with

an experimental calibration done by taking a Stark map (see Section 3.4) of the 72D

line at � 215 � 10 µm above the TIP, yielding 8.7 � 0.3 V/cm per V on the TIP. 1

Electric field zeroing can be done to a precision of about 2 mV on the TIP, which we

can thus convert to a residual field of À 20 mV/cm.

Due to the large inhomogeneity of the electric field close to the TIP, we should

consider the variation of the electric field over the excitation volume. Field variation

can be estimated based on the change between the 185 µm and 207 µm positions in

the simulation (Table 5.1). For a voltage of 1 mV on the TIP, the change in electric

field across a 5 µm excitation region (defined by the width of the 480nm beam) would

be 0.2 mV/cm. From field-zeroing resolution we can then expect a variation of the

electric field by 0.4 mV/cm over 5 µm, which is negligible in terms of its impact on

spectral linewidths. The 20 mV/cm field itself left over due to field zeroing resolution

would lead to a line broadening of the 72D5{2 line by splitting the mj � 1{2 and

mj � 5{2 components by 0.69 MHz. This is also quite small compared to measured

Rydberg excitation linewidths of �5 MHz. We expect, then, that the electric field is

not a significant source of line broadening; Rydberg-Rydberg interactions are a much

more likely broadening mechanism.
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Figure 5.4: At left: Geometry of the TIP in the simulation. The image is an excerpt from the
hyperrelaxation grid, showing the calculated potential. The pixels are asymmetric according to the
grid spacings dz � 22 µm and dρ � 11 µm. The TIP appears in white. The top of the pixelated
“hemisphere” has an angle of β � 132 degrees with the vertical. The angle of the cone away from
the rounded top is β � 173 degrees. At right: Voltages from the simulation (points) as a function
of distance above the TIP. The TIP voltage has been set to ground, and “far away” to 1000 V, to
conform with the convention of Jackson [65]. The slopes of the tangent lines indicate the power-law
dependence of V at various positions. The slopes indicate power laws of: black ñ z0.50 nearest the
TIP, red ñ z0.32 at 360 µm above the TIP, and green ñ z0.22 at 1 mm above the TIP. See text for
comparison to analytical estimates based on Jackson [65].
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5.2.3 Comparison with analytical calculations

To check that the results of the simulation are reasonable, before continuing we

should compare them to analytical calculations. In this section, l compare the voltage

dependence with that given by Jackson [65, pp104-107] from a sharp conical point.

The solution involves Legendre functions of non-integer order ν, and gives a potential

that depends on the angle β of the conical point. The angle β determines ν, and if

we label the radial distance from the point as r (in 3D) then the potential behaves

as � rν . Note that ν ¡ 0 so the potential grows with distance from the point; the

conductor is considered to be ground, and “far away” is some non-zero potential.

This model will only be an approximation for us, since the TIP is not a perfectly

sharp cone, as seen in Figures 5.1 and 5.2(a). If sharp, it would extend another

500 µm further in z. This means that, at 200 µm from the TIP, the excitation region

is very much in the near field, affected by the bluntness of the tip.

To apply the model, one can look closely at the approximated shape of the TIP

in the simulation to see the apparent sharpness of the “hemisphere”. This is shown

in Figure 5.4(a). The cone angle β is measured down from the z-axis to the surface

of the conductor. (So β � π{2 is a plane, β   π{2 is a conical hole bored in a

conductor, and β ¡ π{2 is a needle tip.) In the simulation, the angle nearest the

top of the TIP (accounting for dz and dρ stepsizes) is β � 132 degrees (shown in

green, in Figure 5.4a). Using this angle, we can compare the simulated voltage to

the analytical results. The angle β � 132 degrees gives ν � 0.6 [65], so the potential

then behaves as V � r0.6. Plotting the simulated V gives a dependence of V � z0.5

(shown in green, in Figure 5.4b), which is close to that expected. (Here, I use z as

the distance above the TIP, rather than the more-general 3D distance r.)

1The agreement between the measured and simulated electric field is thus fairly good considering the accuracy of
placement of the excitation region must be within about 20 µm to achieve this.
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At larger distances z, the TIP begins to look sharper, when one gets far enough

away to see the cone (β � 173 degrees, shown in black in Figure 5.4a) rather than

just the hemisphere. Now it becomes unclear where to measure r from, since it is

supposed to be from the surface of the conductor, which is 500 µm below where

the TIP cone would come to a point if sharp. If we continue to measure z from the

surface in our numerical simulation, the potential rolls off to the expected dependence

β � 1730 Ñ V � z0.2 at around 1 mm from the tip surface (shown in black, in

Figure 5.4b). The potential continues to roll off to lower slopes after this point

because the cone on top of the TIP shaft is only 2.0 mm tall.

We can now have some confidence in the results of the hyperrelaxation simulation,

since they seem to agree with the analytical scaling laws. We can also see that it was

important to solve for the potential numerically, because the analytical results are

only an approximation due to the blunt shape of the TIP.

5.3 Ion trajectories

Using the voltage and electric field from the hyperrelaxation algorithm, in this

section I calculate the trajectories of non-interacting ions. The objective is to find

the expected magnification as well as investigate possible distortion in the imaging.

5.3.1 Ion lensing

The ions are initially placed on a grid2 with variable spacings and extents, at a

distance above the TIP corresponding to that of the laser excitation region. After

being released from their starting positions in the electric field, the ion positions are

then recorded as the ions pass through “detection planes” spaced evenly through the

flight path, with the last plane at the MCP surface.

2This is unrelated to the hyperrelaxation grid. See Figure 5.5.
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Figure 5.5: Results of ion trajectory simulations, showing (a) initial positions of ions above the
TIP; (b),(c) final positions of ions on MCP for two voltage conditions used in our experiments.
For comparison note that the MCP detector face has a diameter of 18 mm. Figure (c) shows very
acceptable imaging conditions, whereas figure (b) is a disaster, with significant distortion and loss
of magnification.

Figure 5.5 shows the initial ion distribution at the excitation plane (Figure 5.5a),

as well as the resulting distribution on the MCP for two experimentally relevant

voltage conditions. Figure 5.5b uses the voltage conditions of the experiments in

Chapter IV, while Figure 5.5c uses the voltage conditions from the experiments in

Chapter VII. The starting distance of 300 µm above the TIP is chosen to correspond

to the experiments of Chapter IV.

For most of the ten voltage conditions simulated (of which only two are shown

in Figure 5.5), there is only slight/minimal barrel distortion3 in the imaging. This

3Barrel distortion is a term from geometrical optics which indicates that image magnification decreases with
distance from the imaging axis. This is as contrasted with pincushion distortion, where magnification increases with
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is the case for Figure 5.5c, which shows very desirable imaging conditions. For only

one simulated set of voltages is there significant distortion, which is shown in Fig-

ure 5.5b. The distortion causes the edges of the image to fold over slightly for initial

displacements of ¡ 6 µm from the imaging axis, which would be a disaster for imaging

anything larger than a radius of 6 µm. This occurs for voltages settings of 500 V on

the TIP and -750 V on the MCP, which cause strong refocusing of the grid near the

MCP (as we will see in Figure 5.6). Because these are the voltage settings used for

the work in Chapter IV, it is possible that in that experiment we had some distortion.

However, images of the excitation region defined by the 480 nm laser beam (cf. Fig-

ure 3.2) do not show barrel distortion even remotely resembling Figure 5.5b. When

experimentally measuring the magnification as described in Chapter III, I translated

the beam laterally over 40 µm and there was no curvature of the image of the beam.

This stands in contrast to the highly curved edges of Figure 5.5b for displacements

of only 10 µm off the imaging axis. This is a significant disagreement between the

simulation and experimental observations. It is possible that the curvature seen in the

simulation is not present in the experiment due to the square (rather than circular)

cross section of the guide tube. The fringe fields at the end of the tube may cause

ion trajectories to “reflect” from a plane rather than a circle, eliminating curvature.

However, when translating the 480 nm excitation beam laterally I still did not see

the motion of the ion image reverse direction on the MCP. A possible reason for this

discrepancy will be given in Section 5.3.3.

5.3.2 Magnification

To display the ion trajectories in their flight from the TIP to MCP, a representative

ion is chosen in Figure 5.6. The ion starts at identical initial positions for several

distance from the imaging axis.
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different voltage configurations. The magnification of the ion imaging system can be

computed by comparing the ion’s distance from the imaging axis before release and

after hitting the MCP.

It is clear from Figure 5.6 that a large negative MCP front plate voltage causes

significant refocusing of the ion trajectories. The electric fields at the location of the

step in potential from the 0 V guide tube to the MCP guard tube causes this focusing.

Refocusing can be nearly eliminated either by holding the MCP guard tube closer to

ground or by increasing the kinetic energy of the ions so their trajectories are less

affected by the refocusing fields. The latter can be achieved by increasing the TIP

voltage.

Seeing the dramatic gains in magnification that can be achieved by adjusting volt-

ages, I tried this experimentally. Figure 5.6 shows a comparison of the experimental

results with the simulations. The results for (TIP = 500 V, MCP = -750 V) are close,

but for other voltages there is a large discrepancy. The discrepancy is investigated in

more detail below. One clue may be that the magnification in Figure 5.6 is dominated

by the particle trajectories in the vicinity of the MCP. Errors in the geometry used in

the simulation could have large effects on the trajectories. Also, the MCP dimensions

are not well known; the MCP is very delicate, so we cannot measure it with a ruler or

micrometer for fear of damaging its surface. These issues could explain why changing

the voltages did not give as much of a magnification gain as expected. However, this

cannot be the only issue, as we will see.

In addition to changing voltages, another way of increasing the magnification is to

decrease the initial distance from the tip. This is qualitatively in accordance with the

argument, based on similar triangles, that the magnification should be roughly the

ratio of distances of TIP to MCP and TIP to excitation region. Based on simulations,
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Figure 5.6: Middle plots: simulated ion trajectories for four different voltage settings. The voltages
on the TIP are labeled below the trajectories, and voltages on the MCP are labeled above. The
trajectory shown is for a particle started 10 µm from the imaging axis. At the top, I compare
experimental and simulated magnifications. The two sets of magnifications given for simulations
correspond to two individual-particle trajectories. The high magnification is for a trajectory close
to the imaging axis, starting the ion at 2 µm off-axis. The low magnification is for a trajectory
further off axis, starting the ion at 10 µm off-axis. The difference in these numbers is due to barrel
distortion.
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the magnification actually scales inversely with distance from the center of the hemi-

spherical cap on the TIP, which is Á 60 µm below the TIP surface; see Figure 5.1.

(This holds when there are no refocusing effects from the MCP, e.g. for 1600 V on

the TIP and 0 V on the MCP.)

The simulations shown in Figure 5.7 capture how the magnification depends on

all these parameters. The distance is plotted from the TIP surface, rather than the

center of the hemispherical cap, for easy comparison with experiment; experimental

magnification measurements are also shown. Experimental data (points) and simu-

lation results (lines) share the same color if they have identical voltage conditions.

In the simulation, reducing the MCP potential and increasing the TIP voltage helps

the magnification drastically. However, the gains shown in the simulation were not

61



completely realized experimentally.

There is reasonable agreement between simulation and experiment for the voltage

conditions of 500 V on the TIP and -750 V on the MCP. This holds for a range

of distances from the TIP. However, all other measured magnifications are about a

factor of 3.5x lower than simulations predict. It is particularly troubling that the cases

for (TIP, MCP) = (1600V, 0V) and (1600V, -140V) do not agree with simulation,

since with such a low voltage on the MCP the ions have straight trajectories. Thus,

the only geometry that matters is that near the TIP and merely the distance to

the MCP, not the geometry of the MCP guard tube (which is harder to measure,

as noted above). The TIP dimensions are known, and recently we have been able

to measure the distance from the TIP to the excitation plane with an accuracy of

10 to 20 µm by shadow imaging of an optical dipole trap (see Chapter VI). This

leads one to suspect that the potential generated by the TIP is not as expected. In

Section 5.2.3 we checked the hyperrelaxation algorithm against analytical results, so

the problem is not obvious. Another guess might be that the discrepancy is due to

time dynamics of the � 50ns-rise-time field ionization pulse. However, the cluster of

data in Figure 5.7 that was taken at 340 µm above the TIP for a variety of voltage

conditions (including 1600V, 0V) was measured using a high-voltage power supply

connected directly to the TIP, with no high-voltage switch, giving a constant voltage

over time. The time-dynamics of the field ionization therefore cannot be the source

of disagreement.

5.3.3 Sources of discrepancy

In the preceding sections, I have proposed and rejected a number of possible sources

for the discrepancy between the simulated and experimental results. Here I collect a

few of the most likely candidates.
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First I address the case of (TIP = 500 V, MCP = -750 V), shown in Figure 5.5b

and the left of Figure 5.6. The refocusing of the ion trajectories is primarily caused

by the fringe fields at the transition from the guide tube to the MCP guard tube. The

geometry of this transition region is critical. I varied the size of the guide tube in test

simulations to see the effect on magnification. All simulations presented so far used a

guide tube diameter of 2� ra � 14.1 cm, as marked in Figure 5.1. If instead I change

the simulation’s guide tube diameter to match the side length of the experiment’s

square guide tube (2� ra � 12.5 cm), the simulated magnification can be reduced by� 30%.

The sensitivity shown by this calculation suggests another potential source of dis-

crepancy. In the experiment, there is a gap between the guide tube and the guard

tube. The end of the guide tube is offset from the end of the guard tube both in r

and in z. (The r offset is roughly known based on radial dimensions; the z offset is

unknown.) In the simulation, the guide tube and guard tube are assumed to meet

at the same z, and the gap between them in r is filled by a ring with voltage set to

ground. This will change the fringe fields that focus the ions near the MCP.

For the case of (TIP = 1600 V, MCP � 0 V), there is no significant voltage step

between the guide tube and MCP guard tube. There are therefore no fringe fields

which could cause trouble in the model. For this case, it is unclear at this date where

the discrepancy between simulations and experiments comes from.

Given the discrepancies, I am inclined to believe the experimental calibrations.

It is unlikely that the experimental calibration could be a factor of 3.5 low, as this

would suggest the blockade radius is a factor of 3.5 smaller than that measured in

Chapter IV.
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5.4 Ion interactions and autocorrelations

In using ion imaging to measure a Rydberg blockade, there is legitimate concern

that ion-ion repulsion during the time of flight to the MCP could cause an anticorrela-

tion in ion positions on the MCP, independent of the dynamics of the original Rydberg

atoms. This would lead to a false blockade signal. In this section, we establish that

we could not have seen effects from ion-ion repulsion in our early experiments, and

we discover under what conditions we would be more likely to see these effects.

Despite the difficulty in properly predicting magnification ratios, we proceed to

simulate the experiment more completely, adding the Rydberg excitation blockade as

a hard-sphere non-quantum effect and adding Coulomb repulsion during ion flight.

For realistic experimental count rates and excitation volumes (6-10 Rydberg atoms

in a 9�9�50 µm volume), we find that in the simulation Coulomb repulsion effects do

appear in the autocorrelation function (Figure 5.8). The central void (white) shows

no ions detected within some minimum distance of each other. This feature, which is

due to the ion repulsion, is not present in our data.

Our experimental autocorrelations, as described in Chapter IV and shown in Fig-

ure 4.2, have a central black spot due to the autocorrelation of a blip with itself. We

called this the “self-term.” This feature is not present in the simulations because the

simulations treat ions as point-sized objects, which are detected at a point-sized loca-

tion on the MCP. In the experiment the blips on the MCP (fitted to a Gaussian) have

a radius (σ) of 1.8 pixels as detected by the camera, which is 1.8 pixels �40.4 pµm
on MCP)/(pixel on camera) � 72 µm on the MCP. This sets the resolution of the

MCP as discussed in Chapter III. The autocorrelation of this Gaussian will give a

“self-term” with radius
?
2 larger, or � 100 µm in distance units at the MCP. To

be visible, a void from Coulomb repulsion would have to be larger than this on the
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Figure 5.8: Autocorrelation of ion positions on MCP, from simulation. Imaging conditions are
1600 V on the tip and -280 V on the MCP. Note at this magnification the blockade radius now
covers the entire image, and the excitation region is larger still. Also note the lack of a large “self-
term” (black dot) in middle, which is present in the experimental data (see text). Its presence (and
size) in experiment will make the Coulomb effect difficult to see.

MCP.

For a fixed TIP voltage, the Coulomb feature’s size in the autocorrelation scales

with magnification. With the TIP at 1600 V, as simulated here, a magnification

of 220x would be required to make the Coulomb feature the same size as the “self-

term.” We have exceeded this magnification factor experimentally, but not by enough

to clearly see the Coulomb feature. Alternatively, reducing the TIP voltage would

increase the relative effect of the Coulomb repulsion in the initial ion cloud expansion

and make the Coulomb bubble visible at lower magnification. Other simulations

show 500 V on the TIP (and 0 V on the MCP) would give a requirement of � 130x

magnification to make the Coulomb bubble the same size as the “self-term.” This

may be feasible.

Other considerations may make the Coulomb feature more difficult to see, indicat-

ing that the required magnifications quoted above are lower limits. Not all Rydberg

atoms ionize simultaneously in the ionization field, for several reasons. First, the
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electric field from the TIP during field ionization is inhomogeneous, which leads to

the ionization field being reached by different atoms at different times. Second, the

ionization process is due to tunneling and thus has a random component to its tim-

ing. If ions are produced at different times, they will have larger initial separations

and thus smaller Coulomb repulsion. In the extreme case they will stream one-by-

one to the MCP, rather than traveling as an ion-bunch, completely eliminating the

Coulomb effect. We do not expect this extreme case, but in general we would expect

the Coulomb bubble to be harder to see than quoted above.

In the end, we have not made an attempt to see this Coulomb bubble as ultimately

it is scientifically uninteresting. The most important result of these simulations is

that the Coulomb effect is not significantly affecting our experimental measurements

of the Rydberg-Rydberg correlation function, because it is largely obscured by the

“self-term”.
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CHAPTER VI

Optical Dipole Trap Implementation and Characterization

6.1 Motivation

As seen in Chapter V, moving the Rydberg excitation position closer to the TIP

is an effective way to increase magnification in the ion imaging system. In the exper-

iments described in Chapter IV we could not move the excitation position closer due

to lack of atomic density in this region. The solution we implemented was two-fold.

First, we added an optical dipole trap (ODT) to collect denser atom samples near

the TIP. Second, we removed the wire mesh that originally covered the electrode

apertures.1 The wire mesh was preventing the implementation of the ODT 2 , and it

also turned out that MOT performance itself improved considerably when the mesh

was removed.

In this chapter I describe the implementation of the ODT in the experiment, as

well as the lineshape of the resulting Rydberg excitation spectrum which is peculiar

to this experimental setup.

1Removing the mesh did not increase the effect of residual static or dynamic stray electric fields.
2Actually, initial attempts to find the ODT using a 7 W beam caused the wire mesh to glow like a light-bulb

filament, depositing metal on the inside of the vacuum chamber windows and also partially melting the inside of the
window. This setback led to the removal of the mesh.
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6.2 Optical dipole traps (ODTs)

Typically an optical dipole trap is realized for an atomic species by focusing a

high intensity laser beam that is far detuned from any atomic transition. The large

detuning reduces scattering of the laser beam by the atoms. This nonconservative

part of the electric dipole interaction is thus minimized, and the conservative part

becomes dominant [66].

6.2.1 Shift of ground state

An optical dipole trap operates based on the electric-dipole interaction between

an optical electric field and an induced atomic dipole moment [67]. To calculate the

interaction strength we can use complex notation and take the electric field as3

Epr, tq � Re
!
Ẽpr, tq expp�iωtq) . (6.1)

We can write the induced dipole as

p̃ � αẼ (6.2)

where α is the complex polarizability, which depends on the driving frequency ω. The

interaction energy is then

Udip � �1

2
xp �Ey � � 1

2ǫ0c
Re tαu Ipr, tq , (6.3)

where the angular brackets denote the time average over the rapidly oscillating terms,

the field intensity is I � 1
2
ǫ0c|Ẽ|

2, and the factor 1
2
takes into account that the dipole

is induced, not permanent. If the light intensity is not uniform in space, as in the case

of a focused laser beam, then the atoms can be trapped in this conservative potential.

3Grimm et al. [67] does not use this convention and thereby disagrees with Jackson [65] and Berman and Malinovsky
[66], leading to his different equation for the intensity I.
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6.2.2 Shift of excited states

A semiclassical treatment shows that the above energy shift of the atomic ground

state is caused by a coupling to excited states by the laser field. In a two-state system

(|1y, |2y), the ground state energy is shifted by

U � |Ωpr, tq|2
2∆

(6.4)

where Ωpr, tq � ℘Ẽpr, tq{~ is the transition Rabi frequency (with ℘ the atomic dipole

moment operator), and ∆ � ω�ω0 is the detuning of the laser from the atomic reso-

nance. For a z-polarized light field, the atomic dipole moment operator is ℘ � ex1|ẑ|2y
(with ẑ the z-component of the position operator). For negative (red) detuning in

Equation 6.4, an attractive potential is formed. This is equivalent to the shift in Equa-

tion 6.3, and simply represents a different method for calculating the same thing

(assuming the applicability of the two-state semiclassical model). In the two-state

model, the excited state is shifted by the same energy as the ground state but with

opposite sign.

The excited state shift is important in shadow imaging directly out of a dipole

trap with the trapping light still on.4 Other experiments in the Raithel lab have

historically turned off the ODT trapping light in order to do shadow imaging, so that

the 5S Ñ 5P transition imaged by the probe beam is not shifted in frequency by

the trapping light. Due to space constraints 5 I do not switch the ODT light and

therefore probe a shifted 5S Ñ 5P transition. Resonance with the transition is then

determined by tuning the probe frequency to achieve the strongest absorption. An

additional benefit here is that the MOT atoms are not in resonance with the probe,

4It is worth noting that in a system with more than two states (such as Rb), the shift of the ground and excited
states will no longer be equal; for 85Rb, the shift of the 5P3{2 state is approximately 2/3 of the shift of the 5S1{2
ground state.

5There is no room on the laser table for an AOM to switch a 10 W 1064 nm laser beam.
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so they do not need to be removed before shadow imaging in order to see the dipole

trap. An example shadow image is shown in Figure 6.1.

6.2.3 Shift of Rydberg states

An ODT also shifts the energies of Rydberg states, though through an entirely dif-

ferent mechanism. Rydberg electrons are sufficiently loosely bound to the atomic core

that for the interaction with a laser field far from any atomic transition the electrons

can be considered quasi-free. In this case, the electron experiences a ponderomotive

potential due to the laser field [6]. The ponderomotive potential is the time-averaged

kinetic energy of a free electron oscillating in an electric field. It results from the

quiver motion of the electron at the optical frequency. For the electric field defined

in Equation 6.1 the ponderomotive (quiver) energy of an electron is

UQ � e2|Ẽ|2

4meω2
(6.5)

where �e and me are the electron charge and mass, respectively.

In general, the ponderomotive energy shift of a Rydberg level must be calculated

by averaging the ponderomotive shift over the Rydberg electron wavefunction. This

is important if the laser field has spatial intensity variations on a scale comparable

to the Rydberg wavefunction. This is the case for a high-n Rydberg atom (recall

n � 60 has xry � 0.29 µm; see Table 1.1) in an optical lattice (period 0.532 µm for

1064 nm trapping light). However, for a dipole trap focused to a Gaussian beam

parameter of w0 � 22.5 µm as in my experiment, one can assume the Rydberg atoms

are point-sized compared to the spatial variation of the free-electron ponderomotive

shift.

Recognizing that in general one can write the energy level shift of an object in
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terms of its polarizability,

U � �1

2
α|Erms|

2 (6.6)

one can write the polarizability of a Rydberg atom as [68]

αRyd � � e2

meω2
(6.7)

Note the negative polarizability means the Rydberg atom has a higher energy in an

oscillating electric field, so it is repelled from e.g. the focus of a laser beam.

6.2.4 Shift of the ground to Rydberg transition

When laser-exciting Rydberg states in an ODT, the transition frequency is shifted

due to the ground state and Rydberg state energy level shifts.6 At a given position

we can calculate the shift of the transition energy by using the polarizabilities of the

ground and Rydberg states. Here I give calculations for 85Rb for 1064 nm trapping

light.

One can estimate the dynamic polarizability of the ground state based on the

static polarizability. [69] states the dynamic polarizability α0pωq of the ground state

is related to its static polarizability α0 by

α0pωq � ω2
0α0

ω2
0 � ω2

, (6.8)

where ω0 is the resonant frequency of the lowest-energy transition from the ground

state (the D1 line). This approximate expression is valid for light detuned far to the

red of the D1 line. Using the static polarizability [69], [70] α0 � h � 0.079389 Hz
(V/cm)2

yields α0p1064nmq � h � 0.1801 Hz
(V/cm)2

.

Alternatively, one can use a value for the Rubidium ground state polarizability

that is theoretically calculated especially for 1064 nm light [71]: 4πǫ0 � 711.4a30 in SI

6For off-resonant two photon excitation to the Rydberg state we do not need to consider the shift of the 5P state.
We used off-resonant excitation for all experiments with the ODT; see Chapter VII. For resonant excitation through
the 5P state one would need to tune the lower transition laser to the shifted 5S Ñ 5P transition.

71



S
h

a
d

o
w

 o
f 

O
D

T

TIP

Io
n
 t
ra

je
c
to

ri
e
s
 t
o
w

a
rd

 M
C

P

z

xy

c
irc

le
: M

C
P

fie
ld

 o
f v

ie
w

480nm

780nm

1064nm

Top view

2 w0

2 w
0

z

x

y

Figure 6.1: Experimental geometry after the introduction of the ODT. At right is a top view showing
the crossing of the 780 nm, 480 nm, and 1064 nm beams as well as relative focal spot sizes. The
2� w0 widths are marked for the 480 nm and 1064 nm beams. The black circle shows an estimate
of the field of view of the MCP in the excitation plane (radius 25 µm), based on simulation results
in section 6.4.2. At left is a shadow image showing the position of the ODT above the TIP, as well
as a sketch of the first few hundred microns of the ion trajectories toward the MCP.

(MKSA) units. Then, α0p1064nmq � h � 0.1766 Hz
(V/cm)2

The Steck estimate is quite

close.

For the polarizability of the Rydberg state, we plug in ω for 1064 nm trapping

light and rewrite in a form like that for the ground state: αRyd � 4πǫ0 � 545a30.

Using these polarizabilities we can calculate the shift of the ground-to-Rydberg

transition:

∆U � URyd � U5S � �1

2
∆α

I

cǫ0
(6.9)

where

∆α � αRyd � α0 � �4πǫ0p545a30q � 4πǫ0p711a30q . (6.10)

Note that ∆α   0, so ∆U ¡ 0: the transition is blue-shifted in the ODT.
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6.3 Experimental implementation

With the addition of the ODT, the experimental geometry has changed somewhat

from that used in Chapter IV. The new geometry is shown in Figure 6.1.

As in the experiments of Chapter IV, we start with a MOT of 85Rb atoms and

produce Rydberg atoms via a two-step photoexcitation using 780 nm and 480 nm

laser pulses. Now, however, we use a crossed excitation scheme, bringing the 780 nm

beam7 in from �x (see the directions labeled in Figure 6.1). The 780 nm beam has

a Gaussian beam parameter of w0 � 0.75 mm while the 480 nm beam is focused to

w0 À8 µm. Each has vertical (ẑ) polarization, to have a consistent atomic quantiza-

tion axis and achieve maximum count rates. The excitation is detuned from the inter-

mediate 5P3{2 state by 1 GHz and has a two-photon Rabi frequency of 2π� 2.5 MHz

for the 59S1{2 Rydberg state.

The ODT beam comes into the chamber at an angle of 15�2 degrees from the

y axis, as depicted in Figure 6.1. The angle between the ODT and 480 nm beams

is 34�3 degrees. The ODT has 4 W of power and a focal spot of w0 � 23 µm,

overlapped with the 480nm beam focus.

Bringing the 780 nm beam in from �x allows us to use the 780 nm beam for

both shadow imaging as well as the lower excitation. For shadow imaging we place

a camera at an imaging port at �x which is relatively close to the atoms. We use

an adaptation of a 2-f imaging system, with a 20 cm and a 15 cm lens between the

atoms and camera. This demagnifies the image of the ODT onto the camera CCD.

With the 6.7 µm pixel size of the Pixelfly camera we then have a resolution of 8.9 µm

at the position of the atoms. The ODT shadow is then only a few pixels wide in the

7It should be noted that in Chapter IV the 780 nm excitation beam was derived from the MOT laser. Here, we use
a separate laser for the 780 nm beam in order to detune 1 GHz from the 5S Ñ 5P resonance, allowing off-resonant
excitation. The frequency flexibility of this laser also allows tuning to resonance with the 5S Ñ 5P transition for
shadow imaging.
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CCD image.

The 780 nm probe is frequency shifted with a double-pass AOM setup in order to

obtain a frequency that will be resonant with the light-shifted 5S Ñ 5P transition

in the ODT, while still allowing a convenient lock point using saturated absorption.

This AOM is also used to pulse the beam; because the beam is not focused through

the AOM, the minimum pulse length is relatively long (� 1.4 µs). This puts a lower

limit on the usable excitation pulse lengths.

Also shown in Figure 6.1 is the approximate size of the MCP field of view in the

excitation plane. This is relevant to the detected ODT excitation spectrum described

in section 6.4.

6.4 ODT spectrum in the TIP experiment

When performing laser excitation of Rydberg states out of an ODT loaded from a

MOT, one generally expects to see two spectral features: the first from excitation of

atoms still in the MOT, and the second from excitation of atoms in the ODT. The

second feature will be spectrally blue-shifted from the first, as per the discussion in

section 6.2.4. An example calculated spectrum is shown by the solid blue curve of

Figure 6.2. (The details of the simulation will be addressed in Section 6.4.2.) The

shape of the spectral feature from the ODT is explained as follows. The spatial distri-

bution of atoms in the ODT is determined by a Maxwell-Boltzman distribution in the

ODT potential. Since the probability of occupation of a position varies exponentially

with its 5S energy shift, and the ground-Rydberg transition is proportional to the 5S

shift, the spectral feature from the ODT will approximately be a rising exponential

up to the ground-Rydberg frequency at the center of the trap.8 To the blue of this the

8Note that one also must account for the number of states at a given energy, based on 1) the geometry and 2) the
trapping potential. Specifically for a cylindrical geometry and a harmonic trapping potential (i.e. an ODT near trap
center), the spatial factors cancel to give the above result. See Appendix B.

74



 0

 0.2

 0.4

 0.6

 0.8

 1

-10  0  10  20  30  40  50

MHz (MOT line = 0)

Simulated ODT spectra

w0=22.5µm, P=4W, ρmax=12µm, T=200µK
w0=22.5µm, P=4W, ρmax=25µm, T=200µK
w0=22.5µm, P=4W, ρmax=50µm, T=200µK
w0=22.5µm, P=4W, ρmax=12µm, T=400µK
w0=22.5µm, P=4W, ρmax=25µm, T=400µK
w0=22.5µm, P=4W, ρmax=50µm, T=400µK

Figure 6.2: Simulated ODT spectra for different excitation volumes and temperatures. Solid lines
are 200µK, dashed are 400µK. The frequency at which the ODT spectrum cuts off (on the red
side) depends on the excitation volume. Radii of 12µm, 25µm, and 50µm lead to cutoffs at roughly
18MHz, 3MHz, and no cutoff, respectively. All use an ODT with w0 � 22.5 µm.

spectrum falls off continuously due to the finite laser linewidth used for excitation.

In my experiment, we see the MOT line disappear any time the ODT is on. Exam-

ple experimental spectra are shown in Figure 6.3. In order to eliminate the spectral

feature from atoms in the MOT, one normally needs to e.g. turn off the MOT and

let the atoms fall away due to gravity, or use a “depumper” beam to pump atoms

outside the ODT from the 5S1{2 F � 3 ground state to the 5S1{2 F � 2 dark state.

The depumper beam would only be resonant with atoms in the MOT, and would have

minimal effect on atoms in the ODT. In our case, the MOT-line disappearance is due

to the ODT roughly filling the field of view of the MCP, as depicted in Figure 6.1 and

as established below. In essence, Rydberg atoms excited outside of the ODT will not

hit the MCP upon field ionization.

In section 6.4.1 I estimate the field of view to show it should have an effect on the
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Figure 6.3: Experimental spectra. The red line is the MOT spectrum (with ODT off). The blue line
is the excitation spectrum from the ODT. Note that when the ODT is turned on, the MOT peak
disappears. Also, the ODT peak does not have an exponential rise from left to right (red to blue)
as theoretically expected (see text and Figure 6.2); rather, there is a sharp cutoff on the red side.

Rydberg excitation spectrum out of the ODT. In section 6.4.2 I present simulations

that attempt to reproduce the experimental spectra.

6.4.1 Field of view from ion trajectories

Here, I present estimates for the MCP field of view based on ion trajectory simula-

tions. In the experiment giving rise to the excitation spectra shown in Figure 6.3, the

TIP voltage was switched to 1600 V and the MCP front plate voltage was �140 V.

The excitation position was � 200 to 250 µm above the TIP. Ion trajectory simula-

tions for these conditions suggest that an ion more than 10-12 µm off the imaging

axis will clip on the guide tube walls and thus will not reach the MCP. This suggests

a field of view with radius � 11 µm.

We have seen in Chapter V that the trajectory simulations consistently overesti-

mate the magnification in the experiment. We therefore expect the experimental field
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Excitation region is
broken up into grid
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+zmax
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Figure 6.4: The geometry used in the simulation. Excitation from the ODT is done on a grid defined
by the parameters ρmax and zmax.

of view to be a factor of � 3 larger.

It should be noted that this expectation assumes that the ions do have relatively

straight trajectories on their way to the MCP, as suggested by the trajectory shown

in Figure 5.6 for the above voltage conditions. This assumption seems to be borne

out by the results below.

6.4.2 ODT spectrum simulations

To calculate the Rydberg excitation spectrum in the ODT, our simulation breaks

up the excitation region into a 2D grid as depicted in Figure 6.4. (Limitations of

the 2D geometry are discussed in section 6.4.3.) Transverse to the ODT the grid is

set off-center, with radius between zero and ρmax; while longitudinally it is centered

running from �zmax to �zmax. We let the width of the 480 nm excitation beam define

the width of the excitation region (zmax � w0) as shown in Figure 6.4. The dimension

ρmax is varied as decribed below.

For each laser frequency, the excitation probability for a grid point is calculated

using the light shift of the transition for that location and a Lorentzian spectral

profile for the laser. The laser is taken to have a linewidth of 2 MHz (FWHM). Each

grid point is additionally weighted by a Maxwell-Boltzman factor, accounting for the

relative population of atoms at different points in the trap.
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A given field of view in the imaging system can be approximated by adjusting the

size of the excitation region ρmax in the simulation. I calculate spectra for ρmax �
12 µm, 25 µm, and 50 µm. To set the temperature I choose values between the

Doppler cooling limit (140 µK) and the trap depth. The depth of the dipole trap for

parameters of 4 W and w0 � 22.5 µm is 16.7 MHz (the shift of the 5S state), which

corresponds to 800 µK. Simulation results for a temperature of T � 200 µK are

shown in Figure 6.2 as solid curves. Results for T � 400 µK are shown as dashed

curves. All curves are scaled to make their maximum value � 1.

It is clear from Figure 6.2 that the red side of the excitation spectrum is cut off

at a frequency that sensitively depends on the size of the excitation volume, ρmax.

By comparing this cutoff frequency to the experimental spectra, I can determine the

field of view of the MCP in the experiment.

Comparison with experimental spectra are shown in Figure 6.5. The simulated

spectra have been rescaled vertically to approximately match with the left side of

the experimental ODT spectra. Each simulated temperature has been rescaled inde-

pendently, but curves of the same temperature have the same scaling. A simulated

excitation volume of ρmax � 25 µm gives good agreement with the cutoff of the ODT

spectrum on the red side, removing the MOT peak. This value of ρmax is about a

factor of 2 to 3 higher than predicted by ion trajectory simulations, as we expected

based on the discussion of Section 6.4.1. It is also close to the w0 of the ODT, which

is expected as a physical necessity for cutting off the MOT from the field of view.

We do not expect good agreement between simulations and experiment at all

frequencies in the spectrum because the simulation completely neglects Rydberg-

Rydberg interactions, which lead to saturation of the excitation spectrum. This

saturation has been measured for the ODT spectrum. There was little to no saturation
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Figure 6.5: Comparison of simulated and experimental ODT spectra. The experimental ODT
spectrum is best matched by the simulation with parameters T � 400 µK and ρmax � 25 µm.

to the red of the highest point on the experimental ODT spectrum (the “shoulder”),

but considerable saturation to the blue of the shoulder.9 Therefore I expect the

simulated spectra to be able to match the slope to the left of the shoulder, but not

to the right.

It appears that 400 µK gives better agreement with the slope of the experimental

ODT spectra. This temperature is considerably higher than the Doppler cooling limit,

but is reasonable based on the following consideration. Since there is no separate laser

cooling step in the experiment to cool atoms deeper into the ODT, we can generally

expect the temperature of the atoms to be about half of the depth of the trap, due

to dynamic loading from the MOT and balancing evaporation from the ODT. The

trap depth (as mentioned above) is 800 µK, so half of this agrees with the spectrum-

indicated 400 µK. This temperature is thus reasonable.

9Here I refer to the shoulder as a convenient reference point; this measurement of the location of onset of saturation
is not precise.
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Figure 6.6: The simulation geometry in (a) is a simplified drawing of Figure 6.4, showing the
excitation geometry from the top. Fig (b) shows the same in a longitudinal view, along the ODT
propagation direction. The dashed line is the planar grid of the excitation region. In (c) the relative
sizes of the ODT and excitation region are adjusted. The 2D approximation of using a planar
excitation region is now not as good. We should weight grid points by their radius from the ODT
axis, in order to account for equivalent positions on a cylindrical shell around the ODT axis all
being inside the excitation region. This cylindrical shell is depicted with a dotted circle, with arrows
indicating the azimuthal integration required.

6.4.3 Limitations of the simulation

Since the simulation uses a 2D grid, it does not account for the whole 3D excitation

volume in the experiment. It is a reasonable approximation if the excitation volume is

defined by a beam focused much smaller than the ODT, as in my experiment and as

depicted in Figure 6.6(a) and (b). Otherwise, one must account for the larger number

of 3D points at larger distances from the ODT axis. Failure to do so will change the

shape of the spectrum, overemphasizing points at low radius and undercounting points

at large radius. This makes the spectrum appear to be for a lower-temperature gas

than that simulated. Attempting to match a simulated spectrum to data will then

suggest a higher-than-accurate experimental temperature.

The opposite geometric limit is suggested by Figure 6.6(c). If the 3D excitation

volume is much larger in radius than the ODT, and especially if it fills the whole field

of view of the MCP, then one can simply weight each 2D grid point by its distance

from the ODT axis (in addition to the Maxwell-Boltzman weighting already used) to

account for a cylinder of 3D points around the axis.

In general, however, the simulation should be done in 3D and the excitation prob-

ability should be weighted by assuming a Gaussian excitation beam. Then the sim-
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ulation volume can be set larger than the excitation volume and will not bias the

result.

6.5 Conclusion

In this Chapter I have described the implementation of an optical dipole trap

in my experiment, for the purposes of increasing ground state atom density and

increasing magnification in the Rydberg imaging system. I have also reproduced the

basic features of the experimental ODT spectrum in a set of simulations.

By comparing to simulation, I have used the experimental ODT spectrum to make

an estimate of the MCP field of view, which corroborates experimental measurements

of the magnification factor presented in Chapter V. The experimental field of view is

a factor of 2 to 3 higher than in simulations; just as (correspondingly) the experimen-

tal magnification measurements are a factor of � 3 lower than in simulations from

Chapter V. The source of the disagreement is still unknown, but the factor difference

is consistent.

Finally, I have used the shape of the ODT spectrum to estimate the temperature

of the atoms in the ODT.

The stage is now set for Rydberg imaging experiments in the ODT.
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CHAPTER VII

Blockade in an ODT

7.1 Motivation

Having implemented an ODT as described in Chapter VI and improved the ex-

perimental magnification as described in Chapter V, my eventual goal is to create

and detect a Rydberg crystal (described in Chapter VIII). For present purposes:

The production of a Rydberg crystal depends on an adiabatic frequency sweep of the

excitation laser across the ground to Rydberg transition, and the dimensions of the

crystal lattice depend on the Rydberg-Rydberg interactions. In Chapter VI we have

seen that the Rydberg transition frequency is affected by the ODT light, which I can-

not turn off during an experimental cycle. It therefore seems prudent to investigate

the effect of the ODT on the blockade, before attempting to create a Rydberg crystal.

Before starting this investigation, it is useful to check an even simpler phenomenon.

In Section 2.2.3 (and Figure 2.5) I discussed the prediction of Robicheaux and Hernández

[47] that the Rydberg-Rydberg correlation function depends quite impressively on the

detuning of the excitation laser from the Rydberg transition. It is useful to check the

effect of laser detuning because it should be a cleaner implementation of the same

underlying physics as light-shifts in an ODT. In the first case we detune the laser

from a fixed Rydberg transition frequency; in the second the ODT causes a detuning
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of the Rydberg transition (but with spatial variation) from a fixed laser frequency.

In this Chapter I therefore present experimental studies of laser detuning and

optical potentials on the Rydberg blockade. Our experimental setup is as described

in Section 6.3. To study the effect of laser detuning alone, we do not use the ODT

laser.1

7.2 Comparison to previous experimental parameters

The excitation region is still surrounded by an electrode package for electric field

control. The wire mesh which covered the electrode apertures for the experiments

of Chapter IV has been removed, as mentioned in Section 6.1. This has caused a

loss of electric field control in the y-direction, due to the large apertures in the y-

electrodes (see Figure 3.1b). Despite loss of electric field control in the y-direction,

Stark spectroscopy still shows electric fields below the � 20 mV/cm level (as discussed

in Section 5.2.2) so residual fields have not affected our experiments.

The photoexcitation region is � 200 µm above the TIP (rather than the � 300 µm

used in Chapter IV). After excitation, we perform spatially resolved detection of

the the Rydberg atom positions using field ionization, as described in Chapters III

through V.

Based on the results of the ion trajectory simulations and the magnification mea-

surements in Chapter V, I now use 1600 V on the TIP and �140 V on the MCP front

plate. This reduces refocusing effects and thereby increases the magnification by a

factor of � 2, compared to the voltage settings of 500 V on the TIP and -750 V on

the MCP used for the experiments of Chapter IV. This voltage change, as well as

now being able to move the excitation region closer to the TIP, results in a magnifi-

1The removal of the mesh, as described in Section 6.1, sufficiently improved the MOT density close to the TIP
that the ODT is ironically not needed to improve count rates in blockade studies.
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cation of m � 320, which is � 3.5 times higher than in Chapter IV. The resolution

in my sytem is now comparable to the diffraction-limited optical detection schemes

mentioned in Chapter II, as described in Section 2.3.3.

7.3 Peak detection algorithm and coarse-graining

To measure the Rydberg-Rydberg correlation function, I first acquire 10 000 CCD

images of the MCP phosphor screen, each image showing ion impact positions for

a single experimental cycle of Rydberg excitation and ionization. I calculate the

Rydberg pair-correlation for each experimental cycle and then average these results,

using the general method described in Chapter IV.

In Chapter IV, I calculated autocorrelations of the MCP images directly, with min-

imal preprocessing to remove noise. An obvious alternative is to use image processing

algorithms to detect individual ion positions in the images, and then to calculate the

pair-correlation using these discrete positions.2 This was not done previously because

in some cases ions would be detected with separations too small to be resolved by our

peak detection algorithm (e.g. see near the top of Figure 4.1a). Higher magnification

has now made this limitation unimportant, as the blockade radius is much larger than

the minimum detectable ion separation. I now use this peak detection method, as it

has the advantage of giving equal weight to each detected ion, regardless of variations

in signal intensity on the MCP phosphor due to variabilities in MCP channel or phos-

phor efficiency. The peak-finding algorithm also allows detection of ions whose signals

are only barely above the image noise floor, which effectively doubles the ion count

rates in the images, giving much better statistics in the Rydberg-Rydberg correlation.

I have also improved the statistics of the Rydberg-Rydberg correlation measure-

2Here I again bring attention to the difference between the autocorrelation and pair-correlation functions, as
described in Chapter IV, footnote 2. Calculating the pair-correlation of particles requires distinguishing between
separate particles, to remove the self-term.
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Figure 7.1: (a): Rydberg-Rydberg correlation function (Ā1) measured for the excitation of state
59S1{2 from the MOT, using the peak detection algorithm to find Rydberg atom positions. (White
indicates a value of 0 and black a value of 2, where   1 indicates anticorrelation and ¡ 1 indicates
correlation.) (b): Result of the coarse-graining operation applied to the correlation function in (a).
The coarse-graining greatly reduces noise. (c): For comparison: correlation function Ā1 for state
70D5{2 from the data and the analysis method of Chapter IV. All subfigures share the same physical
scale marked by the 10 µm scale bar.

ment by recognizing that the MCP has a lower resolution than the CCD camera. As

discussed in Chapter III, blips on the MCP have a Gaussian radius (σ) of 1.8 pixels

on the camera. Individual blips therefore cover a region of size roughly 5 � 5 pixels.

We can essentially consider the Gaussian radius to be the size of the measurement

error in determining blip locations. In the pair-correlation, then, the displacement

between blips is uncertain to about 5 pixels. I therefore calculate a coarse-grained

average of the pair-correlation, reducing the linear scale by a factor of 5. This opera-

tion is shown in Figure 7.1 (a) and (b). Each pixel in the fine-grained pair-correlation

(a) is projected onto the nearest four pixels in the coarse-grained pair-correlation

(b) using a pyramid function that preserves normalization. Note that this coarse-

graining was inherent in the previous method of calculating the autocorrelation of

the image directly, because of the point spread function of each detected ion (the blip

radius). With peak-detection, I account for the MCP resolution by coarse-graining.

Coarse-graining greatly reduces the noise in the correlation image.

I now describe the specific structures in the correlation function shown in Fig-
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ures 7.1 (a) and 7.1 (b), for comparison to the data from Chapter IV shown in

Figure 7.1(c). As described in Chapter IV, correlation values indicate the likelihood

of finding Rydberg atoms with a given separation vector. A value of 1 indicates no

correlation, i.e. the equivalent of random Rydberg positions. Values   1 indicate

anticorrelation, and ¡ 1 positive correlation. The grayscale in Figure 7.1 (and for

all other correlation functions in this chapter) is set such that white is 0, and black

is 2.3 With the peak detection algorithm, there is zero probability of finding two

different blips within one blip radius σ. In Figure 7.1(a) there is therefore a small

central white region of size equal to the blip radius, which is mapped onto a single

central white pixel in (b). Outside of this there is a large grey/white region (radiusÀ 10 µm) of reduced probability to detect a second Rydberg atom, due to the block-

ade effect. Surrounding this there is a dark ring of slightly enhanced probability to

detect a second Rydberg atom, beyond which the correlation function goes roughly

to 1.

The correlation function for state 70D5{2 from the data and methods of Chapter IV,

shown in Figure 7.1(c), is quite different. The first thing to notice is that the center

is black, due to the self-term (which is eliminated via peak detection in (a) and (b)).

Second, the self-term in (c) appears much larger than the white blip radius in (a,b).

This is due to the factor of � 3.5 less magnification in the experiments of Chapter IV

(see Section 7.2). The self-term is so large that it nearly obscures the surrounding

white region of depressed probability to detect a second Rydberg atom, which is

the signal of the blockade.4 Outside of this white ring, the correlation function in

(c) becomes somewhat noisy due to low count rates. The noisiness of the correlation

3Note for comparison that in Chapter IV, Figure 4.2, the grayscale is arbitrary because the autocorrelations
pictured there are Ā (see Equation 4.2), not the normalized Ā1 used here (see Equation 4.5). For the data displayed
in Chapter IV, only the Iprq curves and Figure 4.1(f) are normalized.

4Note that the 70D5{2 data is the best-looking data from Chapter IV.
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function has been reduced since the experiments of Chapter IV by: increasing ground-

state atom density, increasing 480 nm laser power (by using a different laser), and

using the more-sensitive peak detection algorithm to find peaks that are near the

noise floor. Comparing Figures 7.1(b) and (c), the benefits are apparent.

7.4 Correlation measurements

Using the above procedure, I measure the Rydberg-Rydberg correlation function

for excitation to states 59S1{2, 66S1{2, 74S1{2, 57D5{2, 64D5{2, and 72D5{2. Laser

excitation pulse lengths were 5 µs for S-states and 1 µs for D-states, to account

for the difference in oscillator strength and make count rates comparable. For some

states, excitation rates are low enough that up to half the pictures show fewer than

two counts, thereby not contributing to any correlation measurement. I thus use the

5 000 pictures with the highest number of counts for calculating each average pair-

correlation. I do this for all states, so that correlation functions can be compared

between different states.

For each state, I adjust the 480 nm laser frequency to excite at various frequency

points on the MOT spectrum and ODT excitation spectrum. Rydberg-Rydberg cor-

relations are measured at these frequencies.

7.4.1 Excitation from MOT

Typical excitation points on the MOT spectrum are indicated by vertical black

lines on the spectrum in Figure 7.2. The excitation frequencies are chosen to be

at the peak of the spectrum and the half-max points for red and blue detuning.

The spectrum shown is for an S-state. It is asymmetric due to Rydberg-Rydberg

interactions; broadening is to the blue, due to repulsive van der Waals interactions.

As mentioned in Section 2.2.3, a laser detuning in the direction of the van der
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Figure 7.2: At left: MOT excitation spectrum for 59S1{2. The vertical black lines show frequencies
at which correlation functions were typically measured: the peak, and the half-max points. At right:
Level diagrams for off-resonant excitation from MOT. The laser frequency is f , and the energy to
excite one Rydberg atom is WRyd1. Dotted lines indicate energy levels without interactions. Solid
lines are energy levels with interactions. Dashed lines show the laser frequency. The diagrams
show the directions of detuning of f from WRyd1 which will give a “two-photon resonance” (direct
excitation of two Rydbergs) for S and D states. (See text.)

Waals shift can preferentially excite atoms at a given separation. This is depicted

in the level diagrams on the right of Figure 7.2. The energy of a single Rydberg

atom is labeled WRyd1. For S-states, the pN, k � 2q energy level (two Rydberg

excitations) is higher than 2�WRyd1 due to repulsive interactions. A detuning of the

laser frequency f to the blue of WRyd1 can cause a “two-photon”5 excitation to thepN, k � 2q state, off resonant past the pN, k � 1q state. For larger laser detuning,

a larger interaction energy is needed to tune the pN, k � 2q state into resonance;

therefore the two Rydberg excitations will be found closer to each other. The case

for D-states is identical, except that the direct pN, k � 0q Ñ pN, k � 2q excitation
should happen for red detuning of f from WRyd1.

Normalized pair-correlations Ā1 (see Figure 4.1(f) and Equation 4.5) for excitation

to S-states are shown in Figure 7.3. I excite states 59S1{2, 66S1{2, and 74S1{2 using

laser frequencies that are on-resonant, red-detuned, and blue detuned. In the figure,

we see some dramatic trends. First, the blockade radius is in all cases very well re-

5See footnote 5, Chapter II.
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Figure 7.3: Rydberg-Rydberg correlation functions for excitation to S-states from the MOT. The
states excited are 59S1{2, 66S1{2, and 74S1{2 (see labels at left). The detuning direction from the
MOT resonance is labeled above, and the precise detuning value is labeled on each image. The
physical scale is marked on the correlation function for 59S1{2, on-resonant excitation. The scale is
common for all correlation functions. No data was taken for state 66S1{2 with red detuning.
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Figure 7.4: Rydberg-Rydberg correlation functions for excitation to D-states from the MOT. The
states excited are 57D5{2, 64D5{2, and 72D5{2 (see labels at left). The detuning direction from the
MOT resonance is labeled above, and the precise detuning value is labeled on each image. The
physical scale is marked on the correlation function for 57D5{2, on-resonant excitation. The scale is
common for all correlation functions.
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solved (as compared to the data of Chapter IV). Second, for on-resonant excitation,

increasing the n quantum number drastically increases the blockade radius. (Quan-

titative statements about this will be made in Section 7.5.) Third, we see for blue

detuning that there is a dark ring around the blockaded region, indicating enhanced

probability for a second Rydberg excitation at this radius. This is in accordance

with the predictions of Robicheaux and Hernández [47] described in Section 2.2.3 and

above. The ring is not as prominent for state 59S1{2 as for the other states because

the blue detuning is less; this is the one correlation measurement for which I did

not excite at the half-max point, but rather about halfway between the half-max

point and the peak of the spectrum. Otherwise, the asymmetry between blue and

red detunings chosen show the asymmetry of the MOT spectrum, mentioned above.

Figure 7.4 shows similar correlations for the excitation of D-states. Again we see

the trend of increasing blockade radius with increasing n. However, there is no clear,

consistent trend with respect to laser detuning. Red detuning gives a darker ring

for 57D5{2, as I would expect. But for states 64D5{2 and 72D5{2 there is no strong

difference between red and blue detuning. Blue detuning may in fact show stronger

rings for 64D5{2. First, I note that Robicheaux and Hernández [47] only make predic-

tions of the correlation functions for repulsive interactions, not attractive interactions.

Nonetheless, it makes sense based on the energy level diagram of Figure 7.2 to expect

rings for attractive interactions with red detunings. I believe the absence of rings (at

red detuning) for states 64D5{2 and 72D5{2 is due to electric field control problems

during the collection of this data. The 57D5{2 data was taken later, after these electric

field problems were solved. An electric field can cause the excitation of a variety of

mj sublevels in the Rydberg state, due to the quantization axis defined by the electric
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field not lining up with the quantization axis defined by the laser polarizations (ẑ).6

The different mj states have different interaction strengths as shown in Figure 2.2,

leading to a variety of blockade radii in the system, washing out the expected ring

structure for red detuning. Indeed, the 72D data may show faint multiple rings for

on-resonant excitation, indicating the presence of multiple mj states.

We have thus seen the “two-photon resonance” predicted by Robicheaux and

Hernández [47] for S-states, which is a direct excitation of two Rydberg atoms at

a separation that depends on laser detuning. Experimentally, it is interesting to note

that this is a four-photon transition, because each Rydberg transition involves both a

780 nm and a 480 nm photon. I will use the evidence of this effect in the interpretation

of my data for excitation from the ODT, below.

7.4.2 Excitation from ODT

In a similar set of experiments, I excite Rydberg atoms out of the ODT at differ-

ent frequency points on the ODT spectrum. A few of these correlation functions for

excitation of 59S1{2 are shown in Figures 7.5(b-d). These correlation functions cor-

respond to the frequency points indicated in Figure 7.5(e) by the vertical black lines

at 24 MHz, 32 MHz, and 40 MHz. For comparison, the result for resonant excitation

out of the MOT is shown in Figure 7.5(a). The resonant MOT excitation frequency

is marked by a vertical black line at 0 MHz in Figure 7.5(e).

With larger detunings, the ring in the pair-correlation both shrinks in radius and

grows in intensity. This can be seen both in the images (a-d) and in the plot of the

angular averages, (f). At 40 MHz detuning there is a clear second ring in Figure 7.5(d).

This is especially clear as the second peak in Figure 7.5(f). I believe this is due

to exciting a string of three equally-spaced Rydbergs, with the center Rydberg at

6See the discussion in Section 7.5 for the expected selection rules without an electric field.
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Figure 7.5: (a): Correlation function for resonant excitation out of the MOT, for comparison with
ODT correlation functions. (b-d): Correlation functions for excitation out of the ODT, at the
indicated detunings from the MOT peak. (e): Spectra for excitation of 59S1{2 from the MOT (red
curve) and ODT (blue curve). Black vertical lines indicate the excitation frequencies used to acquire
the correlation functions presented in (a-d). The 0 MHz line is an excitation from the MOT with
the ODT off; the other lines are excitation from the ODT. (f): Angular averages of the correlation
functions in (c-f), with error bars calculated by the standard deviation of the mean (see text). The
curves correspond to correlation functions as follows. Red: (a) MOT; Green: (b) ODT 24 MHz;
Blue: (c) ODT 32 MHz; Purple: (d) ODT 40 MHz.
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the deepest part (the three-dimensional center) of the ODT. My model for these

trends will be presented in Section 7.5, once I show our slightly changed method for

measuring the blockade radius in this chapter.

To measure the blockade radius, as in Chapter IV we use curves like those shown

in Figure 7.5(f). These are essentially the angular averages of the pair-correlations in

Figure 7.5(a-d). More precisely, in the notation of Chapter IV, these curves are

Iprkq � ³
Sk

Ādφ

Np

³
Sk

Bdφ
(7.1)

where φ is the angle around the center of the picture, Np is the number of pictures in

the dataset (for normalization), and Ā and B are calculated without coarse-graining.

The coarse-graining step is achieved by doing each integral on an annulus (denoted

Sk) of width 5 pixels centered at rk. Note this is similar to the angular average of

Ā1 but not identical, due to dividing after integration. Locations in B outside the

cigar shaped beam have lower count rate (and therefore lower values of Ā, B) and are

therefore weighted less in this angular average in Eqn 7.1. This will tend to reduce

noise by minimizing the influence of pixels at large radius (e.g. � 15µm) outside the

excitation beam, without diminishing the influence of pixels at the same radius but

still within the excitation beam.

I estimate the error on these Iprq curves for 5 000 pictures by testing the variability

of the results for subsets of the dataset. I break the 10 000 picture dataset into subsets

of 2 000 pictures, calculate Iprkq for each, and measure the standard deviation of the

mean for each point rk. This calculation yields the error bars shown in Figure 7.5(f).

Because I did not throw out the 5 000 pictures with low count rate when forming

these subsets, this standard error of the mean is an overestimate of the error of the

points in the plot. The error increases dramatically at large laser detunings due to

reduced count rates.
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7.5 Blockade radius measurements

I measure the blockade radius rb for each Iprq curve using the point closest to the

origin where Iprq crosses its asymptotic value for large r. (In most cases this is the

expected value of � 1, but there is sometimes a deviation from 1 due to low count

rates at certain excitation frequencies.) This method is different from that used in

Chapter IV, where I measured rb as the inflection point of Iprq. The difference arises

due to the new method of peak detection for calculating the correlation function,

which slightly changes the shape of the correlation function; an inflection point can

no longer be identified on most Iprq curves. The new asymptote-crossing method is

suggested by results of a stochastic non-quantum simulation of the excitation-blockade

process, similar to that described in Chapter IV. The simulation uses a hard-sphere

blockade of specified radius rb as input. The resulting Iprq curves have asymptote

crossings which agree to within �1µm of the input rb.

Before moving to the ODT, I first measure and predict the blockade radius for

each state as excited from the MOT. The predictions are based on van der Waals

interactions as described in Chapters II and IV. For the calculations I use interaction

strengths from Figures 2.2 and 2.3 (originally from [37]). For D-states I pick W̃ p2q
as appropriate for the excitation geometry and laser polarizations described in Sec-

tion 6.3 for the current experimental setup. With ẑ-polarized excitation beams I drive

π transitions, to excite 5S1{2 Ñ |nD5{2, mj � �1{2y, so I use interaction strengths for

mj � 1{2 states. I have an interaction angle of θ � π{2 due to the quantization axis

being perpendicular to the direction of propagation of the excitation beams, along

which the Rydberg excitations will be roughly lined up. Laser linewidths, for use in

calculating rb via Equation 2.10, are chosen to be the inverse of the excitation pulse

length. The predicted and measured blockade radii shown in Figure 7.6 agree quite
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Figure 7.6: Measurements and predictions of the blockade radius rb for several nS1{2 and nD5{2
states. Predictions are based on excitation linewidths that are assumed to be equal to the inverse of
the excitation pulse time. For S-states with 5 µs excitation pulses this is 200 kHz; while for D-states
with 1 µs pulses this is 1 MHz. Predictions using both linewidths are plotted for each state in order
to show an expected range for rb.

well.

I now move to measuring the blockade radius when exciting from the ODT. Mea-

surements are shown in Figure 7.7, as a function of laser detuning from the MOT line,

denoted f .7 Predictions in the figure are calculated using a one-dimensional model

which I explain here. In this model I must account for spatially-dependent light

shifts of the Rydberg transition in addition to the interaction energy between the

Rydberg atoms to correctly predict the blockade radius. The light shifts of the two

Rydberg atoms, f1 and f2, are determined by the dynamic polarizability of both the

5S1{2 ground state and the Rydberg state for 1064nm laser light, as described in Chap-

ter VI. For the ground state this is α5S � 4πǫ0�711.4a30. [71] The polarizability of the

7Note that this is a change in notation from earlier in the chapter where I used f for the absolute frequency of the
laser, not the detuning from the MOT line. See e.g. Figure 7.2.
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predictions based on solving Equations 7.2 and 7.3. The vertical dotted line indicates the maximum
light-shift of the ground-Rydberg transition (fmax), at the 3D center of the ODT.

Rydberg state is calculated via the ponderomotive effect to be αRyd � �4πǫ0�545a30.

For energy conservation in the excitation process we have

f1 � f2 � Vint{h � 2f �∆f (7.2)

where ∆f is the laser linewidth, and the Rydberg-Rydberg interaction energy is

Vint � Ehartree � W̃ p2qpn�q11ppx1 � x2q{a0q6 (7.3)

where x1 and x2 are the positions of the Rydberg atoms. In this one-dimensional

model, the positions are measured transverse to the ODT focus so that the optical

potential varies with position x.

We first consider a step-wise excitation of two Rydberg atoms, as shown in Fig-

ure 7.8. The first Rydberg is resonantly excited at a position r1 in the ODT such that

the light shift of the transition, f1, equals the laser detuning, f , from the transition

with zero light shift. The position of the second Rydberg is determined by balancing
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left. For D-states the second atom must be at higher light intensity (f2 ¡ f1).

its light shift f2 and the interaction energy Vint to yield a second on-resonant transi-

tion, solving equation 7.2. There are four solutions, corresponding to x2   x1 and to

x2 ¡ x1 for each of the signs in Equation 7.2. In the experiment, only the smallest

of these will be apparent in the pair-correlation data. I therefore pick the smallest

of the values for |x1 � x2| as the predicted blockade radius. My model uses ODT

parameters as described for the experimental setup, and has no free parameters.

Intuitively, if the light shift varies rapidly with position near x1 then the blockade

radius will be smaller: it is analogous to having a large laser linewidth. Thus the

minimum blockade radius is expected for x1 at roughly the inflection point of the

transverse ODT intensity profile. This explains the variation of rb with detuning

for D-states, shown for 72D in Figure 7.7. There is an initial drop in rb and and

an eventual rise when exciting near the center of the trap. We note that exciting

a D state at the center of the trap leads to a perfect blockade (only one Rydberg

excitation), since a second Rydberg would see a reduced light shift which cannot be

compensated by a negative interaction energy; here rb diverges. This is shown by
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both the data and predictions in Figure 7.7; it is not possible to measure a blockade

radius near the trap center, indicated by the vertical dotted line at fmax � 30 MHz.

For S-states we see that excitation is possible at much larger detunings, and even

beyond the expected maximum light shift of the Rydberg transition in the ODT

(fmax � 30 MHz). This is shown in the excitation spectrum in Figure 7.5(e), the

correlation functions obtained at 32 MHz and 40 MHz (each ¡ 30 MHz), as well as

in Figure 7.7. We model this domain by placing the first Rydberg at the center of

the ODT and continuing the calculation as before. The positive Vint still admits a

solution for equation 7.2, with increased Vint and thus reduced rb. A level diagram

for this process is shown at the left of Figure 7.9. Here there is an off-resonant

transition directly to the two-Rydberg state, as we saw earlier for excitation from the

MOT (Figure 7.2). This process cannot occur in the ODT for D-states, as shown in

Figure 7.9.

The cusp in our prediction for S-states (red curve in Figure 7.7) is due to the

model’s piecewise nature, assuming that off-resonant excitation occurs only when

resonant excitation is impossible. In the experiment we expect a smoother transition
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between these cases. Thus the rings in Figure 7.5(a-d) smoothly shrink in radius and

increase in height, qualitatively shifting in appearance from the on-resonant MOT case

in Figure 7.3(middle column) to the off-resonant case (right column, blue detuned).

Our 1-dimensional model captures the essential physics. Despite the fact that

there is a dimension in the experiment along which there should be no light shift,

there is no obvious anisotropy in the 2-d pair-correlations.

7.6 Summary and conclusion

In this chapter, first I showed the effect of the improvements made to the Rydberg

imaging system as well as the data analysis process. The Rydberg-Rydberg correla-

tion measurements now look drastically better. I then measured Rydberg-Rydberg

correlations for on-resonant and and off-resonant excitation from the MOT. I thereby

verified the predictions of Robicheaux and Hernández [47] (Section 2.2.3), at least for

S-states. Finally, I have quantitatively measured and explained the dependence of

the blockade radius on the excitation frequency in an ODT. In the process, I have

discovered the interesting fact that an off-resonant excitation is possible for S-states,

but suppressed by the light shift for D-states, leading to a “perfect blockade” (single

Rydberg excitation) in the latter case.

In this last part, I have shown that spatially-dependent light shifts in an optical

trap always cause a decrease in the blockade radius (with the exception of the “perfect

blockade” case). This may have implications in quantum information processing using

neutral atoms in an optical lattice. The depth of each lattice site depends on the

distance from the optical focus, so the same variation in light shift will be present.

This could decrease the fidelity of gate operations based on long-range entanglement

using the blockade. Of course, this effect will be minimized by the use of a “magic
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wavelength” lattice for which the Rydberg state shift and ground state shifts are equal

in magnitude and sign. This type of lattice is beneficial in quantum information for

other reasons, having to do with reduction of decoherence caused by entanglement of

the internal atomic state with the atomic center of mass motion [28].
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CHAPTER VIII

Future Work and Conclusion

There are a number of possible experiments one could do with a general purpose

Rydberg imaging apparatus as described in this thesis. In Section 8.1, I give an

example for which I have done some of the initial setup work, and which has inspired

considerable recent activity in the Rydberg community. In the more distant future,

other experiments could be done that would benefit from the imaging apparatus.

As examples, one could study Rydberg state hopping (as mentioned in Chapter I)

or plasma dynamics. I will discuss the feasibility of state-hopping experiments in

Section 8.2.

8.1 Exciting a Rydberg crystal

As mentioned in previous chapters, an eventual goal for this experiment is to

excite a Rydberg crystal. A Rydberg crystal is a crystal-like ordered arrangement of

Rydberg atoms, as I will describe below. The proposal for excitation of a Rydberg

crystal is relatively recent [64], so not many applications have been proposed yet,

to my knowledge. One reason a Rydberg crystal is interesting is that an ordered

arrangement of Rydberg atoms can be produced from a disordered arrangement of

ground state atoms. One possible application is to produce ultracold plasmas, by

using microwaves to force the ionization of Rydberg atoms at their crystal-lattice
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positions. The ions thus produced have much lower initial potential energy than

randomly placed ions, and so will not undergo rapid heating by conversion of potential

to kinetic energy.

I will try to give an evocative description of a Rydberg crystal here; detailed theory

has been published in many places, for example in references [64, 72–74]. First I use

a simple three-atom model to describe the general structure of the many-atom energy

levels that are involved in the creation of a Rydberg crystal. Then I explain in what

sense it is a crystal.

We describe the system of ground state atoms coupled to Rydberg states by the

same dressed-state Hamiltonian as given in Equations 2.17 and 2.18. I repeat it here

for convenience, with slightly different notation:

Ĥ �
j̧

 �∆ σ̂
pjq
11 � Ω

2
pσ̂pjq01 � σ̂

pjq
10 q( (8.1)�

j̧ k

Vjkσ̂
pjq
11 σ̂

pkq
11 (8.2)

Here, the differences are that the laser detuning from resonance is now labeled ∆ and

the states are labeled |0y � |gy and |1y � |ry. The σ̂ operators are

σ̂
piq
11 � |riyxri| (8.3)

σ̂
piq
01 � |giyxri| (8.4)

σ̂
piq
10 � |riyxgi| (8.5)

Figure 8.1 shows the energy level structure of a three-atom system, using the

dressed state picture. The case for Ω � 0 is shown in Figure 8.1(a), while the case

for Ω � 2π � 1 MHz is shown in (b). First consider figure (a). The slopes of the

energy levels with respect to detuning ∆ are determined by the number of atoms

excited,
°

j σ̂
pjq
11 . There is only one line with zero slope, for state |000y. For a slope
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of 1 there are three states with a single Rydberg excitation; they are all degenerate.

For two Rydberg excitations we now have three states which are nondegenerate due

to interactions.1 The interactions also cause a nonzero state energy at ∆ � 0. Higher

excitation numbers will have higher slopes and generally higher interaction energies.

Following the ground state (lowest energy state) of the system as a function of

detuning ∆, we see that at ∆ � 0 it transitions from having zero excitations to

one excitation. At higher detunings the slope increases further, indicating a higher

number of excitations (k). Note that the ground state at a given detuning will be the

state with the corresponding number of excitations and the lowest Rydberg-Rydberg

interaction energy. In a 3-atom case with two excitations this means that the pair

that is furthest apart is excited. However, in a more general many-atom gas, this

will be the state with k excitations distributed in a crystal-like structure to minimize

energy. This is called a Rydberg crystal.

To produce this crystal state from a ground state gas, one first starts at negative

1The interaction strengths for the three atoms in this calculation are V12 � 10 MHz, V23 � 8.5 MHz, and
V13 � 7 MHz so that there is some variation in strengths to slightly remove degeneracies in the state diagram.
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detuning ∆ and Ω � 0. The laser amplitude is then increased to cause anticrossings

in the state diagram, as shown in Figure 8.1(b). The detuning ∆ is adiabatically

swept to a positive value, and the laser amplitude is then adiabatically turned off.

The crystal will have a number of excitations determined by the final detuning ∆.

No experimental group has yet observed a Rydberg crystal of the type described

above. Schauß et al. [56] have observed very nice ordered structures in a Rydberg gas,

but in their experiment there is no adiabatic sweep of any kind. Their observation

of structures with different excitation number k was done by post-selection of the

excitation number. For the adiabatic-production method, the bird is still in the

bushes.

8.1.1 Practical considerations

In order for the adiabatic production method to work, one must have sufficiently

large state splittings (as shown in Figure 8.1b) to prevent non-adiabatic transitions

(Landau-Zener tunneling) during the sweep. This requires a Rabi frequency larger

than the inverse of the sweep time. As mentioned in Section 6.3, we have a two-

photon Rabi frequency of 2π� 2.5 MHz. This should be sufficient to allow the sweep

times of 5-10 µs suggested by theorists [72].

There are a few differences between our possible experimental implementation and

the theoretical descriptions. The first is a non-uniformity of the Rabi frequency in

space, due to the focused laser beam being smaller than the atom sample. One would

hope this would simply produce a Rydberg crystal within the excitation beam, but

the details of the effect have not yet been considered. Secondly, the use of an ODT

to increase density and reduce the experimental volume will cause spatial variation

of the transition frequency, and therefore of ∆. This effect has also not yet been

considered.
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8.1.2 Experimental implementation

I have attempted to implement an adiabatic frequency sweep in my experiment

but was not yet successful. Due to the details of the single-pass AOM setup for the

480 nm excitation beam, a frequency sweep caused multiple orders from the AOM to

couple into the optical fiber that brings the beam to my experiment. The multiple

orders interfered with a 60 MHz beat note, which was not useful.

There are other possibilities for implementing the frequency sweep. Another idea

is to implement an electric field sweep to tune the atomic resonance through the laser

frequency, rather than vice versa. This would likely involve an inhomogeneous electric

field at the position of the atoms, which would have the disadvantage of a non-uniform

atomic frequency within the excitation volume. This case was not treated by pub-

lished theory, which assumes all atoms have the same transition frequency. A second

disadvantage is the limited available tuning range for the atomic transition. With

an electric-field-induced frequency shift, the maximum frequency shift achievable for

60S1{2 is � 50 MHz before the 60S1{2 state meets the Stark-shifted hydrogenic mani-

fold. This may not be a sufficient tuning range, especially considering the � 30 MHz

frequency width of the ODT excitation spectrum itself. One should start the fre-

quency sweep from the red side of the spectrum in order to prevent any resonant

excitation of multiple Rydberg atoms before the start of the sweep; and one should

sweep some 10’s of MHz past the blue side of the spectrum to generate the crystal.

The available 50 MHz range therefore seems limiting.

Another, more obvious, idea for the frequency sweep is to use the double-pass

AOM on the 780 nm excitation beam. This method has not been considered in detail

yet, but has some promise. One point to consider is the response speed of the AOM;

as mentioned in Chapter VI the minimum pulse time is 1.4 µs, and we are looking
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for frequency sweeps and pulses on the order of 5 µs. This will have to be tested.

In summary, although initial attempts to implement the required pulses and fre-

quency sweep were not successful, prospects seem good for an implementation in the

near future.

8.2 State-hopping experiments

Initial proposals for the TIP experiment included the idea of studying Rydberg

state-hopping, similar to the excitation transport referenced in Section 1.1. In this

section I give a brief explanation of the physics, and outline a method by which the

TIP experiment might be reconfigured to allow study of such phenomena.

In the context of many-body physics, the strong interactions between Rydberg

atoms can lead to significant coupling between atoms at several-µm separations in

an atomic vapor, without atomic motion being required. This situation is referred

to as a “frozen Rydberg gas” when atomic motion is negligible on the experimental

timescale (� µs). The interactions can lead to state changing “collisions” (where

one Rydberg atom gains energy and the other loses energy) and the diffusion of an

atomic state from a “reaction center” throughout the gas, without atomic motion

[8–10]. This can be represented schematically as the excitation of Rydberg |py states2
and the following state-changing and state-hopping reactions:|ppy Ñ |ss1y (where s1 has higher and s lower energy) (8.6)|spy Ñ |psy (8.7)|s1py Ñ |ps1y . (8.8)

When the interaction strengths are much larger than difference in energy between

the “reactant” and “product” multi-Rydberg states, the state changing collisions can
2These are the states used by reference [8]; in the TIP experiment, with two-photon excitation starting from the

5S1{2 ground state, I would excite to perhaps |ss1y states as in [9] and have state diffusion starting from here.
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occur on timescales much faster than one can explain using only pairwise interactions,

and many-body interactions must be considered [15].

This coherent energy transport in Rydberg systems is similar in spirit to energy

transport in photosynthetic systems [12]. However, the timescales are slower and the

distance scales are larger for Rydberg atom systems (µs vs. fs, and µm vs. nm),

which makes them experimentally easier to probe [11].

To my knowledge, no studies of this phenomenon have been done with spatial

resolution of the Rydberg atom positions. The TIP experiment could potentially

accomplish this.

The difficult feature of this experiment is that it requires both state selectivity

in the Rydberg atom detection (e.g. the ability to detect state |sy as distinct from

state |s1y) as well as spatial sensitivity. This combination has been demonstrated with

one-dimensional spatial sensitivity by Ditzhuijzen et al. [75]. The authors use state

selective field ionization with electron detection (as opposed to the ion detection used

in the TIP experiment), and they detect the one-dimensional position of the Rydberg

atoms using the electron time of flight to the MCP. The position resolution is then

along the axis leading toward the MCP. The state sensitivity is accomplished by

switching the electric field to be larger than the ionization field of the state they wish

to detect, but smaller than the ionization field of other states. Only the desired state

is then ionized.

The implementation of similar state-selective field ionization (SSFI) in the TIP

experiment would be difficult, if I intend to retain 2D spatial resolution. This is due

to technical reasons, having to do with the detection efficiency of the MCP. In order

to be detected by the MCP, ions need a minimum impact energy of � 500 eV. This

requires a high potential difference between the TIP and the MCP front plate. We
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have seen in Chapter V that a large voltage on the MCP causes significant refocusing

of the ion trajectories near the MCP. Good imaging characteristics therefore require

instead a large voltage on the TIP, e.g. ¥500 V. A voltage of 500 V on the TIP will

produce an electric field of (8.5 V/cm per V) � 500 V = 4250 V/cm at 200 µm above

the TIP (see Section 5.2.2). This is to be compared with the field ionization threshold

of the Rydberg states I typically work with: 30 V/cm for 60S1{2. With the electric

field this much higher than the typical ionization threshold, it is completely impossible

to perform SSFI. This limitation ultimately comes from the MCP detection efficiency

for ions.

In contrast, the MCP can detect electrons with energies of 20-50 eV, with the

detection efficiency climbing to a maximum around energies of a few hundred eV. If I

changed from detecting ions to detecting electrons3 I could turn the MCP front plate

down to near 0 V and I would still only need a small voltage on the TIP (slightly

larger in magnitude than -20 to -50 V) to have efficient detection by the MCP. With

no refocusing from the MCP voltage4, the imaging should be largely independent of

the TIP voltage. We could thus select the TIP voltage based on the desired state we

wish to detect. The electric field is chosen to be strong enough to ionize the desired

state, and smaller than what would ionize other states. A TIP switched to -20 to

-50 V will give an electric field (at � 200 µm above the TIP) of appropriate strength

for SSFI of states in the vicinity of n � 25 to 35, as used in [9]. If the excitation

region is moved further from the TIP, somewhat compromising the spatial resolution,

and the TIP potential is increased appropriately, one can boost the electron kinetic

energy without compromising the SSFI. I will use this in calculations below.

3Theoretically, the electron trajectories would be the same as the ion trajectories, if the signs of all voltages are
flipped and there are no magnetic fields.

4Note: I’m assuming there will be no refocusing from the MCP when the MCP is set to 0 V. It is possible there
may be a voltage gradient across the MCP front plate, due to electron conduction within the MCP to the middle/back
plates as well as the non-zero resistance of the plates themselves. Such a voltage gradient would cause a refocusing of
electrons, and could be problematic.
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There are several disadvantages for electron detection, however. These considera-

tions are why the TIP experiment has previously only used ion detection. One is the

possibility of field emission of electrons from the TIP, if the TIP is switched to a high

negative voltage. This would send spurious electrons to the MCP and could create

significant noise. Second, electrons are easily deflected by magnetic fields due to their

small mass. The cyclotron radius (trajectory’s radius of curvature) R for a charged

particle in a magnetic field, given an accelerating potential of Va (and therefore a

kinetic energy of qVa), is

R2 � 2Va
q

m
B2

(8.9)

where q is the charge, m is the mass, and B is the magnetic field strength.

An electron with energy 1000 eV in a magnetic field of 10 Gauss (typical for MOT

operation) has a radius of curvature of 10 cm, which is smaller than the distance to

the MCP.5 The deflection gets even stronger with lower electron energies. In contrast,

an ion has insignificant deflection.

To achieve good imaging characteristics with electrons, especially at low energies

used for SSFI, would require minimizing the magnetic field. One would need to turn

off the MOT magnetic field, as well as zero out the field of the earth and any other

stray fields with the Helmhotz bias coils on the experiment. In this case the ground

state rubidium atoms could be collected in the MOT and then transferred to the

ODT before switching to a zero magnetic field configuration. The ODT could then

hold the atoms during the excitation and ionization process.

If the radius of curvature is large compared to the distance to the MCP (D �
16 cm), the lateral deflection d of the particle on the MCP will be

d � D2

2R
(8.10)

5Note this is a worst-case estimate, as the magnetic field from the MOT coils should be near zero if the electrons
are near the experiment’s imaging axis.

110



Suppose we can zero the magnetic field to 0.1 Gauss, and that we wish to distin-

guish between 24P1{2 and 34P3{2 (with respective ionization fields 1550 and 330 V/cm)

as used in [9]. If we apply -1000 V to the TIP, at an excitation position of 1 to 3 mm

above the TIP we will have a field of between 1500 and 400 V/cm (see Figure 5.3)

as appropriate for SSFI. The electrons produced there will have energies of � 120

to 280 eV. The deflection of 200 eV electrons in a 0.1 Gauss field over a distance

of 16 cm (to the MCP) will be about 3 mm. Compared to the 18 mm diameter of

the MCP, this deflection is acceptable.6 Moving the excitation region a factor of 10

further from the TIP (as compared to the current working distance of 200 µm) will

reduce the resolution from about 1 µm to about 10 µm, comparable to the resolution

of Ditzhuijzen et al. [75] in one dimension.

Thus, in order of magnitude, combining spatial resolution with state selective de-

tection is feasible. This could enable a number of interesting studies, but in particular

studies of state-hopping dynamics.

8.3 Conclusion

In this thesis I have described an experimental apparatus for direct spatial imaging

of Rydberg atom positions. In Chapter II, I have detailed some of its advantages over

other Rydberg imaging systems. In Chapters V and VI, I presented its optimization

via characterization of the ion trajectories in the chamber, and via an increase in

ground state atom density at the desired excitation region near the TIP.

I have used this apparatus to perform measurements of the Rydberg-Rydberg cor-

relation function in a cold atomic gas. In Chapter IV, I presented the first-ever direct

spatial images of the Rydberg excitation blockade. In Chapter VII, I investigated

6I am assuming a uniform magnetic field, which only shifts the image on the MCP. Magnetic field inhomogeneities
could distort the imaging considerably, which would be a problem.
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the effects of laser detuning and optical potentials on the blockade effect. With the

understanding of this physics in hand, the next step is to attempt to excite a Ryd-

berg crystal, which is currently a topic of considerable interest in the Rydberg atom

community.
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APPENDIX A

Shadow Imaging

For shadow imaging1, a laser beam with an intensity profile I0px, yq is incident on

trapped atoms, and the profile of the beam after passing through the trap Ipx, yq is
measured with a camera.

A change in intensity can be written as:

∆I � ∆E

A � T (A.1)

where

∆E � energy difference (A.2)

A � surface area (A.3)

T � time (A.4)

(A.5)

The effect on the two-dimensional intensity profile Ipx, yq is:
dI � �hνγNV px, y, zqdz (A.6)

where the negative sign is a result of the intensity decrease as light is scattered out

of the beam. The change in energy due to a single photon is hν, γ is the photon

1Most of the following was taken from a document by Brenton Knuffman and Kelly Younge, but I have reproduced
it in order to correct some errors.
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scattering rate which depends on the intensity and frequency of the probe light (the

average time for a single photon to be scattered is T � 1{γ), and NV px, y, zq is

the volume density of the atomic sample. The atom cloud is divided into slices of

thickness dz, and multiplying by the number density gives the number of atoms per

unit area in the x-y plane.

We therefore have �hνγ � ∆E{T for a single atom, and NV � dz � N{A where N

is the number of atoms. Multiplying these together, we have:

∆I � N∆E

A � T (A.7)

The factor of N results from the fact that there are N atoms in the sample.

On resonance, γ � Γ
2

I
Isat

where Γ is the natural linewidth of the transition and Isat

is the corresponding saturation intensity. (This holds for low intensities, I   Isat.)

Then,

dI � �hνγNV px, y, zqdz (A.8)� �hνΓ
2

I

Isat
NV px, y, zqdz (A.9)

dI{I � � Γhν

2Isat
NV px, y, zqdz (A.10)

lnpIpx, yq{I0px, yqq � �NApx, yq Γhν
2Isat

(A.11)

NApx, yq � 2Isat
Γhν

lnpI0px, yq{Ipx, yqq (A.12)

This area density is what one measures directly using absorption imaging on a CCD.

From this, the total atom number, N, can be calculated:

N � » 8�8 » 8�8NApx, yqdxdy (A.13)

The central volume density can be calculated by assuming a Gaussian distribution

of atoms,

NApx, yq � NAp0, 0q exp��x2 � y2

σ2



. (A.14)
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The characteristic width, σ, and the central area density can be calculated by fitting

the shadow image data to a 2D Gaussian function. For the volume density we then

have:

NV px, y, zq � NV p0, 0, 0q exp��x2 � y2 � z2

σ2



(A.15)

and since

NApx, yq � » 8�8NV px, y, zqdz (A.16)

we finally have

NV p0, 0, 0q � NAp0, 0q
σ
?
π

. (A.17)

When shadow imaging an asymmetric MOT (as contrasted with a symmetric dipole

trap), one must make an assumption about the z-depth Lz of the cloud based on the

size in other axes. Then a volume density estimate could be

NV p0, 0, 0q � NAp0, 0q
Lz

. (A.18)
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APPENDIX B

Analytical Calculations of Excitation Spectra from a Variety

of Trapping Potentials

Here I calculate the shape of an excitation spectrum for an atomic gas in a trap.

I assume a Maxwell Boltzman distribution of particles in the trapping potential.

I also assume that the spectral shift of an atom in the trap is proportional to the

potential of the atom in the trap. (This is true, e.g., in an optical dipole trap or in a

magnetic trap.)

To be mathematically precise with the above paragraph, I label the energy of the

particle in the trap as ǫ. I take the excitation frequency to be f � ǫ
h
� ξ where ξ is

the proportionality constant between the energy in the trap (ǫ) and the energy shift

of the transition being probed (hf). I will calculate the spectrum in terms of ǫ, which

can be scaled at the end to get the result in terms of f .

Now let’s calculate the spectrum. I start with some definitions to state the problem

precisely. Take S to be the integral of the excitation spectrum, which is proportional

to the number of atoms N . The spectral density per atom is α, so that

S � αN (B.1)

The spectral density in energy sǫpǫq we define as

S � »
sǫpǫqdǫ (B.2)
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So sǫpǫq is what we normally refer to as the excitation spectrum. (Except we normally

measure it in terms of the frequency f . It is more convenient here to use energy.)

The spectral density in energy is the product of the number of atoms with that

energy and the spectral density per atom:

sǫ � αNǫ (B.3)

The number of atoms with energy ǫ is

Nǫ � nǫgǫ (B.4)

where nǫ is the number of atoms in a given state with energy ǫ, and gǫ is the number

of states with energy ǫ (i.e. the degeneracy).

So we have thus far

sǫ � αnǫgǫ (B.5)

For a Maxwell Boltzman distribution,

nǫ � e� ǫ

kT (B.6)

The degeneracy of states gǫ is based on the trapping potential and the trapping

geometry. We can calculate this from the physical volume of an energy shell. Suppose

that V pǫq is the physical volume with an enegy ǫ at its surface.1 The degeneracy of

states is then

gǫpǫq � dV

dǫ
(B.7)

B.1 2D harmonic potentials

Now we have to get specific about our trap to determine dV
dǫ
. Let’s assume a

harmonic trapping potential with a cylindrical geometry. (This is an optical dipole

1I will assume that the potential is monotonically increasing from the trap center, so all points inside V pǫq have
energy   ǫ. This is so I can easily relate volume and energy shells. If a trap has multiple minima, we’re looking only
inside a local minimum.
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trap, near trap center.) We have

ǫ � ar2 (B.8)

V � πr2Z (B.9)

where a is a trap constant, r is the radial position from the center, and Z is the length

of the trap in the z-dimension (some constant). Then we have

gǫ � dV

dǫ
� dV

dr
dǫ
dr

� πZ

a
(B.10)

Since gǫ is a constant, the spectrum has an exponential shape due to the Maxwell

Boltzman distribution:

sǫ � �
απZ

a


 � e� ǫ

kT (B.11)

This is the result mentioned in Section 6.4.

B.2 3D harmonic potentials

If instead we assume a 3D harmonic potential, we have

ǫ � ar2 (B.12)

V � 4

3
πr3 (B.13)

where r is now measured in 3D. The degeneracy is now

gǫ � dV
dr
dǫ
dr

� 2πr

a
� 2π

a3{2?ǫ (B.14)

This time the factors of r don’t cancel, and we need to plug in for r in terms of ǫ.

(B.15)

The spectrum is now not quite exponential in energy (frequency):

sǫ � �
2πα

a3{2 
 �?
ǫ e� ǫ

kT (B.16)
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Figure B.1: ODT potential, for a � 1 and σ � 1.

B.3 2D gaussian potential

This is really the shape of an optical dipole trap, including regions away from

the trap center. This will give a spectrum similar in shape to that calculated in

Section 6.4.2, by the spectrum simulation.

Here we have

ǫ � �ae�p r

σ
q2 (B.17)

V � πr2Z (B.18)

Note the negative sign in front for the energy equation. This is so we have a trap for

a ¡ 0. Note this now means the energy ǫ is negative, and the bottom of the trap is

at energy �a. For clarity, in Figure B.1 I show a plot of the potential (with a � 1

and σ � 1).
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In this case we have

gǫ � dV
dr
dǫ
dr

(B.19)� 2πrZp�aq �� 2r
σ2

�
e�p r

σ
q2 (B.20)� πZσ2

a e�p r

σ
q2 (B.21)� πZσ2�ǫ (B.22)

The spectrum is

sǫ � �
απZσ2

�� 1�ǫ e� ǫ

kT (B.23)

where the relevant energy range is ǫ � �a up to ǫ � 0. The spectrum blows up for

ǫÑ 0 because ǫ � 0 is outside the trap, where there is infinite volume.

We typically excite transitions that are blue-shifted in an ODT. This includes both

5S Ñ 5P and 5S Ñ Rydberg transitions. So a negative energy ǫ corresponds to a

positive frequency f . I therefore take the scale factor ξ to be negative.

I scale the frequency in terms of the trap depth a for sensible plotting. To do so I

define a normalized frequency shift in terms of the trap depth:

x � � ǫ

a
(B.24)

The negative sign accounts for the sign of ξ, and the 1{a scales the frequency to units

of trap depth. To compare with experiment, one can scale the x-axis (frequency axis)

of the plot. Now x � 0 is outside the trap and x � 1 is the center of the trap.

The spectrum is

sǫ � pαπZσ2q
a

� 1

x
e

x

kT {a (B.25)

For plotting in Figure B.2 I ignore the constants out front, which just give the

amplitude. I take kT � 0.5a for the temperature being half the trap depth, as
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Figure B.2: ODT spectrum, calculated analytically from Equation B.25.

in Section 6.4.2. (The choice of temperature greatly affects the spectrum, and the

presence/absence of the MOT/ODT peaks, as one might imagine.) On the left of the

spectrum is the MOT peak, and on the right is the ODT peak.
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