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CHAPTER I

Introduction

1.1 Overview

Data collected from statistical studies often have missing values. This is especially

true for biostatistical research where human study subjects are involved. Some sub-

jects may simply refuse to respond to certain questions, despite the researchers’

intention of collecting complete data. Very often, budget or technique limitations

also restrict researchers to design studies that collect complete data only from a sub-

group of subjects. Two-stage study design (e.g. Pepe 1992; Pepe et al. 1994) is a

commonly seen example. In such design, some surrogates of the variables of interest

are measured at the first stage, based on which a sub-group of subjects is selected

to enter the second stage, where the measurements of the variables of interest are

recorded. For longitudinal studies where subjects are followed over a certain time

period, an important reason for missing data is that subjects do not comply with

the protocol, due to, for example, schedule conflicts. This reality leads to incomplete

data in irregular patterns. Dropout is another major reason for missing data in lon-

gitudinal studies, which occurs when subjects move out of area, or are lost of contact,

or experience severe side effect of the treatment that prevents them from staying in

the study. Dropout results in monotonic missing data pattern. Missing data usually

1
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bring great challenges to statistical analysis. In general, a direct application of the

existing methods for fully observed data to analyzing data with missing values leads

to biased estimation and misleading conclusions.

During the past three decades or so, after Rubin (1976) defined the missing data

problem from a formal statistical point of view, numerous methods for statistical

analysis with missing data have been proposed. Roughly, the majority of the exist-

ing methods can be categorized into two classes: the likelihood-based methods and

the semiparametric methods. Likelihood-based methods essentially specify a joint

distribution of the data, and corresponding estimation and inference are conducted

based on the maximum likelihood theory. The problem of missing data can be dealt

with in many different ways, including the celebrated EM algorithm (Dempster et

al. 1977; Wu 1983; Meng and Rubin 1993; McLachlan and Krishnan 2008) and the

seminal multiple imputation method (Rubin 1978, 1987, 1996). Both frequentist

and Bayesian approaches can be taken by the likelihood-based methods to conduct

statistical analysis. Recently, the calibrated Bayesian approach that combines both

frequentist and Bayesian approaches has attracted some attention (Box 1980; Rubin

1984; Little 2006, 2011). A comprehensive coverage of the likelihood-based methods

for missing data problems can be found in Little and Rubin (2002), Little (2008) and

references therein.

Semiparametric methods, on the contrary, consider models specified by a set of

estimating equations (or moment conditions) that involve both the data and the

unknown parameters of interest. The relevant theory of estimating functions can be

found, for example, in Godambe (1991), Newey and McFadden (1994) and Heyde

(1997). Compared to the likelihood-based methods, semiparametric methods are

more flexible, as they only require to model certain characteristics of the joint distri-
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bution rather than the distribution itself. As a result, such methods are more robust

against model misspecifications. For many data types, including the longitudinal

data with discrete outcome variables, it may be very difficult to explicitly specify the

joint distribution. In such cases, semiparametric methods have become useful alter-

natives to the likelihood-based methods. The methods developed in this dissertation

are semiparametric. Semiparametric methods mainly rely on the large sample theory

to establish the properties of estimation and inference procedures. Some references

on large sample theory include Newey and McFadden (1994), Lehmann (1998), van

der Vaart (1998) and Shao (2003).

A prominent semiparametric method dealing with missing data is the augmented

inverse probability weighting (AIPW) method proposed by Robins, Rotnitzky and

colleagues in a series of seminal papers, including Robins et al. (1994, 1995), Robins

and Rotnitzky (1995), Rotnitzky et al. (1998), Scharfstein et al. (1999), Bang and

Robins (2005) and Rotnitzky et al. (2012). The AIPW estimator has attracted

much research interest because of its “double robustness” property, which provides

double protection on estimation consistency against model misspecification. Tsiatis

(2006) gives a detailed coverage of the AIPW method and its application to longi-

tudinal data analysis. An important issue associated with the AIPW method is the

estimation efficiency. In the context of regression analysis, to achieve full efficiency,

the AIPW method requires to correctly model certain second order moments of the

data. This becomes especially demanding for longitudinal data analysis. Even in

the simplest case where the longitudinal outcomes are missing completely at random

(Little and Rubin 2002), the variance-covariance of the longitudinal outcomes needs

to be reasonably modeled in order to achieve satisfactory efficiency for the estimation

of regression coefficients (Liang and Zeger 1986). The central focus of this disserta-
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tion is to develop new methodologies that are free from modeling the second order

moments, yet achieve full estimation efficiency.

The proposed methodology has its root in the empirical likelihood (EL) method-

ology. First introduced by Owen (1988, 1990), EL is a nonparametric likelihood that

does not require the specification of a parametric distribution, yet possesses desirable

properties of parametric likelihood. For example, Wilks’ theorem still holds for the

EL ratio statistic, and Bartlett correction can be conducted as in the case of para-

metric likelihood to achieve higher order precision (DiCiccio et al. 1991; Chen and

Cui, 2007). One groundbreaking work in the literature of EL methodology is Qin

and Lawless (1994), who studied how to use EL in estimation and inference for mod-

els defined by estimating equations (unconditional moment restrictions). Their EL

estimator attains the semiparametric efficiency bound for the corresponding model,

in the sense of Bickel et al. (1993). Kolaczyk (1994) and Chen and Cui (2003) inves-

tigated the application of EL to generalized linear models (McCullagh and Nelder

1990). Discussions on many other desirable properties of EL, such as invariance un-

der transformation of moment conditions and automatic determination of the shape

of confidence regions, can be found in Hall (1990), Hall and LaScala (1990) and Owen

(2001). It is worth pointing out that, the EL methodology can be embedded into

a much larger family of estimation procedures that corresponds to the Cressie-Read

power divergence family of discrepancies (Cressie and Read 1984). Related details

regarding this aspect can be found in Newey and Smith (2004), which established

the optimality of the EL estimator in terms of higher order efficiency compared to

estimators derived from other members of the Cressie-Read family, as well as to

the generalized method of moments (GMM) estimator (Hansen 1982). Bayesian ap-

proach can also be adopted within the EL framework. For related discussions, refer
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to Lazar (2003), Schennach (2005) and Yang and He (2012).

The proposed methodology in this dissertation is most closely connected to the

work of Zhang and Gijbels (2003) and Kitamura et al. (2004). These authors inde-

pendently made the interesting extension of the EL methodology to the conditional

EL (CEL) methodology, which provides an estimation procedure under models de-

fined by conditional moment restrictions. Such models include the parametric re-

gression model, which is the model of main interest in this dissertation, as a special

case. The CEL methodology was named as “sieve empirical likelihood” by Zhang and

Gijbels (2003) and “smoothed empirical likelihood” by Kitamura et al. (2004). We

adopt the name “conditional empirical likelihood” following Kitamura (2007). It has

been shown that the CEL estimator attains the semiparametric efficiency bound for

the model defined by the conditional moment restrictions in the sense of Bickel et al.

(1993). See also Chamberlain (1987). Based on the CEL methodology, Tripathi and

Kitamura (2003) proposed a test for the validity of conditional moment restrictions.

Smith (2007) generalized the CEL idea to information theoretic criteria based on the

Cressie-Read power divergence family of discrepancies. Otsu (2007, 2011) studied

the CEL inference when unknown functions are present in the conditional moment

restrictions.

EL methodology has already been applied to a variety of statistical fields, includ-

ing missing data problems, longitudinal data analysis and survival data analysis.

For a comprehensive coverage on survival data analysis, see Kalbfleisch and Prentice

(2002). Despite the great popularity and success, there remain important issues to

be addressed. This dissertation focuses on some of the issues arising in the fields

of missing data and longitudinal data analysis. These issues, together with related

literature review, will be given and discussed separately in the first section of each
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chapter. By doing so, the presentation of this dissertation can be tied cohesively

under a focused research aim. Some applications of the EL methodology in survival

data analysis can be found in Li et al. (2005). To learn more about the EL method-

ology and its applications in other statistical fields, refer to Owen (2001), Kitamura

(2007), Chen and Van Keilegom (2009) and references therein.

1.2 Organization of the Dissertation

The rest of the dissertation consists of three chapters. Chapter II considers regres-

sion analysis with cross-sectional data. We propose a CEL method for estimation and

inference within the framework of parametric regression when the outcome is subject

to missingness while some surrogate variables are available. Unlike the existing es-

timating functions based estimators, whose efficiency depends on the specific forms

of the estimating functions, our proposed estimator can achieve the semiparametric

efficiency bound with no explicit specification of any estimating functions. Assum-

ing the missing at random (MAR) mechanism (Little and Rubin 2002), we study

the CEL-based inverse probability weighted (CEL-IPW) and CEL-based augmented

inverse probability weighted (CEL-AIPW) estimators in detail. Under some regular-

ity conditions, the CEL-IPW estimator is consistent if the missingness mechanism is

correctly modeled, whereas the CEL-AIPW estimator is doubly robust, in the sense

that it is consistent if either the missingness mechanism or the conditional mean of

the outcome given surrogate variables and covariates is correctly modeled. When

both are correctly modeled, the CEL-AIPW estimator attains the semiparametric

efficiency bound. Numerical implementation through nested optimization routines

using Newton-Raphson algorithm is discussed. Asymptotic distributions are derived.

Finite sample performance with comparisons to some existing estimators is demon-
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strated through simulation experiments. As an application example, data collected

from an intervention study for adolescents of parents with HIV are analyzed.

Chapter III provides an extension of Chapter II by considering regression analysis

with longitudinal data in the presence of dropout. Under the MAR mechanism, we

investigate the CEL-AIPW estimator analytically and numerically. This estimator

is doubly robust, in the sense that it is consistent if either the missingness probabili-

ties or the conditional expectations of the longitudinal outcomes given the observed

data at each level of missingness are correctly modeled. When both quantities are

correctly modeled, the CEL-AIPW estimator achieves the semiparametric efficiency

bound. Therefore, the proposed CEL-AIPW estimator does not require to model any

second moments of the data in order to achieve full efficiency. This is not the case

for the existing AIPW estimator (Robins and Rotnitzky 1995; Tsiatis 2006), whose

efficiency depends on modeling certain second moments. We derive the asymptotic

distributions. We also discuss issues related to the numerical implementation, and

run simulation studies to assess the finite sample performance of the proposed esti-

mator.

Chapter IV concerns the development of a CEL method for unbalanced longitu-

dinal data analysis. The unbalanced follow-up visits are dealt with via stratification

according to distinct follow-up patterns. Such a way of dealing with the unbalanced-

ness implicitly assumes the missing completely at random mechanism, the same

mechanism assumed by the popular generalized estimating equations (GEE) method

(Liang and Zeger 1986). Compared to the GEE method, our proposed CEL method

does not require any explicit modeling of the variance-covariances of the longitudi-

nal outcomes, but only requires a marginal mean regression model. Therefore, our

method is robust against misspecification of the second moment structures. We in-
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vestigate possible connections between the proposed CEL estimator and the GEE

estimator. We show that the CEL estimator achieves the same efficiency as that

of the GEE estimator obtained employing the true variance-covariance. Asymptotic

distribution of the CEL estimator is derived, and various issues regarding the numeri-

cal implementation and applications are discussed. Simulation studies are conducted

to assess the finite sample performance. To illustrate the CEL method, we analyze

data collected from a longitudinal nutrition study.

Chapter V talks about some possible extensions of the current developments in

this dissertation, and gives several future research directions.



CHAPTER II

Locally Efficient and Doubly Robust Estimation with
Missing Outcome: Cross-Sectional Data

2.1 Background and Literature Review

In this chapter we study a parametric regression problem where the outcome is

subject to missingness. The central interest is the estimation and inference of the

regression coefficients. In practice there are various reasons that could lead to missing

outcome, such as budget or technique restrictions, subjects’ failing to comply with

the protocol, or simply the study design. Missing data usually bring great challenges

for estimation and inference, and need to be handled delicately, as a direct application

of statistical methods developed for data without missing values may lead to biased

estimation and misleading conclusions.

In addition to the outcome and covariates, we assume some surrogate variables are

available for all subjects. Although the surrogate variables are not of direct statistical

interest, they may help to explain the missingness mechanism, and thus reduce the

impact of missing data on estimation and inference. Data with this structure arise

from many observational studies (e.g. Wang et al. 2010), as well as from two-stage

design studies (e.g. Pepe 1992; Pepe et al. 1994), where the second-stage outcome is

not observed for all subjects, and the probability of observing this outcome depends

on the first-stage outcome (surrogate variable) and covariates.

9
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Let Y denote the outcome, X denote the covariates, β denote the p-dimensional

vector of regression coefficients, and S denote the surrogate variables. Pepe (1992)

proposed the maximum likelihood estimation, which assumes the correct specifica-

tion of two densities, namely f(Y |X) and f(S|Y,X). To reduce model assumptions,

Pepe et al. (1994) proposed the mean score estimation, which assumes the correct

specification of density f(Y |X). However, this assumption is still more than neces-

sary, and is likely subject to model misspecification. In our development, we only

specify the mean regression model in the following form:

(2.1) E(Y |X) = µ(XTβ) for some β = β0 ∈ Rp,

where µ(·) is some known link function, and the expectation is taken under the

true density f(Y |X). Let R denote the indicator of Y being observed. Specifically,

R = 1 if Y is observed, and R = 0 if Y is missing. The sampled data are then

(Ri, Ri∗Yi,Si,X i), i = 1, · · · , N , which are independent and identically distributed,

where Ri ∗Yi = Yi if Ri = 1 and Ri ∗Yi = missing if Ri = 0. We assume the following

missing at random (MAR) mechanism (Little and Rubin, 2002):

(2.2) P (R = 1|Y,S,X) = P (R = 1|S,X)
def
= π(S,X).

The model defined by (2.1) and (2.2) is embedded in a more general missing data

setting where the pattern of missingness is arbitrary. The general setting has been

studied extensively by Robins, Rotnitzky and colleagues using the semiparametric

theory as in Bickel, Klaassen, Ritov and Wellner (1993). Applying the theory devel-

oped by Robins et al. (1994) and Robins and Rotnitzky (1995) to missing outcome

data, Yu and Nan (2006) derived the semiparametric efficiency bound for the above

model. Under this model, estimators whose asymptotic variance attains such bound

are efficient. Chen and Breslow (2004) independently derived the bound using theory
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of optimal estimating functions (Godambe 1960, 1991; Heyde 1988, 1997; Newey and

McFadden 1994).

Many existing estimation methods for missing outcome data rely on a set of

estimating functions U(β;Y,X) constructed from (2.1), where E {U (β0;Y,X)} = 0

when there are no missing data. Under MAR assumption (2.2), the augmented

inverse probability weighted (AIPW) estimator was proposed as the solution to the

following AIPW estimating equation (Robins et al. 1994, 1995; Robins and Rotnitzky

1995; Tsiatis 2006):

(2.3)
N∑
i=1

{
Ri

π̂(Si,X i)
U(β;Yi,X i)−

Ri − π̂(Si,X i)

π̂(Si,X i)
σ(β;Si,X i)

}
= 0,

where π̂(S,X) is an estimator of π(S,X), and σ(β;S,X) is an arbitrary function

of β, S and X. When σ(β;S,X) ≡ 0, the AIPW estimator reduces to the inverse

probability weighted (IPW) estimator (Horvitz and Thompson 1952). The AIPW

estimator possesses the double robustness property, in the sense that it is consis-

tent if either π(S,X) is correctly modeled, or σ(β;S,X) is a correct model for

E {U(β;Y,X)|S,X}. For a fixed U(β;Y,X), the smallest asymptotic variance of

the AIPW estimator is achieved when both π(S,X) and E {U(β;Y,X)|S,X} are

correctly modeled, and σ(β;S,X) is taken to be the correct model for the latter.

But this U(β;Y,X)-dependent variance is usually larger than the semiparametric

efficiency bound.

In recent literature, many doubly robust estimators that are alternative to the

AIPW estimator have been proposed. These proposals include Tan (2006, 2008,

2010), Kang and Schafer (2007), Robins et al. (2007), Rubin and van der Laan

(2008), Cao et al. (2009), Tsiatis et al. (2011), Han (2012) and Rotnitzky et al.

(2012). While most of these alternatives concerned a relatively simple setting of

estimating the population mean of a response variable with incomplete data, Han
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(2012) and Rotnitzky et al. (2012) considered the regression setting, and the latter

two estimators are refereed to as HAN estimator and RLSR estimator, respectively,

in the rest of this chapter. Along the lines of Tan’s (2006, 2010) approach, the

HAN estimator solves an estimating equation that employs a particular linear com-

bination of the two terms in (2.3). When π(S,X) is correctly modeled, this linear

combination yields the residual of the projection of the first term on the second,

which endows the HAN estimator with improved efficiency over both the IPW and

the AIPW estimators, with an exception when σ(β;S,X) is a correct model for

E {U(β;Y,X)|S,X}, in which case the HAN and the AIPW estimators have the

same efficiency. In addition to the efficiency improvement over both the IPW and the

AIPW estimators, the RLSR estimator has the property that, for a given finite set

of user-specified functions, each function evaluated at the RLSR estimator has the

asymptotic variance no larger than that of the function evaluated at any AIPW es-

timator using the same model structure for σ(β;S,X). The RLSR estimator solves

an outcome regression estimating equation, which, unlike equation (2.3), always has

a solution if the estimated value of E(Y |S,X) falls in the sample space of Y .

Empirical likelihood (EL) (Owen 1988, 1990, 2001; Qin and Lawless 1994; Kita-

mura 2007) has become a popular tool in analyzing data with missing outcome. Chen

et al. (2003) assumed an extra set of estimating functions in addition to U(β;Y,X)

to handle missing data, and employed the EL approach to combine the two. But

their method is only valid under the missing completely at random mechanism (Lit-

tle and Rubin, 2002). Under MAR assumption (2.2), Chen et al. (2008) proposed an

estimator, referred to as CLQ estimator in the following, by solving the estimating

equation
N∑
i=1

p̂i
Ri

π̂(Si,X i)
U(β;Yi,X i) = 0,
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where p̂i is the EL probability mass assigned to data point (Ri = 1, Yi,Si,X i) after

incorporating information carried by subjects with missing values. Qin et al. (2009)

proposed an estimator, referred to as QZL estimator in the following, by solving the

over-identified estimating equation

N∑
i=1

{
Ri

π̂(Si,X i)
U(β;Yi,X i)

T ,
Ri − π̂(Si,X i)

π̂(Si,X i)
σ(β;Si,X i)

T

}T
= 0,

for which the EL was used to account for the over-identification in estimation. It has

been shown that, when π(S,X) is correctly modeled, both the CLQ and the QZL

estimators are more efficient than the IPW estimator. In addition, when σ(β;S,X)

is a correct model for E {U (β;Y,X)|S,X}, both estimators asymptotically coin-

cide with the corresponding AIPW estimator. However, when π(S,X) is incorrectly

modeled, neither the CLQ nor the QZL estimator is consistent. Wang and Chen

(2009) proposed a nonparametric multiple imputation method under MAR assump-

tion (2.2) that can be applied to analyze missing outcome data. However, large

number of imputations are required to obtain stable estimates, which makes this

method computationally undesirable.

All of the AIPW method, its recently proposed alternatives and the EL-based

methods depend on the form of U(β;Y,X), which needs to be explicitly specified

priori. Different forms of U (β;Y,X) produce different estimators. These estimators

have different levels of estimation efficiency, and their numerical performances may

differ from each other dramatically. For many EL-based estimators (e.g. CLQ and

QZL), another drawback is that they are not robust against model misspecification

of the missingness mechanism. Such model misspecification commonly occurs in

practice when dealing with missing data. Therefore, the double robustness property

as possessed by the AIPW estimator is highly desired. In view of these facts, we

propose a conditional empirical likelihood (CEL) (Zhang and Gijbels 2003; Kitamura
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et al. 2004) method for estimation with missing outcome data, where the estimation

is carried out directly based on (2.1) rather than on a chosenU(β;Y,X). We propose

two CEL-based estimators, namely the CEL-IPW estimator and the CEL-AIPW

estimator. The CEL-IPW estimator is consistent if π(S,X) is correctly modeled.

The CEL-AIPW estimator enjoys the double robustness property, in the sense that

it is consistent if either π(S,X) or E(Y |S,X) is correctly modeled. When both

models are correct, the CEL-AIPW estimator attains the semiparametric efficiency

bound, and thus is asymptotically the most efficient estimator.

This chapter is organized as follows. Section 2.2 describes the CEL estimation

procedure and its implementation. Section 2.3 concerns the large sample properties.

Section 2.4 contains the results of simulation studies. Section 2.5 illustrates the data

application of the proposed CEL method. Section 2.6 consists of some concluding

remarks. Technical assumptions and proofs are provided in Section 2.7.

2.2 CEL Estimation

2.2.1 CEL-based estimators

We now introduce the CEL-based estimators. Define the IPW residual and the

AIPW residual respectively as follows:

f(β) = R
{
Y − µ(XTβ)

}
/π(S,X),

g(β) =
R

π(S,X)

{
Y − µ(XTβ)

}
− R− π(S,X)

π(S,X)
E
{
Y − µ(XTβ)|S,X

}
.

Clearly we have that E {f(β0)|X} = 0 and E {g(β0)|X} = 0. This conditional mean

zero property of both residuals serves as the foundation of the proposed CEL-based

estimation procedure. In this section we focus on describing the procedure based

on the AIPW residual g(β), which yields the CEL-AIPW estimator. Estimation

based on the IPW residual f(β) that leads to the CEL-IPW estimator then follows
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a similar procedure, with no need of modeling E(Y |S,X).

Define pij = P {gj(β)|X i}, i, j = 1, · · · , N , which are the conditional empirical

probabilities on the augmented data points {(XT
i , gj(β)) : i, j = 1, · · · , N}. To

ensure that the conditional mean zero property is satisfied by the sampled data, we

impose the following constraints over pij’s:

(2.4) pij ≥ 0 ,
N∑
j=1

pij = 1, and
N∑
j=1

pijgj(β) = 0.

The first two constraints make sure that for each i = 1, · · · , N , pij’s are properly

defined probabilities, whereas the third constraint is the sample version of the con-

ditional mean zero property. Following Zhang and Gijbels (2003) and Kitamura

et al. (2004), we construct weighted conditional empirical log-likelihood for sub-

ject i as
∑N

j=1 wij log pij, where wij is certain suitable weight assigned to subject j,

j = 1, · · · , N , satisfying
∑N

j=1wij = 1. Naturally, subjects who resemble subject

i should be assigned high weights. A technique quantifying this resemblance is to

utilize a local kernel function. Let Xc and Xd
i denote the continuous and categorical

components of X, respectively. Then wij is given by

wij =
K
{

(Xc
i −Xc

j)/bN
}
I(Xd

i = Xd
j )∑N

j=1K
{

(Xc
i −Xc

j)/bN
}
I(Xd

i = Xd
j )
,

where we use a product kernel K
{

(Xc
i −Xc

j)/bN
}

=
∏q

l=1 K
{

(X
(l)
i −X

(l)
j )/bN

}
,

with K(·) being a second order kernel function that is symmetric around zero (e.g.

standard Gaussian kernel), bN being the bandwidth parameter, q being the dimension

ofXc, andX
(l)
i denoting the lth component ofXc

i . Here I(·) is the indicator function.

Taking the summation over all subjects, we obtain the weighted conditional em-

pirical log-likelihood L =
∑N

i=1

∑N
j=1 wij log pij. Constraints in (2.4) imply that L is

a function of both β and pij’s. Maximizing L simultaneously with respect to β and
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pij’s subject to constraints in (2.4) leads to the CEL-AIPW estimator, denoted as

β̂AIPW .

Note that the AIPW residual g(β) involves two possibly unknown quantities,

π(S,X) and E(Y |S,X), which may need to be estimated in order to calculate

β̂AIPW . When the missing outcome data are collected from studies where the miss-

ingness of Y is due to study design (e.g. two-stage design), π(S,X) is known.

Otherwise, we postulate a parametric model π(α;S,X), with α being an unknown

finite dimensional parameter whose true value is denoted as α0. One example is the

logistic model, logit {π(α;S,X)} = ZTα, where ZT = (ST ,XT ). An estimator α̂

is given by maximizing the following binomial likelihood:

(2.5)
N∏
i=1

{π(α;Si,X i)}Ri {1− π(α;Si,X i)}1−Ri .

On the other hand, to estimate E(Y |S,X), we may postulate another parametric

model h(γ;S,X), where h(·) is a known link function and γ is an unknown finite

dimensional parameter with true value γ0. Choices of this parametric model include

the generalized linear model (McCullagh and Nelder 1989) and the quasi-likelihood

model (Wedderburn 1974). Under the MAR assumption (2.2), i.e. R ⊥ Y |(S,X), we

have E(Y |S,X) = E(Y |S,X, R = 1). Therefore, one estimator γ̂ of γ0 is obtained

based on complete-case analysis by solving the estimating equation

(2.6)
N∑
i=1

RiZiḣ(ZT
i γ)Var(Yi|Zi)

−1
{
Yi − h(ZT

i γ)
}

= 0,

where ḣ(·) is the first order derivative function of h(·). Note that although the

underlying distribution that generates the data must satisfy

E(Y |X) =

∫
E(Y |S,X)f(S|X)dS,

where f(S|X) is the density of S|X, the two models, µ(XTβ) for E(Y |X) and
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h(γ;S,X) for E(Y |S,X), may not have such a relationship. This is because al-

though we assume that µ(XTβ) is a correctly specified model, h(γ;S,X) may not

be. When h(γ;S,X) is misspecified, the above relationship is unlikely to hold for

the two models. For this reason, the relationship actually provides us a practical

guidance to rule out certain parametric models h(γ;S,X) that have apparent in-

compatibility with µ(XTβ).

Given estimators α̂ and γ̂, the AIPW residual can be rewritten as following:

(2.7)

g(β, α̂, γ̂) =
R

π(α̂;S,X)

{
Y − µ(XTβ)

}
−R− π(α̂;S,X)

π(α̂;S,X)

{
h(γ̂;S,X)− µ(XTβ)

}
.

Then the proposed CEL estimation is carried out by substituting gj(β) in the third

constraint in (2.4) with gj(β, α̂, γ̂). For convenience, we denote the resulting CEL-

AIPW estimator still as β̂AIPW .

2.2.2 Numerical implementation

The calculation of β̂AIPW pertains to a constrained optimization problem. Using

Lagrange multipliers, the Lagrangian is given by

L =
N∑
i=1

(
N∑
j=1

wij log pij

)
−

N∑
i=1

$i

(
N∑
j=1

pij − 1

)
−

N∑
i=1

λi

{
N∑
j=1

pijgj(β, α̂, γ̂)

}
,

where scalars $i and λi are the Lagrange multipliers associated with the second and

third constraints in (2.4), respectively. With ∂L/∂pij = 0 and (2.4), it can be easily

shown that, for a fixed β,

(2.8) pij(β, α̂, γ̂) =
wij

1 + λ̂i(β, α̂, γ̂)gj(β, α̂, γ̂)
, i, j = 1, · · · , N,

where λ̂i(β, α̂, γ̂) is the solution to equation
∑N

j=1 pij(β, α̂, γ̂)gj(β, α̂, γ̂) = 0. It is

easy to see that

λ̂i(β, α̂, γ̂) = arg min
λi

[
−

N∑
j=1

wij log {1 + λigj(β, α̂, γ̂)}

]
.
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Denote Λi(λi,β, α̂, γ̂) = −
∑N

j=1 wij log {1 + λigj(β, α̂, γ̂)}. Then the objective

function L can be rewritten as a function of β only:

L(β, α̂, γ̂) =
N∑
i=1

Λi

{
λ̂i(β, α̂, γ̂),β, α̂, γ̂

}
+

N∑
i=1

N∑
j=1

wij logwij.

Therefore, the CEL-AIPW estimator can be equivalently derived from the following

optimization:

β̂AIPW = arg max
β

N∑
i=1

{
min
λi

Λi(λi,β, α̂, γ̂)

}
.

This representation of the CEL-AIPW estimator essentially suggests a way of

numerical implementation, which is done via nested optimization routines. The

Newton-Raphson algorithm may be employed for the optimization. For convenience,

we suppress α̂ and γ̂ in the following description of algorithmic implementation. For

a fixed β, given λoldi , the inner loop updates λi by

λnewi = λoldi − Λ−1
i,λλ

(
λoldi ,β

)
Λi,λ

(
λoldi ,β

)
, i = 1, · · · , N,

where

Λi,λ (λi,β) = −
N∑
j=1

wij
gj(β)

1 + λigj(β)
and Λi,λλ (λi,β) =

N∑
j=1

wij
gj(β)2

{1 + λigj(β)}2 .

For each i, an initial value can be taken as λi = 0, and the converged value gives

an estimate of λ̂i(β). To guarantee the positivity of the estimated pij’s, the updates

should be restricted on the legitimate region {λi : 1 + λigj(β) ≥ wij}. Given βold

and the estimated λ̂i(β
old)’s from the inner loop, the outer loop updates β by

βnew = βold −

{
N∑
i=1

Li,ββ(βold)

}−1{ N∑
i=1

Li,β(βold)

}
,



19

where

Li,β(β) = −λ̂i(β)
N∑
j=1

wij
Gj(β)T

1 + λ̂i(β)gj(β)
,

Li,ββ(β) = −
ΛT
i,λβ

{
λ̂i(β),β

}
Λi,λβ

{
λ̂i(β),β

}
Λi,λλ

{
λ̂i(β),β

} ,

Λi,λβ

{
λ̂i(β),β

}
=

N∑
j=1

wij

 λ̂i(β)gj(β)Gj(β){
1 + λ̂i(β)gj(β)

}2 −
Gj(β)

1 + λ̂i(β)gj(β)

 ,
and Gj(β) = ∂gj(β)/∂β. Iterate the above nested loops until a certain convergence

criterion is satisfied. At the convergence, the algorithm produces β̂AIPW .

For bandwidth selection, we follow Smith (2007) as a rule of thumb to first deter-

mine the order of bN . That is, bN → 0, N1−2ν−2/δb2q
N → ∞ and N1−2νb

5q/2
N → ∞ as

N →∞, where ν ∈ (0, 1/2) and δ ≥ 8. Then the following cross-validation criterion,

which is a modified version of the one suggested by Newey (1993), may be used for

data-driven bandwidth selection:

(2.9) CV (bN) =
N∑
i=1

{
gi(β̂, α̂, γ̂)2 − σ̂−i(β̂, α̂, γ̂)2

}2

σ̂−i(β̂, α̂, γ̂)6
,

where σ̂−i(β̂, α̂, γ̂)2 =
∑N

j=1 ŵijgj(β̂, α̂, γ̂)2, β̂ = β̂(bN) is the CEL-AIPW estimator

obtained with a given bN , and

ŵii = 0, ŵij =
K
{

(Xc
i −Xc

j)/bN
}
I(Xd

i = Xd
j )∑N

j=1,j 6=iK
{

(Xc
i −Xc

j)/bN
}
I(Xd

i = Xd
j )

for j 6= i.

The optimal bandwidth bN is chosen as the minimizer of CV (bN).

2.3 Large Sample Properties

For the large sample properties presented in this section, primary consideration

is given to the CEL-AIPW estimator, and the corresponding results are summarized

in a series of theorems. Regularity conditions and proofs are provided in Section
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2.7. Properties regarding the CEL-IPW estimator are listed as corollaries, since the

CEL-IPW estimator may be treated as a special case of the CEL-AIPW estimator.

Proofs of the corollaries are omitted because they are trivially modified versions of

proofs of the corresponding theorems.

Based on the results of White (1982), we know that α̂ and γ̂ converge in proba-

bility to some values α∗ and γ∗ respectively, and that
√
N(α̂−α∗) and

√
N(γ̂−γ∗)

are bounded in probability. Here α∗ and γ∗ are not necessarily α0 and γ0. Only

when the model for π(S,X) or E(Y |S,X) is correctly specified is α∗ or γ∗ equal to

α0 or γ0, respectively. Since α̂ maximizes (2.5), from White (1982), the asymptotic

linear expansion for α̂ is given as

(2.10)
√
N(α̂−α∗) = −

[
E

{
∂ψ(α∗)

∂α

}]−1
1√
N

N∑
i=1

ψi(α∗) + op(1),

where ψ(α) = ψ(α;S,X, R) is the score function corresponding to (2.5). When a

logistic regression model is assumed for π(S,X), we have

ψ(α) =

{
R− exp(ZTα)

1 + exp(ZTα)

}
Z.

Similarly, the asymptotic linear expansion for γ̂ is given as

(2.11)
√
N(γ̂ − γ∗) =

1√
N

N∑
i=1

φi(γ∗) + op(1),

where φ(γ) = φ(γ;Y,S,X, R) is the influence function. When γ̂ is the solution to

estimating equation (2.6), we have

φ(γ) = −
[
E

{
∂ζ(γ)

∂γ

}]−1

ζ(γ) with ζ(γ) =
RZḣ(ZTγ)

{
Y − h(ZTγ)

}
Var(Y |Z)

.

Let us denote the CEL-IPW estimator as β̂IPW . The following Theorem II.1 and

Corollary II.1 provide the consistency of β̂AIPW and β̂IPW , respectively.

Theorem II.1. For the model defined by (2.1) and (2.2), under Assumptions 1 in

Section 2.7, if either α∗ = α0 or γ∗ = γ0, we have β̂AIPW
p−→ β0 as N →∞.
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Corollary II.1. For the model defined by (2.1) and (2.2), under Assumptions 2 in

Section 2.7, ifα∗ = α0, we have β̂IPW
p−→ β0 as N →∞.

From Theorem II.1, β̂AIPW is doubly robust, in the sense that if either π(S,X)

or E(Y |S,X) is correctly modeled, β̂AIPW is a consistent estimator of β0.

To describe the asymptotic distribution of β̂AIPW , denote VAIPW (β,α,γ) =

E {g(β,α,γ)2|X}, Gγ(β,α,γ) = E {∂g(β,α,γ)/∂γ|X},

QAIPW (β,α,γ) =
{
∂µ(XTβ)/∂βT

}
VAIPW (β,α,γ)−1g(β,α,γ),

IAIPW (β,α,γ) = E
{
QAIPW (β,α,γ)QAIPW (β,α,γ)T

}
,

V α,AIPW (β,α,γ)

= Var
[
QAIPW (β,α,γ)− E

{
QAIPW (β,α,γ)ψ(α)T

} [
E
{
ψ(α)ψ(α)T

}]−1
ψ(α)

]
,

V γ(β,α,γ) = Var

[
QAIPW (β,α,γ) + E

{
∂µ(XTβ)

∂βT
VAIPW (β,α,γ)−1Gγ(β,α,γ)

}
φ(γ)

]
.

Theorem II.2. For the model defined by (2.1) and (2.2), under Assumptions 1 in

Section 2.7, we have the following results of asymptotic distribution.

(i) If α∗ = α0, then

√
N(β̂AIPW − β0)

d−→

N
(
0, IAIPW (β0,α0,γ∗)

−1V α,AIPW (β0,α0,γ∗)IAIPW (β0,α0,γ∗)
−1
)
.(2.12)

(ii) If γ∗ = γ0, then

√
N(β̂AIPW−β0)

d−→ N
(
0, IAIPW (β0,α∗,γ0)−1V γ(β0,α∗,γ0)IAIPW (β0,α∗,γ0)−1

)
.

(iii) If both α∗ = α0 and γ∗ = γ0, then

√
N(β̂AIPW − β0)

d−→ N
(
0, IAIPW (β0,α0,γ0)−1

)
.
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In the case that the missing outcome data are collected based on a two-stage

design, α0 is known. When the known α0 is used instead of the estimator α̂ for

CEL estimation, following the same arguments as in the proof of Theorem II.2,

the asymptotic variance of β̂AIPW has the same structure as that in (2.12), but

with V α,AIPW (β0,α0,γ∗) in the middle replaced by Var {QAIPW (β0,α0,γ∗)} =

IAIPW (β0,α0,γ∗). The new asymptotic variance is no smaller than that given by

(2.12), in the sense that the corresponding difference of the two asymptotic vari-

ance matrices is nonnegative-definite. This is because V α,AIPW (β0,α0,γ∗) is the

variance of a population regression residual in the form of Var(Q − Cψ), where

C = E(QψT )
{

E(ψψT )
}−1

is the regression coefficient matrix. Obviously Var(Q) ≥

Var(Q−Cψ) in the nonnegative-definite sense. So in practice even if α0 is known,

using an estimator α̂ has the advantage of potential efficiency gain for the CEL-

AIPW estimator. This counterintuitive phenomenon is well known in the literature

of parametric regression with missing data (e.g. Robins et al. 1995). For non-

parametric regression with missing data this does not hold any more (Wang et al.

2010). When E(Y |S,X) is correctly modeled, however, using α̂ or α0 will make

no difference asymptotically, as in both cases the asymptotic variance of β̂AIPW

is IAIPW (β0,α0,γ0)−1. From Chen and Breslow (2004) and Yu and Nan (2006),

IAIPW (β0,α0,γ0)−1 is the semiparametric efficiency bound for the model defined by

(2.1) and (2.2). Therefore, Theorem II.2 implies that the CEL-AIPW estimator is

efficient when both π(S,X) and E(Y |S,X) are correctly modeled.
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To describe the asymptotic distribution of β̂IPW , denote VIPW (β,α) = E {f(β,α)2|X},

QIPW (β,α) = E

{
R

π(α;S,X)
|X
}
∂µ(XTβ)

∂βT
VIPW (β,α)−1f(β,α),

IIPW (β,α) = E
{
QIPW (β,α)QIPW (β,α)T

}
,

V α,IPW (β,α) = Var
[
QIPW (β,α)− E

{
QIPW (β,α)ψ(α)T

} [
E
{
ψ(α)ψ(α)T

}]−1
ψ(α)

]
.

Corollary II.2. For the model defined by (2.1) and (2.2), under Assumptions 2 in

Section 2.7, if α∗ = α0, we have

(2.13)
√
N(β̂IPW −β0)

d−→ N
(
0, IIPW (β0,α0)−1V α,IPW (β0,α0)IIPW (β0,α0)−1

)
.

If α0 is known by design and is used in the CEL estimation instead of α̂, the

asymptotic variance of β̂IPW has the same structure as that in (2.13), but with

V α,IPW (β0,α0) in the middle replaced by Var {QIPW (β0,α0)} = IIPW (β0,α0).

The new asymptotic variance is no smaller than that given by (2.13) due to the same

reason given before. So using an estimator α̂ is still preferred for the CEL-IPW

estimator even if α0 is known.

The following Theorem II.3 provides consistent estimators for the asymptotic vari-

ance of the CEL-AIPW estimator given in Theorem II.2. Denote ĝi(β) = gi(β, α̂, γ̂),

V̂i,AIPW (β) =
∑N

j=1 pij(β, α̂, γ̂)ĝj(β)2, Ĝi,γ(β) =
∑N

j=1 pij(β, α̂, γ̂) {∂gj(β, α̂, γ̂)/∂γ},

Q̂i,AIPW (β) =
{
∂µ(XT

i β)/∂βT
}
V̂i,AIPW (β)−1ĝi(β),

ÎAIPW (β) = (1/N)
∑N

i=1 Q̂i,AIPW (β)Q̂i,AIPW (β)T , and

r̂i(β) = Q̂i,AIPW (β)−

{
1

N

N∑
i=1

Q̂i,AIPW (β)ψi(α̂)T

}{
1

N

N∑
i=1

ψi(α̂)ψi(α̂)T

}−1

ψi(α̂),

v̂i(β) = Q̂i,AIPW (β) +

{
1

N

N∑
i=1

∂µ(XT
i β)

∂βT
V̂i,AIPW (β)−1Ĝi,γ(β)

}
φi(γ̂).

Theorem II.3. Under Assumptions 1 in Section 2.7, we have the following results.
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(i) If α∗ = α0, then[
ÎAIPW (β)−1

{
1

N

N∑
i=1

r̂i(β)r̂i(β)T

}
ÎAIPW (β)−1

] ∣∣∣
β=β̂AIPW

p−→ IAIPW (β0,α0,γ∗)
−1V α,AIPW (β0,α0,γ∗)IAIPW (β0,α0,γ∗)

−1.

(ii) If γ∗ = γ0, then[
ÎAIPW (β)−1

{
1

N

N∑
i=1

v̂i(β)v̂i(β)T

}
ÎAIPW (β)−1

] ∣∣∣
β=β̂AIPW

p−→ IAIPW (β0,α∗,γ0)−1V γ(β0,α∗,γ0)IAIPW (β0,α∗,γ0)−1.

(iii) If both α∗ = α0 and γ∗ = γ0, then ÎAIPW (β̂AIPW )
p−→ IAIPW (β0,α0,γ0).

The asymptotic variance estimators given in Theorem II.3 can be employed for

inference if we know which one of π(S,X) and E(Y |S,X) is correctly modeled. In

many practical studies, however, such knowledge is unavailable. Therefore, it is desir-

able to have a consistent estimator of the asymptotic variance without knowing which

one of π(S,X) and E(Y |S,X) is correctly modeled. The following Theorem II.4 pro-

vides such a consistent estimator. Denote Ĝi,α(β) =
∑N

j=1 pij(β, α̂, γ̂) {∂gj(β, α̂, γ̂)/∂α}

and

m̂i(β)

= Q̂i,AIPW (β)−

{
1

N

N∑
i=1

∂µ(XT
i β)

∂βT
V̂i,AIPW (β)−1Ĝi,α(β)

}{
1

N

N∑
i=1

∂ψi(α̂)

∂α

}−1

ψi(α̂)

+

{
1

N

N∑
i=1

∂µ(XT
i β)

∂βT
V̂i,AIPW (β)−1Ĝi,γ(β)

}
φi(γ̂).



25

Theorem II.4. Under Assumptions 1 in Section 2.7, we have that[
ÎAIPW (β)−1

{
1

N

N∑
i=1

m̂i(β)m̂i(β)T

}
ÎAIPW (β)−1

] ∣∣∣
β=β̂AIPW

p−→



IAIPW (β0,α0,γ∗)
−1V α,AIPW (β0,α0,γ∗)IAIPW (β0,α0,γ∗)

−1 if α∗ = α0

IAIPW (β0,α∗,γ0)−1V γ(β0,α∗,γ0)IAIPW (β0,α∗,γ0)−1 if γ∗ = γ0

IAIPW (β0,α0,γ0)−1 if α∗ = α0 and γ∗ = γ0.

To consistently estimate the asymptotic variance of the CEL-IPW estimator

given in Corollary II.2, denote f̂i(β) = fi(β, α̂), V̂i,IPW (β) =
∑N

j=1 pij(β, α̂)f̂j(β)2,

M̂i(β) =
∑N

j=1 pij(β, α̂)Rj/π(α̂;Sj,Xj),

Q̂i,IPW (β) = M̂i(β)
{
∂µ(XT

i β)/∂βT
}
V̂i,IPW (β)−1f̂i(β),

ÎIPW (β) = (1/N)
∑N

i=1 Q̂i,IPW (β)Q̂i,IPW (β)T , and

t̂i(β) = Q̂i,IPW (β)−

{
1

N

N∑
i=1

Q̂i,IPW (β)ψi(α̂)T

}{
1

N

N∑
i=1

ψi(α̂)ψi(α̂)T

}−1

ψi(α̂).

Here pij(β,α) is similarly defined to that in (2.8), but is based on the IPW resid-

ual instead. The following Corollary II.3 provides a consistent estimator for the

asymptotic variance of β̂IPW .

Corollary II.3. Under Assumptions 2 in Section 2.7, if α∗ = α0, we have[
ÎIPW (β)−1

{
1

N

N∑
i=1

t̂i(β)t̂i(β)T

}
ÎIPW (β)−1

] ∣∣∣
β=β̂IPW

p−→ IIPW (β0,α0)−1V α,IPW (β0,α0)IIPW (β0,α0)−1.

2.4 Simulation Experiments

We evaluate the finite sample performance of the proposed CEL estimators using

simulation experiments in this section. The simulation model contains two covariates,

X1 ∼ N (0, 22) and X2 ∼ Bernoulli(0.5), as well as a surrogate variable generated by
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S = 1 + X1 + X2 + εS with εS ∼ N (0, 22). The outcome of interest Y is generated

by a linear model Y = 1 + S + 0.6X1 + 2X2 + εY , where εY ∼ N (0, σ2
Y ) with

covariate-dependent variance σ2
Y = exp(0.2 + 0.4S+ 0.4X1). Here X1, X2 and εS are

independently sampled. A straightforward calculation shows that the conditional

distribution of Y |X is a normal distribution, with mean E(Y |X) = 2 + 1.6X1 +

3X2 and variance Var(Y |X) = 4 + exp(0.92 + 0.8X1 + 0.4X2). The missing data

mechanism is set to be logit {π(S,X)} = 0.5 − 0.2S + 0.6X1 − 0.2X2, under which

approximately 50% of subjects have missing Y in our generated data. Therefore, the

true parameter values used in our simulation are β0 = (β1, β2, β3)T = (2, 1.6, 3)T ,

α0 = (0.5,−0.2, 0.6,−0.2)T , and γ0 = (1, 1, 0.6, 2)T .

We compare the proposed CEL estimators with the IPW, AIPW, HAN, RLSR,

CLQ and QZL estimators under three different scenarios: (i) both π(S,X) and

E(Y |S,X) are correctly modeled; (ii) only π(S,X) is correctly modeled; and (iii)

only E(Y |S,X) is correctly modeled. For the second scenario, E(Y |S,X) is incor-

rectly modeled as E(Y |S,X) = γ1 + γ2X1, and for the third scenario, π(S,X) is

incorrectly modeled as logit {π(S,X)} = α1 + α2S + α3X2.

In each scenario, the six competitors are derived based on the estimating function

U(β;Y,X) = XVar(Y |X)−1(Y −XTβ), where Var(Y |X) is specified in three dif-

ferent ways; namely, V1 = 1, V2 = θ1 +exp(θ2 +θ3X1 +θ4X2) and V3 = 4+exp(0.92+

0.8X1 + 0.4X2), with θ = (θ1, θ2, θ3, θ4)T in V2 being unknown. To estimate θ, we

first calculate the residual ε̃ = Y −XT β̃ for subjects whose outcome is observed,

where β̃ is the IPW estimator based on U(β;Y,X) = X(Y −XTβ) with weight

R/π(α0;S,X). Note that the true value π(S,X) is employed here to ensure that β̃

is a consistent estimator of β0. In practical studies where π(S,X) is unknown, the

six competitors can not take this advantage any more. We then minimize the least
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square objective function [log ε̃2 − log {θ1 + exp(θ2 + θ3X1 + θ4X2)}]2 with respect

to θ over all subjects whose residual has been calculated. Here the log transforma-

tion is used to ensure that the estimated value of Var(Y |X) is always positive. In

practice, Var(Y |X) may also be jointly estimated with the mean model through the

generalized method of moments (Hansen, 1982).

To establish the benchmark for the comparison, we also include an estimator

based on fully observed data. This estimator, denoted as IDEAL, is derived based

on U(β;Y,X) = XV −1
2 (Y −XTβ), where V2 is estimated by a procedure similar to

what has been described above. We consider two cases of sample size, N = 200 and

N = 800, and the corresponding results are summarized in Table 2.1 and Table 2.2,

respectively, based on 500 simulations. We employ the Gaussian kernel to calculate

the weights for the CEL method, where X1 is standardized to have mean 0 and

variance 1 to facilitate the bandwidth selection via cross-validation criterion (2.9).

Table 2.1: Comparison of different estimators (N=200). The numbers have been multiplied by 100. For each
estimator, three statistics are reported: bias, empirical standard error (the number in ( )), and mean square
error (the number in [ ]). For CEL-AIPW and CEL-IPW estimators, the number in { } is the mean of estimated
standard error based on either Theorem II.3 or Corollary II.3. For CEL-AIPW estimator, the number in 〈 〉 is
the mean of estimated standard error based on Theorem II.4.

both models correct correct π(S,X) correct E(Y |S,X)

method Var(Y |X) β1 β2 β3 β1 β2 β3 β1 β2 β3

IDEAL
-1 -2 -4 -1 -2 -4 -1 -2 -4
(29) (13) (41) (29) (13) (41) (29) (13) (41)
[9] [2] [17] [9] [2] [17] [9] [2] [17]

CEL-IPW

-1 0 -4 -1 0 -4 -49 7 -12
(40) (22) (68) (40) (22) (68) (39) (21) (63)
[16] [5] [47] [16] [5] [47] [39] [5] [41]
{40} {19} {63} {40} {19} {63} {38} {17} {56}

IPW

V1

-1 0 -5 -1 0 -5 -49 6 -12
(44) (28) (76) (44) (28) (76) (44) (32) (76)
[19] [8] [57] [19] [8] [57] [43] [11] [60]

V2

-1 0 -5 -1 0 -5 -49 5 -13
(42) (23) (70) (42) (23) (70) (39) (21) (60)
[17] [5] [50] [17] [5] [50] [39] [5] [38]

V3

0 2 -5 0 2 -5 -49 8 -12
(41) (21) (70) (41) (21) (70) (37) (18) (59)
[16] [5] [49] [16] [5] [49] [38] [4] [36]

CEL-AIPW

0 -2 -3 1 1 -7 -1 -1 -2
(36) (18) (57) (39) (23) (71) (37) (18) (53)
[13] [3] [33] [15] [5] [51] [14] [3] [29]
{39} {15} {57} {40} {21} {68} {36} {15} {49}
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〈36〉 〈16〉 〈53〉 〈41〉 〈22〉 〈71〉 〈36〉 〈15〉 〈49〉

AIPW

V1

0 -2 -4 0 0 -7 -1 -1 -3
(41) (26) (67) (44) (30) (81) (42) (31) (72)
[17] [7] [45] [19] [9] [66] [18] [10] [52]

V2

-5 -2 3 -2 -2 -1 -4 -2 3
(59) (33) (117) (110) (82) (225) (54) (27) (96)
[35] [11] [138] [120] [67] [507] [29] [7] [92]

V3

1 -1 -4 3 3 -8 -1 -1 -3
(33) (16) (52) (46) (31) (88) (35) (17) (49)
[11] [3] [27] [21] [10] [78] [12] [3] [24]

HAN

V1

0 -2 -3 -1 0 -5 -1 -2 -4
(41) (27) (68) (44) (28) (74) (44) (34) (82)
[16] [7] [46] [19] [8] [55] [19] [12] [67]

V2

-4 -1 3 1 2 -9 -5 -2 2
(56) (33) (113) (44) (30) (77) (54) (24) (97)
[32] [11] [127] [20] [9] [60] [29] [6] [94]

V3

0 0 -3 1 3 -6 -1 -1 -3
(34) (16) (52) (40) (39) (68) (35) (17) (55)
[11] [3] [27] [16] [15] [46] [12] [3] [30]

RLSR

V1

0 -2 -2 - - - 0 -2 -3
(42) (25) (63) - - - (45) (31) (75)
[18] [6] [40] - - - [20] [10] [56]

V2

-5 -2 5 - - - -5 -2 5
(57) (24) (111) - - - (58) (25) (112)
[33] [6] [123] - - - [34] [6] [126]

V3

0 -1 -2 - - - 0 -1 -3
(32) (14) (45) - - - (32) (13) (46)
[10] [2] [20] - - - [10] [2] [21]

CLQ

V1

1 -1 -4 -8 4 -7 -3 -2 1
(43) (28) (72) (104) (52) (147) (128) (44) (182)
[19] [8] [53] [109] [27] [215] [163] [19] [331]

V2

-5 -1 2 -2 2 -11 -11 -4 3
(73) (84) (163) (64) (35) (122) (149) (38) (211)
[54] [70] [265] [41] [12] [149] [222] [15] [444]

V3

2 2 -5 0 3 -4 -30 -4 0
(40) (16) (67) (40) (21) (70) (39) (17) (64)
[16] [3] [45] [16] [5] [49] [24] [3] [41]

QZL

V1

-3 -3 -4 1 4 -8 -31 -45 -23
(42) (30) (72) (45) (32) (77) (46) (31) (83)
[18] [9] [51] [20] [11] [60] [31] [30] [74]

V2

-3 -2 -4 -1 4 -6 -20 -21 -5
(36) (20) (58) (43) (26) (70) (59) (32) (89)
[13] [4] [33] [18] [7] [50] [38] [15] [79]

V3

-2 0 -2 -1 6 -4 -8 -10 -3
(34) (18) (54) (40) (24) (69) (42) (20) (61)
[11] [3] [29] [16] [6] [47] [18] [5] [38]

Table 2.2: Comparison of different estimators (N=800). The numbers have been multiplied by 100. For each
estimator, three statistics are reported: bias, empirical standard error (the number in ( )), and mean square
error (the number in [ ]). For CEL-AIPW and CEL-IPW estimators, the number in { } is the mean of estimated
standard error based on either Theorem II.3 or Corollary II.3. For CEL-AIPW estimator, the number in 〈 〉 is
the mean of estimated standard error based on Theorem II.4.

both models correct correct π(S,X) correct E(Y |S,X)

method Var(Y |X) β1 β2 β3 β1 β2 β3 β1 β2 β3

IDEAL
1 0 -1 1 0 -1 1 0 -1
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(15) (6) (19) (15) (6) (19) (15) (6) (19)
[2] [0] [3] [2] [0] [3] [2] [0] [3]

CEL-IPW

3 0 -3 3 0 -3 -46 7 -12
(21) (11) (32) (21) (11) (32) (19) (10) (29)
[4] [1] [10] [4] [1] [1] [24] [2] [10]
{20} {10} {33} {20} {10} {33} {19} {9} {28}

IPW

V1

3 1 -4 3 1 -4 -46 8 -12
(23) (14) (37) (23) (14) (37) (22) (16) (37)
[5] [2] [14] [5] [2] [14] [26] [3] [15]

V2

3 0 -3 3 0 -3 -46 7 -12
(22) (12) (35) (22) (12) (35) (19) (10) (29)
[5] [1] [12] [5] [1] [12] [25] [1] [10]

V3

3 1 -2 3 1 -2 -46 8 -11
(21) (11) (34) (21) (11) (34) (19) (9) (27)
[5] [1] [12] [5] [1] [12] [25] [1] [9]

CEL-AIPW

3 0 -3 3 1 -4 2 0 -2
(18) (9) (26) (20) (11) (33) (18) (9) (24)
[3] [1] [7] [4] [1] [11] [3] [1] [6]
{19} {7} {28} {20} {11} {34} {18} {8} {23}
〈18〉 〈8〉 〈25〉 〈20〉 〈11〉 〈35〉 〈18〉 〈7〉 〈23〉

AIPW

V1

3 1 -3 3 1 -4 3 1 -3
(21) (13) (33) (22) (15) (38) (21) (16) (35)
[4] [2] [11] [5] [2] [15] [5] [2] [12]

V2

2 -1 -3 0 -1 -1 2 0 -1
(22) (13) (43) (45) (33) (45) (19) (10) (28)
[5] [2] [19] [21] [11] [20] [4] [1] [8]

V3

2 1 -2 3 1 -3 2 1 -1
(18) (7) (24) (23) (15) (39) (18) (9) (23)
[3] [1] [6] [5] [2] [15] [3] [1] [5]

HAN

V1

3 1 -3 3 1 -4 3 1 -3
(21) (13) (33) (22) (14) (36) (22) (18) (40)
[4] [2] [11] [5] [2] [13] [5] [3] [16]

V2

1 0 -1 3 1 -4 1 0 -1
(19) (9) (27) (23) (12) (37) (20) (11) (30)
[4] [1] [8] [5] [1] [14] [4] [1] [9]

V3

2 1 -1 3 2 -3 2 0 -2
(18) (7) (24) (21) (11) (33) (18) (9) (26)
[3] [1] [6] [4] [1] [11] [3] [1] [7]

RLSR

V1

3 1 -2 - - - 3 1 -3
(21) (13) (30) - - - (22) (16) (36)
[5] [2] [9] - - - [5] [3] [13]

V2

0 0 1 - - - 1 0 0
(30) (8) (29) - - - (20) (8) (28)
[9] [1] [9] - - - [4] [1] [8]

V3

2 0 -1 - - - 2 0 -1
(17) (7) (22) - - - (17) (7) (22)
[3] [0] [5] - - - [3] [0] [5]

CLQ

V1

3 1 -3 3 0 -1 2 1 -2
(21) (13) (35) (31) (34) (78) (27) (18) (46)
[5] [2] [12] [9] [11] [62] [7] [3] [21]

V2

0 1 1 2 0 -4 -6 -3 4
(33) (18) (64) (24) (18) (38) (39) (21) (51)
[11] [3] [41] [6] [3] [15] [15] [5] [26]

V3

3 1 -2 3 1 -2 -31 -5 1
(21) (8) (33) (21) (11) (34) (21) (10) (32)
[5] [1] [11] [5] [1] [12] [14] [1] [10]

QZL

V1

2 0 -3 3 2 -4 -31 -50 -26
(21) (14) (33) (22) (14) (36) (25) (17) (44)



30

[4] [2] [11] [5] [2] [13] [16] [28] [26]

V2

1 0 -2 3 2 -3 -12 -13 -1
(18) (9) (25) (23) (11) (35) (27) (19) (34)
[3] [1] [6] [5] [1] [12] [8] [5] [11]

V3

2 1 -1 3 2 -2 -4 -6 0
(18) (8) (24) (21) (11) (33) (20) (10) (27)
[3] [1] [6] [4] [1] [11] [4] [1] [7]

When both π(S,X) and E(Y |S,X) are correctly modeled, we have the following

summary points based on Table 2.1 and Table 2.2.

(i) The total mean square error (MSE) of the IPW estimator decreases as the

model for Var(Y |X) gets closer to the truth, from V1 to V3. The CEL-IPW

estimator further reduces the total MSE. Even compared to the IPW estimator

employing V3, the CEL-IPW estimator still reduces the total MSE by 11% at

N = 800.

(ii) The AIPW, HAN and RLSR estimators have similar performance by inspecting

their total MSE, especially at N = 800, confirming their asymptotic equiva-

lence. When V2 is employed, those three estimators have poor numerical per-

formance at N = 200, which, however, substantially improves as N increases

to 800. The CEL-AIPW estimator has smaller total MSE than those three es-

timators, except when they use the true value of Var(Y |X) (i.e. V3), in which

case, however, as N increases, the difference between the total MSE dimin-

ishes. Specifically, the ratio of the total MSE of the CEL-AIPW estimator over

that of the AIPW, HAN and RLSR estimators using V3 drops from 1.21, 1.21

and 1.51 to 1.13, 1.17 and 1.35, respectively, as N increases from 200 to 800.

This observation provides a numerical support to our theory that the CEL-

AIPW estimator attains the semiparametric efficiency bound, hence should be

more efficient, as N → ∞, than the other three estimators regardless of how
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Var(Y |X) is modeled. The CEL-AIPW estimator has smaller total MSE than

the CEL-IPW estimator as expected, since correctly modeling E(Y |S,X) im-

proves efficiency.

(iii) The CEL-AIPW estimator has smaller total MSE than the CLQ estimator

under all three different models for Var(Y |X), and has similar total MSE to

the QZL estimator using the true value of Var(Y |X). As N increases, the

CEL-AIPW estimator will become more efficient than both the CLQ and QZL

estimators regardless of how Var(Y |X) is modeled.

When only π(S,X) is correctly modeled, we summarize the following points.

(i) Under the same model for Var(Y |X), the AIPW estimator has larger total MSE

than the IPW estimator, mainly due to the incorrect modeling of E(Y |S,X).

This lack of efficiency of the AIPW estimator when the optimal augmentation

term is incorrectly modeled is in full agreement with findings reported in the

literature (Rubin and van der Laan 2008; Cao et al. 2009). In this case, it has

been shown that both the HAN and RLSR estimators achieve higher efficiency

than the IPW and AIPW estimators. Since the implementation of the RLSR

estimator requires that the dimension of γ is no smaller than that of β, which

is not satisfied in the current scenario, we only report the results of the HAN

estimator. The efficiency improvement of the HAN estimator over the AIPW

estimator is apparent by comparing their total MSE, and the improvement over

the IPW estimator is less obvious but can still be observed at N = 800. Due

to the incorrect modeling of E(Y |S,X) again, the CEL-AIPW estimator has

larger total MSE than the CEL-IPW estimator.

(ii) The CEL-AIPW estimator is apparently superior to the AIPW estimator, judg-
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ing from its smaller total MSE under all three different models for Var(Y |X).

Although hard to make theoretical comparison, the CEL-AIPW estimator ap-

pears to have comparable or better efficiency than the HAN, CLQ and QZL

estimators even when they use the true value of Var(Y |X), as the ratio of the

total MSE of the CEL-AIPW estimator over that of the latter three estimators

using V3 is 0.98, 0.94 and 0.99, respectively, at N = 800.

When only E(Y |S,X) is correctly modeled, we summarize the following points.

(i) The IPW, CEL-IPW, CLQ and QZL estimators are clearly biased. In contrast,

the AIPW, CEL-AIPW, HAN and RLSR estimators have ignorable bias, due

to their consistency guaranteed by the double robustness property.

(ii) Theoretical comparison of the efficiency between the CEL-AIPW estimator and

the other three doubly robust estimators does not provide any definitive con-

clusions. However, judging from the total MSE, the CEL-AIPW estimator is

superior to the other three estimators unless they use V3, corresponding to their

best case scenario. Even in that case, the CEL-AIPW estimator still has com-

parable total MSE. Specifically, the ratio of the total MSE of the CEL-AIPW

estimator over that of the AIPW, HAN and RLSR estimators using V3 is 1.07,

0.94 and 1.20, respectively, at N = 800.

In addition to all of the above points, it is also of interest to observe the numerical

evidence on the convergence of the asymptotic variance estimators given in Theorem

II.3, Corollary II.3 and Theorem II.4. The convergence is well demonstrated by the

comparison across different sample sizes. When N = 200, these estimators tend to

have slight underestimation, but this underestimation disappears when the sample

size increases to N = 800.
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Since our proposed CEL estimation procedure involves nonparametric calculation

of weight wij, one important question is whether increasing the number of covariates

would substantially affect the estimation of regression parameters. To assess such

an impact, we conduct the following simulation experiment. The simulation model

now involves four covariates, X1 ∼ N (0, 22), X2 ∼ Bernoulli(0.5), X3 ∼ N (0, 12)

and X4 ∼ N (0, 12). The surrogate variable is given by S = 1 + X1 + X2 + X3 +

X4 + εS with εS ∼ N (0, 22), and the outcome Y is generated by Y = 1 + S +

0.6X1 + 2X2 + 0.5X3 + 0.5X4 + εY , where εY ∼ N (0, σ2
Y ) with σ2

Y = exp(0.92 +

0.8X1 + 0.4X2). Here X1, X2, X3, X4 and εS are independently sampled. For

this model, Y |X has a normal distribution with mean E(Y |X) = 2 + 1.6X1 +

3X2 + 1.5X3 + 1.5X4 and variance Var(Y |X) = 4 + exp(0.92 + 0.8X1 + 0.4X2). The

missingness mechanism is set as logit {π(S,X)} = 0.5−0.2S+0.6X1−0.2X2+0.2X3+

0.2X4, under which approximately 48% of subjects have missing Y in the generated

data. Compared to the previous simulation model, this new model has two extra

continuous covariates X3 and X4, and has β0 = (β1, · · · , β5)T = (2, 1.6, 3, 1.5, 1.5)T ,

α0 = (0.5,−0.2, 0.6,−0.2, 0.2, 0.2)T and γ0 = (1, 1, 0.6, 2, 0.5, 0.5)T . When π(S,X)

or E(Y |S,X) is incorrectly modeled, they are incorrectly modeled as before. The

numerical performance of our proposed CEL-AIPW estimator based on the new

simulation model is summarized in Table 2.3 using 500 simulations. In Table 2.3,

the IDEAL estimator and the AIPW estimator based on V3 are also included for the

sake of comparison. Product Gaussian kernel is used for weight calculation, where

the continuous covariates are standardized to have mean 0 and variance 1 for the

bandwidth selection via (2.9).
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Table 2.3: The effect of an increased dimension in covariates on the performance of CEL-AIPW estimator.
The numbers have been multiplied by 100. For each estimator presented, three statistics are reported: bias,
empirical standard error ( the number in ( )), and mean square error (the number in [ ]). For CEL-AIPW
estimator, the number in { } and the number in 〈 〉 are the mean of estimated standard error based on Theorem
II.3 and Theorem II.4, respectively. AIPWopt is the AIPW estimator using the true value of Var(Y |X).

N method β1 β2 β3 β4 β5

200

IDEAL
-1 0 2 1 0
(30) (13) (40) (19) (21)
[9] [2] [16] [4] [4]

both models correct

AIPWopt

-1 0 1 3 2
(38) (22) (59) (28) (29)
[14] [5] [35] [8] [9]

CEL-AIPW

-1 0 0 2 2
(37) (21) (60) (30) (30)
[14] [4] [36] [9] [9]
{39} {15} {57} {28} {28}
〈34〉 〈16〉 〈51〉 〈25〉 〈25〉

correct π(S,X)

AIPWopt

2 -1 -8 0 -4
(54) (40) (101) (55) (55)
[29] [16] [102] [30] [30]

CEL-AIPW

2 1 -6 -3 -1
(43) (26) (76) (40) (39)
[19] [7] [58] [16] [15]
{42} {23} {73} {37} {37}
〈44〉 〈24〉 〈76〉 〈39〉 〈39〉

correct E(Y |S,X)

AIPWopt

-1 0 1 1 1
(37) (21) (57) (28) (28)
[14] [5] [32] [8] [8]

CEL-AIPW

-1 -1 0 1 2
(37) (23) (62) (33) (31)
[14] [5] [39] [11] [10]
{35} {16} {50} {24} {24}
〈35〉 〈16〉 〈50〉 〈24〉 〈24〉

800

IDEAL
0 0 0 0 0

(15) (6) (20) (10) (9)
[2] [0] [4] [1] [1]

both models correct

AIPWopt

0 0 0 0 0
(17) (7) (24) (11) (11)
[3] [1] [6] [1] [1]

CEL-AIPW

0 0 0 1 1
(18) (9) (25) (13) (13)
[3] [1] [6] [2] [2]
{19} {7} {27} {13} {13}
〈17〉 〈8〉 〈24〉 〈12〉 〈12〉

correct π(S,X)

AIPWopt

0 1 -2 -1 0
(25) (17) (45) (25) (26)
[6] [3] [20] [6] [7]

CEL-AIPW

0 1 -2 -1 0
(21) (12) (36) (19) (20)
[5] [2] [13] [4] [4]
{21} {12} {37} {19} {19}
〈22〉 〈12〉 〈38〉 〈20〉 〈20〉

correct E(Y |S,X)
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AIPWopt

-1 0 0 0 0
(18) (10) (25) (12) (12)
[3] [1] [6] [1] [2]

CEL-AIPW

0 0 0 0 1
(19) (10) (27) (15) (15)
[4] [1] [7] [2] [2]
{17} {8} {24} {12} {12}
〈17〉 〈8〉 〈24〉 〈12〉 〈12〉

From Table 2.3, no substantial effect on the estimation of regression coefficients

resulting from the inclusion of two extra continuous covariates has been observed.

The reason that an increased dimension in covariates does not have a dramatic im-

pact on our proposed method might be that, from (2.8) and the Newton-Raphson

algorithm described in Section 2.2, the calculation of our proposed estimators implic-

itly utilizes the conditional empirical probability pij, which may be regarded as an

“upgraded” variant of the weight wij after incorporating extra information implied

by the fact that E{g(β0)|X} = 0. As a result, the impact of an increased dimension

in covariates on parameter estimation may be mitigated by the utilization of pij.

2.5 Data Application

We now apply the proposed CEL method to an intervention study for adolescent

children of parents with HIV (Rotheram-Borus et al. 2004). In this study, a total

of 307 parents having HIV with adolescent children were recruited from the Division

of AIDS Services in New York City, and 423 adolescents from these families were

eligible for study participation. After recruitment, each parent and each adolescent

received a baseline interview, which collected information on background characteris-

tics as well as the measurements for adolescent assessment, such as emotional distress

and somatic symptoms. At the end of the baseline interview, participant families

were randomly assigned either to the intervention arm or to the control arm. The
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intervention in this study was designed using social learning theory and cognitive-

behavioral principles (Bandura 1994). Depending on the parents’ phase of illness,

families received the intervention in 3 different modules, which cover different aspects

of information on the tasks for either parents or adolescents. The researchers fol-

lowed up on the participants every 3 months for the first 2 years and every 6 months

thereafter, until the end of 6 years. At each follow-up, measurements for adolescent

assessment were collected.

In our analysis we use a subset of the data that contains assessments on ado-

lescents’ emotional distress, which were collected using the Brief Symptom Inven-

tory (BSI). BSI is a commonly used psychological survey consisting of 53 items

that belong to 9 sub-groups. Each item is associated with a psychiatric symp-

tom and has a 0 to 4 rate scale. Subjects report values to each item according

to the level that they have been troubled by the corresponding symptom in the

past week, with 0 meaning “having not been troubled at all” and 4 meaning “hav-

ing been troubled a lot”. One scientifically interesting question is whether having

parents with HIV has disparate impacts on the emotional distress between boys

and girls during the delivery of intervention. Such a gender disparity, if it ex-

ists, may suggest the need for the development of gender-specific interventions that

could result in more beneficial achievement. We try to answer this question us-

ing data collected at the end of the first year of intervention. The data are down-

loaded from “http://rem.ph.ucla.edu/rob/mld/data/tabdelimiteddata/bsitotal.txt”,

and detailed description about the data can be found in Weiss (2005).

The outcome variable is the global severity index, which is the average rating score

over all 53 items. Due to the skewed distribution of the global severity index and

the possibility of occurrence of value 0, following the analysis instruction in Weiss
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(2005), we create a new outcome gsi by adding a small constant 1/53 to the global

severity index and then taking the log-transformation with base 2. The following

model is assumed:

gsi = β1 + β2age+ β3girl + β4int+ ε,

where age is the age of adolescent at the end of the first year of intervention, girl is

gender indicator with girl = 0 for boys and girl = 1 for girls, int is the intervention

indicator with int = 0 for control arm and int = 1 for intervention arm, and ε

is the error term that has mean 0 conditional on all three covariates. However,

scores on gsi were only available for about half of the adolescents at the end of

the first year of intervention. On the other hand, almost all adolescents had their

baseline gsi score observed. Therefore, we treat the baseline gsi, denoted by bgsi,

as a surrogate variable. To better model the missing mechanism, we create two

dummy variables, namely winter and summer, as indicators for the season (winter

indicates November through February, summer indicates July through October, and

the rest time of the calendar year is treated as reference) when the measurements

at the end of the first year of intervention were taken. These two dummy variables

are considered as extra surrogate variables. After removing adolescents who did not

have scores on bgsi, we end up with N = 420 subjects, among which 204 did not

have score on gsi (the missing data proportion is 49%). There are in total 221 girls

and 199 boys, and 211 are in the intervention arm and 209 are in the control arm.

The average age is 16 years old, with a standard deviation 2 years. Note that some

parents contributed more than one adolescents, therefore measurements from these

adolescents are correlated. In our illustration we ignore such correlation and treat

all adolescents as independent.
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Table 2.4:
Results of modeling the missingness mech-
anism for the intervention study data (N =
420).

est se z-value p-value

constant 0.473 0.819 0.578 0.564

bgsi -0.148 0.064 -2.316 0.021

winter 0.830 0.244 3.396 0.001

summer 0.513 0.245 2.089 0.037

age -0.067 0.049 -1.353 0.176

girl 0.042 0.204 0.206 0.837

int 0.165 0.201 0.818 0.413

est: estimated value; se: estimated standard error.

Table 2.5: Estimation results for the intervention study data (N = 420).

CEL-AIPW CEL-IPW complete-case analysis
est se p-value est se p-value est se p-value

constant -5.531 1.098 0.000 -5.393 1.208 0.000 -5.231 1.195 0.000
age 0.164 0.066 0.013 0.164 0.074 0.027 0.139 0.071 0.053
girl 0.745 0.265 0.005 0.651 0.290 0.025 0.634 0.294 0.032
int 0.277 0.266 0.297 0.186 0.289 0.520 0.200 0.296 0.500

est: estimated value; se: estimated standard error. For CEL-AIPW method, the standard error is
estimated based on Theorem II.4.

To model the missingness mechanism, we fit a logistic regression model, and

the results are presented in Table 2.4. It is seen that having higher score on bgsi

significantly increases the probability of missing the interview conducted at the end

of the first year of intervention. The season when the interview was conducted

also plays a significant role, in the sense that subjects were more likely to take the

interview during winter and summer seasons compared to the rest time of year. A

linear regression model is employed to model E(Y |S,X) in the augmentation term.
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Table 2.5 contains the parameter estimates and corresponding p-values based on

the CEL-AIPW estimator, the CEL-IPW estimator and the complete case analysis.

The disparity between the CEL-AIPW estimate and the other two estimates indicates

that the missingness mechanism may not be adequately modeled, but the relationship

between the global severity index and the auxiliary variables is well exploited in the

the CEL-AIPW estimation. Indeed, through model building process, we found that

it is reasonable to use linear regression to model E(Y |S,X), where all the auxiliary

variables have significant effects (p-value for bgsi is less than 0.0001, p-value for

winter is 0.0003, and p-value for summer is 0.0480). All three estimation methods

in Table 2.5 conclude that gender has a significant effect on the global severity index,

whereas the effect of intervention is not significant. The age effect is significant

based on both the CEL-AIPW and the CEL-IPW methods, but is only marginally

significant based on the complete case analysis. Due to the possible inadequacy of

modeling the missingness mechanism and the strong relationship between the global

severity index and the auxiliary variables, parameter values estimated by the CEL-

AIPW method seem to be more reliable. Based on the CEL-AIPW estimates, on

average, one year increase in age leads to roughly 12% increase in the global severity

index, and girls have their global severity index roughly 68% higher than boys, where

each effect is interpreted by holding the others fixed. Therefore, having parents with

HIV does have different impacts on the emotional distress of boys and girls during

the delivery of intervention, at least after one year of the delivery.

2.6 Conclusions

In this chapter we proposed a CEL method for analyzing missing outcome data

when some surrogate (or auxiliary) variables exist. We studied the asymptotic prop-
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erties of both the CEL-IPW and CEL-AIPW estimators. The innovation of our

proposed method is that our estimators are not based on any estimating functions.

The circumvention of the construction of estimating functions enables our estima-

tors to possibly achieve the maximum amount of efficiency. As has been illustrated

by our simulation experiments, the efficiency of existing estimating-function-based

methods relies heavily on how the estimating functions are constructed. Therefore,

the circumvention of constructing estimating functions by our proposed CEL method

may be highly advantageous.

Some additional findings obtained during the process of the development and

the application of the CEL method are worth mentioning. First, the proposed CEL

method enjoys high estimation efficiency when moderate to high level of heteroscedas-

ticity exists, especially when such heteroscedasticity needs to be modeled. In other

words, when homoscedasticity is a more reasonable assumption, our CEL estimators

may not outperform some of the existing estimators, such as the IPW or AIPW

estimators, due to the nonparametric calculation of the weights. Second, we employ

a modified cross-validation criterion (2.9) along the lines suggested by Newey (1993)

for the bandwidth selection. Although this criterion works reasonably well in our

simulation experiments, it has not been theoretically justified yet. Future work on

better criteria and related theory is needed. Third, when the number of covariates is

large and the covariates vary in scales and/or types, the kernel-based weight calcu-

lation is challenged. Although through simulation experiments we have found that

the inclusion of additional covariates may not have a dramatic impact on the per-

formance of our proposed procedure, such an impact will become influential and can

not be ignored as the number of covariates keeps increasing. Therefore, it is worth-

while to explore more flexible ways to calculate the weights. Last, but not least, the
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CEL estimation procedure has a relatively heavy computational burden compared

to the estimating-function-based methods. Future work on the development of fast

algorithms to search for the CEL estimates is highly desired.

2.7 Technical Assumptions and Proofs

Let B, A and G denote the domain of β, α and γ, respectively. Let B0 ⊆ B

be some closed ball around β0. Denote Kitamura et al. (2004) by KTA. Denote

Gα(β,α,γ) = E {∂g(β,α,γ)/∂α|X}. For a matrix H with elements Hij, define

‖H ‖=
√∑

i,j H
2
ij.

Assumptions 1. (i) For any β 6= β0, there exists Xβ,α∗,γ∗ in the domain of

X, such that P (x ∈ Xβ,α∗,γ∗) > 0 and E {g(β,α∗,γ∗)|X = x} 6= 0 for every

x ∈ Xβ,α∗,γ∗. (ii) E
{

supβ∈B |g(β,α,γ)|m
}
< ∞ for some m ≥ 8 for any α ∈ A

and γ ∈ G. (iii) B, A and G are compact. (iv) µ(·) and h(·) are continuously

differentiable. (v) π(α;S,X) is continuously differentiable with respect to α for

every S and X, and π(α;S,X) > σ > 0 for all α ∈ A for some σ. (vi)

0 < infX,β∈B0 VAIPW (β,α,γ) ≤ supX,β∈B0 VAIPW (β,α,γ) < ∞ for any α ∈ A

and γ ∈ G, where VAIPW (β,α,γ) = E {g(β,α,γ)2|X}. (vii) The domain of Xc is

compact. (viii) bN → 0, N1−2ν−2/δb2q
N →∞ and N1−2νb

5q/2
N →∞ as N →∞, where

ν ∈ (0, 1/2) and δ ≥ 8. (ix) λ̂i(β, α̂, γ̂) ∈
{
λi ∈ R : | λi |≤ cN−1/m

}
for some c > 0,

i = 1, · · · , N .

Remark : Assumptions 1 (vi) guarantees that the conditional variance of AIPW

residual is invertible. The restrictions on bN in Assumptions 1 (viii) follow that in

Smith (2007). Assumption 1 (ix) is similar to Assumption 3.6 in KTA, and is only

needed when the focus is on some neighborhood around β0. For example, it is needed

in establishing the asymptotic normality of β̂AIPW , but not needed in establishing
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the consistency. Assumptions 1 (ix) is legitimate if AIPW residual has mean zero.

Numerical implementation does not require Assumptions 1 (ix).

Assumptions 2. (i) For any β 6= β0, we can find Xβ,α∗ in the domain of X,

such that P (x ∈ Xβ,α∗) > 0 and E {f(β,α∗)|X = x} 6= 0 for every x ∈ Xβ,α∗.

(ii) E
{

supβ∈B |f(β,α)|m
}
< ∞ for some m ≥ 8 for any α ∈ A. (iii) B and A

are compact. (iv) µ(·) is continuously differentiable. (v) π(α;S,X) is continuously

differentiable with respect to α for every S and X, and π(α;S,X) > σ > 0 for all

α ∈ A for some σ. (vi) 0 < infX,β∈B0 VIPW (β,α) ≤ supX,β∈B0 VIPW (β,α) < ∞

for any α ∈ A, where VIPW (β,α) = E {f(β,α)2|X}. (vii) The domain of Xc is

compact. (viii) bN → 0, N1−2ν−2/δb2q
N →∞ and N1−2νb

5q/2
N →∞ as N →∞, where

ν ∈ (0, 1/2) and δ ≥ 8. (ix) λ̂i(β, α̂) ∈
{
λi ∈ R : | λi |≤ cN−1/m

}
for some c > 0,

i = 1, · · · , N .

In the following proofs, without causing any confusion, we suppress the subscript

“AIPW” (except for that in β̂AIPW ) to save notations.

Proof of Theorem II.1. Under Assumptions 1, the same arguments as in the proof of

Theorem 1 in KTA yields that N1/mL(β, α̂, γ̂) ≤ F (β, α̂, γ̂) + op(1) for any β ∈ B,

where

F (β,α,γ) = −E

[
| E {g(β,α,γ)|X} |2

1+ | E {g(β,α,γ)|X} |

]
is continuous with respect to β, α and γ. Therefore, we have

(2.14) N1/mL(β, α̂, γ̂) ≤ F (β,α∗,γ∗) + op(1), for any β ∈ B.

From Assumptions 1, for any β 6= β0, we have

F (β,α∗,γ∗) ≤ −E

[
I(X ∈ Xβ,α∗,γ∗)

| E {g(β,α,γ)|X} |2

1+ | E {g(β,α,γ)|X} |

]
,
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and the right-hand side of this inequality is strictly negative. Therefore, from (2.14),

the continuity of F (β,α∗,γ∗) and the compactness of B, for any δ > 0, there exists

H(δ) > 0, such that

(2.15)

sup
β∈B/B(β0,δ)

N1/mL(β, α̂, γ̂) ≤ sup
β∈B/B(β0,δ)

F (β,α∗,γ∗) + op(1) ≤ −H(δ) + op(1),

where B(β0, δ) is the ball centering at β0 with radius δ.

On the other hand, under Assumptions 1, the same arguments as in the proof of

(B.4) in KTA yields that max1≤i≤N λ̂i(β0, α̂, γ̂) = op(N
−1/m) if either α∗ = α0 or

γ∗ = γ0. Therefore, from

L(β0, α̂, γ̂) = − 1

N

N∑
i=1

N∑
j=1

wij log
{

1 + λ̂i(β0, α̂, γ̂)gj(β0, α̂, γ̂)
}

≥ − 1

N

N∑
i=1

{
λ̂i(β0, α̂, γ̂)

N∑
j=1

wijgj(β0, α̂, γ̂)

}

we have that N1/mL(β0, α̂, γ̂) ≥ op(1). This, together with (2.15) gives the desired

result.

To prove Theorem II.2, we first prove the following lemma.

Lemma.

Gα(β0,α0,γ∗) = −E
{
g(β0,α0,γ∗)ψ(α0)T |X

}
.

Proof of Lemma. Given Y , S and X, the binomial likelihood in (2.5) and g(β,α,γ)

in (2.7) only depend on R, which we redenote as p(R,α) = π(α)R {1− π(α)}1−R

and gR(β,α,γ) = g(β,α,γ), respectively. Simple calculation gives that, for any

β, α and γ, E {gR(β,α,γ)|Y,S,X} = Y − µ(XTβ). On the other hand, we have

E {gR(β,α,γ)|Y,S,X} =
∑

R gR(β,α,γ)p(R,α). Therefore, for all Y , S, X, β, α

and γ, we have
∑

R gR(β,α,γ)p(R,α) = Y − µ(XTβ). Taking partial derivative
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with respect to α on both sides and setting β = β0, α = α0 and γ = γ∗ yields

∑
R

∂gR(β0,α0,γ∗)

∂α
p(R,α0) +

∑
R

gR(β0,α0,γ∗)
∂p(R,α0)/∂α

p(R,α0)
p(R,α0) = 0,

which is

E

{
∂g(β0,α0,γ∗)

∂α
|Y,S,X

}
= −E

{
g(β0,α0,γ∗)ψ(α0)T |Y,S,X

}
.

Taking expectation conditional on X on both sides then gives the desired result.

Proof of Theorem II.2. Since β̂AIPW satisfies the equation ∂L(β̂AIPW , α̂, γ̂)/∂βT =

0, by Taylor expansion, we have

(2.16)
√
N(β̂AIPW − β0) =

{
− 1

N

∂2L(β̃, α̂, γ̂)

∂β∂βT

}−1{
1√
N

∂L(β0, α̂, γ̂)

∂βT

}
,

where β̃ is some point between β̂AIPW and β0. Under Assumptions 1, using the

same arguments as in the proof of Lemma C.1 in KTA, together with Theorem II.1,

we have that

(2.17) − 1

N

∂2L(β̃, α̂, γ̂)

∂β∂βT
p−→ I(β0,α∗,γ∗).

On the other hand, the same argument as the proof of (A.14) in KTA gives

1√
N

∂L(β0, α̂, γ̂)

∂βT
=

1√
N
A(β0, α̂, γ̂) + op

{
1√
N
A(β0, α̂, γ̂)

}
,

where

1√
N
A(β0, α̂, γ̂) =

1√
N

N∑
i=1

{ N∑
j=1

wij
∂µ(XT

j β0)

∂βT

}{
N∑
j=1

wijgj(β0, α̂, γ̂)2

}−1{ N∑
j=1

wijgj(β0, α̂, γ̂)

} .
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A Taylor expansion around α∗ and γ∗ then gives that

1√
N
A(β0, α̂, γ̂)

=
1√
N

N∑
i=1

{ N∑
j=1

wij
∂µ(XT

j β0)

∂βT

}{
N∑
j=1

wijgj(β0, α̂, γ̂)2

}−1{ N∑
j=1

wijgj(β0,α∗,γ∗)

}
+

1

N

N∑
i=1

{ N∑
j=1

wij
∂µ(XT

j β0)

∂βT

}{
N∑
j=1

wijgj(β0, α̂, γ̂)2

}−1{ N∑
j=1

wij
∂gj(β0, α̃, γ̃)

∂α

}
√
N(α̂−α∗)

+
1

N

N∑
i=1

{ N∑
j=1

wij
∂µ(XT

j β0)

∂βT

}{
N∑
j=1

wijgj(β0, α̂, γ̂)2

}−1{ N∑
j=1

wij
∂gj(β0, α̃, γ̃)

∂γ

}
√
N(γ̂ − γ∗),

where α̃ is some point between α̂ and α∗, and γ̃ is some point between γ̂ and γ∗.

Under our assumptions,

1√
N
A(β0, α̂, γ̂) =

1√
N

N∑
i=1

Qi(β0,α∗,γ∗)

+E

{
∂µ(XT

i β0)

∂βT
Vi(β0,α∗,γ∗)

−1Gi,α(β0,α∗,γ∗)

}√
N(α̂−α∗)

+E

{
∂µ(XT

i β0)

∂βT
Vi(β0,α∗,γ∗)

−1Gi,γ(β0,α∗,γ∗)

}√
N(γ̂ − γ∗)

+op(1).

When α∗ = α0, we have that

Gi,γ(β0,α∗,γ∗) = E

[
E

{
−Ri − πi(α0)

πi(α0)

∂hi(γ∗)

∂γ
|X i,Si

}
|X i

]
= 0.

Therefore from the linear expansion (2.10) for
√
N(α̂ − α0), the boundedness of

√
N(γ̂ − γ∗), and using Lemma, we have

1√
N
A(β0, α̂, γ̂) =

1√
N

∑N
i=1

[
Qi(β0,α0,γ∗)− E

{
Qi(β0,α0,γ∗)ψi(α0)T

} [
E
{
ψi(α0)ψi(α0)T

}]−1
ψi(α0)

]
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+op(1),

and this leads to

(2.18)
1√
N

∂L(β0, α̂, γ̂)

∂βT
d−→ N (0,V α(β0,α0,γ∗)) .

When γ∗ = γ0, we have that

Gi,α(β0,α∗,γ∗) = E

{
E

[
− Ri

πi(α∗)2

∂πi(α∗)

∂α
{Yi − hi(γ0)} |X i,Si

]
|X i

}
= 0.

Therefore from the linear expansion (2.11) for
√
N(γ̂ − γ0) and the boundedness of

√
N(α̂−α∗),

1√
N
A(β0, α̂, γ̂) =

1√
N

∑N
i=1

[
Qi(β0,α∗,γ0) + E

{
∂µ(XT

i β0)

∂βT Vi(β0,α∗,γ0)−1Gi,γ(β0,α∗,γ0)
}
φi(γ0)

]
+op(1),

and this leads to

(2.19)
1√
N

∂L(β0, α̂, γ̂)

∂βT
d−→ N (0,V γ(β0,α∗,γ0)) .

When both α∗ = α0 and γ∗ = γ0, we have

1√
N
A(β0, α̂, γ̂) =

1√
N

N∑
i=1

Qi(β0,α0,γ0) + op(1),

and this leads to

(2.20)
1√
N

∂L(β0, α̂, γ̂)

∂βT
d−→ N (0, I(β0,α0,γ0)) .

The desired results follow from (2.16) to (2.20).

Proof of Theorem II.3. Under Assumptions 1, from Lemma D.2 in KTA, we have

max1≤i,j≤N supβ∈B |λ̂i(β, α̂, γ̂)gj(β, α̂, γ̂)| = op(1). Therefore pij(β, α̂, γ̂) = wij {1 + op(1)},

and the op(1) term is independent of i, j and β. This, together with Assumptions

1, the consistency of β̂AIPW , α̂ and γ̂, and the continuity of g(β,α,γ), implies that
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for any 1 ≤ i ≤ N , V̂i(β̂AIPW ) = Vi(β̂AIPW ,α∗,γ∗) + op(1) and Ĝi,γ(β̂AIPW ) =

Gi,γ(β̂AIPW ,α∗,γ∗) + op(1). Assumptions 1 guarantees that Vi(β̂AIPW ,α∗,γ∗) is

invertible with probability approaching 1. Then the weak law of large numbers gives

the results.

Proof of Theorem II.4. This follows from the weak law of large numbers and the

arguments in the proof of Theorem II.2 and Theorem II.3.



CHAPTER III

Locally Efficient and Doubly Robust Estimation with
Missing Outcome: Longitudinal Data with Dropout

3.1 Background and Literature Review

In longitudinal studies, repeated measurements are collected from the subjects

over certain time period. Dropout is commonly seen in longitudinal studies, where

dropout means that some subjects leave the study in the middle of the follow-up

and do not return. The missing data caused by dropout often complicate statistical

estimation and inference. Unless the dropout is completely at random (Little 1993,

1994, 1995, 2008; Little and Rubin 2002), analysis based on a direct application of

the generalized estimating equations (GEE) method (Liang and Zeger 1986) leads

to biased estimation.

To correct for the selection bias due to dropout, Robins et al. (1995) and Robins

and Rotnitzky (1995) proposed the inverse probability weighted GEE method. Under

the assumption of missing at random (MAR) (Little and Rubin 2002), their estimator

is consistent if the missingness probabilities are correctly modeled. According to

Robins et al. (1994), an augmentation term that extracts more information from

subjects with incomplete measurements can be incorporated to improve estimation

efficiency. Along this line, Tsiatis (2006) presented a detailed study of the augmented

inverse probability weighted (AIPW) complete-case GEE method. In addition to

48
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the potential efficiency improvement, this method yields an estimator that is doubly

robust (Scharfstein et al. 1999), in the sense that the estimator is consistent if either

the missingness probabilities or the conditional expectations of certain functions

of the full data given the observed data at each level of missingness are correctly

modeled. See also Bang and Robins (2005), Rotnitzky (2008), Seaman and Copas

(2009), Tsiatis et al. (2011), and Rotnitzky et al. (2012).

For the semiparametric model defined by (i) the conditional mean structure of

longitudinal outcomes given covariates and (ii) the MAR mechanism, Robins and

Rotnitzky (1995) derived the efficiency bound, which is the highest level of estimation

efficiency achievable by any regular and asymptotically linear estimator under this

semiparametric model. Obtaining an estimator that achieves the efficiency bound is

not easy. One such success was given by Robins and Rotnitzky (1995), who proposed

to model the following quantities: (i) the missingness probabilities, (ii) the condi-

tional expectations of longitudinal outcomes given the observed data at each level of

missingness, and (iii) certain second moments of the data. Their estimator achieves

the efficiency bound when all those quantities are correctly modeled, and thus is

locally efficient. Refer to Tsiatis (2006) for more details on how to obtain locally ef-

ficient estimators. However, the second moments required by Robins and Rotnitzky

(1995) are beyond the variance-covariance of longitudinal outcomes. Therefore, even

if the variance-covariance is correctly modeled, existing estimators are still unlikely

to achieve the efficiency bound. In addition, modeling those second moments may be

very difficulty due to their complex forms and the unknown data distribution. Hence,

a method that avoids the modeling of any second moments would be appealing.

In this chapter, following the spirit of the AIPW approach, we propose an estima-

tion method based on the conditional empirical likelihood (CEL) (Owen 1988, 2001;
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Qin and Lawless 1994; Zhang and Gijbels 2003; Kitamura et al. 2004). Unlike most

of the existing methods, our method does not need to model any second moments,

including the variance-covariance of longitudinal outcomes. The proposed estimator

is doubly robust; that is, the estimator is consistent if either the missingness proba-

bilities or the conditional expectations of longitudinal outcomes given the observed

data at each level of missingness are correctly modeled. When both quantities are

correctly modeled, our estimator achieves the semiparametric efficiency bound. The

procedure developed here is a generalization of that in Chapter II.

This chapter is organized as follows. Section 3.2 describes the data and model on

which the developments are based. Section 3.3 details the proposed CEL estimation

procedure. Section 3.4 concerns the numerical implementation. Section 3.5 contains

the large sample properties. Section 3.6 presents the results of simulation studies.

Section 3.7 consists of some concluding remarks. Technical assumptions and proofs

are provided in Section 3.8.

3.2 Data and Model

Let Yik and X ik denote the outcome and a vector of covariates collected from

subject i (i = 1, · · · , N) at time k (k = 0, · · · , K), respectively, where time 0 denotes

the baseline. In many practical studies, a certain set of auxiliary variables Sik may

also be collected at each visit k. Although they are not of direct statistical interest,

these auxiliary variables can usually help explain the missingness mechanism and

improve estimation efficiency. Therefore, our development in this chapter takes their

possible presence into account. Write Y = (Y0, · · · , YK)T, X = (XT
0 , · · · ,XT

K)T and

S = (ST
0 , · · · ,ST

K)T. Our interest is to estimate the unknown p-dimensional vector
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β0 in the following mean regression model:

(3.1) E(Yk |X) = µk(X,β0) (k = 1, · · · , K),

where µk are user-specified link functions depending on the nature of the outcome.

For example, the identity link may be used for continuous outcome, and the logit

link may be used for binary outcome. The relationship between Y and S is not of

direct interest, and thus S is not included in the regression model (3.1).

Define Rik to be the indicator of observing subject i at time k; that is, Rik = 1

if subject i is still in the study at time k, and Rik = 0 otherwise. Without loss of

generality, assume that data at the baseline are always observed; that is, Ri0 = 1.

Due to the fact that dropout leads to monotone missingness, we have that Rik = 0

implies Ri(k+1) = 0 (k = 1, · · · , K − 1). Write R = (R0, · · · , RK)T. In this chapter,

we allow the auxiliary variables to be missing together with the outcome, but assume

the covariates to be fully observed. Such scenario occurs, for example, when the

covariates are external time-dependent variables or deterministic functions of time

and baseline covariates. Therefore, our observed data are N independently and

identically distributed copies of (XT,RT,RTY T,RTST)T. The missing data caused

by dropout are assumed to be MAR, in the sense that for any k = 1, · · · , K,

(3.2) pr(Rk = 1 | Rk−1 = 1,X,Y ,S) = pr(Rk = 1 | Rk−1 = 1,X, Ȳ k−1, S̄k−1),

where Ȳ k−1 = (Y0, · · · , Yk−1)T and S̄k−1 = (ST
0 , · · · ,ST

k−1)T. In other words, the

probability of observing a subject at the current scheduled visit, given the fact that

the subject was observed at the previous visit, does not depend on the current

or future unobserved data, but only depends on the observed history. Denote the

probability in (3.2) by πk(X, Ȳ k−1, S̄k−1). As usual, the probability of observing the
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complete data is assumed to be bounded away from zero, or equivalently,

(3.3) πk = πk(X, Ȳ k−1, S̄k−1) > c > 0 (k = 1, · · · , K)

for some constant c. The semiparametric model for longitudinal data with dropout

considered in this chapter is defined by (3.1), (3.2) and (3.3). This model is among the

semiparametric models considered by Robins et al. (1995) and Robins and Rotnitzky

(1995).

3.3 CEL Estimation

Our estimation procedure starts by defining the following AIPW residual vector:

(3.4) g(β) = ∆ε(β)−
K∑
k=1

Rk − πkRk−1

π1 × · · · × πk
Ik−1E

{
ε(β) |X, Ȳ k−1, S̄k−1

}
.

Here ∆ is the K × K diagonal matrix with the kth diagonal element Rk/(π1 ×

· · · × πk), ε(β) = {Y1 − µ1(X,β), · · · , YK − µK(X,β)}T, and Ik−1 is the K × K

diagonal matrix with the first k−1 diagonal elements 0 and the rest diagonal elements

1. Clearly, I0 is the K × K identify matrix. In the term ∆ε(β), each available

ordinary residual is weighted by the inverse probability of observing that residual.

The conditional expectations E
{
ε(β) |X, Ȳ k−1, S̄k−1

}
(k = 1, · · · , K) in the second

term, the augmentation term, contain the predictive information of historic data on

the current and future mean values of the longitudinal outcomes. The formulation of

g(β) is inspired by the derivation of the semiparametric efficiency bound in Robins

and Rotnitzky (1995). It is easy to see that g(β) only depends on the observed data.

In Section 3.9, we show that E{g(β0) |X} = 0.

Using the idea of CEL (Zhang and Gijbels 2003; Kitamura et al. 2004), conditional

on each X i (i = 1, · · · , N), we consider the empirical probabilities pij defined by

a discrete distribution that has support on {gj(β) : j = 1, · · · , N}. Our CEL
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based AIPW (CEL-AIPW) estimator is defined through the following constrained

optimization problem:

β̂ = arg max
β

max
pij

N∑
i=1

N∑
j=1

wij log pij subject to

pij ≥ 0,
N∑
j=1

pij = 1,
N∑
j=1

pijgj(β) = 0 (i, j = 1, · · · , N).(3.5)

Here the first two constraints ensure that conditional on each i = 1, · · · , N , pij

are well-defined probabilities, and the last constraint is the empirical version of

E{g(β0) | X} = 0. The objective function in (3.5) is the sum of N localized

empirical log-likelihoods, where the localization is carried out by wij, which are cer-

tain non-negative weights satisfying
∑N

j=1 wij = 1 for each i. A technique to fulfill

the purpose of localization is the nonparametric kernel method. Let Xc and Xd

denote the continuous and categorical components of X, respectively. Then one way

to calculate wij is

wij =
K{(Xc

i −Xc
j)/bN}I(Xd

i = Xd
j )∑N

j=1K{(X
c
i −Xc

j)/bN}I(Xd
i = Xd

j )
, (i, j = 1, · · · , N)

where K(·) is a multivariate kernel function, bN is the bandwidth parameter, and

I(·) is the indicator function. For many longitudinal clinical trial studies, the main

interest is the effect of certain fixed treatment on the outcome adjusted by functions

of time and some baseline covariates. In this case, Xc and Xd are respectively

the continuous and categorical components of the baseline covariates and treatment,

whose dimension is usually not large. Simulation studies, such as that in Chapter

II and in Han (2013), have also demonstrated that the CEL method is moderately

resistent to the curse of dimensionality, which is known to be a problem for most

nonparametric methods.

In g(β) there are additional unknown quantities other than β, which are the miss-

ingness probabilities πk and the conditional expectationsHkl = E(Yl |X, Ȳ k−1, S̄k−1)
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(k = 1, · · · , K; l = k, · · · , K). These quantities need to be estimated before we can

proceed to calculate our estimator β̂. Following the current literature (Robins et

al. 1995; Robins and Rotnitzky 1995; Tsiatis 2006), we postulate parametric models

πk(α) for πk and hkl(γ) for Hkl, where α and γ are the corresponding unknown

finite-dimensional parameters. The true values of α and γ are denoted by α0 and

γ0, respectively. A commonly used estimator α̂ for α0 is the maximizer of the partial

likelihood

(3.6)
N∏
i=1

K∏
k=1

[
{πik(α)}Rik{1− πik(α)}1−Rik

]
Ri(k−1) ,

which is based on fully observed data. The estimation of γ0 is less straightfor-

ward. This is because under assumption (3.2), we have that Hkl = E(Yl | Rk−1 =

1,X, Ȳ k−1, S̄k−1), which, however, is not equal to E(Yl | Rl = 1,X, Ȳ k−1, S̄k−1) for

l > k. Therefore, estimating γ0 is a missing data problem that cannot be solved by

complete-case analysis. In the literature there are several methods available. Using

the fact that Hkl = E{Yl/(πk×· · ·×πl) | Rl = 1,X, Ȳ k−1, S̄k−1}pr(Rl = 1 | Rk−1 =

1,X, Ȳ k−1, S̄k−1), Robins and Rotnitzky (1995) proposed to model E{Yl/(πk×· · ·×

πl) | Rl = 1,X, Ȳ k−1, S̄k−1} and pr(Rl = 1 | Rk−1 = 1,X, Ȳ k−1, S̄k−1) separately.

However, since correctly modeling the first quantity depends on a correctly specified

πk(α), this method will not yield doubly robust estimation of β0. Tsiatis (2006)

and Tsiatis et al. (2011) suggested specifying a working model for the joint dis-

tribution of the full data (X,Y ,S) and then deriving hkl(γ) accordingly. In this

case, γ parametrizes the working distribution and can be estimated by maximum

likelihood theory. This method guarantees that hkl(γ) are compatible in the sense

that E{h(k+1)l(γ) | X, Ȳ k−1, S̄k−1} = hkl(γ). However, depending on the specific

working distribution, finding the maximum likelihood estimator and deriving hkl(γ)

may be difficult due to multiple integrals. A more flexible method was proposed
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by Paik (1997), who utilized the fact that Hkl = E(Yl | Rk = 1,X, Ȳ k−1, S̄k−1)

under assumption (3.2), and suggested fitting hkl(γ) in a sequential way so that the

models to be fitted use both the observed outcomes and the imputed outcomes from

previously fitted models. Although this method may yield incompatible hkl(γ), it is

useful in practice when the specification of a working model for the joint distribution

is not easy, especially in the situation where the number of repeated measurements

is large.

After obtaining estimators α̂ and γ̂, we solve the constrained optimization in (3.5)

with g(β) substituted by g(β, α̂, γ̂), where g(β,α,γ) is defined by (3.4), but with

πk replaced by πk(α) and Hkl replaced by hkl(γ). For convenience, we still denote

our estimator by β̂ after the substitution, but it should be clear that now β̂ depends

on the two nuisance parameters α̂ and γ̂.

It is worth pointing out that, g(β) defined by (3.4) has another formulation in

agreement with the widely used formulation of the the AIPW complete-case GEE

method (Tsiatis, 2006; Seaman and Copas, 2009). It is easy to check that the

following equation holds:

∆ =
RK

π1 × · · · × πK
I0 +

K∑
k=1

Ck−1 − (1− πk)Rk−1

π1 × · · · × πk
(I0 − Ik−1),

where Ck (k = 0, · · · , K − 1) indicates if time k is the last visit; that is, Ck = 1

if Rk = 1 and Rk+1 = 0, and Ck = 0 otherwise. In addition, it is easy to see that

−(Rk−πkRk−1) = Ck−1− (1−πk)Rk−1. Therefore, g(β) can be equivalently written
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as follows:

g(β) =
RK∏K
l′=1 πl′

ε(β) +
K∑
k=1

Ck−1 − (1− πk)Rk−1∏k
l′=1 πl′

(I0 − Ik−1)ε(β)

+
K∑
k=1

Ck−1 − (1− πk)Rk−1∏k
l′=1 πl′

Ik−1E
{
ε(β) |X, Ȳ k−1, S̄k−1

}
=

RK∏K
l′=1 πl′

ε(β) +
K∑
k=1

Ck−1 − (1− πk)Rk−1∏k
l′=1 πl′

E
{
ε(β) |X, Ȳ k−1, S̄k−1

}
.

In the last expression, the first term RKε(β)/
∏K

l′=1 πl′ is the completely observed

residual vector weighted by the inverse probability of observing the complete data.

The second term is the augmentation term.

3.4 Numerical Implementation

Using Lagrange multipliers method, the Lagrangian of (3.5) is given by

L =
N∑
i=1

N∑
j=1

wij log pij −
N∑
i=1

$i

(
N∑
j=1

pij − 1

)
−

N∑
i=1

λT
i

{
N∑
j=1

pijgj(β, α̂, γ̂)

}
,

where $i and λi are the Lagrange multipliers. With ∂L/∂pij = 0 and the constraints

in (3.5), for a fixed β, we have that

pij(β, α̂, γ̂) =
wij

1 + λ̂
T

i gj(β, α̂, γ̂)
(i, j = 1, · · · , N),

where λ̂i is the solution to the equation
∑N

j=1 pij(β, α̂, γ̂)gj(β, α̂, γ̂) = 0. It is easy

to see that

λ̂i = arg min
λi

[
−

N∑
j=1

wij log
{

1 + λT
i gj(β, α̂, γ̂)

}]
.(3.7)

Therefore, the proposed estimator β̂ can be equivalently defined through the follow-

ing nested optimization:

β̂ = arg max
β

N∑
i=1

(
min
λi

[
−

N∑
j=1

wij log
{

1 + λT
i gj(β, α̂, γ̂)

}])
.
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This definition of β̂ suggests a way for numerical implementation, which can be

carried out via nested optimization routines. We employ the Newton–Raphson algo-

rithm in our implementation. For convenience, we suppress α̂ and γ̂ in the following

presentation of the algorithm.

For a fixed β, given λold
i , the inner optimization updates λi by

λnew
i = λold

i −Λ−1
i,λλ

(
λold
i ,β

)
Λi,λ

(
λold
i ,β

)
,

where

Λi,λ (λ,β) = −
N∑
j=1

wij
gj(β)

1 + λTgj(β)
, Λi,λλ (λ,β) =

N∑
j=1

wij
gj(β)gT

j (β)

{1 + λTgj(β)}2
.

An initial value can be taken as λi = 0. To guarantee the positivity of pij, the

updates should be restricted on the legitimate region {λi : 1 + λigj(β) ≥ wij}.

Given βold and the converged values λ̂i from the inner optimization, the outer

optimization updates β by

βnew = βold −

{
N∑
i=1

Li,ββ(βold)

}−1{ N∑
i=1

Li,β(βold)

}
,

where

Li,β(β) = −
N∑
j=1

wij
GT
j (β)

1 + λ̂
T

i gj(β)
λ̂i,

Li,ββ(β) = −ΛT
i,λβ(λ̂i,β)Λ−1

i,λλ(λ̂i,β)Λi,λβ(λ̂i,β),

Λi,λβ(λ,β) =
N∑
j=1

wij
gj(β)λ̂

T

i Gj(β){
1 + λ̂

T

i gj(β)
}2 −

N∑
j=1

wij
Gj(β)

1 + λ̂
T

i gj(β)
,

with G(β) = ∂g(β)/∂β.

The inner and outer optimizations should be iterated until a certain convergence

criterion is satisfied. It is worth noting that (4.6) is a convex minimization problem.

Therefore, for a fixed β, the inner loop almost always converges to the global min-

imizer. A rigorous proof of the convergence can be established by following Chen
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et al. (2002). The maximization in the outer loop is more complicated, and the

convergence of the Newton-Raphson algorithm to the global maximizer may not be

guaranteed. Refer to Owen (2001) for some detailed discussion on related issues

in the setting of unconditional moment restrictions. Nonetheless, the nested opti-

mization has been widely used in the literature to implement the empirical likelihood

method. See, for example, Owen (2001), Kitamura (2007) and Hansen (2013), among

others. According to Kitamura (2007), the nested optimization appears to be the

most stable way to compute the empirical likelihood estimator.

In practice, to select the bandwidth parameter bN , we can employ the cross-

validation criterion suggested by Newey (1993) for models with conditional moment

restrictions, with some modifications to suit for the case of longitudinal data with

dropout. Specifically, define

CV (bN) = tr

{
N∑
i=1

Ĝ
T

i V̂
−1
−i

(
ĝiĝ

T
i − V̂ −i

)
V̂
−1

−i

(
ĝiĝ

T
i − V̂ −i

)
V̂
−1

−i Ĝi

}
,

where tr(·) is the trace of a matrix, Ĝi = Gi(β̂b), ĝi = gi(β̂b), V̂ −i =
∑

j 6=i ŵijĝjĝ
T
j ,

β̂b = β̂(bN) is our proposed estimator obtained with a given bN , and

ŵij =
K{(Xc

i −Xc
j)/bN}I(Xd

i = Xd
j )∑

j 6=iK{(X
c
i −Xc

j)/bN}I(Xd
i = Xd

j )
(j 6= i).

The optimal bandwidth is chosen as the minimizer of CV (bN).

3.5 Large Sample Properties

Using the results of White (1982), we know that, asN →∞, α̂
p−→ α∗ and γ̂

p−→ γ∗,

and N1/2(α̂ − α∗) and N1/2(γ̂ − γ∗) are bounded in probability, where α∗ and

γ∗ minimize the corresponding Kullback–Leibler distance between the probability

distribution based on the postulated model and that generating the data. In general,



59

α∗ 6= α0 unless πk(α) are correctly specified, and γ∗ 6= γ0 unless hkl(γ) are correctly

specified.

When α∗ = α0, similar argument to that given in (3.8) in Section 3.9 yields

E{g(β0,α0,γ∗) | X} = 0 regardless if γ∗ = γ0. On the other hand, it is easy to

check that

∆ = I0 +
K∑
k=1

Rk − πkRk−1

π1 × · · · × πk
Ik−1,

which leads to

g(β) = ε(β) +
K∑
k=1

Rk − πkRk−1

π1 × · · · × πk
Ik−1

[
ε(β)− E

{
ε(β) |X, Ȳ k−1, S̄k−1

}]
,

and thus we have

g(β,α∗,γ∗) = ε(β)+
K∑
k=1

Rk − πk(α∗)Rk−1

π1(α∗)× · · · × πk(α∗)
{
0T
k−1, Yk − hkk(γ∗), · · · , YK − hkK(γ∗)

}T
,

where 0k−1 is the (k − 1)-dimensional zero vector. When γ∗ = γ0, based on the

above expression, in Section 3.9 we show that E{g(β0,α∗,γ0) | X} = 0 regardless

if α∗ = α0. Therefore, we have the following Theorem.

Theorem III.1. For the semiparametric model defined by (3.1), (3.2) and (3.3), if

either α∗ = α0 or γ∗ = γ0, we have E{g(β0,α∗,γ∗) |X} = 0.

The conditional mean zero property of g(β,α,γ) given by Theorem III.1 leads to

the double robustness property of the proposed estimator β̂, which is stated by the

following Theorem.

Theorem III.2. For the semiparametric model defined by (3.1), (3.2) and (3.3),

under the assumptions given in Section 3.9, if either α∗ = α0 or γ∗ = γ0, we have

β̂
p−→ β0 as N →∞.

From Theorem III.2, β̂ is a consistent estimator of β0 if either πk or Hkl are
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correctly modeled. This property provides double protection on consistency against

model misspecification. A sketched proof of Theorem III.2 is given in Section 3.9.

To derive the asymptotic distribution of β̂, write V (β,α,γ) = E{g(β,α,γ)⊗2 |

X}, whereD⊗2 = DDT for any matrixD,Gα(β,α,γ) = E {∂g(β,α,γ)/∂α |X},

Gγ(β,α,γ) = E {∂g(β,α,γ)/∂γ |X}, µ(β) = {µ1(X,β), · · · , µK(X,β)}T, µβ(β) =

∂µ(β)/∂β, Q(β,α,γ) = µT
β(β)V −1(β,α,γ)g(β,α,γ),

Qα(β,α,γ) = µT
β(β)V −1(β,α,γ)Gα(β,α,γ),

Qγ(β,α,γ) = µT
β(β)V −1(β,α,γ)Gγ(β,α,γ), and J(β,α,γ) = E{Q(β,α,γ)⊗2}.

Since α̂ maximizes (3.6), we know that

N1/2(α̂−α∗) = − [E{∂ψ(α∗)/∂α}]−1N−1/2

N∑
i=1

ψi(α∗) + op(1)

from White (1982), where ψ(α) is the score function of (3.6). Let φ(γ) denote the

influence function of γ̂; that is, N1/2(γ̂ − γ∗) = N−1/2
∑N

i=1φi(γ∗) + op(1). The

following Theorem gives the asymptotic distribution of β̂, and a sketched proof is

given in Section 3.9.

Theorem III.3. For the semiparametric model defined by (3.1), (3.2) and (3.3),

under the assumptions given in Section 3.9, when either α∗ = α0 or γ∗ = γ0, as

N →∞, N1/2(β̂−β0) converges to a normal distribution with mean 0 and variance

U = J−1(β0,α∗,γ∗)M(β0,α∗,γ∗)J
−1(β0,α∗,γ∗), where

M (β0,α∗,γ∗) = var

(
Q(β0,α∗,γ∗)− E{Qα(β0,α∗,γ∗)}

[
E

{
∂ψ(α∗)

∂α

}]−1

ψ(α∗)

+E{Qγ(β0,α∗,γ∗)}φ(γ∗)

)
.

Following Theorem III.3, there are several important simplifications. When πk are

correctly modeled, or equivalently, when α∗ = α0, we have that (i) Gα(β0,α0,γ∗) =

−E{g(β0,α0,γ∗)ψ
T(α0) | X} (Lemma 9.1 in Tsiatis 2006), (ii) the information
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equality −E{∂ψ(α0)/∂α} = E{ψ(α0)⊗2}, and (iii) Gγ(β0,α0,γ∗) = 0, the proof

of which is given in Section 3.9. These facts lead to the simplification in the following

Corollary.

Corollary III.1. Under the same conditions as in Theorem III.3 but with α∗ = α0,

the asymptotic variance of N1/2(β̂ − β0) becomes

U = J−1(β0,α0,γ∗)M(β0,α0,γ∗)J
−1(β0,α0,γ∗), where

M (β0,α0,γ∗) = var
[
Q(β0,α0,γ∗)− E{Q(β0,α0,γ∗)ψ

T (α0)}{Eψ(α0)⊗2}−1ψ(α0)
]
.

It is easy to see that M (β0,α0,γ∗) is the variance of the residual after taking the

least square regression of Q(β0,α0,γ∗) on ψ(α0). Hence, when α∗ = α0, an aug-

mentation of πk(α) by adding interaction or higher order terms of the variables that

are already in πk(α) increases the dimension of α, and thus the dimension of ψ(α),

which is likely to make M (β0,α0,γ∗) smaller in the positive-definite sense. The re-

duction in M (β0,α0,γ∗) leads to reduction in U , and thus efficiency improvement

in estimating β0. See Robins et al. (1995) for more discussion on this observation.

Now suppose that πk may not be correctly modeled, but Hkl are. In other words,

we have γ∗ = γ0. In Section 3.9, we show that Gα(β0,α∗,γ0) = 0, which leads to

the simplification given in the following Corollary.

Corollary III.2. Under the same conditions as in Theorem III.3 but with γ∗ = γ0,

the asymptotic variance of N1/2(β̂ − β0) becomes

U = J−1(β0,α∗,γ0)M(β0,α∗,γ0)J−1(β0,α∗,γ0), where

M (β0,α∗,γ0) = var
[
Q(β0,α∗,γ0) + E{Qγ(β0,α∗,γ0)}φ(γ0)

]
.

When bothα∗ = α0 and γ∗ = γ0, we haveM (β0,α0,γ0) = var {Q(β0,α0,γ0)} =

J(β0,α0,γ0), which leads to the following Corollary.
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Corollary III.3. Under the same conditions as in Theorem III.3 but with α∗ = α0

and γ∗ = γ0, the asymptotic variance of N1/2(β̂−β0) becomes U = J−1(β0,α0,γ0).

As shown in Robins and Rotnitzky (1995), J−1(β0,α0,γ0) is the efficiency bound

for the semiparametric model defined by (3.1), (3.2) and (3.3). Therefore, our es-

timator β̂ attains the semiparametric efficiency bound when both πk and Hkl are

correctly modeled. In other words, β̂ is locally efficient. It is worth pointing out

that, the local efficiency of existing estimators, such as the ones in Robins et al.

(1995) and Tsiatis (2006), requires correctly modeling certain second moments of

the data in addition to πk and Hkl. These second moments are usually difficulty to

model in practice due to their complex forms and the unknown data distribution.

On the contrary, the local efficiency of β̂ only requires correctly modeling πk and

Hkl, which is easier to achieve.

To be complete, we provide a consistent estimator of the asymptotic variance

matrix U . Write ĝi(β) = gi(β, α̂, γ̂), V̂ i(β) =
∑N

j=1 pij(β, α̂, γ̂)ĝj(β)⊗2, Q̂i(β) =

µT
i,β(β)V̂

−1

i (β)ĝi(β), Ĵ(β) = N−1
∑N

i=1 Q̂i(β)⊗2,

Ĝi,α(β) =
∑N

j=1 pij(β, α̂, γ̂){∂gj(β, α̂, γ̂)/∂α},

Ĝi,γ(β) =
∑N

j=1 pij(β, α̂, γ̂){∂gj(β, α̂, γ̂)/∂γ},

M̂ i(β) = Q̂i(β)−

{
1

N

N∑
i=1

µT
i,β(β)V̂ i(β)−1Ĝi,α(β)

}{
1

N

N∑
i=1

∂ψi(α̂)

∂α

}−1

ψi(α̂)

+

{
1

N

N∑
i=1

µT
i,β(β)V̂ i(β)−1Ĝi,γ(β)

}
φi(γ̂).

Using the Weak Law of Large Numbers and arguments similar to that in the proof

of Theorem II.3, Ĵ
−1

(β̂)
{
N−1

∑N
i=1 M̂ i(β̂)⊗2

}
Ĵ
−1

(β̂)
p−→ U , as N →∞.
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3.6 Simulation Experiments

In this section we evaluate the finite sample performance of our proposed estima-

tor and make comparison with the AIPW estimator. We use the same simulation

model as that considered in Tsiatis et al. (2011). For each subject i (i = 1, · · · , N),

the model has one time-dependent covariate X
(1)
ik = k (k = 0, 1, 2) and two time-

independent covariates X
(2)
i ∼ N (5, 1) and X

(3)
i ∼ Ber(0.5). The longitudinal out-

comes are generated via the following linear mixed model:

Yik = ηi1 + ηi2X
(1)
ik +X

(2)
i −X

(3)
i + eik (i = 1, · · · , N ; k = 0, 1, 2),

where (ηi1, ηi2)T ∼ N{(1, 2.5)T,Σ}, Σ is a 2 × 2 diagonal matrix with diagonal el-

ements 0.3 and 0.2 and off-diagonal elements 0.1, and eik ∼ N (0, 1). Let Ỹi0 =

I(Yi0 > 5.8) and Ỹi1 = I(Yi1 > 6.2), the missingness mechanism for dropout is speci-

fied as πi1 = [1+exp{α(0)
0,1 +α

(1)
0,1Ỹi0}]−1 and πi2 = [1+exp{α(0)

0,2 +α
(1)
0,2Ỹi0 +α

(2)
0,2Ỹi1}]−1,

where α0 = {α(0)
0,1, α

(1)
0,1, α

(0)
0,2, α

(1)
0,2, α

(2)
0,2}T = (−2.0, 2.5,−2.0, 2.0, 2.5)T. Under this

missingness mechanism, there are approximately 33% and 74% of the subjects with

missing Y1 and Y2, respectively. It is easy to see that β0 = {β(0)
0 , · · · , β(3)

0 }T =

(1.0, 2.5, 1.0,−1.0)T.

To make comparison, we also calculate the AIPW complete-case GEE estimator

(Tsiatis 2006; Seaman and Copas 2009). This estimator is given by the solution to

the equation

N∑
i=1

[
Ri2

πi1πi2
Di(β) +

Ci0 − (1− πi1)

πi1
E {Di(β) |X i, Yi0}

+
Ci1 − (1− πi2)Ri1

πi1πi2
E {Di(β) |X i, Yi0, Yi1}

]
= 0,

where Cik = 1 if subject i’s last observed measurement is at time k and Cik = 0

otherwise (k = 0, 1), X i = {X(1)
i1 , X

(1)
i2 , X

(2)
i , X

(3)
i }, and Di(β) is a set of full-data-
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based estimating functions. In our simulation study we let Di(β) be the quasi-score

function (Wedderburn, 1974)

1 1

X
(1)
i1 X

(1)
i2

X
(2)
i X

(2)
i

X
(3)
i X

(3)
i


Ω−1

 Yi1 − β(0)
0 − β

(1)
0 X

(1)
i1 − β

(2)
0 X

(2)
i − β

(3)
0 X

(3)
i

Yi2 − β(0)
0 − β

(1)
0 X

(1)
i2 − β

(2)
0 X

(2)
i − β

(3)
0 X

(3)
i

 ,

where the weighting matrix Ω takes two different values, the 2×2 identity matrix I2×2

and the 2 × 2 matrix with diagonal elements 1.7 and 2.5 and off-diagonal elements

1.0. The latter matrix is the true variance-covariance var{(Yi1, Yi2)T |X i}.

We consider three scenarios to make the comparison: (i) only πk are correctly

modeled; (ii) only Hkl are correctly modeled; (iii) both πk and Hkl are correctly

modeled. It is clear that the partial likelihood (3.6) can be re-written as[
N∏
i=1

{πi1(α)}Ri1{1− πi1(α)}1−Ri1

][ ∏
i:Ri1=1

{πi2(α)}Ri2{1− πi2(α)}1−Ri2

]
.

Therefore, {α(0)
0,1, α

(1)
0,1}T and {α(0)

0,2, α
(1)
0,2, α

(2)
0,2}T can be estimated separately by max-

imizing the terms inside the first and the second brackets in the above expression,

respectively. Due to the data generating model we are considering, a correctly spec-

ified model hkl(γ) for Hkl should be a linear regression of Yl on X and Ȳ k−1, and

we use the method in Paik (1997) to estimate γ0. Following the simulation set-up in

Tsiatis et al. (2011), incorrect model for πk is specified by replacing (Ỹi0, Ỹi1) in the

correct model by (Yi0, Yi1), and incorrect model for Hkl is specified by eliminating

the regressors X from the correct linear regression model and replacing (Yi0, Yi1) by

[exp{(Yi0/9)2}, (Yi0 + 3)/{1 + exp(Yi1)}+ 1]. We consider sample sizes N = 200, 800,

and use 1000 Monte Carlo replications to summarize the results.
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Table 3.1:
Simulation results based on 1000 Monte Carlo replications. The numbers have
been multiplied by 100

correct πk correct Hkl both correct
Bias RMSE MAE Bias RMSE MAE Bias RMSE MAE

N = 200

AIPWCC-I

β(0) -28 186 105 20 553 81 -3 145 85

β(1) 7 54 32 -3 92 22 0 43 25

β(2) 4 30 17 -4 101 14 0 24 14

β(3) 1 52 30 2 77 25 4 47 29

AIPWCC-V

β(0) -20 143 85 13 386 65 -1 113 69

β(1) 7 54 32 -3 92 22 0 43 25

β(2) 3 22 13 -2 65 12 0 18 11

β(3) 1 38 25 1 52 22 3 35 22

CEL-AIPW

β(0) -8 96 62 14 384 51 0 83 56

β(1) 6 53 31 -2 60 21 0 44 25

β(2) 1 15 10 -2 63 8 0 13 9

β(3) 0 26 16 -1 61 17 1 25 16

N = 800

AIPWCC-I

β(0) -7 88 53 22 441 50 -1 70 41

β(1) 1 25 15 -3 64 14 0 20 13

β(2) 1 15 9 -4 82 9 0 12 7

β(3) -1 26 17 4 66 15 0 22 14

AIPWCC-V

β(0) -5 67 41 15 302 40 -1 54 32

β(1) 1 25 15 -3 64 14 0 20 13

β(2) 1 11 7 -3 52 7 0 9 5

β(3) -1 19 12 3 42 12 0 16 11

CEL-AIPW

β(0) -1 42 27 12 248 27 -1 39 25

β(1) 1 24 14 -1 30 12 0 21 13

β(2) 0 7 5 -2 48 5 0 6 4

β(3) 0 12 8 1 18 8 0 11 8

RMSE: root mean square error. MAE: median absolute error. AIPWCC-I: augmented inverse
probability weighted complete-case estimator with Ω the identity matrix. AIPWCC-V: augmented
inverse probability weighted complete-case estimator with Ω = var{(Yi1, Yi2)T |Xi}. CEL-AIPW:
conditional empirical likelihood based augmented inverse probability weighted estimator.
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Due to the data generating process, it is easy to check that the two augmented

inverse probability weighted complete-case estimators of β
(1)
0 with Ω = I2×2 and

with Ω = var{(Yi1, Yi2)T | X i} are identical, and both are given by the solution to

the equation

N∑
i=1

[
Ri2

πi1πi2
{Yi2 − Yi1 − β(1)}+

Ci0 − (1− πi1)

πi1
{Hi12 −Hi11 − β(1)}

+
Ci1 − (1− πi2)Ri1

πi1πi2
{Hi22 − Yi1 − β(1)}

]
= 0.

This fact is confirmed by our simulation results in Table 3.1. From Table 3.1, the

three estimators under comparison have ignorable bias in most scenarios, confirming

their double robustness property. The relatively large bias and root mean square

error of the three estimators of β
(0)
0 when only Hkl are correctly modeled are due to

the fact that, as already pointed out in Tsiatis et al. (2011), the incorrect models for

πk occasionally produce near-zero estimated values, which lead to large inverse prob-

ability weights and destabilize the numerical behavior of all estimators considered

here. It is clearly seen that, the augmented inverse probability weighted complete-

case estimator using Ω = var{(Yi1, Yi2)T | X i} has smaller root mean square error

and smaller median absolute error compared to the estimator using Ω = I2×2, ex-

cept for the case of estimating β
(1)
0 . Therefore, using the true variance-covariance

matrix to construct the estimating function Di(β) helps improve the efficiency. Our

proposed estimator further reduces the root mean square error and the median ab-

solute error in general. When both πk and Hkl are correctly modeled, our estimator

attains the semiparametric efficiency bound asymptotically, whereas the two aug-

mented inverse probability weighted complete-case estimators do not, even if the

true variance-covariance matrix is used to derive them. This fact is well demon-

strated by the smaller root mean square error of our estimator in the simulation
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results.

3.7 Data Application

In this section we analyze the data collected from the National Cooperative Gall-

stone Study (NCGS). This is a longitudinal study, of which one major interest is

the treatment effect of the drug chenodiol on cholesterol gallstones. There are three

treatment arms, the high-dose group (750 mg per day), the low-dose group (375 mg

per day), and the placebo group. After randomization prior to baseline, the three

groups have 305, 306 and 305 patients, respectively, and each patient is administra-

tively scheduled to be followed for as long as 28 months. Following the analysis in

Wei and Lachin (1984), we will restrict our consideration to those patients who are

assigned to the high dose and the placebo groups and those who have floating stones.

It was suggested in this study that the drug chenodiol dissolves gallstones to

reduce cholesterol secretion into gallbladder bile. As the gallstones dissolves, they

might pass into the biliary tree and cause an exacerbation of gallbladder symptoms.

In addition, the reduction of cholesterol secretion into gallbladder bile might increase

the level of serum cholesterol, which is a known risk factor for atherosclerotic disease.

Therefore, serum cholesterol level is measured for all patients at the baseline and at

6, 12, 20 and 24 months of follow-up. An important question is whether there is a

significant effect of the high dose of chenodiol on the progression of patients’ serum

cholesterol level during follow-up, adjusting for the baseline level (Wei and Lachin,

1984).

Because of the termination of follow-up and the missing visits of some patients,

many serum cholesterol measurements are unobserved. Wei and Lachin’s (1984)

analysis assumed that the causes for the missing observations are completely inde-
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pendent of the nature or values of the serum cholesterol level, namely the missing

completely at random mechanism (Little and Rubin 2002). A close inspection of the

data reveals that, there are 2 patients having intermittent missing visits. According

to Robins and Rotnitzky (1995), when the mechanism (3.2) is assumed, the mea-

surements after a missing visit do not add further information to improve estimation

efficiency. Therefore, for those 2 patients, we remove their measurements after their

first missing visit. After such adjustment, the missing pattern in the observed data

becomes monotone for each patient. In other words, we have longitudinal data with

dropout. The total number of patients is 103, with 62 in the high-dose group and 41

in the placebo group. The missingness rate at 6, 12, 20, and 24 months of follow-up

is 0%, 10%, 24% and 35%, respectively.

In order to study the effect of chenodiol on the progression of serum cholesterol

level adjusting for the baseline, we fit the model

Yik = β1 + β2bsci + β3k + β4trti × k + εik,

where Yik is the serum cholesterol level measured at time k, k = 6, 12, 20, 24, bsci is

the baseline serum cholesterol level, trti is the indicator of treatment with trti = 1 for

the high-dose group and trti = 0 for the placebo group, and εik is the error term with

E(εik | bsci, k) = 0. Because of the randomization prior to the baseline, there is no

need to include the main effect of treatment into the above model. Our main interest

is β4. When β4 = 0, there is no effect of high-dose chenodiol on the progression of

serum cholesterol level adjusting for the baseline. The missingness mechanism is

modeled by fitting separate logistic regression models at each follow-up visit, similar

to what has been done in our simulation study. Paik’s (1997) sequential imputation

method is used to calculate the expectations in the augmentation term.
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Table 3.2:
Analysis results for the data from
the National Cooperative Gall-
stone Study

est se p-value

intercept 97.122 12.851 < 0.000

bsc 0.627 0.053 < 0.000

k 0.624 0.210 0.003

bsc× k 0.097 0.288 0.736

est: estimated value. se: standard error.

The results of our analysis are summarized in Table 3.2. It is seen that, adjusting

for the baseline, the serum cholesterol level increases significantly with time, but the

high-dose group does not have a different rate of increase compared to the placebo

group. Therefore, there is no effect of high-dose chenodiol on the progression of

serum cholesterol level adjusting for the baseline. This conclusion is in agreement

with that in Wei and Lachin (1984).

3.8 Conclusions

In this chapter we proposed the CEL method for analyzing longitudinal data with

dropout. We studied the asymptotic properties of the CEL-AIPW estimator. The in-

novation of our proposed method is that our estimator is locally efficient with no need

to model any second moments of the data. In order to achieve the semiparametric

efficiency bound, the second moments that are required to be correctly modeled by

existing estimators have complex forms, and thus are difficulty to model, especially

with an unknown data distribution in practical studies. Therefore, the circumven-

tion of modeling the second moments by our proposed CEL method may be highly



70

advantageous. The issues associated with the CEL method discussed in Section 2.6

also apply to the development in this chapter. Refer to Section 2.6 for these issues.

3.9 Technical Assumptions and Proofs

This section contains the proofs of the theoretical results. Technical details of the

proofs for Theorem III.2 and Theorem III.3 can be filled in following the proofs in

Chapter II and Kitamura et al. (2004).

Proof of E{g(β0) |X} = 0.

E{g(β0) |X}

= E [E{g(β0) |X,Y ,S} |X]

= E {E(∆ |X,Y ,S)ε(β0) |X}

−E

[
K∑
k=1

E(Rk − πkRk−1 |X,Y ,S)

π1 × · · · × πk
Ik−1E

{
ε(β0) |X, Ȳ k−1, S̄k−1

}
|X

]
= 0.(3.8)

The last equality follows from the facts that, under monotone missingness and (3.2),

E(Rk | X,Y ,S) = E(πkRk−1 | X,Y ,S) = πkpr(Rk−1 = 1 | X,Y ,S) = π1 × · · · ×

πk.
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Proof of E{g(β0,α∗,γ0) |X} = 0.

E{g(β0,α∗,γ0) |X}

=
K∑
k=1

E

(
E

[
Rk − πk(α∗)Rk−1∏k

l′=1 πl′(α∗)

{
0T
k−1, Yk − hkk(γ0), · · · , YK − hkK(γ0)

}T

|X, Ȳ k−1, S̄k−1

]
|X
)

=
K∑
k=1

E

(
E

[
Rk − πk(α∗)Rk−1∏k

l′=1 πl′(α∗)

{
0T
k−1, Yk − hkk(γ0), · · · , YK − hkK(γ0)

}T

| Rk−1 = 1,X, Ȳ k−1, S̄k−1

]
× pr(Rk−1 = 1 |X, Ȳ k−1, S̄k−1) |X

)

=
K∑
k=1

E

(
πk − πk(α∗)∏k
l′=1 πl′(α∗)

E
[{

0T
k−1, Yk − hkk(γ0), · · · , YK − hkK(γ0)

}T |X, Ȳ k−1, S̄k−1

]
×

k−1∏
l′=1

πl′ |X
)

= 0

The third equality uses the facts that, under (3.2), Rk ⊥ Yl | (Rk−1 = 1,X, Ȳ k−1, S̄k−1)

and Hkl = E(Yl | Rk−1 = 1,X, Ȳ k−1, S̄k−1) (k = 1, · · · , K; l = k, · · · , K).

Assumptions (Assumptions used to prove Theorem III.2 and Theorem III.3). Let

B, A, G and X denote the domain of β, α, γ and X, respectively. Let B0 ⊆ B

be some closed ball around β0. For a matrix D with elements Dst, define ‖ D ‖=

(
∑

s,tD
2
st)

1/2. We make the following assumptions. (i) B, A, G and X are compact.

(ii) For any β 6= β0, there exists Xβ,α∗,γ∗ ⊆ X such that pr(X ∈ Xβ,α∗,γ∗) >

0 and E{g(β,α∗,γ∗) | X} 6= 0 for every X ∈ Xβ,α∗,γ∗. (iii) E{supβ,α,γ ‖

g(β,α,γ) ‖m} < ∞ for some m ≥ 8. (iv) 0 < infX,β∈B0,α,γ ξ
TV (β,α,γ)ξ ≤

supX,β∈B0,α,γ ξ
TV (β,α,γ)ξ < ∞ for any ‖ ξ ‖= 1. (v) infα πk(α) > 0. (vi)

µk(X,β), πk(α) and hkl(γ) are continuously differentiable. (vii) bN → 0, N1−2ν−2/mb2q
N →

∞ and N1−2νb
5q/2
N →∞ as N →∞, where ν ∈ (0, 1/2), m ≥ 8 and q is the dimen-

sion of Xc. (viii) ‖ λ̂i ‖≤ δN−1/m for some δ > 0.
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Proof of Theorem III.2. Define

L(β, α̂, γ̂) = − 1

N

N∑
i=1

N∑
j=1

wij log
{

1 + λ̂
T

i gj(β, α̂, γ̂)
}
.

It is clear that β̂ is the maximizer of L(β, α̂, γ̂). First, we have N1/mL(β, α̂, γ̂) ≤

F (β,α∗,γ∗) + op(1) for any β ∈ B, where

F (β,α,γ) = −E
[
‖ E{g(β,α,γ) |X}‖2

1+ ‖ E{g(β,α,γ) |X}‖

]
.

This, together with Assumptions (i) and (ii), yields that, for any δ > 0, there exists

c(δ) > 0, such that

sup
β∈B/B(β0,δ)

N1/mL(β, α̂, γ̂) ≤ sup
β∈B/B(β0,δ)

F (β,α∗,γ∗) + op(1) ≤ −c(δ) + op(1),

where B(β0, δ) is the ball centering at β0 with radius δ. Second, we have

L(β0, α̂, γ̂) ≥ − 1

N

N∑
i=1

λ̂
T

i (β0, α̂, γ̂)
N∑
j=1

wijgj(β0, α̂, γ̂)

and max1≤i≤N λ̂i(β0, α̂, γ̂) = op(N
−1/m) if either α∗ = α0 or γ∗ = γ0, which leads

to that N1/mL(β0, α̂, γ̂) ≥ op(1). These two facts give the consistency of β̂.

Proof of Theorem III.3. Taking the Taylor expansion of ∂L(β̂, α̂, γ̂)/∂β = 0 around

β0 gives that

N1/2(β̂ − β0) =

{
−∂

2L(β̃, α̂, γ̂)

∂β∂βT

}−1{
N1/2∂L(β0, α̂, γ̂)

∂β

}
,

where β̃ is some point between β̂ and β0. We have

−∂
2L(β̃, α̂, γ̂)

∂β∂βT
p−→ J(β0,α∗,γ∗)

and

N1/2∂L(β0, α̂, γ̂)

∂β
= N−1/2

N∑
i=1

Qi(β0,α∗,γ∗)

+E
{
µT
β(β0)V −1(β0,α∗,γ∗)Gα(β0,α∗,γ∗)

}
N1/2(α̂−α∗)

+E
{
µT
β(β0)V −1(β0,α∗,γ∗)Gγ(β0,α∗,γ∗)

}
N1/2(γ̂ − γ∗) + op(1).
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The desired result then follows.

Proof of Gγ(β0,α0,γ∗) = 0.

Gγ(β0,α0,γ∗)

= −
K∑
k=1

E


E


Rk − πk(α0)Rk−1

π1(α0)× · · · × πk(α0)



0(k−1)×d

∂hkk(γ∗)/∂γ
T

...

∂hkK(γ∗)/∂γ
T


|X,Y ,S


|X


= 0,

where d denotes the dimension of γ.

Proof of Gα(β0,α∗,γ0) = 0.

Gα(β0,α∗,γ0)

=
K∑
k=1

E


E





0k−1

Yk − hkk(γ0)

...

YK − hkK(γ0)


∂
{

Rk−πk(α∗)Rk−1

π1(α∗)×···×πk(α∗)

}
∂αT

|X, Ȳ k−1, S̄k−1


|X



=
K∑
k=1

E

(
E





0k−1

Yk − hkk(γ0)

...

YK − hkK(γ0)


∂
{

Rk−πk(α∗)Rk−1

π1(α∗)×···×πk(α∗)

}
∂αT

| Rk−1 = 1,X, Ȳ k−1, S̄k−1


×pr(Rk−1 = 1 |X, Ȳ k−1, S̄k−1) |X

)
= 0.



CHAPTER IV

Analysis of Unbalanced Longitudinal Data

4.1 Background and Literature Review

Longitudinal data are repeated measurements collected from the study subjects

over certain time period. To efficiently evaluate the relationship between the mean

of longitudinal outcomes and the covariates, the variance-covariance of these out-

comes needs to be taken into account. Marginal models for longitudinal data that

specify model structures for both the marginal mean and the variance-covariance

have been discussed widely in the literature (e.g. Diggle et al. 2002; Song 2007).

Estimation and inference for marginal models may be based on, for example, the

quasi-likelihood approach (Wedderburn 1974; Heyde 1997) or the inference functions

approach (Godambe 1960, 1991). Liang and Zeger (1986) proposed the popular gen-

eralized estimating equations (GEE) method, which assumes a working model for the

within-subject correlation of longitudinal outcomes. When the correlation is incor-

rectly modeled, the GEE estimator preserves consistency, but may lose substantial

estimation efficiency (Wang and Carey 2003). To improve efficiency, Qu et al. (2000)

proposed the quadratic inference functions (QIF) estimator, which has been shown

to be equally efficient to the GEE estimator when the correlation is correctly mod-

eled, and more efficient when the correlation is incorrectly modeled. Wang and Lin
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(2005) pointed out that, to avoid losing efficiency, not only the correlation, but also

the marginal variance of longitudinal outcomes need to be correctly modeled. Some

strategies for modeling the second moments can be found in Pan and MacKenzie

(2003) and Ye and Pan (2006). However, the introduction of more models beyond

that for the marginal mean brings more risk of model misspecification, which can

lead to poor efficiency and misleading conclusions. Therefore, many researchers pro-

posed to model the variance-covariance nonparametrically; see, for example, Jiang

et al. (2007) and Li (2011).

Conditional empirical likelihood (CEL) method (Zhang and Gijbels 2003; Kita-

mura et al. 2004) is a generalization of empirical likelihood (EL) method (Owen

1988, 1990, 2001; Qin and Lawless 1994) to the setting where the model is defined

by conditional moment restrictions. Despite the success of EL method in various

statistical research areas, its application in longitudinal data analysis has not been

studied adequately. Some existing works include You et al. (2006) and Xue and

Zhu (2007), who studied partially linear models for longitudinal data. But those

authors did not account for the within-subject correlation. For data with continu-

ous outcome, Wang et al. (2010) proposed a generalized empirical likelihood (GEL)

method, which requires a pre-estimated variance-covariance matrix. To the best of

our knowledge, all existing applications of EL method to longitudinal data anal-

ysis follow the setting of Qin and Lawless (1994), where the model is defined by

unconditional moment restrictions.

In this paper, we propose to model longitudinal data using the CEL method,

which only requires to specify a model for the marginal mean of the outcomes, and

thus eliminates the dependence of data analysis on modeling the variance-covariance.

Possible unbalanced follow-up visits are dealt with via stratification according to
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distinct follow-up patterns. We show that the CEL method is closely connected to

the GEE method, in the sense that the proposed estimator can be regarded as the

solution to a set of estimating equations analogous to GEE. The difference is that,

the CEL method implicitly incorporates a consistently estimated variance-covariance

matrix, which, in theory, endows the proposed estimator the same efficiency as that

of the GEE estimator employing the true variance-covariance. We also derive the

asymptotic distribution of the proposed estimator, and provide two ways to estimate

the asymptotic variance.

This article is organized as follows. In Section 4.2, we discuss longitudinal data

analysis using the CEL method. Section 4.3 contains large sample properties. Sec-

tion 4.4 presents numerical implementation and some discussion on computational

issues. In Section 4.5, we conduct simulation experiments to study the finite sample

performance of the CEL method. Sections 4.6 contains a data application. Section

4.7 consists of concluding remarks. All the technical details are provided in Section

4.8.

4.2 Methodology

4.2.1 Model and estimation

For each subject i, i = 1, . . . , N , let Yit denote the outcome and X it denote

a p-element vector of covariates measured at time t = 1, . . . , ni. Write Y i =

(Yi1, . . . , Yini
)>, X i = (X>i1, . . . ,X

>
ini

)>. We only specify a model for the marginal

mean of Yit given X i. Specifically, we assume the marginal mean regression model

E(Yit |X i) = µ(X>itβ) for some β = β0 ∈ Rp,

where µ(·) is a known link function and β is the vector of regression coefficients.

Define the residual vector to be gi(β) = {Yi1 − µ(X>i1β), . . . , Yini
− µ(X>ini

β)}>.
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Then, our model assumption becomes

(4.1) E {gi(β0) |X i} = 0, i = 1, . . . , N.

The above setting accomodates unbalanced longitudinal data, which arise from

many practical studies. For example, when an original clinical trial study is planned

to use a balanced design, namely all subjects are pre-scheduled to visit the clinic

at the same pre-fixed time points, unbalanced data result from subjects’ missing

visits. Therefore, unbalanced data can be treated within the framework of missing

data analysis. In this case, similar to the GEE method, our above formulation im-

plicitly made the missing completely at random (MCAR) assumption (Little and

Rubin 2002). The MCAR assumption is also widely adopted for longitudinal ob-

servational studies where unbalanced data are collected at available visits, with no

clear underlying missingness mechanism. Following Liang and Zeger (1986), we

focus our discussion on available-data analysis without modeling the missingness

mechanism. Such an approach is also taken as the default by many popular statis-

tical softwares in analyzing unbalanced longitudinal data. To deal with the unbal-

anced data structure, we stratify subjects according to their follow-up patterns. Let

τi = {1, . . . , ni} denote the (intermittent) follow-up pattern for subject i, and let

Si = {j : 1 ≤ j ≤ N and τj = τi} be the stratum where subject i belongs. Let Ω

denote the collection of all distinct follow-up patterns observed in the data, and for

ω ∈ Ω, let Sω denote the set of indices for subjects having pattern ω. Thus, {Sω}ω∈Ω

constitutes the collection of all distinct strata in the data. Subjects in the same

stratum may be thought to be sampled from a balanced study. The model defined

by (4.1) has a stratum-wise interpretation: for any ω ∈ Ω, E {gi(β0) |X i} = 0 for

i ∈ Sω. Clearly, when the whole data are balanced, all subjects belong to one unique

stratum.
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Given each subject i, we consider the empirical probabilities pij defined by a

discrete distribution that has support on {gj(β) : j ∈ Si}. Our CEL estimator of

β0 is defined through the following constrained optimization problem.

β̂CEL = arg max
β

max
pij

N∑
i=1

∑
j∈Si

wij log pij subject to

pij ≥ 0 (j ∈ Si, i = 1, · · · , N),
∑
j∈Si

pij = 1 (i = 1, · · · , N),∑
j∈Si

pijgj(β) = 0 (i = 1, · · · , N).(4.2)

Here the first two constraints make sure that, conditional on each i = 1, · · · , N ,

pij are well-defined probabilities, while the last constraint is the empirical version

of the model assumption in (4.1). The objective function in (4.2) is the sum of

N localized empirical log-likelihoods, where the localization is carried out by certain

non-negative weights wij, satisfying
∑

j∈Si
wij = 1 for each i. A technique to fulfill the

purpose of localization is the nonparametric kernel method. Write X i = (Xc
i ,X

d
i ),

where Xc
i consists of continuous components with dimension qi and Xd

i consists of

categorical components, respectively. Time itself as a covariate may be excluded in

the calculation of the weights, since subjects from the same stratum have a common

set of visit times. The weights wij are calculated as

(4.3) wij =
K
(
Xc

i−Xc
j

bN

)
I(Xd

i = Xd
j )∑

j∈Si
K
(
Xc

i−Xc
j

bN

)
I(Xd

i = Xd
j )

j ∈ Si,

where K{(Xc
i −Xc

j)/bN} =
∏qi

l=1 K{(X
(l)
i −X

(l)
j )/bN}, K(·) is a second order kernel

function and symmetric around zero (e.g. standard Gaussian kernel), bN is the

bandwidth parameter, and X
(l)
i denotes the l-th component of Xc

i . When the model

assumption (4.1) is true and the parameter space for β is compact, β̂CEL is well-

defined according to the EL and CEL theory (Owen 2001; Kitamura et al. 2004).

A common bandwidth parameter bN for different strata as in (4.3) is appropriate,
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since from our assumption in Section 4.3, each stratum has size proportional to N .

Results from Smith (2007) may serve as a rule of thumb for the order of bN . That

is, bN → 0, N1−2ν−2/δb2q
N →∞ and N1−2νb

5q/2
N →∞ as N →∞, where ν ∈ (0, 1/2),

δ ≥ 8 and q = maxi qi. In data analysis, however, a data-driven bandwidth selection

procedure is often desired. In this paper we implement a cross-validation criterion

suggested by Newey (1993) for models with conditional moment restrictions, with

some modifications to suit for the context of possibly unbalanced longitudinal data.

Specifically, define

(4.4) CV (bN) = tr

{
N∑
i=1

Ĝ
>
i V̂

−1
−i

(
gig

>
i − V̂ −i

)
V̂
−1

−i

(
gig

>
i − V̂ −i

)
V̂
−1

−i Ĝi

}
,

where Ĝi = ∂gi(β̂)/∂β, V̂ −i =
∑

j∈Si
ŵijgj(β̂)gj(β̂)>, β̂ = β̂(bN) is the CEL

estimator obtained with a given bN , and

ŵii = 0, ŵij =
K
(
Xc

i−Xc
j

bN

)
I(Xd

i = Xd
j )∑

j∈Si,j 6=iK
(
Xc

i−Xc
j

bN

)
I(Xd

i = Xd
j )

for j ∈ Si and j 6= i.

The optimal bandwidth bN is chosen as the minimizer of CV (bN).

4.2.2 Reformulation and connection to GEE

Calculating β̂CEL requires us to solve a constrained optimization problem. Using

Lagrange multipliers, define the Lagrangian as

L =
N∑
i=1

(∑
j∈Si

wij log pij

)
−

N∑
i=1

$i

(∑
j∈Si

pij − 1

)
−

N∑
i=1

λ>i

{∑
j∈Si

pijgj(β)

}
,

where scalar $i ∈ R and vector λi ∈ Rni are Lagrange multipliers associated with

the second and third constraints in (4.2), respectively. Taking ∂L/∂pij = 0, together

with the constraints in (4.2), it can be easily shown that, for a fixed β,

(4.5) pij(β) =
wij

1 + λ̂i(β)>gj(β)
, j ∈ Si, i = 1, . . . , N,
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where λ̂i(β) is the root of equation
∑

j∈Si
pij(β)gj(β) = 0. It is easy to see that

(4.6) λ̂i(β) = arg min
λi∈Rni

[
−
∑
j∈Si

wij log
{

1 + λ>i gj(β)
}] def

= arg min
λi∈Rni

Λi(λi,β).

where Λi(λi,β) = −
∑

j∈Si
wij log

{
1 + λ>i gj(β)

}
. Thus the objective function in

(4.2) can be rewritten as a function of β only, namely

(4.7) L(β) =
N∑
i=1

∑
j∈Si

wij log pij =
N∑
i=1

Li (β) +
N∑
i=1

∑
j∈Si

wij logwij,

where Li(β) = Λi{λ̂i(β),β}. Therefore, the CEL estimator can be equivalently

defined as

(4.8) β̂CEL = arg max
β

N∑
i=1

{
min
λi∈Rni

Λi(λi,β)

}
.

Equation (4.8) provides a way to implement the CEL method, which will be detailed

in Section 4.4.

As seen, the CEL method does not require to explicitly model the variance-

covariance matrix var(Y i | X i). However, this matrix is taken into account im-

plicitly in the optimization procedure (4.6) through the use of probabilities pij. To

elaborate, note that the third constraint in (4.2) implies

0 =
∑
j∈Si

pij(β)

{
1− wij

pij(β)

}
gj(β) +

∑
j∈Si

wijgj(β),

and also from (4.5) we have

1− wij
pij(β)

= −g>j (β)λ̂i(β), j ∈ Si.

Therefore, solving for λ̂i(β) leads to

(4.9) λ̂i(β) =

{∑
j∈Si

pij(β)gj(β)g>j (β)

}−1{∑
j∈Si

wijgj(β)

}
.

From the proof of Theorem IV.3 in Section 4.3, the term
∑

j∈Si
pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)>

is a consistent estimator of var(Y i |X i). This implies that a consistent estimator of
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var(Y i | X i) is involved in (4.9), which is the optimal solution to (4.6). Due to the

positive definiteness of var(Y i |X i),
∑

j∈Si
pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)> is positive

definite, at least when N is large. Note that
∑

j∈Si
pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)> is

a data-driven estimate of the variance-covariance matrix, and thus the CEL method

has the flexibility of allowing the variance-covariance to be different across individ-

uals, unlike the GEE method which requires a common within-subject correlation

structure, such as AR-1 or compound symmetry.

Since β̂CEL maximizes L(β), β̂CEL is the solution to equation ∂L(β)/∂β = 0.

From (4.7) and the fact that λ̂i(β) is the root of
∑

j∈Si
pij(β)gj(β) = 0, β̂CEL is the

solution to equation
N∑
i=1

∑
j∈Si

pij(β)Gj(β)>λ̂i(β) = 0,

where Gj(β) = ∂gj(β)/∂β. Plugging λ̂i(β) given by (4.9) into this equation leads

to

N∑
i=1

{∑
j∈Si

pij(β)Gj(β)>

}{∑
j∈Si

pij(β)gj(β)gj(β)>

}−1{∑
j∈Si

wijgj(β)

}
= 0.

Being the solution to the above estimating equation, β̂CEL can be regarded as a

GEE-type estimator, where the matrix var(Y i |X i) is estimated nonparametrically

by using the empirical probabilities pij rather than parametrically by assuming a

working model. Because β̂CEL is obtained under a consistently estimated var(Y i |

X i), it in theory will have improved efficiency upon the GEE estimator employing

an incorrectly modeled variance-covariance matrix.

4.3 Large Sample Properties

To facilitate the presentation, we introduce some extra notation. It is clear that

Gi(β) = E {∂gi(β)/∂β |X i}. Denote V i(β) = E
{
gi(β)gi(β)> |X i

}
. For any set
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A, let |A| denote the cardinality of A. Define rω = limN→∞ |Sω|/N . As shown in

the proofs of the following theorems, a stratum with rω = 0 will be asymptotically

negligible. Therefore, without loss of generality, we assume that rω > 0 for all ω ∈ Ω.

This assumption, together with the fact that for any ω ∈ Ω, E {gi(β0) |X i} = 0 for

i ∈ Sω, implies that 0 is inside the convex hull of {gj(β) : j ∈ Si} for i = 1, · · · , N ,

at least when N is large and β is close to β0. In other words, constraints in (4.2)

are satisfied asymptotically. Technical assumptions and proofs for theoretical results

developed in this section are provided in Section 4.8.

Consistency of the proposed CEL estimator is established in the following theorem.

Theorem IV.1. Under Assumptions (i)-(vii) in Section 4.8, we have β̂CEL
p−→ β0

as N →∞.

The following theorem presents the asymptotic distribution of the CEL estimator.

Theorem IV.2. Under Assumptions (i)-(viii) in Section 4.8, we have
√
N(β̂CEL−

β0)
d−→ N{0,J(β0)−1} as N → ∞, where J(β0) =

∑
ω∈Ω rωJω(β0), and for all

i ∈ Sω, Jω(β0) = E
{
Gi(β0)>V i(β0)−1Gi(β0)

}
.

For balanced longitudinal data where all subjects belong to a unique stratum,

we have J(β0) = E
{
G(β0)>V (β0)−1G(β0)

}
. This is the semiparametric efficiency

bound for the model defined by (4.1) (Chamberlain 1987) when the data are balanced.

Thus, β̂CEL has the optimal efficiency among all regular and asymptotically linear

estimators under model (4.1) with balanced longitudinal data.

To consistently estimate J(β0), we consider two approaches. The first approach

is based on Lemma C1 in Kitamura et al. (2004). As one can show that, for any

ω ∈ Ω,

− 1

|Sω|
∂2Lω

∂β∂β>
(β̂CEL)

p−→ Jω(β0)
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as N →∞, where Lω(β) is defined by

Lω(β) =
∑
i∈Sω

Li (β) +
∑
i∈Sω

∑
j∈Si

wij logwij,

a consistent estimator of J(β0) takes the following form that is similar to an observed

information matrix:

(4.10) − 1

N

∂2L

∂β∂β>
(β̂CEL).

The calculation of (4.10) is straightforward, and is a byproduct of the Newton-

Raphson algorithm searching for β̂CEL. See more discussion in Section 4.4.

The second approach is to estimate J(β0) using the estimator given by the fol-

lowing theorem.

Theorem IV.3. Under Assumptions (i)-(ix) in Section 4.8, as N →∞, we have

(4.11)

1

N

N∑
i=1

Gi(β̂CEL)>

{∑
j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)>

}−1

Gi(β̂CEL)
p−→ J(β0)

The above estimator is a simplification of the well-known “sandwich” estimator

(Liang and Zeger 1986){
1

N

N∑
i=1

G>i V
−1
w,iGi

}−1{
1

N

N∑
i=1

G>i V
−1
w,ivar(Y i |X i)V

−1
w,iGi

}{
1

N

N∑
i=1

G>i V
−1
w,iGi

}−1

,

where V w is a working variance-covariance matrix. For the CEL method, V w,i =∑
j∈Si

pij(β)gj(β)gj(β)> consistently estimates var(Y i | X i). Therefore, the vari-

ability matrix and the sensitivity matrix in the “sandwich” estimator cancel each

other asymptotically, yielding the estimator given in (4.11).

Although both estimators (4.10) and (4.11) are consistent, they may perform

differently under finite sample size. A numerical comparison and some practical

suggestions will be given in the simulation studies in Section 4.5.

Finally, the optimality of β̂CEL is established by the following theorem.
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Theorem IV.4. Under Assumptions (i)-(viii) in Section 4.8, we have
√
N(β̂CEL−

β̂opt) = op(1) as N →∞, where β̂opt is the most efficient estimator among the class

of estimators that solve estimating equations of the form
∑N

i=1D(X i,β)gi(β) = 0,

with D(X i,β) being a p× ni matrix that may vary across different subjects.

This result can be easily justified by noting that β̂opt should solve equation∑N
i=1Gi(β)>V i(β)−1gi(β) = 0 based on the theory of inference functions (e.g. Go-

dambe 1991; Heyde 1997). One special case is when the longitudinal outcomes follow

a normal distribution, in which this equation is actually the score equation. In such

a case, β̂CEL is asymptotically equivalent to the maximum likelihood estimator in

theory.

4.4 Numerical Implementation

Numerical implementation of the proposed CEL method can be accomplished

based on equation (4.8) with the invocation of nested optimization routines. Two

optimization loops are required. The inner loop updates the Lagrange multipliers

λi(β), i = 1, . . . , N , for a fixed β, and the outer loop updates β. We use Newton-

Raphson algorithm for both loops.

For a fixed β, given λoldi , λi is updated as

λnewi = λoldi −Λ−1
i,λλ

(
λoldi ,β

)
Λi,λ

(
λoldi ,β

)
,

where

Λi,λ(λi,β) = −
∑
j∈Si

wij
gj(β)

1 + λ>i gj(β)
, Λi,λλ(λi,β) =

∑
j∈Si

wij
gj(β)gj(β)>{
1 + λ>i gj(β)

}2 .

The algorithm may start with an initial value λi = 0. The converged value gives the

estimated λ̂i(β) for a fixed β as the solution to (4.6).
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For a given βold, β is updated as

βnew = βold −

{
N∑
i=1

Li,ββ(βold)

}−1{ N∑
i=1

Li,β(βold)

}
,

where

Li,β(β) = −
∑
j∈Si

wij
Gj(β)>

1 + λ̂i(β)>gj(β)
λ̂i(β),

Li,ββ(β) = −Λ>i,λβ

{
λ̂i(β),β

}
Λ−1
i,λλ

{
λ̂i(β),β

}
Λi,λβ

{
λ̂i(β),β

}
,

Λi,λβ

{
λ̂i(β),β

}
=

∑
j∈Si

wij
gj(β)λ̂i(β)>Gj(β){
1 + λ̂i(β)>gj(β)

}2 −
∑
j∈Si

wij
Gj(β)

1 + λ̂i(β)>gj(β)
.

Iterate the inner and outer loops until certain convergence criterion is satisfied.

At the convergence, the algorithm produces the CEL estimator β̂CEL. It is easy to

see that (4.6) is a convex minimization problem. Therefore, for a fixed β, the inner

loop almost always converges to the global minimizer. A proof of this convergence

can be given following Chen et al. (2002). The maximization in the outer loop is

more complicated, and the convergence of the Newton-Raphson algorithm may not

be guaranteed. See Owen (2001) for some detailed discussion on related issues in the

setting of unconditional moment restrictions. Nonetheless, the nested optimization

is widely used by many researchers to implement the EL (CEL) method. See, for

example, Owen (2001), Kitamura (2007) and Hansen (2013). According to Kitamura

(2007), the nested optimization appears to be “the most stable way to compute the

EL estimator”.

A complication associated with the numerical implementation arises from the con-

straints in (4.2), in that 0 may not be in the convex hull spanned by {gj(β) : j ∈ Si},

for either all or certain values of β. This could happen for many reasons. For exam-

ple, assumption (4.1) is incorrect, or the number of follow-ups is large, or the size of

a stratum is small, or the initial value of β is far from the true β0, or combinations
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of the above. If this happens, the constraints in (4.2) are no longer compatible,

thus no solution exists. Specifically, some probabilities provided by (4.5) may be

negative. A practical suggestion to overcome this difficulty is to restrict the mini-

mization in (4.8) over the legitimate region
{
λi ∈ Rni : 1 + λ>i gj(β) ≥ wij, j ∈ Si

}
,

i = 1, · · · , N . Other possible solutions may be found in, for example, Owen (2001),

Chen et al. (2008) and Liu and Chen (2010).

For unbalanced longitudinal data, to avoid potential algorithmic failure caused by

small stratum size, we consider a strategy of data augmentation by creating pseudo-

subjects from those who have longer and more complete follow-up visits. Specifically,

for subject i, we redefine Si = {j : 1 ≤ j ≤ N and τj ⊇ τi} and

L(β) =
N∑
i=1

min
λi∈Rni

[
−
∑
j∈Si

wij log
{

1 + λ>i g
†i
j (β)

}]
+

N∑
i=1

∑
j∈Si

wij logwij,

where the superscript †i means selecting components from the residual vector gj(β)

according to the set τi. Therefore, g
†i
j (β) may be considered as the residual vector

of a pseudo-subject created from subject j whose visit times contain subject i’s visit

times as a subset. As N increases, the small-stratum-size problem is unlikely to occur

with the creation of pseudo-subjects and with our assumption that each stratum has

size proportional to N . In the extreme case that a small-size stratum still exists,

for example, a stratum with only one subject, that stratum can be discarded. In

the simulation studies in Section 4.5, we employ this strategy, which improves the

numerical performance of β̂CEL in general.

In the case of binary outcome data, we have var(Yit |X i) = µit(1−µit) where µit =

µ(X>itβ). This information could be used to improve the finite sample performance
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of the CEL estimator by redefining the residual vector to be

gi(β) =

{
Yi1 − µi1, . . . , Yini

− µini
,

(Yi1 − µi1)2 − µi1(1− µi1), . . . , (Yini
− µini

)2 − µini
(1− µini

)

}>
.

Model assumption (4.1) is still satisfied. Estimation and inference remain the same,

except that the dimension of the Lagrange multiplier λi increases to 2ni.

4.5 Simulation Experiments

The setup of our simulation experiments concerns a typical longitudinal study

that involves three covariates: a continuous baseline covariate bi, a binary treatment

indicator di, and the visit time t. Assuming that there are five designed follow-up

visits, we generate the longitudinal outcomes Yit from the following model:

Yit = β1 + β2bi + β3di + β4t+ β5di × t+ εit, t = 1, · · · , 5, i = 1, · · · , N,

where bi ∼ N(0, 32) and is truncated between −7 and 7, di ∼ Bernoulli(0.5), di × t

is the treatment and time interaction, (εi1, . . . , εi5)> ∼ N5(0,V
1/2
i RV

1/2
i ), V i is a

5 × 5 diagonal matrix with the t-th diagonal element σ2
it = exp(α1 + α2|bi| + α3t),

and R takes the first-order autoregressive structure with correlation coefficient ρ.

The true values are set as (β1, . . . , β5)> = (0.5, 0.5, 1.0, 0.3, 0.3)>, (α1, α2, α3)> =

(0.4, 0.6, 0.4)>, and ρ = 0.5.

To create unbalanced data, the probability that subject i misses the t-th visit is

given by

P (Yit is missing) =
1

1 + exp(3− 0.1|bi| − 0.01t)
.

In the missing data literature, this missingness mechanism is still MCAR (Little and

Rubin 2002), despite the dependence of the missingness probability on covariates.
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We only use this missingness model to generate our data. Because of the nature of

MCAR, the missingness mechanism is not needed to be accounted for in the anal-

ysis. To ease the computational burden, we control the total number of strata by

discarding subjects with no more than two visits. It can be verified that the final

observed residuals satisfy model assumption (4.1). On average, approximately 30%

of subjects have incomplete visits in the generated data, and their follow-up patterns

are irregular. We conduct 500 replications to calculate the summary results. The

Gaussian kernel is employed to calculate the weights, where the baseline covariate is

standardized to have mean 0 and variance 1 in bandwidth selection. We compare the

CEL estimator with the GEE estimator under different working correlation struc-

tures, including the true one. In addition, we compare the CEL estimator with Wang

et al.’s (2010) GEL estimator, for which the variance-covariance matrix is estimated

separately using various models. In effect, Wang et al.’s GEL estimator may be

regarded as either a GEE2 (Prentice and Zhao, 1991) estimator, or an EL estimator

based on a set of unconditional moment conditions specified by GEE2. Therefore,

the comparison between CEL and GEL may be referred to either as the comparison

between CEL and GEE2 or as the comparison between CEL and GEE2-based EL.

Table 4.1 presents summarized results of comparisons for both N = 100 and

N = 500. To speed up computing, a prefixed bandwidth bN = 2N−1/10 is used,

and this rate of bN converging to 0 is selected using the rule of thumb described

in Section 4.2.1. When σ2
it is not correctly modeled, Table 4.1 clearly indicates

that β̂CEL outperforms both the GEE estimator and the GEL estimator in terms

of mean square error, regardless of whether the correlation structure is correctly

specified. More specifically, when N = 100, the CEL estimator reduces the total
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Table 4.1:
Numerical comparison of different estimators for unbalanced longitudinal data
analysis under different sample sizes. The numbers have been multiplied by 100

cel gee.ar gee.cs gel1.ar gel1.cs gel2.ar gel2.cs gel3.ar gel3.cs

N=100

β1

3 -2 -2 -1 -1 -1 -1 2 2
(64) (82) (84) (72) (73) (72) (73) (47) (49)
[42] [67] [70] [52] [53] [52] [54] [23] [24]

β2

-1 -1 -1 -1 -1 -1 -1 -1 -1
(19) (24) (23) (19) (20) (19) (20) (14) (14)
[4] [6] [5] [4] [4] [4] [4] [2] [2]

β3

-5 -1 -1 -2 -2 -2 -1 -4 -4
(92) (113) (118) (100) (101) (100) (102) (65) (67)
[86] [128] [140] [99] [103] [99] [104] [42] [45]

β4

-1 1 1 1 1 1 1 -1 -1
(26) (30) (29) (27) (27) (27) (27) (19) (19)
[7] [9] [9] [7] [7] [7] [7] [4] [4]

β5

1 1 0 1 0 1 0 3 2
(37) (44) (43) (39) (39) (39) (39) (25) (25)
[14] [19] [19] [16] [15] [16] [15] [6] [6]

N=500

β1

4 2 2 3 3 3 3 2 2
(28) (36) (38) (31) (33) (31) (33) (21) (22)
[8] [13] [14] [10] [11] [10] [11] [4] [5]

β2

0 -1 -1 -1 -1 -1 -1 -1 0
(8) (11) (11) (9) (9) (9) (9) (6) (6)
[1] [1] [1] [1] [1] [1] [1] [0] [0]

β3

-7 -4 -5 -6 -6 -6 -6 -3 -2
(39) (51) (55) (44) (47) (45) (48) (30) (32)
[16] [26] [30] [20] [23] [20] [23] [9] [10]

β4

-1 0 -1 -1 -1 -1 -1 -1 -1
(11) (14) (14) (13) (13) (13) (13) (8) (8)
[1] [2] [2] [2] [2] [2] [2] [1] [1]

β5

3 2 2 2 2 2 2 1 1
(16) (21) (21) (18) (19) (18) (19) (11) (12)
[3] [4] [4] [3] [4] [3] [4] [1] [1]

cel: CEL; gee GEE; gel1, gel2, gel3: GEL with σ2
it being modeled by α1 + α2t, exp(α1 + α2t) and the

truth, respectively; ar: first-order autoregressive; cs: compound symmetry.Three summary statistics are
calculated: bias, empirical standard error (number in parentheses), and mean square error (number in
brackets).
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mean square error by 34%, 38%, 15%, 17%, 15% and 18% compared to the 2nd to the

7th estimators, respectively; and when N = 500, the amount of reduction becomes

even higher as 40%, 46%, 22%, 30%, 23% and 31%, respectively. Such robustness

against incorrect modeling of the variance-covariance matrix is a clear advantage of

our proposed method. Since the data are generated from the normal distribution,

β̂CEL is asymptotically equivalent to the maximum likelihood estimator, which is

essentially the estimator given by the second last column. Due to the nonparametric

nature of the CEL estimator, its finite-sample total mean square error is larger

than that of the maximum likelihood estimator. However, this difference becomes

smaller as the sample size increases. Specifically, the total mean square error of the

CEL estimator is 98% higher than that of the maximum likelihood estimator when

N = 100, and this number drops to 79% when N = 500. A similar trend is observed

by comparing the CEL estimator with the estimator given by the last column, in

which case the former has 86% higher total mean square error than the latter when

N = 100, and this number drops to 61% when N = 500. From Table 4.1, an

additional observation is that, under the same model for σ2
it, misspecification of the

correlation structure causes only marginal efficiency loss. On the other hand, different

models for σ2
it lead to significant efficiency variation. This is in a full agreement with

the conclusion drawn by Wang and Lin (2005).

Table 4.2 reports results concerning the influence of the bandwidth on the per-

formance of the CEL estimator. With N = 300, the bandwidth is given by bN =

cN−1/10, which varies with c = 0.6, 0.9, . . . , 2.7. Table 4.2 also includes results based

on the cross-validation-selected bandwidth. The value of c that gives the smallest

total mean square error is 0.9. When c becomes larger (toward oversmoothing), both
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Table 4.2:
Effect of bandwidth parameter on the CEL estimator for unbalanced lon-
gitudinal data analysis. The numbers have been multiplied by 100

c = 0.6 c = 0.9 c = 1.2 c = 1.5 c = 1.8 c = 2.1 c = 2.4 c = 2.7 CV

β1

3 3 4 4 4 4 4 4 4
(34) (33) (34) (35) (36) (37) (38) (39) (38)
[11] [11] [12] [13] [13] [14] [15] [15] [14]

β2

0 1 -1 -1 -1 -1 -1 0 0
(10) (10) (10) (10) (10) (10) (11) (11) (11)
[1] [1] [1] [1] [1] [1] [1] [1] [1]

β3

-4 -4 -5 -5 -5 -5 -6 -6 -6
(48) (47) (48) (49) (50) (51) (52) (53) (52)
[23] [22] [23] [24] [25] [27] [28] [29] [27]

β4

-1 -1 -1 -1 -1 -1 -1 -1 -1
(13) (13) (13) (14) (14) (15) (15) (15) (15)
[2] [2] [2] [2] [2] [2] [2] [2] [2]

β5

2 2 2 2 2 2 2 2 2
(19) (18) (19) (19) (20) (20) (21) (21) (20)
[4] [3] [3] [4] [4] [4] [4] [5] [4]

N = 300; bN = cN−1/10; CV: cross-validation. Three summary statistics are calculated: bias,
empirical standard error (number in parentheses), and mean square error (number in brackets).

the bias (except for β2) and the empirical standard error increase. Overall, the im-

pact of different bandwidths does not appear to be dramatic. The total mean square

error when c = 0.9 is 25% smaller than that when c = 2.7. This empirical property

has also been reported in Kitamura et al. (2004), and is of practical importance, as

it could save substantial computing cost on the search for the optimal bandwidth.

Taking our simulation study as an example, for smaller values of c, such as 0.6 and

0.9, the algorithm requires much longer time to converge in comparison to cases with

a larger value of c.

Table 4.3 reports the numerical performances of the two asymptotic variance es-

timators, (4.10) and (4.11), under different sample sizes. The bandwidth is prefixed

as bN = 2N−1/10. The empirical variance of the CEL estimator based on 500 repli-

cations is used as the true value of the variance when calculating the bias. As shown

in Table 4.3, both estimators appear to be consistent, and formula (4.10) has smaller

bias but slightly larger variance. Both formulas tend to underestimate the variance



92

Table 4.3:
Numerical comparison of asymptotic variance
estimators for CEL method under different
sample sizes.

N = 100 N = 300 N = 500 N = 1000

var(β1)(4.10)
-0.033 -0.008 -0.002 0.000
(0.134) (0.027) (0.014) (0.004)

var(β1)(4.11)
-0.071 -0.015 -0.005 -0.001
(0.103) (0.022) (0.011) (0.004)

var(β2)(4.10)
-0.024 -0.006 -0.003 -0.002
(0.003) (0.001) (0.001) (0.000)

var(β2)(4.11)
-0.025 -0.007 -0.003 -0.002
(0.002) (0.001) (0.000) (0.000)

var(β3)(4.10)
-0.084 0.003 0.003 0.002
(0.240) (0.045) (0.021) (0.007)

var(β3)(4.11)
-0.164 -0.012 -0.003 0.000
(0.179) (0.035) (0.017) (0.006)

var(β4)(4.10)
-0.008 0.000 0.000 0.000
(0.023) (0.004) (0.002) (0.001)

var(β4)(4.11)
-0.014 -0.001 0.000 0.000
(0.017) (0.004) (0.002) (0.001)

var(β5)(4.10)
-0.014 0.001 0.000 0.000
(0.040) (0.007) (0.003) (0.001)

var(β5)(4.11)
-0.027 -0.001 -0.001 0.000
(0.030) (0.006) (0.003) (0.001)

var()(4.10): estimator based on formula (4.10); var()(4.11):
estimator based on formula (4.11). Two summary statistics are
calculated: bias and empirical standard error (number in
parentheses).
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Table 4.4: Effect of bandwidth parameter on asymptotic variance estimators for CEL method.

c = 0.6 c = 0.9 c = 1.2 c = 1.5 c = 1.8 c = 2.1 c = 2.4 c = 2.7 CV

var(β1)(4.10)
-0.052 -0.041 -0.025 -0.028 -0.013 -0.008 -0.010 -0.013 -0.012
(0.020) (0.030) (0.035) (0.037) (0.030) (0.027) (0.027) (0.026) (0.030)

var(β1)(4.11)
-0.039 -0.020 -0.014 -0.015 -0.014 -0.015 -0.017 -0.019 -0.016
(0.013) (0.016) (0.019) (0.021) (0.021) (0.022) (0.022) (0.023) (0.023)

var(β2)(4.10)
-0.009 -0.008 -0.007 -0.008 -0.007 -0.007 -0.007 -0.008 -0.007
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

var(β2)(4.11)
-0.007 -0.005 -0.005 -0.006 -0.006 -0.007 -0.007 -0.008 -0.007
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

var(β3)(4.10)
-0.109 -0.083 -0.047 -0.040 -0.008 0.003 -0.001 -0.006 -0.003
(0.032) (0.047) (0.059) (0.062) (0.048) (0.045) (0.046) (0.047) (0.050)

var(β3)(4.11)
-0.082 -0.041 -0.022 -0.015 -0.013 -0.012 -0.014 -0.017 -0.013
(0.018) (0.023) (0.027) (0.030) (0.033) (0.036) (0.038) (0.040) (0.038)

var(β4)(4.10)
-0.008 -0.007 -0.004 -0.004 -0.002 0.000 -0.001 -0.001 -0.001
(0.004) (0.005) (0.006) (0.006) (0.005) (0.004) (0.004) (0.004) (0.005)

var(β4)(4.11)
-0.006 -0.003 -0.002 -0.002 -0.002 -0.001 -0.002 -0.002 -0.002
(0.002) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004)

var(β5)(4.10)
-0.017 -0.013 -0.007 -0.006 -0.001 0.001 0.001 0.000 0.000
(0.005) (0.008) (0.010) (0.010) (0.008) (0.007) (0.007) (0.008) (0.008)

var(β5)(4.11)
-0.012 -0.005 -0.002 -0.001 -0.001 -0.001 -0.002 -0.002 -0.001
(0.003) (0.004) (0.004) (0.005) (0.005) (0.006) (0.006) (0.007) (0.006)

N = 300; bN = cN−1/10; CV: cross-validation; var()(4.10): estimator based on formula (4.10); var()(4.11):
estimator based on formula (4.11). Two summary statistics are calculated: bias and empirical standard error
(number in parentheses).

of β̂CEL,2, the CEL estimator of the regression coefficient for the continuous baseline

covariate. The issue that the sandwich estimator may underestimate the asymptotic

variance has been observed by many researchers; see, for example, Kauermann and

Carroll (2001) and references therein.

Table 4.4 reports the influence of the bandwidth on the two asymptotic variance

estimators when N = 300 and bN = cN−1/10, with c = 0.6, 0.9, . . . , 2.7. We can see

that small bandwidth leads to underestimation of the asymptotic variance for both

estimators. As the bandwidth increases, such underestimation disappears, except for

the variance of β̂CEL,2. For a larger bandwidth, the bias of formula (4.10) is smaller

than that of formula (4.11). When the bandwidth is selected by the cross-validation,

both estimators perform reasonably well, and formula (4.10) has smaller bias.

To further compare formulas (4.10) and (4.11), we consider a Wald-type test
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Figure 4.1: QQ-plot to compare the asymptotic χ2
2 distribution of two Wald statistics based on

“likelihood” (formula (4.10)) and “sandwich” (formula (4.11)) asymptotic variance es-
timators, respectively.

statistic to test for the following hypothesis of the overall treatment effect:

H0 : β3 = 1 and β5 = 0.3.

Under H0, both Wald statistics constructed from (4.10) and (4.11) follow the χ2
2

distribution asymptotically. In the comparison, we take N = 300 and bN is selected

by the cross-validation. Figure 1 presents a QQ-plot for these two Wald statistics. It

can be seen that although both statistics approximately follow the χ2
2 distribution,

the one based on formula (4.10) turns out to be closer to the 45o line. This agrees

with the conclusion drawn from Table 4 that the variance estimate given by (4.10)

has smaller bias than that given by (4.11).

In summary, we recommend using the cross-validation to select the bandwidth,
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and using formula (4.10) to estimate the asymptotic variance.

4.6 Data Application

We now illustrate the proposed CEL method by analyzing the data collected from

the Kenya primary school nutritional intervention study (Neumann et al., 2003).

This is a randomized controlled trial designed to examine the relationship of growth,

cognitive development and physical activity with the intake of animal source foods,

adjusted by other covariates. A total of 554 school children from 12 schools in rural

Embu District, Kenya, are randomized to four nutritional intervention arms: Meat,

Milk, Energy and Control. Meat, milk and energy in the form of extra vegetable oil

are added into the local plant-based dish Githeri for the Meat, Milk and Energy arms,

respectively. The Control arm has no feeding intervention. Lasting for over 2 years

(from July 1998 to December 2000), this study includes a baseline visit during the

period of July to August, 1998, and the delivery of intervention and data collection

over the period of September 1998 to December 2000. The cognitive function is

measured at the baseline.

We analyze a sub dataset of this study that concerns cognitive outcomes, and the

data are downloaded from

http://rem.ph.ucla.edu/rob/mld/data/tabdelimiteddata/cognitive.txt. More details

about the data can be found in Weiss (2005). The cognitive ability is measured by

the Raven’s score determined on the Raven’s colored progressive matrices. Each

subject has five follow-up visits, and the first (baseline) visit takes place prior to the

randomization. The randomization is marked as time zero in our analysis.

Since all subjects effectively belong to the Control arm at the baseline visit, the

baseline Raven’s score is treated as a covariate (braven) in the model. Other covari-
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Table 4.5: Analysis results on Kenya school nutritional intervention data (N = 524).

cel gee.ar gee.cs gee.un
est se p est se p est se p est se p

intercept 11.53 0.955 0.00 11.67 1.055 0.00 11.44 1.072 0.00 11.47 1.061 0.00
age 0.119 0.075 0.11 0.111 0.082 0.18 0.149 0.082 0.07 0.137 0.082 0.09
ses 0.009 0.004 0.02 0.006 0.004 0.12 0.007 0.004 0.09 0.006 0.004 0.08

braven 0.241 0.037 0.00 0.251 0.044 0.00 0.247 0.045 0.00 0.250 0.044 0.00
boy 0.511 0.178 0.00 0.636 0.178 0.00 0.567 0.180 0.00 0.596 0.179 0.00
time 0.885 0.149 0.00 1.010 0.142 0.00 0.954 0.142 0.00 0.958 0.141 0.00

energy × time 0.119 0.193 0.54 -0.127 0.189 0.50 -0.060 0.186 0.75 -0.089 0.186 0.63
meat× time 0.538 0.199 0.01 0.354 0.203 0.08 0.405 0.204 0.05 0.392 0.201 0.05
milk × time -0.019 0.191 0.92 -0.273 0.188 0.15 -0.227 0.187 0.23 -0.234 0.186 0.21

cel: CEL; gee GEE; ar: first-order autoregressive; cs: compound symmetry; un: unstructured; est: estimated value; se:
estimated standard error, where for CEL method, it is based on formula (4.10); p: p-value.

ates include the baseline age (age), baseline social economic status (ses) determined

by an extensive survey, gender (boy), and visit time (time). For the intervention,

three dummy variables, meat, milk and energy are created.

After removing the subjects with unmeasured covariates and the subjects who

only have baseline visit, our analysis is based on 524 subjects with different patterns

of follow-up. We use the average time of each visit in our analysis, and the following

model is fitted for the data:

E(ravenit) = β1 + β2agei + β3sesi + β4braveni + β5boyi

+(β6 + β7energyi + β8meati + β9milki)× timet.

Our residual analysis suggests that there is no evidence regarding the dependence of

the marginal variance on any covariate. Therefore, we only compare results obtained

from the CEL method and the GEE method (Table 4.5).

Both the CEL and the GEE methods find that the cognitive ability significantly

improves over time, and is significantly higher for boys than for girls. It is interesting

to note that our CEL method has identified social economic status as a significant

factor for the cognitive ability, while the GEE method fails to detect this significance.
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As for the growth rate under the three different nutritional interventions compared

to the Control arm, our CEL method indicates that meat significantly improves the

development of the cognitive ability, whereas the GEE method shows only a similar

trend with no statistical significance. Neither the CEL nor the GEE finds significance

of milk or energy intervention in helping cognitive growth.

4.7 Conclusions

In this paper we propose to model longitudinal data using the CEL method. No

explicit modeling of the variance-covariance of the longitudinal outcomes is required.

In the process of simulation experiments and data application, we have learned some

additional insights that are worth mentioning. First, the CEL method enjoys high

estimation efficiency when moderate to high level of heteroscedasticity exists, espe-

cially when it is difficult to postulate a reasonable model for such heteroscedasticity.

In other words, when homoscedasticity is a more reasonable assumption, the CEL

estimator may not outperform some of the existing estimators, such as the GEE

estimator, due to the nonparametric weight calculation. Second, the cross-validation

criterion (4.4) for bandwidth selection has not been theoretically justified yet, and

it tends to produce over-smoothing. Third, when the number of covariates is large

and the covariates vary in scales and/or types, the kernel-based weight calculation

is challenging. Although through simulation studies Han (2013) and Han et al.

(2013) demonstrated that the CEL method is not dramatically affected by mod-

erately increasing the number of covariates, it is still worthwhile to explore more

flexible methods to calculate the weights. Fourth, our stratification strategy dealing

with the possible unbalancedness of longitudinal data is more appropriate for data

collected from balanced study designs. Therefore, studies in which subjects visit at
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irregular follow-up times call for some adjustments. For example, in analyzing the

longitudinal nutrition data, the average time of each visit is used. Fifth, the stratifi-

cation strategy may not perform well if one or more strata have small size. Although

our suggested creation of pseudo-subjects is effective to reduce the impact of small

stratum size, this issue may need some additional attention, especially when the total

number of follow-up visits and the number of distinct visit patterns are both large.

Last, but not least, a major hurdle for applying the CEL method is its computational

burden, which is a well known open problem in the field of EL methodology. Future

work on the development of fast algorithms is of great interest.

In the literature, in addition to the CEL method, there are other methods available

for estimation under models defined by conditional moment restrictions, including

Newey (1993) and Donald et al. (2003). Newey’s (1993) method requires a prelim-

inary estimator of the parameter of interest, and needs to explicitly estimate the

variance-covariance matrix in a nonparametric fashion. However, it is often difficult

to find a well-behaved estimate of this matrix in practice (Kitamura et al. 2004).

The CEL method, on the contrary, achieves the same efficiency automatically with-

out estimating the variance-covariance. Donald et al. (2003) proposed to construct

an increasing number of unconditional moment restrictions to “span” the conditional

moment restrictions that define the model, and use the EL method for estimation.

As the sample size and the number of unconditional moment restrictions both go

to infinity, Donald et al.’s (2003) estimator achieves the same efficiency as that of

the CEL estimator. However, no numerical study of this method has been reported,

therefore its finite sample performance is unknown.
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4.8 Technical Assumptions and Proofs

This section is devoted to the technical assumptions and sketched proofs of the

results stated in Section 4.3. Let B denote the domain of β, and let B0 ⊆ B be some

closed ball around β0. For a matrix A with elements Aij, define ‖ A ‖=
√∑

i,j A
2
ij.

Denote Kitamura et al. (2004) as KTA.

Assumptions. (i) There exists ω0 ∈ Ω, such that for any β 6= β0, we can find

Xβ, so that P (x ∈ Xβ) > 0 and E {gi(β) |X i = x} 6= 0 for every x ∈ Xβ and

i ∈ Sω0. (ii) For any 1 ≤ i ≤ N , E
{

supβ∈B ‖gi(β)‖m
}
< ∞ for some m ≥ 2. (iii)

B is compact. (iv) µ(·) is continuously differentiable on B0. (v) For any ‖ξ‖ = 1,

0 < infXi,β∈B0 ξ
>V i(β)ξ ≤ supXi,β∈B0 ξ

>V i(β)ξ < ∞. (vi) The domain of Xc is

compact. (vii) bN → 0, N1−2ν−2/δb2q
N → ∞ and N1−2νb

5q/2
N → ∞ as N → ∞, where

ν ∈ (0, 1/2), δ ≥ 8 and q = maxi qi. (viii) λ̂i(β) ∈
{
λi ∈ Rni : ‖λi‖ ≤ c|Si|−1/m

}
for some c > 0. (ix) E

{
supβ∈B0 ‖Gi(β)‖2

}
<∞.

Remark : Assumption (v) guarantees that the variance-covariance matrix restricted

on each stratum is invertible. The restrictions on bN in Assumption (vii) follow

that in Smith 2007. Assumption (viii) is similar to Assumption 3.6 in KTA, and

is only needed when the focus is on some neighborhood around β0. For example,

it is needed in establishing the asymptotic normality of β̂CEL, but not needed in

establishing the consistency. Assumption (viii) is legitimate if (4.1) is correct. Our

numerical implementation does not require Assumption (viii). Assumption (ix) is

used to guarantee the uniform weak law of large numbers in the proof of Theorem

IV.3.



100

Proof of Theorem IV.1. Let

LN(β)
def
=

1

N

N∑
i=1

[∑
j∈Si

−wij log
{

1 + λ̂
>
i (β)gj(β)

}]

=
∑
ω∈Ω

|Sω|
N

1

|Sω|

[ ∑
i,j∈Sω

−wij log
{

1 + λ̂
>
i (β)gj(β)

}]
def
=
∑
ω∈Ω

|Sω|
N

LωN(β),

then β̂CEL = arg maxβ∈B LN(β). Under Assumptions (ii)-(vii), following the same

proof of (A.6) and (A.7) as in KTA, we have supβ∈B |Sω|1/mLωN(β) < op(1) for all

ω ∈ Ω. Therefore, for any ε > 0, let B(β0, ε) be a open ball centered at β0with

radius ε, we have

sup
β∈B\B(β0,ε)

(
|Sω|
N

)1−1/m

|Sω|1/mLωN(β) < op(1), for all ω ∈ Ω.

In addition, for stratum ω0 as in Assumption (i), the same proof of (A.8) as in KTA

gives

sup
β∈B\B(β0,ε)

(
|Sω0|
N

)1−1/m

|Sω0|1/mLω0
N (β) < −r1−1/m

ω0
H(ε) + op(1),

where H(ε) > 0 is a constant depending on ε. Now we have

sup
β∈B\B(β0,ε)

N1/mLN(β) = sup
β∈B\B(β0,ε)

∑
ω∈Ω

(
|Sω|
N

)1−1/m

|Sω|1/mLωN(β) < −r1−1/m
ω0

H(ε) + op(1).

On the other hand, the same proof of (A.9) as in KTA gives |Sω|1/mLωN(β0) ≥ op(1)

for all ω ∈ Ω, therefore N1/mLN(β0) ≥ op(1). Thus, β̂CEL must lie inside B(β0, ε),

and consistency of β̂CEL then follows by the arbitrariness of ε.

Proof of Theorem IV.2. Define

Aω =
1√
|Sω|

∑
i∈Sω

{∑
j∈Sω

wij∂gj(β0)/∂β

}>{∑
j∈Sω

wijgj(β0)gj(β0)>

}−1{∑
j∈Sω

wijgj(β0)

}
,

then following the proof of (A.14) and Lemma C.1 as in KTA, one can easily show

that, for any ω ∈ Ω,

− 1√
|Sω|

∂Lω(β0)

∂β
= Aω + op(1) and sup

β∈B0
‖ − 1

|Sω|
∂2Lω(β)

∂β∂β>
− Jω(β)‖ = op(1),
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where Lω(β) is defined in Section 4.2. Since β̂CEL maximizes L(β), ∂L(β̂CEL)/∂β =

0. From Taylor expansion around β0, for some β̃ between β̂CEL and β0, we have

0 =
1√
N

∂L(β0)

∂β
+

1

N

∂2L(β̃)

∂β∂β>
√
N(β̂CEL − β0)

= −
∑
ω∈Ω

√
|Sω|√
N
Aω + op(1)−

∑
ω∈Ω

|Sω|
N
Jω(β̃)

√
N(β̂CEL − β0) + op(

√
N‖β̂CEL − β0‖).

Solving for
√
N(β̂CEL − β0) we have

√
N(β̂CEL − β0) = −

{∑
ω∈Ω

|Sω|
N
Jω(β̃) + op(1)

}−1{∑
ω∈Ω

√
|Sω|√
N
Aω + op(1)

}
.

From the Central Limit Theorem we have Aω d−→ N (0,Jω(β0)). Therefore, from the

continuity of Jω(β), the consistency of β̂CEL and Slutsky’s Theorem, we have the

desired result
√
N(β̂CEL − β0)

d−→ N (0,J(β0)−1).

Proof of Theorem IV.3. Under Assumptions (ii) and (viii), from Lemma D.2 in KTA,

we have max1≤i≤N,j∈Si
supβ∈B |λ̂

>
i (β)gj(β)| = op(1). Therefore pij(β) = wij {1 + op(1)}

and the op(1) term is independent of i, j and β. This result, together with the con-

sistency of β̂CEL, implies that for any 1 ≤ i ≤ N ,

∑
j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)> = V i(β̂CEL) + op(1).

Then by Assumption (v) we have

1

N

N∑
i=1

Gi(β̂CEL)>

{∑
j∈Si

pij(β̂CEL)gj(β̂CEL)gj(β̂CEL)>

}−1

Gi(β̂CEL)

=
∑
ω∈Ω

|Sω|
N

1

|Sω|
∑
i∈Sω

Gi(β̂CEL)>
{
V i(β̂CEL)−1 + op(1)

}
Gi(β̂CEL).

Therefore Theorem IV.3 follows from Assumption (ix) and the uniform weak law of

large numbers (e.g. Lemma 2.4 in Newey and McFadden 1994).



CHAPTER V

Some Possible Future Works

In this dissertation we have investigated the CEL approach to statistical analysis

with missing data. We considered both cases of cross-sectional data and longitudinal

data. One distinctive feature of the proposed CEL method is that, the resulting esti-

mator can achieve high estimation efficiency without modeling any second moments

of the data. Because of the difficulty of modeling the second moments in practi-

cal studies, the circumvention of it by our proposed CEL method may be highly

advantageous.

There are still several issues that deserve further investigation. First, in our devel-

opments we employed a modified cross-validation criterion along the lines suggested

by Newey (1993) for the bandwidth selection. Although this criterion works reason-

ably well in our simulation experiments, it has not been theoretically justified yet.

Future work on better criteria and related theory is needed.

Second, when the number of covariates is large and the covariates vary in scales

and/or types, the kernel-based weight calculation is challenged. Although through

simulation experiments in Chapter II we have found that the inclusion of additional

covariates may not have a dramatic impact on the performance of our proposed

procedure, such an impact will become influential and can not be ignored as the

102
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number of covariates keeps increasing. Therefore, it is worthwhile to explore more

flexible ways to calculate the weights.

Third, the computational burden of empirical likelihood method is known to be

the main obstacle preventing its application in many practical problems. Future

efforts need to be made to alleviate the computational burden while retaining the

theoretical advantages of empirical likelihood method.

In addition to the above issues, there are several extensions of the current devel-

opments worth future exploration. First, our developments only concern the missing

outcome problem. The problem of missing covariates is equally important, and may

be more challenging, as the weights used by the CEL method to construct the lo-

calized empirical likelihood are calculated based on the covariates. Furthermore,

practical studies often generate data with both missing outcome and missing covari-

ates. The extension of the current developments to the setting of missing covariates,

and more generally, to the setting where both the outcome and the covariates are

subject to missingness, is an important and interesting research topic.

Second, to deal with the missing outcome problem in both cases of cross-sectional

data and longitudinal data, we made the assumption that the missingness mechanism

is ignorable (MAR or MCAR). Although this assumption holds for many practical

studies, such as the two-stage design studies in cross-sectional data case, it does not

cover the scenario where the missingness depends on the missing values, namely the

nonignorable missingness mechanism. It is of interest to investigate how to generalize

the CEL method to analyze data under a more complex missingness mechanism.

Third, in Chapter II we proposed both the CEL-IPW estimator and the CEL-

AIPW estimator. Although the CEL-AIPW estimator attains the semiparametric

efficiency bound when both the missingness mechanism and the conditional mean of
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the outcome given the surrogate variables and the covariates are correctly modeled,

it may lose substantial efficiency compared to the CEL-IPW estimator when the

conditional mean is incorrectly modeled. It is desirable to find an estimator that

is doubly robust, locally efficient, and has uniformly improved efficiency over the

CEL-IPW estimator. This may be done by following the idea in Han (2012).

Fourth, it is worthwhile to study the variable selection problems in the presence

of missing data using empirical likelihood. Most existing variable selection meth-

ods are based on penalizing the least square or the likelihood function. However,

for semiparametric problems, the likelihood approach faces the challenge of model

misspecification and the least square approach does not yield efficient estimation.

Empirical likelihood seems to be a good alternative due to its robustness against

model misspecification and its efficiency in estimation. In addition, the rapid de-

velopment of variable selection techniques has mainly focused on dealing with fully

observed data. Missing data pose great challenges, both theoretically and numer-

ically. The least square approach is not directly applicable and the calculation of

the likelihood function may become infeasible due to multiple integration. The IPW

approach provides a promising solution and deserves thorough investigation. The

applicability of variable selection techniques could be considerably extended.

Fifth, the current empirical likelihood methodology treats the empirical likelihood

as static, despite the reality that the actual data collected may be dynamic and vary

over a continuum, such as time. It is interesting to study the empirical likelihood

in a dynamic fashion, where the likelihood function also varies over the continuum.

Such a generalization of empirical likelihood will have a broad range of applications,

such as solving problems raised by functional data analysis, image data analysis and

dynamic treatment regime.
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