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Abstract 

Energy and environment problems have attracted more and more attention in our 

society. In order to alleviate the potential energy crisis and environmental pollutions, 

many sustainable solutions have been proposed, one of which is the development of new 

alternative energy. Hydrogen is considered as a promising and clean alternative energy 

source and becomes the focus of many researches. However, its wide applications 

especially as the fuel to power automotives are limited by many factors, one of which is 

hydrogen storage issue. This thesis discussed about utilizing adsorbents for hydrogen 

storage at ambient conditions and tried to overcome several challenges involved in this 

field. 

Recent studies have shown that using the hydrogen spillover phenomena is a 

promising approach for developing new materials for hydrogen storage at ambient 

temperature. However, the rates need to be improved.  Significant catalytic effects on 

both spillover (i.e., adsorption) and reverse spillover (i.e., desorption) on Pt-doped carbon 

by TiF3 were found.  By doping 2 wt% TiF3 on the Pt-doped Maxsorb (a super-activated 

carbon), both adsorption and desorption rates were significantly increased while the 

storage capacity decreased only slightly due to decreased surface areas. The effect of the 

heat-treatment temperature (473K vs. 673K) of the doped TiF3 on its catalytic effects was 

also studied. XPS analyses showed that C-F bonds were formed upon heat treatment and 

that the amount of C-F bonds increased with the heat treatment temperature. The catalytic 

effects also increased with the heat treatment temperature, indicating that the catalytic 

mechanism involved the formation of the C-F bonds on the carbon edge sites. 

Metal-doping is indeed helpful to increase the hydrogen storage capacities of 

adsorbents at ambient conditions. But it was found that the final performance of metal 
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doped adsorbents varies significantly and was influenced by many factors, e.g., synthesis 

conditions, post-synthesis treatment, operator experience, etc. The reason behind was not 

well studied. A series of Pt-doped IRMOF-8 samples with different Pt catalyst sizes have 

been prepared via organometallic chemical-vapor deposition (CVD). The Pt catalyst size 

effects on the spillover storage on IRMOF-8 (or any MOF) were studied for the first time. 

Our studies showed that the Pt catalyst size is a crucial factor determining whether a 

significant enhancement in storage can be achieved in the hydrogen spillover system at 

ambient temperature. Compared to undoped IRMOF-8, the spillover storage capacities on 

Pt-doped IRMOF-8 samples were enhanced by factors ranging from 1.1 – 1.9 due to 

different Pt catalyst sizes. The doped Pt size was controlled by varying the CVD 

conditions to yield mean sizes of 2.2, 3.9 and 9.1 nm, and the results showed that smaller 

sizes were needed for spillover. Further studies of Ru size on the storage uptakes of Na-Y 

consolidate this conclusion. 

In order to utilize adsorbents for hydrogen storage application, they must be stable in 

this process. Most adsorbents are stable with hydrogen but there are some exceptions. 

The stabilities of three moisture-stable MOFs containing different metal clusters, i.e. 

HKUST-1 (Cu), MIL-53(Al) and ZIF-8 (Zn), were investigated in dihydrogen and 

dissociated hydrogen (caused by doped Pt nanoparticles) environments. X-ray diffraction 

(XRD), X-ray photoelectron spectroscopy (XPS) and X-ray-excited auger electron 

spectroscopy (XAES) results showed that all three MOFs were stable in dihydrogen 

environment. However, the structure of Pt-doped HKUST-1 collapsed in the presence of 

dissociated hydrogen, due to the higher reduction potential of Cu compared with H, and 

the degree of reduction that occurred to the divalent copper in HKUST-1 increased with 



 

x 
 

temperature. Unlike HKUST-1, MIL-53 and ZIF-8 maintained their structures in both 

dihydrogen and dissociated hydrogen environments at temperatures up to 150°C. 

Moreover, comparison of Pt-doped HKUST-1 samples synthesized by chemical vapor 

deposition (CVD) and incipient wetness impregnation showed that the contact between 

the doped Pt particles and MOFs significantly affected hydrogen spillover. 

It’s known the first step of hydrogen spillover process is the dissociation of 

dihydrogen molecules on the surface of some catalysts and previous studies have shown 

most of the catalysts for hydrogen dissociation are noble-metal catalysts, i.e., Pt, Pd, Ru, 

Rh.., all of which are very expensive. It will be meaningful and reduce the costs 

significantly to develop non-noble metal catalysts possessing strong interaction with 

hydrogen. It was found that zinc exchanged zeolites can facilitate the hydrogen 

dissociation in the process of propane dehydrogenation and aromatization, but the 

mechanism of the interaction between hydrogen and zeolites and the factors influencing 

this interaction was not well studied. This work used H2-TPD to investigate the 

interaction between hydrogen and zeolites and found that zinc ions play an important role 

in this interaction, especially for hydrogen chemisorption on the surface of zeolites. 

Without zinc ion, the chemisorption did not occur. Higher zinc content leads to more 

hydrogen chemisorbed  and stronger interaction between hydrogen and zeolites. 

Meanwhile, the framework of zeolite also has an impact on the interaction between 

hydrogen and zeolites. Moreover, it was also found that higher dosing temperature also 

lead to more hydrogen chemisorbed on zeolites and stronger interaction between 

hydrogen and zeolites, which is assumed to be related with the energy barrier for 

hydrogen chemisorption on zeolites. 
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Another approach to solve the environmental problems is to control the emission of 

harmful gases. Desulfurization attracted many interests not only due to environmental 

regulations but also because of the great need from fuel cell applications. π-complexation 

adsorption was proposed as an efficient way for fuel desulfurization because it does not 

require high pressure, high temperature hydrogen and large reactors. In this work, 

desulfurization of JP-5 jet fuel (1172 ppmw S) was investigated by π-complexation 

adsorption with AgNO3 supported on mesoporous silica SBA-15 and MCM-41. The 

average pore sizes of AgNO3/SBA-15 and AgNO3/MCM-41 were 48.8 and 19.1 Å, 

respectively. The results of JP-5 desulfurization showed that significant sulfur 

breakthrough occurred at ~10.0 and ~15.0 mL/g by AgNO3/SBA-15 and AgNO3/MCM-

41, respectively, at a space velocity of 1.25 h-1.  The spent AgNO3/MCM-41 was 

regenerated by a simple process (heating in air at 200◦C) and ~50% of the sulfur capacity 

was recovered after the first cycle. Molecular orbital calculations show that Cu+ (as that 

in CuY zeolite) formed stronger π-complexation bonding with the thiophenic compounds 

than Ag+ (in AgNO3), as evidenced by experimental heats of adsorption. However, pore 

diffusion limitation of the large sulfur molecules (alkylated benzothiophenes) became an 

important factor for desulfurization of high sulfur jet fuels such that the AgNO3-

supported mesoporous sorbents yielded substantially better results than Cu(I)Y, although 

Cu(I)Y was better for a model fuel that contained only small sulfur molecules. Among all 

sorbents that have been investigated, the AgNO3/MCM-41 sorbent showed the best 

desulfurization performance for high sulfur jet fuels. 
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Chapter 1: Catalytic Effects of TiF3 on Hydrogen Spillover on Carbon for Hydrogen 
Storage 

Introduction 

With increasing concerns about the environmental impact by the overuse of fossil 

fuels, increasing efforts have been devoted to developing new alternative energy sources 

(and carriers), among which hydrogen is considered as one of the most promising.1 

However, its utilization requires solutions to a series of problems, mainly hydrogen 

production, transportation, storage and fuel cell technology.1 Among these problems, 

hydrogen storage is particularly challenging because at ambient temperature and pressure 

the volumetric energy density of hydrogen is only 1/3000 of the energy density of 

gasoline. There are two straightforward methods to increase the volumetric energy 

density: to liquefy hydrogen at a very low temperature (~ 20K) or to compress hydrogen 

at a very high pressure (up to 700 atm).2 However, the first option needs considerable 

energy cost for cryogenic storage environment and the latter always raises safety 

concerns. These disadvantages limit their onboard application. 

Compared with these two straightforward methods, using adsorbents for hydrogen 

storage (along with the use of metal hydrides) is considered a potentially promising 

approach.2 There have been many studies to develop materials for this purpose, among 

which carbon nanotubes, activated carbon, metal-organic frameworks and zeolites have 

received most attention.3-22 However, at the present time, none of them are capable of 

meeting the DOE targets for automobile application. The most important targets are 

gravimetric/volumetric storage capacities and charge/discharge rates, both at near 

ambient temperature. During the last six years, a new class of promising sorbent 

materials has emerged by using the approach of hydrogen spillover at ambient 
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temperature.23-50 The hydrogen spillover phenomenon is defined as the process in which 

H2 molecules are first dissociatively adsorbed on a metal surface and the atomic 

hydrogen subsequently migrate onto the support surfaces via surface diffusion.51 

Although the storage capacity of the adsorbents could be enhanced significantly by 

spillover, the slow rates for spillover remains a major issue for its application.27  

In the apparently unrelated research fields of metal hydrides for hydrogen storage, 

there have been many efforts focusing on catalysts that have unique effects on the rates of 

hydriding and dehydriding. Since the 1960s, several organic compounds have been 

discovered to have catalytic effects on MgH2.52 Doping 1% Pd was also found to have 

significant catalytic effects on Mg2Ni and LaNi5.53 In 1997, it was discovered that the 

rates in both directions could be increased significantly by doping TiCl3 or TiCl4 on 

NaAlH4.54 Subsequently, many other transition metal cations (such as Zr, Fe, Mn, Cr, Co, 

Nd, etc) have also been found to be effective.55 More recently, catalytic effects were 

observed for hydrogen spillover.51  It was seen that after doping 2 wt% TiCl3 or VCl3 on 

Pt-doped carbon, the rates of both adsorption and desorption were increased. However, 

there was a problem in the lack of stability for these two catalysts: TiCl3 will quickly 

decompose into TiO2 and HCl once exposes to air; and VCl3 undergoes 

disproportionation during sample preparation when heating is required.56-59 

In this work, TiF3 was found to be a very effective catalyst for enhancing the rates in 

both directions. At the same time, doping TiF3 only decreased the storage capacity of the 

adsorbents slightly and did not cause the samples to lose reversibility. Moreover, TiF3 

itself is very stable and the decomposition temperature of TiF3 is 1473K. Based upon 

these three reasons, TiF3 is considered as a promising candidate for enhancement of 
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adsorption and desorption rates. Moreover, during the doping process of TiF3, heat 

treatment at a higher temperature was found to result in more enhanced catalytic effects.  

The adsorbents before and after treatment were characterized by using XPS, XRD and 

surface and pore analyses.  

Experimental Section 

Preparation of Pt/Maxsorb. The superactivated carbon, designated Maxsorb, was 

prepared by activation of carbon precursors in molten KOH at ~800oC and is available 

commercially (obtained from Tokyo Zairyo Company). Because Maxsorb carbon could 

absorb moisture from the ambient air, it was dried first at 393K for several hours. Then 

400 mg of well-dried Maxsorb carbon was first dispersed in 40 ml of acetone and was 

stirred for 0.5 h at room temperature.  A 4.0 mL aliquot of acetone solution containing 52 

mg H2PtCl6 (Aldrich, 99.9%) was slowly added to the above solution under vigorous 

agitation for about 10 min. Next, the slurry was subjected to ultrasonication (100W, 

42kHz) at room temperature for 1h followed by magnetically stirring at room temperature 

for 24 h. After being dried in an oven at 333K overnight to evaporate most of the acetone 

solvent, the impregnated carbon sample was transferred to a quartz boat, which was slid 

into a horizontal quartz tube. The sample was further dried in a helium flow at 393K for 2 

h to remove residual acetone and also the moisture adsorbed on the sample. Then the 

helium flow was switched to H2 and the temperature increased to 573K at a heating rate 

of 1 K/min and held for 2 h. After slowly cooling to room temperature in H2 the sample 

was purged with flowing helium for at least 2 h and was stored under helium atmosphere 

before further use.   
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Pt/Maxsorb doped with TiF3. An incipient-wetness method was method used to 

prepare Pt/Maxsorb doped with TiF3. Typically, 8.0 mg of TiF3 (Aldrich, 99%) was 

added to 6 ml of diethyl ether solution and stirred for 1 h.51 After TiF3 was dissolved, 400 

mg of Pt/Maxsorb sample, which was first degassed at 623K for 5 h, was added to the 

above solution. After volatilization of the diethyl ether at room temperature, the sample 

was dried in flowing helium at 323K for 2 h. Before its use, the sample was split into two 

parts evenly. Then the two parts were degassed and calcined at 473K and 673K for 12 h, 

respectively.  

Characterization. Powder X-ray diffraction (XRD) data was recorded on a Rigaku 

Miniflex diffractometer at 30 kV, 15 mA with Cu Kα (λ = 0.1543 nm) radiation. X-ray 

photoelectron spectroscopy (XPS) was recorded on a Kratos Axis ultra XPS spectrometer.  

BET (Brunauer-Emmet-Teller) surface area and low pressure H2 adsorption isotherms (0-

1 atm) were measured with a standard static volumetric technique by using Micromeritics 

ASAP 2020. Hydrogen adsorption isotherms at 298K and in the pressure range of 1 – 100 

atm were measured using a static volumetric technique with a specially designed 

Sievert’s apparatus. The apparatus was previously tested to prove to be leak-free and 

proven for accuracy through calibration by using LaNi5 and AX-21 at 298K.60 Prior to 

measurements, the samples were degassed at 623K for at least 12 h.51 

Results and Discussion Section 

Characterization of samples. The BET surface areas, pore volumes, and median 

pore diameters of Maxsorb, Pt/Maxsorb, Pt/Maxsorb with doped TiF3 and calcined at 

473K (Pt/Maxsorb-TiF3-A) and Pt/Maxsorb with doped TiF3 and calcined at 673K 

(Pt/Maxsorb-TiF3-B) are shown in Table 1. 
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From Table 1, it can be seen that the BET surface area and pore volume decreased 

slightly after doping 6wt% Pt onto Maxsorb. The decrease in surface area and pore 

volume was due to blocking or filling of the micropores and mesopores of Maxsorb by Pt 

particles. A similar phenomenon happened upon doping a small amount of TiF3 onto 

Pt/Maxsorb. It is assumed that part of the doped TiF3 particles blocked or filled the 

micropores or mesopores and part of TiF3 reacted with carbon (as to be discussed). 

In order to test this assumption, powder XRD was performed. Powder XRD patterns 

for pure TiF3, Pt/Maxsorb, Pt/Maxsorb-TiF3-A and Pt/Maxsorb-TiF3-B samples are 

shown in Figure 1. 

In Figure 1, TiF3 shows diffraction peaks at 2θ=23.1°, 2θ=32.7°, 2θ=38.7°, 2θ=47.2°, 

2θ=52.9° and 2θ=59.1°. Among these peaks, the strongest one appears at 2θ=23.1°. Pt 

doped Maxsorb only showed two peaks that are characteristic of cubic platinum metal 

structure (JCPDS File Card No. 4-802). They are: 2θ=39.8° (111) and 2θ=46.3° (200). 

With TiF3 doped on Pt/Maxsorb, only the strongest peak for TiF3 at 2θ=23.1° appeared 

because the amount of TiF3 was too small, only 2 wt%. Moreover, when Pt/Maxsorb 

doped with TiF3 and calcined at the higher temperature (673K), the peak at 2θ=23.1° 

diminished. This indicated that part of the TiF3 had reacted with carbon during heating at 

673K, because the decomposition temperature of TiF3 is 1473K. 

In order to verify whether TiF3 reacted with Pt/Maxsorb during heating, the detailed 

scan (core scan) of the X-ray Photoelectron spectroscopy was conducted around the peak 

of fluorine which is about 685 eV. The X-ray Photoelectron spectra of Pt/Maxsorb-TiF3-

A and Pt/Maxsorb-TiF3-B are shown in Figure 2. 
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As shown in Figure 2, fluorine (F) has two split peaks. The peak at 685.8 eV is 

assigned to F- which belongs to TiF3; and the peak at 689.1 eV is assigned to the C-F 

bond.61-63 The XPS result is direct evidence that part of the TiF3 has reacted with carbon 

during the process of heat-treatment.  Moreover, the relative peak height for C-F 

Bond/TiF3 increased from 0.25 (heat-treated at 473K) to 0.30 (heat-treated at 673K).  

That is, more C-F bonds were formed when the heat-treatment temperature was higher.   

Hydrogen isotherms at 298K. The low pressure hydrogen isotherms on Pt/Maxsorb, 

Pt/Maxsorb-TiF3-A and Pt/Maxsorb-TiF3-B at 298K were measured by using 

Micromeritics ASAP 2020,  presented in Figure 3. As shown in Figure 3, the hydrogen 

storage capacity of Pt/Maxsorb decreased slightly after doping with TiF3 and was further 

lowered upon heating at a higher temperature (673K). This result can be attributed to the 

differences in the BET surface areas of these samples.  

High-pressure hydrogen isotherms at 298K for Pt/Maxsorb, Pt/Maxsorb-TiF3-A and 

Pt/Maxsorb-TiF3-B were measured by using the Sievert’s apparatus, which was 

mentioned above in the experimental section.60 The isotherms including both adsorption 

and desorption branches for Pt/Maxsorb, Pt/Maxsorb-TiF3-A and Pt/Maxsorb-TiF3-B are 

shown in Figures 4, 5 and 6. These isotherms are also compared directly on Figure 7.  

As shown in Figure 7, the hydrogen storage capacity of Pt/Maxsorb at 298K under 

100 bar was 1.30 wt% which was much higher than pure Maxsorb (0.7wt%); after doping 

with 2 wt% TiF3 and calcined at 473K, the capacity decreased slightly to 1.24 wt%. and 

decreased to 1.19 wt% after being heated at 673K. The decreased capacity was again 

attributed to decreases in the BET surface area due to doping and heat treatment.   
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Reversibility was tested by measuring the desorption branches of the isotherms. 

Although slight hystereses were seen, all adsorbed hydrogen could be desorbed at 298K 

by degassing. These results showed that the adsorption on Pt/Maxsorb did not lose 

reversibility after doping with TiF3 and heating at 473K and 673K. 

 Adsorption and Desorption Rates at 298K. The adsorption or desorption rates at 

298K were measured by following the adsorbed amount vs. time, and this was performed 

by increasing or decreasing the pressure in steps. For example, the first step was taken by 

increasing pressure from 0 to 28.6 atm. The high-pressure rates were also measured by 

using the specially designed Sievert’s apparatus mentioned above. For the similar 

pressure increase step, the uptake rates for Pt/Maxsorb, Pt/Maxsorb-TiF3-A and 

Pt/Maxsorb-TiF3-B are shown in Figure 8. The desorption rates during a comparable 

pressure decrease step are shown in Figure 9. 

From Figures 8 and 9, it is concluded that both the adsorption and desorption rates 

were increased significantly by doping TiF3, and that heat-treatment at higher 

temperature was more effective. Moreover, the desorption rates were higher than the 

adsorption rates as observed in previous work.27  

For spillover on carbon and similar materials near room temperature, surface 

diffusion has been considered as the rate limiting step.28-29, 64-65 The hydrogen atom has 

been identified as the diffusing species.29, 65-67 Thus, the rates could be expressed 

quantitatively in terms of surface diffusion time constant by estimation from a solution to 

the surface diffusion equation. The surface diffusion time constant is D/R2, where D is 

the surface diffusivity and R is the average characteristic radius of diffusion for 

spillover.27, 51 From the data in Figure 5 and 6, the estimates for D/R2 could be made, and 
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the results are shown in Table 2. As shown in Table 2, by doping Pt/Maxsorb with TiF3 

and heat-treatment at 473K, D/R2 for both adsorption and desorption rates increased by 

more than 50%; after doping with TiF3 and heat-treatment at 673K, D/R2 of both 

directions nearly doubled.  

In order to understand the mechanism for the catalytic effects of TiF3 on hydrogen 

spillover, the samples were studied by XPS analyses.  As shown above, C-F bonds were 

observed on the samples that were doped with TiF3.  As importantly, the amount of C-F 

bonds increased with the heat treatment temperature that followed the TiF3 doping. 

Therefore, the catalytic effects seemed to be related to the formation of the C-F bonds on 

the edges of the carbon. A tempting explanation for the mechanism would involve the 

decoration/bonding of the carbon (graphite) edge sites with TiF3 in some fashion, and 

consequently the formation of feeder “highway” paths along the edge sites for the 

migrating H atoms. Such a mechanism would require that the bond between H and the 

carbon edge sites be weakened when the edge carbon sites are also bonded to TiF3 in 

some configuration. However, preliminary molecular orbital calculations showed that the 

bonding strength between H and the edge sites of carbon was only to increase by simply 

attaching F atoms to the edge carbon sites. Further studies of the mechanism are 

warranted. 

Conclusions 

TiF3 has been found to be an effective catalyst for hydrogen spillover on Pt doped 

Maxsorb at 298K. Upon TiF3 doping, the BET surface area and pore volume of the 

Pt/Maxsorb decreased slightly, and consequently the hydrogen uptake amount also 

decreased slightly. However, the hydrogen adsorption and desorption rates on 
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Pt/Maxsorb after doping TiF3 were 1.5 times that without TiF3. Moreover, heat treatment 

of the doped TiF3 at a higher temperature (675K vs. 475K) was found to be more 

effective, which could double both the hydrogen adsorption and desorption rates on Pt 

doped Maxsorb carbon. XPS analyses showed that C-F bonds were formed upon heat 

treatment and that the amount of C-F bonds increased with the heat treatment temperature. 

The catalytic effects also increased with the heat treatment temperature. Thus, the 

catalytic mechanism seems to involve the formation of the C-F bonds on the carbon edge 

sites.  
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Sample 
BET SA 

(m2/g) 

Pore volume 

(cm3/g) a 

Median pore 

diameter (Å) a 

Maxsorb 3277 1.60 17.6 

Pt/Maxsorb 2882 1.50 14.7 

Pt/Maxsorb-TiF3-A 2825 1.47 14.7 

Pt/Maxsorb-TiF3-B 2801 1.47 14.6 

a From H-K analysis 

TABLE 1: Surface areas, pore volumes and pore diameters of samples 
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Sample 

Adsorption Desorption 

Pressure 

step (atm) 

D/R2 

(10-4 s-1) 

Pressure step 

(atm) 

D/R2 

(10-4 s-1) 

Pt/Maxsorb 0-28.6 1.1 77.7-52.8 2.7 

Pt/Maxsorb-TiF3-A 0-28.7 1.7 78.1-53.1 4.1 

Pt/Maxsorb-TiF3-B 0-28.7 2.1 77.9-52.9 5.2 

 
TABLE 2. Estimates for surface diffusion time constant, D/R2, for spillover on 

Pt/Maxsorb, Pt/Maxsorb-TiF3-A and Pt/Maxsorb-TiF3-B at 298K. 
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Figure 1. Powder X-ray diffraction patterns. (a): pure TiF3; (b): Pt/Maxsorb; (c): 
Pt/Maxsorb-TiF3-A; (d): Pt/Maxsorb-TiF3-B. 
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Figure 2. X-ray Photoelectron core scan spectra of F for samples (a): Pt/Maxsorb-TiF3-A 
(heat-treated at 473K), and (b): Pt/Maxsorb-TiF3-B (heat-treated at 673K).  
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Figure 3. Low-pressure isotherms of H2 on samples (■: Pt/Maxsorb; ○: Pt/Maxsorb-TiF3-
A; △: Pt/Maxsorb-TiF3-B). 
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Figure 4. High pressure hydrogen isotherm for Pt/Maxsorb. ■: adsorption; □: desorption  
  



 

19 
 

 

 

Figure 5. High pressure Hydrogen isotherm for Pt/Maxsorb-TiF3-A. ●: adsorption; 
○:desorption 
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Figure 6. High pressure Hydrogen isotherm for Pt/Maxsorb-TiF3-B. ▲: adsorption; △: 
desorption. 
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Figure 7. Comparison of hydrogen adsorption isotherms. □: Pt/Maxsorb; ○: Pt/Maxsorb-
TiF3-A; △: Pt/Maxsorb-TiF3-B; ■: Maxsorb. 
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Figure 8. Hydrogen uptake rates on Pt/Maxsorb, Pt/Maxsorb-TiF3-A and Pt/Maxsorb-
TiF3-B at 298K. Pressure step: (a) 0-28.6 atm for Pt/Maxsorb; (b): 0-28.7 atm for 
Pt/Maxsorb-TiF3-A; (c) 0-28.7 atm for Pt/Maxsorb-TiF3-B. 
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Figure 9. Hydrogen desorption rates on Pt/Maxsorb, Pt/Maxsorb-TiF3-A and Pt/Maxsorb-
TiF3-B at 298K. Pressure step: (a) 77.7-52.8 atm for Pt/Maxsorb; (b): 78.1-53.1 atm for 
Pt/Maxsorb-TiF3-A; (c) 77.9-52.9 atm for Pt/Maxsorb-TiF3-B. 
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Chapter 2: Effects of Pt Particle Size on Hydrogen Storage on Pt-Doped Metal-Organic 

Framework IRMOF-8 

Introduction 

Hydrogen storage is one of the key issues for the realization of fuel-cell powered vehicles 

using hydrogen as the energy carrier.1 Among candidate hydrogen storage adsorbents, metal-

organic frameworks (MOFs), a class of porous materials constructed by coordinate bonds 

between multidentate ligands and metal atoms or small metal-containing clusters, have attracted 

increasing attention due to their lightweight, high surface area and porosity, and adjustable 

structures.2-7 Significant storages at 77K on MOFs with high surface areas have been reported. 

For example, MOF-177 with a Langmuir surface area of 5640 m2/g could store the highest 7.5 wt % 

H2 at 77 K and 7 MPa.8,9 The storage capacities of fully activated MIL-101 (Langmuir surface 

area 5900 m2/g) at 77 K were 3.75 wt % at 2 MPa and 6.1 wt % at 8 MPa.10,11 However, these 

significant storage capacities were achieved only at 77 K. At near ambient temperatures, the 

storage capacities dropped precipitously. This can be understood because hydrogen adsorption on 

MOFs is mostly due to weak van der Waals interactions.  

To improve the hydrogen storage on adsorbents at room temperature, a most  

effective approach is by using hydrogen dissociation on an added catalyst followed by 

spillover.  Up to date, more than 100 papers published by ~ 40 groups worldwide have 

reported significant enhancements in hydrogen storage by spillover at ambient 

temperatures demonstrating this technique (summarized in ref. 12). Hydrogen spillover 

can be defined as the dissociative chemisorption of hydrogen on metal nanoparticles, and 

subsequent migration of hydrogen atoms onto adjacent surfaces of a receptor via surface 

diffusion.13-18 Evidence of atomic hydrogen spillover was first observed in studies of 

ethylene hydrogenation19 and later observed in the reduction of transition metal oxides 

with Pt catalyst and hydrogen uptake on transition metals supported on carbon by 
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Khoobiar and Boudart.13,20,21 Direct evidence of spillover of atomic hydrogen, at room 

temperature, from Pt to carbon,22-24 from Pt to glass25 and from Au to TiO2
26 has been 

reported recently. The most important direct evidence for hydrogen spillover at room 

temperature was obtained by Mitchell et al.22,23 in their study of commercial Pt/C, Ru/C 

and PtRu/C fuel cell catalysts dosed with hydrogen, by using inelastic neutron scattering 

(INS).  Their work showed a large continuum in the INS vibration spectra (at >1000 cm-

1) that was directly attributed to a layer of mobile H atoms on the carbon support, with a 

weak binding energy of 15 kJ/mol. Evidence of spillover effects on Pt-doped activated 

carbon by using INS was also reported by Tsao et al.24 Meantime, theoretical studies have 

illustrated the facile pathway for spillover from a Pt particle onto a graphene basal plane 

is via physisorption of H atoms22,27,28 and thermodynamically spillover can occur from 

both the free-standing metal clusters and from the receptor-supported metal clusters.29,30 

DFT studies also showed the facilitated hydrogen spillover on oxygen modified carbons 

and enhanced interactions between hydrogen atom and boron modified carbons.31,32 The 

spillover storage capacities for different MOFs and COF-1 have been calculated by Ganz 

and coworkers.33  Among all transition and noble metals, the most difficult one for 

doping on carbon with high dispersion is Pt; recent results have shown that high 

dispersion (i. e., in particle sizes less than ~4 nm) is necessary for hydrogen spillover to 

occur (e.g., Refs. 34-37). Missteps in catalyst preparation and activation (prior to storage 

measurement) lead directly to diminished or no spillover.  Common missteps and pitfalls 

have been pointed out recently.34  

Hydrogen spillover on MOFs can be facilitated by building carbon bridges between 

the dissociation source (e.g., commercial Pt/AC catalyst) and MOFs,38-43 encapsulation44 
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or direct doping of dissociation metals (Pt, Pd, Ni) on MOFs.45-48 The thermal-desorption 

mass spectrometry studies by Miller group have revealed multiple hydrogen binding sites 

occurring on catalyst bridged-MOFs between 263 and 298 K, substantially higher than 

that for simple physisorbed dihydrogen.41 The factors that affect hydrogen spillover on 

MOFs by bridge building have been discussed.34 It was suggested that the ideal situation 

for hydrogen spillover on bridged-MOFs was when all individual catalyst and MOF 

receptor particles were “bridged,” which was highly empirical and difficult to achieve. 

Studies on direct doping of metals on MOFs for hydrogen spillover started to appear 

recently. Enhanced hydrogen spillover at room temperature has been observed on Pt-

doped MOF-177, Ni-doped MIL-101, Pd-doped redox-active MOF, and Pd-doped MIL-

100.45-48 Unlike the MOF-bridging technique, direct metal doping has the potential of 

being more controllable and hence the results more reproducible. It is known that direct 

doping could result in the dispersion of metal particles on MOFs, and physical and 

energy barriers for transfer of hydrogen atoms from one material to another exist during 

spillover. Thus the dispersion and the particle size of the metal on MOFs will affect 

spillover and thereby the hydrogen storage on MOFs. To our knowledge, studies of 

catalyst dispersion and particle size effects on hydrogen storage on MOFs have not been 

reported. In this work, we synthesized a series of direct Pt-doped IRMOF-8 samples via 

organometallic chemical vapor deposition and studied the Pt dispersion and particle size 

effects on the hydrogen storage. 

Experimental Section 

Syntheses. (1) Synthesis of IRMOF-8: Typically, 1.19 g of Zn(NO3)2·6H2O (freshly 

opened) and 0.43 g of 2,6-naphtalenedicarboxylic acid were dissolved in 40 mL of 
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diethylformamide (DEF) during vigorous stirring at room temperature.49,50 The DEF 

solution was heated to 393 K for 20 hrs and then cooled to room temperature. The white 

product was collected by filtering and four thorough washings with DMF. The product 

was exchanged by CHCl3 4 times, and then degassed at 423 K for 12 hrs.  

(2) Synthesis of Pt-doped IRMOF-8 via chemical vapor deposition (CVD): Pt was 

doped on IRMOF-8 by chemical vapor deposition of a volatile platinum precursor 

(Trimethyl)methylcyclopentadienyl platinum (IV). The MOF crystals were ground before 

CVD. The grounded MOFs (0.6 g) and the organometallic precursor (0.09 g) were placed 

in a tube separated by a glass frit and degassed to a vacuum of < 10 µmHg at 273 K. 

After that, the degassing was stopped and the temperature was increased to 303 K and 

kept at 303 K for 1 hr. The vacuum of this system was renewed each hour for 6 cycles 

then stayed for another 6 hrs. During this procedure, an off-white composite was yielded 

and designated as Pt/IRMOF-8-1. For Pt/IRMOF-8-2 sample, the temperature was kept at 

308 K and the vacuum was renewed each hour for 4 cycles then stayed for another 8 hrs. 

For Pt/IRMOF-8-3 sample, the temperature was kept at 318 K and the vacuum was 

renewed for 1 cycle then stayed 11 hrs. These three samples were reduced in a hydrogen 

atmosphere at 423 K overnight, and then purged with flowing helium. Finally, the 

Pt/IRMOF-8-1 with 4.8 wt % Pt, Pt/IRMOF-8-2 with 6.2 wt % Pt, and Pt/IRMOF-8-3 

with 7.7 wt % Pt were obtained. 

Sample Characterization and Isotherm Measurements. Powder X-ray diffraction 

(XRD) data were recorded on a Rigaku Miniflex diffractometer at 30 kV, 15 mA for Cu 

Kα (λ = 0.1543 nm) radiation, with a step size of 0.02° in 2θ. Transmission electron 

microscopy (TEM) images were obtained on a JEOL 3011 analytical electron microscope 
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equipped with EDX analysis operated at 300 kV.  Nitrogen adsorption and low-pressure 

H2 adsorption isotherms (0-1 atm) were measured with a standard static volumetric 

technique (Micromeritics ASAP 2020). Hydrogen adsorption at 298 K and pressures 

greater than 0.1 MPa and up to 10 MPa was measured using a static volumetric technique 

with a specially designed Sieverts-type apparatus. The apparatus was previously tested 

and proven to be leak-free and accurate through calibration by using LaNi5, AX-21, 

Maxsorb, zeolites, and MOFs at 298 K.51 The best standard calibration material for high 

pressure hydrogen storage measurement is the commercial super-activated carbon, AX-

21 or Maxsorb. The storage capacity for AX-21 (BET S.A. = 2800 m2/g) at 10 MPa and 

298 K should be 0.6 wt % while that for Maxsorb (BET S.A. = 3300 m2/g) should be 0.7 

wt % under the same conditions, both with a slightly concave-shaped isotherm. 

Approximately 200 mg of sample was used for each high-pressure isotherm measurement 

in this study. 

Results and Discussion 

Powder X-ray diffraction patterns of IRMOF-8 and Pt/IRMOF-8 samples are shown 

in Figure 10. The plain IRMOF-8 (Fig. 10 D) showed typical peaks at 2θ = 6.3°, in good 

agreement with previous reports.49,50 After doping with Pt, the XRD patterns of 

Pt/IRMOF-8-1, Pt/IRMOF-8-2 and Pt/IRMOF-8-3 samples all exhibited the same peaks 

as those of plain IRMOF-8 although the peak intensity decreased slightly. This indicates 

that the microstructure of IRMOF-8 was retained after the doping treatments. 

Furthermore, the Pt/IRMOF-8 samples all showed two peaks at ca. 40° and 46° 

characteristic of the metallic platinum particles. These results confirm that Pt metals were 

successfully doped on IRMOF-8 by applying the CVD method. It is noted that the peaks 
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corresponding to Pt became narrower from Pt/IRMOF-8-1 to Pt/IRMOF-8-2 and 

Pt/IRMOF-8-3. This indicates that the Pt particle size increased in the order of 

Pt/IRMOF-8-1 < Pt/IRMOF-8-2 < Pt/IRMOF-8-3. 

Nitrogen adsorption was further employed to evaluate the porosity of plain IRMOF-8 

and the doped samples. As shown in Figure 11, the isotherms of IRMOF-8 and 

Pt/IRMOF-8 samples all exhibited the type I curve, thus revealing the presence of 

microporosity in the samples. The BET surface area and pore volume of the plain 

IRMOF-8 are 1430 m2/g and 0.69 cm3/g, respectively. These textural properties are in 

agreement with previous report.49,50 After doping Pt on IRMOF-8, the BET surface areas 

and pore volumes of Pt/IRMOF-8-1, Pt/IRMOF-8-2 and Pt/IRMOF-8-3 samples were 

reduced to 1175, 1071, 1014 m2/g, 0.59, 0.53 and 0.55 cm3/g, respectively (Table 3). The 

BET surface area and pore volume of Pt/IRMOF-8-1, Pt/IRMOF-8-2 and Pt/IRMOF-8-3 

were lower than that of the plain IRMOF-8. This is due to the increased weight and 

partial micropore blockage caused by the doped Pt particles.  

High-pressure hydrogen isotherms at 298 K for the plain IRMOF-8, Pt/IRMOF-8-1, 

Pt/IRMOF-8-2 and Pt/IRMOF-8-3 samples are presented in Figure 12. As shown in 

Figure 12, IRMOF-8 had a hydrogen storage capacity of ~0.44 wt % at 298 K and 10 

MPa. After doping Pt on IRMOF-8, the hydrogen uptakes on Pt/IRMOF-8-1, Pt/IRMOF-

8-2 and Pt/IRMOF-8-3 at 10 MPa were enhanced to 0.85, 0.67 and 0.49 wt %, 

respectively (Table 3).  It can be seen that all the Pt/IRMOF-8 samples exhibited higher 

hydrogen adsorption capacity than the plain IRMOF-8 sample up to 10 MPa. The 

enhanced hydrogen storage capacity could not be attributed to differences in surface area 

because the Pt/IRMOF-8 samples have lower surface area than that of the plain IRMOF-
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8, as shown by nitrogen adsorption results. The enhancement of hydrogen storage was 

attributed to the spillover of atomic hydrogen from Pt particles to IRMOF-8. The Ru, Pt, 

Pd and Ni metals are known as hydrogen dissociation sources, and the enhanced 

hydrogen storage on various supports by doping these metals has been well observed.12-48 

Another feature observed in the isotherms of Pt/IRMOF-8 was the near linearity. As 

shown in our previous work as well as in the results by other groups, the spillover 

isotherms usually appear to be nearly linear.  The near linearity in the isotherms has been 

explained by our phenomenological spillover isotherm model,52 and indicates that the 

spillover amounts are far from reaching the limiting capacities.12 

It is noted that, in our case, the hydrogen storage capacity followed the order of 

Pt/IRMOF-8-1 > Pt/IRMOF-8-2 > Pt/IRMOF-8-3. The maximum hydrogen uptake 

reached 0.85 wt % at 10 MPa on Pt/IRMOF-8-1. The reversibility on Pt/IRMOF-8-1 was 

also evaluated by measuring the desorption branch down to 1 atm. It can be seen that the 

desorption branch nearly followed the adsorption branch, although there appeared to be a 

slight hysteresis. After evacuation to a pressure of 1 Pa for 12 hrs at 298 K, total 

desorption occurred. The second adsorption isotherm was essentially the same as the first 

adsorption isotherm. The slight hysteresis between the adsorption and desorption branch 

is likely due to spiltover hydrogen atoms adsorbed on the defective sites on IRMOF-8. 

The hysteresis is not obvious on Pt/IRMOF-8-3, since less spiltover hydrogen adsorption 

occurred on it. In comparison with the pristine IRMOF-8, it is notable that the hydrogen 

adsorption amount of Pt/IRMOF-8-1 was enhanced by a factor of 1.9 (or a 90 % 

increase). However, the enhancement factors were only 1.5 for Pt/IRMOF-8-2 and 1.1 for 

Pt/IRMOF-8-3. It is noted that the Pt content difference in the present study (from 4.8 
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wt% to 7.7 wt%) should not affect the enhancement significantly.  Previous studies have 

shown significant enhancements when the Pt content was ~5-7 wt%.36,56,57  

The variation in the storage capacities of Pt/IRMOF-8 samples indicates that 

differences existed among the samples. The Pt/IRMOF-8 samples were characterized by 

TEM and chemisorption analyses. TEM images of Pt/IRMOF-8-1, Pt/IRMOF-8-2 and 

Pt/IRMOF-8-3 samples are shown in Figure 13.  For each doped sample, the dark spots 

of Pt particles could be observed. These results further confirm Pt has been successfully 

doped on the MOF support. The Pt particle size increased with the order of Pt/IRMOF-8-

1 < Pt/IRMOF-8-2 < Pt/IRMOF-8-3. The mean particle sizes with standard deviations 

were 2.2±1.0 nm for Pt/IRMOF-8-1, 3.9±1.9 nm for Pt/IRMOF-8-2, and 9.1±4.3 nm for 

Pt/IRMOF-8-3. As TEM yielded limited information of the Pt dispersion on the whole 

sample, hydrogen chemisorption was further used to estimate the metal dispersion. It is 

known that the Benson–Boudart method is a good assessment for the dispersion of metals 

on supports. From the adsorbed amount of hydrogen extrapolated to zero pressure, the 

dispersion of Pt metal on IRMOF-8 can be calculated. Figure 14 shows the H2 adsorption 

isotherms on Pt/IRMOF-8-1, Pt/IRMOF-8-2, and Pt/IRMOF-8-3 at 298 K. It is obvious 

that the dispersion of Pt on MOF followed the order Pt/IRMOF-8-1 > Pt/IRMOF-8-2 > 

Pt/IRMOF-8-3. These results indicate high dispersion and small sizes of Pt particles 

facilitate spillover on MOFs and in turn the storage capacity. This is in agreement with 

the XRD and TEM results. The catalyst size effects on spillover storage on MOF also 

agreed with the previous studies on carbon receptors doped with various metals. Tsao et 

al. impregnated activated carbon with Pt particles of ~1-2 nm and achieved an 

enhancement factor of 3.35 Chung et al. doped Pt particles (2 nm) on boron-substituted 
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carbon and obtained a storage capacity 5 times higher than the activated carbon with the 

same surface area.36 A high storage capacity on multi-walled carbon nanotubes with a 

good Pt dispersion was reported by Park’s group.37 Arenillas et al. measured the 

hydrogen adsorption on carbon nanospheres doped with different loadings of Ni and 

found that the storage capacity of doped carbon was enhanced by a factor of 1.4 to 2.3.53 

The highest storage capacity was obtained on Ni-doped carbon nanopheres with the best 

Ni distribution and smaller Ni particles (5 nm). Tsai’s group reported that uniformly 

distributed Ni nanoparticles (2.3 nm) tripled the hydrogen uptake on CNTs.54 Sandi’s 

group reported the hydrogen uptake on Pd-doped carbon nanofibers was 4 times larger 

than that on the undoped carbon and attributed the enhancement to small Pd particles.55 

Our recent study on templated carbon doped with various metals (Ru, Pt and Ni) also 

indicated nanosized catalysts favored high storage capacity.56 By considering the carbon 

nature of the linker of MOFs, it is reasonable to observe the high dispersion and small 

size of Pt particles facilitated the storage capacity of MOF samples. Our previous studies 

showed that there is a limited area of influence for each particle due to diffusion 

resistance and lack of diffusion pathways.57 Thus particles with lower and uneven 

dispersion cannot affect the entire MOF support, thus resulting in diminished spillover 

enhancement. The high dispersion and small size of Pt particles contribute to increased 

contacts with the MOF receptor.   

The size of the doped metal is affected by many factors, including the type of metal, 

the doping/addition rate and loading amount of the metal precursor, and the treatment 

temperature and metal reduction method. In our case, for doping Pt via CVD method, 

slower doping led to smaller particles, and the rate of doping could be controlled by a 
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number of factors.  Thus, a lower temperature provided a lower Pt precursor vapor 

concentration, aided by more evacuation/doping cycles, were favorable for the uniform 

interactions between precursor and MOFs and consequently, smaller particles with more 

even distribution. The highest doping temperature and only one evacuation/doping cycle 

resulted in the largest Pt size. This is similar to the effects of addition rate and 

concentration of H2PtCl6 on Pt dispersion on AX-21.34 However, further optimizing the 

doping conditions is still needed for more significant storage enhancements. 

This particle size effect on hydrogen spillover was also observed on another system, 

Ru doped on zeolite Na-Y. The routine method for doping Ru onto sample was described 

in our previous work.56 Here, the synthesis conditions were modified to get three samples 

with Ru of different sizes.  Typically, 200 mg of well-dried zeolite Na-Y was dispersed in 

20 mL of ethanol and was stirred for 0.5 h in a flask at room temperature. Next 5 mL of 

ethanol solution was mixed with 800 mg of Ru(NO)(NO3)x(OH)y aqua (1.5 wt % Ru 

content), then the mixture was slowly added to the above solution under vigorous 

agitation. The mixture was subjected to ultrasonication (100 W, 42 kHz) for 1 h and then 

magnetically agitated at room temperature for 24 h. After being dried in an oven at 333 K 

overnight, the impregnated Na-Y sample was transferred to a horizontal quartz tube and 

further dried in a He flow at 393 K for 2 h to remove the residual ethanol in the sample. 

Then the He flow was switched to H2 and the temperature was increased to 623 K and 

held for 3 h. After being cooled to room temperature in H2, the sample was purged with 

flowing He and stored under He atmosphere before further measurement. This sample is 

denoted as Ru-NaY-1. The second sample denoted as Ru-NaY-3 was obtained by further 

calcination of reduced Ru-NaY in Helium at 923K for 1 hour. The third sample Ru-NaY-
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2 was obtained in this way: the impregnated Na-Y was first reduced in H2 at 723K for 1 

hour followed by calcination in air at 523K for 1 hour and then reduced again in H2 at 

723K for 1 hour. The particle sizes of Ru on these three samples were examined by using 

TEM and the corresponding results are shown in Figure 15. Based on Figure 15, the 

average size with standard deviations for Ru on these three samples were 1.4±0.5 nm for 

Ru-NaY-1, 6.4±1.8 nm for Ru-NaY-2 and 10.6±4.2 nm for Ru-NaY-3.  

Similarly, the hydrogen isotherms on these three samples and pristine Na-Y were also 

measured by using the same instruments mentioned above and the results are shown in 

Figure 16. From Figure 16, we can find pristine NaY possessed a hydrogen uptake about 

0.28 wt% at 100 atm, which is consistent with literature value.58 This also demonstrates 

the accuracy of our measurement instruments. After doping Ru onto pristine NaY, the 

hydrogen uptakes were significantly enhanced on Ru-NaY-1 by a factor of 2. However, 

with the Ru size increasing, the hydrogen storage capacity of Ru-NaY decreased 

gradually.  For the sample with very large Ru particles, i.e., Ru-NaY-3, the enhancement 

of  hydrogen uptake due to hydrogen spillover is very small. These results are in good 

agreement with previous results about Pt doped on IRMOF-8 and demonstrate the high 

metal dispersion and good contacts between metals and supports are necessary to 

facilitate the uptake enhancement by utilizing hydrogen spillover. 

Conclusions 

In this work, a series of Pt-doped IRMOF-8 samples have been prepared via 

organometallic chemical vapor deposition. The catalyst (Pt) size was affected by the 

doping temperature and number of doping cycles. The hydrogen storage studies showed 

the storage capacities via hydrogen spillover on Pt-doped IRMOF-8 samples were 
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enhanced by a factor 1.1 – 1.9 when compared to undoped IRMOF-8. Catalyst size was a 

crucial factor that determined the enhancements of the storage capacity of Pt-doped 

MOFs.  
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Sample 
BET  

Surface Area 
(m2/g) 

Pore  
Volume 
(cm3/g) 

Pt Content 
(wt %) 

Average Pt 
size 
(nm) 

H2 uptake  

at 10 MPa  
(wt %) 

IRMOF-8 1430 0.69 – – 0.44 

Pt/IRMOF-8-1 1175 0.59 4.8 2.2 0.85 

Pt/IRMOF-8-2 1071 0.53 6.2 3.9 0.67 

Pt/IRMOF-8-3 1014 0.55 7.7 9.1 0.49 

 

Table 3. Textural parameters, Pt content, Pt size and hydogen uptake on various samples.  
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Figure 10. XRD patterns of Pt/IRMOF-8-1 (A), Pt/IRMOF-8-2 (B), Pt/IRMOF-8-3 (C) 
and pure IRMOF-8 (D). 
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Figure 11. Nitrogen isotherms of Pt/IRMOF-8-1 (), Pt/IRMOF-8-2 (), Pt/IRMOF-8-3 
() and pure IRMOF-8 (). 
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Figure 12. High-pressure hydrogen adsorption isotherms at 298 K for plain IRMOF-8 (), 
Pt/IRMOF-8-1 (), Pt/IRMOF-8-2 () and Pt/IRMOF-8-3 () samples and desorption on 
Pt/IRMOF-8-1 (). 
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Figure 13. TEM images of Pt/IRMOF-8-1 (A), Pt/IRMOF-8-2 (B) and Pt/IRMOF-8-3 (C). 
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Figure 14. Hydrogen isotherms of Pt/IRMOF-8-1 (), Pt/IRMOF-8-2 () and Pt/IRMOF-8-3 
(). 
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(A)   

(B)   

(C)   
Figure 15. TEM images of (A) Ru-NaY-1 (B) Ru-NaY-2 (C) Ru-NaY-3 
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Figure 16. High pressure hydrogen isotherms on NaY, Ru-NaY-1, Ru-NaY-2 and Ru-NaY-3 
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Chapter 3: Investigation of Hydrogenation of Metal-Organic Frameworks HKUST-

1, MIL-53 and ZIF-8 by Hydrogen Spillover 

Introduction 

 Hydrogen is considered as one promising alternative energy carrier for 

environmental sustainability.1 Among many factors hindering the wide deployment of 

hydrogen as hydrocarbon fuel substitution, hydrogen storage is one of the key issues for 

commercialization of fuel cell powered vehicles using hydrogen as energy carrier due to 

the low volumetric energy density of hydrogen, which is only 1/3000 of the volumetric 

energy density of gasoline.2 Many adsorbent materials have been developed as possible 

candidates for hydrogen storage over the past few decades.3-10 Among these candidates, 

metal organic frameworks (MOFs), a class of  porous crystalline materials consisting 

of metal ions or metal containing clusters coordinated to rigid organic molecules to form 

one, two, or three dimensional structures, have attracted much attention because of their 

light weight, exceptional high surface area, high porosity, and chemically-tunable 

structures.11-28  

 There has been an intense search for MOFs with high hydrogen storage capacities. 

Significant progress has been achieved for hydrogen storages at 77 K. For example, MIL-

101 with a Langmuir surface area of 5500 m2/g possessed a storage capacity of 6.1 wt% 

at 8 MPa and 77 K.29 The hydrogen adsorption capacity at 77 K by MOF-177 (BET 

surface area 4750 m2/g) and UMCM-2 (BET surface area 5200 m2/g) reached 7.5 wt% at 

7 MPa and 7 wt% at 6 MPa, respectively.30,31 Furukawa et al reported MOF-210 with a 

record BET surface area of 6240 m2/g and a hydrogen capacity of 8.6 wt% at 77K and 8 

MPa.32 More recently, Farha et al. reported that NU-100, which has a slightly smaller 

http://en.wikipedia.org/wiki/Crystal�
http://en.wikipedia.org/wiki/Metal�
http://en.wikipedia.org/wiki/Ions�
http://en.wikipedia.org/wiki/Cluster_compound�
http://en.wikipedia.org/wiki/Organic_molecule�
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surface area (BET 6143 m2/g) but much higher hydrogen storage capacity (9.95 wt% at 

77 K and 6 MPa).33 The MOF with highest surface area so far was NU-110, with a BET 

S.A. 7140 m2/g but no hydrogen uptake capacity reported.34 However, these significant 

storage capacities were achieved only at 77 K and they declined dramatically when the 

temperature was raised to ambient temperature. This is understandable since hydrogen 

adsorption on pristine MOFs was by weak physisorption and mainly dominated by weak 

van der Waals interactions. 

In order to improve the performance of adsorbent materials for hydrogen storage 

at ambient temperature, an effective approach was proposed by utilizing hydrogen 

dissociation on metal surface followed by spillover. General concept of hydrogen 

spillover could be defined as dissociative chemisorptions of hydrogen on metal 

nanoparticles and subsequent migration of dissociated hydrogen atoms onto adjacent 

receptor surfaces via diffusion.35-38 Up to date, over 140 papers published by more than 

50 groups have demonstrated the effectiveness of utilizing hydrogen spillover for storage 

enhancement on adsorbents at room temperature.39 First evidence of atomic hydrogen 

spillover was observed by Sinfelt and Lucchesi in studies of ethylene hydrogenation by H 

atoms spillover from Pt/SiO2 to Al2O3.40 Later, Khoobiar showed WO3 in contact with a 

Pt catalyst could be reduced by H2 to blue-colored WO3–x .41 In 1971, Pajonk and 

Teichner found that a pure support (Al2O3 or SiO2) treated with H2 for several hours at 

elevated temperature can hydrogenate ethylene and benzene even by indirect contact with 

a supported metal catalyst.42 Reduction of transition metal oxide with Pt catalyst has been 

used as the proof of hydrogen spillover by Khoobiar, Bourdart and Bond et al.41,43-45 

Direct experimental evidences of atomic hydrogen spillover at room temperature have 
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been recently reported in many systems (Pt-carbon46-50, Pt-glass51 and Au-TiO2
52,53) by 

using inelastic neutron scattering, XPS, nanoelectrochemcial approaches and FT-IR. 

Meanwhile, atomistic simulations have also demonstrated the feasibility of hydrogen 

spillover from metal clusters to receptors. Cheng et al. found migration of H atoms from 

a Pt cluster catalyst to graphitic carbon substrates occurs via physisorbed of H atoms at 

room temperature by using DFT calculations.54,55 The works from Yakobson’s group 

illustrated thermodynamic and kinetic possibility of hydrogen spillover process at room 

temperature from unsupported or the receptor-supported clusters to graphene sheet 

through ab initio calculations.56,57 Zhang and coworkers demonstrated the presence of 

zinc vacancies in IRMOFs could substantially lower the energies and barriers to enable 

hydrogen spillover at ambient conditions,58 which is consistent with experiment results 

that defects in MOFs play an important role in hydrogen spillover at ambient 

temperature.59 Moreover, hydrogen storage capacities via spillover for various MOFs and 

COFs have been calculated.58,60-65  

 Three major approaches have been reported to facilitate hydrogen spillover on 

MOFs, which is building carbon bridges between dissociation metals and MOFs,59,60,66-70 

encapsulating Pt/C sources into frameworks of MOFs during synthesis,71,72 and direct 

doping dissociation metals (Pt, Pd, Ni) onto MOFs.73-78 Many factors could affect the 

reproducibility of hydrogen spillover enhancement by bridge-building and it was 

suggested the ideal situation for hydrogen spillover on bridged MOFs was all individual 

catalyst connected with MOF particles via “bridges”, which was highly empirical and 

difficult to achieve.68 Unlike high uncertainty of MOF-bridging technique, direct doping 

metals onto MOFs attracted much attention because of more controllable and reliable 
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synthesis procedure, which led to higher reproducibility. Significant storage capacity 

enhancements via direct metal-doping have been reported by many groups. Suh and 

coworkers have developed novel methods for producing metal nanoparticles in MOFs by 

using redox reactions between the redox-active MOFs and metal ions such as Ag(I), 

Au(III), and Pd(II).76,79,80 They demonstrated palladium nanoparticles could be embedded 

into a redox-active MOF simply by immersion of the MOF solid into Pd(NO3)2 solution 

at room temperature without further reduction and observed an enhancement factor of 2.3 

at 298 K and 9.5 MPa.76 Our group synthesized a series of Pt-doped IRMOF-8 via 

organometallic chemical-vapor deposition and observed enhancements from 10-100% 

depending on the particle size.78 Hydrogen uptake enhancements were also observed on 

Ni doped MIL-101,73 Pt doped MOF-177,74Pd doped MIL-100,75Pd doped MOF-5,77 and 

Pd doped COF-102.81 

 The recent review from Suh’s group summarized different designs and synthesis 

approaches of MOFs for hydrogen storage, discussed the strategies for improving 

hydrogen adsorption on MOFs and reviewed various techniques and methods for 

hydrogen sorption experiments.82 They also pointed out that the discovery of a MOF with 

a large surface and high H2 adsorption energy at room temperature does not guarantee it 

will be useful as a H2 storage material, since industrial applications of MOFs require 

MOFs to remain stable against moisture, air and other gas impurities.82 Thermal 

stabilities in inert gas and moisture/air/chemical resistance of MOFs have been studied by 

many researchers.83-91 Walton and coworkers presented experimental investigations of 

water adsorption in MOFs at room temperature and up to 90% relative humidity, which 

demonstrated HKUST-1, MOF-74 and UiO-66 maintained good structural stability 



 

 50 

against moisture while DMOF-1, DMOF-1-NH2 and UMCM-1 underwent complete loss 

of crystallinity.90 Meanwhile, they also suggested that the thermal stability of MOFs is 

determined by the coordination number and local coordination environment instead of 

framework topology by applying TGA-DSC measurements in helium.91  However, the 

stabilities of MOFs in hydrogen atmosphere were seldom investigated. Lueking’s group 

mixed HKUST-1 with commercial Pt/C catalyst and observed that hydrogenation of 

HKUST-1 happened to the carboxylate groups and not aromatic carbons, but the state of 

metal clusters after hydrogenation still remains unknown.92 Since MOFs are promising 

candidate materials for hydrogen storage, it’s important to understand MOFs’ stabilities 

in hydrogen atmosphere. Dissociated hydrogen possesses stronger chemical reactivity 

than dihydrogen molecules, thus stability of MOFs in the presence of dissociated 

hydrogen remains an issue especially when spillover of hydrogen is applied to enhance 

hydrogen storage capacity of pristine MOFs. In this work, the stabilities of three types of 

moisture stable MOFs with different metal clusters, i.e. HKUST-1 (Cu), MIL-53 (Al) and 

ZIF-8 (Zn), were studied in dihydrogen and dissociated hydrogen environments. To 

induce dissociated hydrogen to these MOFs, colloidal Pt nanoparticles were doped on 

MOFs via incipient wetness for the first time. The influence of dissociated hydrogen and 

dihydrogen molecules on the stabilities of MOFs with different metal clusters was 

investigated and compared. The stabilities of Pt-doped HKUST-1 samples synthesized by 

chemical vapor deposition (CVD) and incipient wetness were also compared to see the 

effect of contact between doped Pt particles (dissociation source) and MOFs (receptor) on 

hydrogen spillover. 

Experimental Section 
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 Sample synthesis. Copper (II) nitrate hemipentahydrate Cu(NO3)2∙2.5H2O, 

NaOH, benzene-1,3,5-tricarboxylic acid (H3-BTC), hexachloroplatinic acid 

H2PtCl6∙6H2O (99.9%, metals basis), MIL-53(Al) (Basolite A100), ZIF-8 (Basolite 

Z1200), ethanol, N,N-dimethylformamide (DMF), ethylene glycol and chloroform were 

obtained from Sigma-Aldrich. Helium, nitrogen and ultra high purity grade hydrogen 

(99.995%) were obtained from Metro Welding Company. 

 Synthesis of HKUST-1. Typically, 1 gram of Cu(NO3)2∙2.5H2O and 0.5 gram of 

H3-BTC were dissolved in 25 ml solvent consisting of equal parts of deionized water, 

ethanol and DMF. The mixture was stirred for 15 min at room temperature and then 

transferred into a Pyrex bottle. The bottle was tightly capped and placed in an 85 °C oven 

for 20 h to yield small octahedral crystals. After decanting the mother liquor and rinsing 

with DMF, the product was immersed in chloroform for 1 day, after which the activation 

solvent was decanted and new chloroform was replenished. This solvent exchange 

procedure was repeated for 3 times and HKUST-1 was filtered and calcined under vacuo 

at 160°C to remove excessive solvent, yielding the porous material.18,93,94 

 Synthesis of Platinum Nanoparticles. A routine method for Pt nanoparticle 

synthesis by using polyol reduction has been reported in previous literature.95-97 A brief 

introduction is given here. Typically, 0.25 gram of NaOH and 0.25 gram of 

H2PtCl6∙6H2O was separately dissolved and stirred in two parts of 12.5 ml ethylene 

glycol at room temperature. After that, the solution of platinum precursor was slowly 

dropped into NaOH solution. The solution mixture was kept well-stirred for 30min at 

room temperature and then heated at 160°C for 3 hours being accompanied by N2 

bubbling. During this process, the solution turned from yellow color into dark brown. A 
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6-mL aliquot of the resulting solution was transferred to a vial. The particles were 

precipitated by adding 1 mL of 2 M HCl into the solution, followed by being washed in 

ethanol and finally obtained by high speed centrifuge.  

 Synthesis of Pt-HKUST-1, Pt-MIL-53 and Pt-ZIF-8 via incipient wetness. 

HKUST-1 was dried in vacuo at 160°C overnight before usage while MIL-53 and ZIF-8 

were dried in vacuo at 300°C overnight before usage. All MOFs crystals were ground 

(for better doping or mixing) before CVD doping or mixing with Pt nanoparticles.  

Freshly made Pt nanoparticles were dispersed in about 1 ml of ethanol. The colloidal 

solution was then added into a small vial containing 0.2 gram of pre-dried HKUST-1. 

The mixture was ultrasonicated for 15min and dried in a 60°C oven. Before further 

experiments, the obtained Pt-HKUST-1 was subject to evacuation at 160°C to remove 

residual ethanol. Pt-MIL-53 and Pt-ZIF-8 were obtained by following the same procedure. 

The Pt contents in HKUST-1, MIL-53 and ZIF-8 were estimated to be about 5.2% in 

HKUST-1, 5.0% in MIL-53 and 5.3% in ZIF-8 by XPS analysis, respectively. 

 Hydrogenation experiments of Pt-HKUST-1, Pt-MIL-53 and Pt-ZIF-8. Pt-

HKUST-1 obtained by incipient wetness method was transferred onto a quartz boat and 

then placed in a horizontal furnace tube. The furnace tube was sealed and purged with H2 

at a flow rate of 60 cc/min. The sample was heated from room temperature at a constant 

heating rate of 2°C/min to 150°C and held at 150°C for 16 hours. After that, the sample 

was cooled down to room temperature, purged with N2 for 1 hour and then subject to 

evacuation at 160°C overnight before further measurements. The sample obtained by this 

way was denoted as Pt-HKU-150. For Pt-HKUST-1 samples subject to other H2 

treatment temperatures of 100°C, 75°C, 50°C and 25°C were denoted as Pt-HKU-100, 
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Pt-HKU-75, Pt-HKU-50 and Pt-HKU-25, respectively. Following the same approach, 

HKUST-1 processed at 150°C and 100°C were denoted as HKU-150 and HKU-100. 

MIL-53, ZIF-8, Pt-MIL-53 and Pt-ZIF-8 were also processed by the same procedure but 

only treated in H2 at 150°C, which were denoted as MIL-53-150, ZIF-8-150, Pt-MIL-53-

150 and Pt-ZIF-8-150, respectively. In our previous study, it was shown that the spillover 

equilibrium on MOFs was completed within 5 hours at room temperature, thus 16 hours 

was sufficient for reaching equilibrium of hydrogen spillover on these samples.61 

 All synthesized H2 treated samples were stored in desiccators to minimize 

exposure to ambient air before being subjected to XPS and other measurements. 

Synthesis of Pt-HKUST-1 via chemical vapor deposition (CVD). Pt was doped 

on HKUST-1 by chemical vapor deposition of a volatile platinum precursor (trimethyl)-

methylcyclopentadienyl platinum (IV). The detailed procedure was reported in our 

previous work.98 HKUST-1 was ground before CVD. The grounded HKUST-1 (0.6 g) 

and the organometallic precursor (0.09 g) were placed in a tube separated by a glass frit 

and degassed to a vacuo of <10 μmHg at 0°C. After that, the degassing was stopped and 

temperature was increased to 30°C and held at 30°C for 1 hour. The evauation of this 

system was renewed every hour for six cycles and then stayed for another 6 hours. The 

yielded composite was reduced in a hydrogen atmosphere at 150°C overnight and then 

purged with flowing helium. The obtained Pt-HKUST-1 by this way was designated as 

Pt-HKU-CVD. 

 Sample characterization and isotherm measurements. Powder X-ray 

diffraction (XRD) data were recorded on a Rigaku Rotating Anode X-ray diffractometer 

at 40KV, 100mA for Cu Kα (λ=0.1541nm) radiation, with a step size of 0.02° in 2θ. All 
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the XRD patterns were obtained on the ground MOFs and doped MOFs because a flat 

surface of sample is needed for XRD analysis. X-ray photoelectron spectroscopy (XPS) 

and X-ray-excited auger electron spectroscopy (XAES) data was recorded on a Kratos 

Axis ultra XPS spectrometer (mono Al source) at 14KV, 8mA, with a resolution of pass 

energy 10 eV. BET (Brunauer-Emmett-Teller) surface areas were measured with a 

standard static volumetric technique (Micromeritics ASAP2020). 

Results and discussion 

Conventional method for doping metal nanoparticles onto MOFs usually involves 

two steps: infiltration of metal precursors into frameworks followed by reduction of the 

metal precursor in H2 atmosphere at one specific high temperature (e.g. 200 oC).75,77,78 

Since the obtained metal-doped MOFs have been treated in H2 at high temperature, one 

cannot examine the stabilities of MOFs in H2 at the temperature lower than the reduction 

temperature. In order to study the stabilities of MOFs at various temperatures, a new 

method is used in this study, i.e. colloidal Pt nanoparticles were synthesized by ethylene 

glycol reduction, then the reduced Pt nanoparticles was doped on MOFs via incipient 

wetness impregnation at room temperature. The operation at room temperature allowed 

us to study the stabilities of doped MOFs in H2 at various temperatures. 

Structural losses of porous materials including MOFs are commonly studied using 

powder XRD and surface area measurements. For example, Long’s  group used XRD and 

BET surface area to estimate the structural changes of MOF-5 by different preparation 

and handling methods,11 and Walton el al. also used XRD and BET surface area to study 

the structural degradation of several MOFs exposed to water vapor.90   
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Powder X-ray diffraction patterns of as obtained HKUST-1, HKU-100 and HKU-150 

are shown in Figure 17. The pristine HKUST-1 consists of a face-centered cubic crystal 

lattice of Fm3�m space group and possesses typical peaks at 2θ=9.5° (220), 11.7° (222), 

13.5° (400), 14.7° (331), 16.5°(422), 17.5° (511) and 19.1° (440), which is in good 

agreement with previous reports.92,93,99 After being exposed in hydrogen environment at 

100 and 150°C for 16 hours, HKU-100 and HKU-150 exhibited the same peaks with 

those of pristine HKUST-1, although the peak intensity decreased slightly. BET surface 

area measurements also showed that the surface area of HKUST-1 dropped slightly from 

1150 m2/g to 992 and 901 m2/g after being treated in hydrogen atmosphere at 100 and 

150°C for 16 hours, respectively. This means the major crystalline integrity of HKUST-1 

remained intact after exposure to hydrogen molecules at elevated temperatures.  

Lueking et al. showed that hydrogenation of HKUST-1 mixed with Pt/C catalyst 

happened to carboxylate groups and not aromatic carbons, but the valence state of copper 

in HKUST-1 remained unknown.92 In order to investigate the state of copper cluster, X-

ray photoelectron spectroscopy was conducted around the characteristic peak range of 

copper, 930 to 965 eV. The X-ray photoelectron spectra of HKUST-1, HKU-100 and 

HKU-150 are shown in Figure 18. Two characteristic peaks of divalent Cu2+ were 

observed at 934.6 and 954.4 eV, corresponding to Cu 2p3/2 and Cu 2p1/2, respectively.100-

102 Meanwhile, the presence of the well known “shake-up satellites” (which are the other 

peaks appeared in the range of 930-965 eV except the two characteristic peaks) found in 

Cu spectra is generally considered as an indication of the presence of Cu (II) species. 103-

107 We note that there was also a very small, barely noticeable Cu0 shoulder at 932 eV in 

Cu 2p XPS of HKU-100 and HKU-150. This was caused by partial Cu reduction (a very 
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small fraction). However, all these results indicated almost all copper element in 

HKUST-1 remained as divalent state after exposure to hydrogen at elevated temperatures 

for a prolonged time, which means pristine HKUST-1 is stable in H2 up to 150°C. 

Since dissociated hydrogen with unshared electrons possess higher chemical 

reactivity than stable dihydrogen molecules,108 it’s important to investigate the stability of 

HKUST-1 in the presence of dissociated hydrogen although the stabilities in dihydrogen 

environment at elevated temperatures have been verified above. In order to induce 

dissociated hydrogen to MOFs, Pt nanoparticles were doped onto HKUST-1 by incipient 

wetness method as described in the experimental section. Hydrogen molecules first 

chemisorbed and dissociated on the surface of Pt and then migrated from Pt surface to the 

surface of HKUST-1 followed by surface diffusion. The resulting HKUST-1 samples 

treated with dissociated hydrogen were examined by XRD and XPS. Powder XRD 

patterns of pristine HKUST-1, Pt-doped HKUST-1 before and after H2 treatment at 

150°C are shown in Figure 19. 

 As shown in Figure 19, the peak intensity of Pt-HKUST-1 was slightly lower than 

that of pristine HKUST-1. Nitrogen adsorption results also showed that the surface area 

of HKUST-1 decreased from 1150 to 960 m2/g after Pt-doping procedure. The lower 

surface area of Pt-HKUST-1 than HKUST-1 was due to the increased weight and the 

pore blocking of HKUST-1 caused by Pt nanoparticles. TEM image of Pt-HKUST-1 

showed that Pt nanoparticles of slightly below 1 to approximately 10 nm were doped on 

the crystal of HKUST-1 (Figure 29). It is worth noting that the decrease in BET surface 

area of MOFs after metal-doping procedure is a normal phenomenon reported in many 
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previous studies.74-76,78,109,110 The surface areas of MOFs before and after metal doping 

observed in previous literature and our work are compared in Table 4 below.  

Although the peak intensity and BET surface area of HKUST-1 decreased after Pt-

doping, the structure of HKUST-1 was retained and no extra peak appeared in XRD 

pattern. However, after being subjected to H2 treatment at 150°C for 16 h, the peak 

intensities of Pt-HKUST-1 declined substantially. This was also confirmed by BET 

surface area measurement: BET surface area of Pt-HKUST-1 dropped severely from 960 

to 151 m2/g upon H2 treatment at 150°C. Moreover, a new strong peak around 2θ =43.2° 

emerged (shown in inset figure), which is characteristic peak of Cu0 species at (111) 

plane.109-112 Compared with the inset figure in Figure 17, we could find that pristine 

HKUST-1 without Pt nanoparticles retained its microstructure and copper element in 

HKUST-1 remained as divalent state after being subjected to H2 treatment at 150°C, 

while a large part of Pt-HKUST-1 structure collapsed and part of divalent copper Cu2+ in 

HKUST-1 was reduced to metallic copper Cu0. This indicates that HKUST-1 is not stable 

in the presence of dissociated hydrogen generated by hydrogen spillover, although 

HKUST-1 showed good resistance to dihydrogen atmosphere. This is because dissociated 

hydrogen with an unshared electron are much more reactive and thus a much more 

effective reducing agent than dihydrogen molecules. Dissociated hydrogen can easily 

attack and break the coordinated bonding between Cu and O, which led to the reduction 

of divalent copper element. 

To confirm that the severe structural loss of Pt-HKUST-1 was caused by the 

dissociated hydrogen rather than the heating in inert gas (i.e. that Pt-HKUST-1 is 

thermally stable at 150°C) , Pt-HKUST-1 was heated at 150°C for 16 hrs in N2 instead of 
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H2. As shown in Figures 31 and 32, no new peak appeared in the XRD pattern of Pt-

HKUST-1 and the valence state of Cu in Pt-HKUST-1 remained unchanged after the 

treatment in N2 at 150°C. The surface area of Pt-HKUST-1 remained at 960 m2/g. 

 To further investigate the temperature effects on hydrogen spillover and the 

stabilities of MOFs, Pt-doped HKUST-1 samples were treated at various temperatures 

and the XRD patterns of the treated samples in the range of 41-50° in 2θ were displayed 

in Figure 20 (XRD patterns of samples in full range of 5-60° in 2θ were shown in Figure 

30). 

 Compared with XRD pattern of Pt-HKU-150, the peak at 43.2° shrunk into a 

small hump in the XRD pattern of Pt-HKU-100. When H2 treatment temperatures were 

lowered to 75, 50 and 25°C, the peak at 43.2° became more unclear in the XRD patterns 

of Pt-HKU-75, Pt-HKU-50 and Pt-HKU-25. This is reasonable and could be explained by 

the decreased chemical activities of dissociated hydrogen with temperature decreased. In 

order to examine the states of Cu elements in these samples, X-ray photoelectron 

spectroscopy was conducted around the characteristic peak range of copper, 930 to 965 

eV, and the corresponding X-ray photoelectron spectra were shown in Figure 21. 

As illustrated in Figure 18, pristine HKUST-1 processed in H2 at 150 and 100°C 

showed two major characteristic peaks of divalent Cu (Cu2+) at 934.6 and 954.4 eV with 

a very small, barely noticeable Cu shoulder at 932 eV (Figure 18). This small, barely 

noticeable Cu shoulder was caused by partial Cu reduction (a very small fraction). 

However, when Pt-HKUST-1 treated in H2 at different temperatures for 16 h, two intense, 

obvious peaks appeared at 932.4 and 952.2 eV, which can be assigned to Cu (0/1+).113,114 

Moreover, the intensity of “shake-up satellites” decreased much as an evidence of the 
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reduction of divalent copper. One reasonable explanation is that hydrogen molecules 

chemisorbed and dissociated on the surface of Pt and then spilt over to surface of 

HKUST-1 and followed by surface diffusion on HKUST-1. The spiltover atomic 

hydrogen moved to the location of Cu-O coordination bonding and interacted with Cu-O, 

which led to the formation of lower-valence copper. Meanwhile, the ratio of Cu2+ peak 

area vs. Cu0/+ peak area decreased with the treatment temperature being increased, which 

demonstrates more divalent copper was reduced at higher temperatures, in consistent with 

the XRD results. Since it is difficult to distinguish between metallic Cu0 and Cu+ due to 

overlap of XPS spectra,113,114 X-ray-excited Auger Electron Spectroscopy (XAES) of Cu 

LMM was carried out to distinguish Cu0 and Cu+, and Cu LMM XAES spectrum of Pt-

HKU-100 as an example is shown in Figure 22. In Figure 22, the peak around kinetic 

energy 918.6 eV was assigned to be Cu0, while the peak around 917.5 eV was attributed 

to Cu2+.103 As for the peak at 915.0 eV, it is also related with Cu0, although it is not 

always useful for chemical state determination.113 

   For clarity, we also compared of XRD, BET Surface area, and XPS of HKUST-1, Pt-

HKUST-1, treated HKUST-1 and treated Pt-HKUST-1 (After being subjected to H2 

treatment at 150°C for 16 h) in Table 5, which one can clearly see the huge differences 

among these untreated and treated MOFs.  

This evidence also demonstrated that HKUST-1 tends to be hydrogenated by 

dissociated hydrogen more than by relatively-stable dihydrogen molecules, since divalent 

copper in HKUST-1 remained intact in H2 at 150 and 100°C for 16 hours while part of 

Cu2+ in Pt-HKUST-1 was reduced to Cu0 in the presence of dissociated hydrogen at 

100°C. 
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  Stabilities of MIL-53 were also examined by the same approaches. XRD patterns 

of MIL-53 samples before and after H2 treatment at 150°C (MIL-53 and MIL-53-150), 

Pt-doped MIL-53 samples before and after H2 treatment (Pt-MIL-53 and Pt-MIL-53-150) 

are shown in Figure 23.  

The XRD pattern of pristine MIL-53 in Figure 23 is in good agreement with previous 

reports.115,116 After being treated in H2 at 150°C for 16 h, no change was observed in 

XRD pattern of MIL-53-150, which demonstrated MIL-53 has good resistance towards 

H2 under such a condition. After Pt-doping process, the peak intensity of MIL-53 

decreased slightly, probably due to the pore blocking of MIL-53 by Pt nanoparticles. 

However, unlike Pt-HKUST-1, Pt-MIL-53 showed good stability and maintained 

crystalline integrity with dissociated hydrogen after being exposed in H2 environment at 

150°C for 16 hours, which was verified from the unaltered XRD pattern of Pt-MIL-53-

150. Further tests of the states of aluminum elements in MIL-53, MIL-53-150 and Pt-

MIL-53-150 conducted by XPS around Al 2s peak are shown in Figure 24. 

 In Figure 24, typical Al 2s peaks at 191.2 eV were observed for pristine MIL-53, 

which is the characteristic peak of Al3+.117,118 Although small changes of FWHM (full 

width at half maximum) appeared, no peak shift for Al 2s was observed on MIL-53-150 

and Pt-MIL-53-150, which demonstrates the state of aluminum elements in MIL-53 

remain intact and reconfirmed our conclusion from XRD patterns that MIL-53 exhibited 

good stability in both dihydrogen and dissociated hydrogen environments at elevated 

temperatures. This is reasonable because Al possesses a much lower reduction potential 

than hydrogen. 
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 Stabilities of ZIF-8 samples were also studied in dihydrogen and dissociated 

hydrogen environments. XRD patterns of ZIF-8 samples before and after H2 treatment at 

150°C (ZIF-8 and ZIF-8-150) and Pt-doped ZIF-8 samples before and after H2 treatment 

(Pt- ZIF-8 and Pt- ZIF-8-150) are shown in Figure 25. 

 In Figure 25, pristine ZIF-8 consists of a body-centered cubic (BCC) crystal 

lattice with reflections of (011), (002), (112), (022), (013), (222), (233) and (134) planes 

at 2θ=7.4°, 10.4°, 12.8°, 14.7°, 16.5°, 18.1°, 24.6° and 26.7°, respectively.83,119 After 

being exposed in H2 at 150°C for 16 hours, there was no peak change observed for ZIF-8-

150, which demonstrated ZIF-8 also has a good stability in dihydrogen environment. 

XRD results also illustrated further doping Pt nanoparticles on ZIF-8 did not cause any 

structure alternation. Moreover, Pt-doped ZIF-8 still remained crystalline integrity after 

being treated in H2 at 150°C for 16 hours, which manifests ZIF-8 is stable in both 

dihydrogen and dissociated hydrogen at elevated temperatures. XPS measurements were 

also performed to verify the states of Zn elements in ZIF-8, ZIF-8-150, Pt-ZIF-8-150, 

which were shown in Figure 26. 

 As shown in Figure 26, two characteristic peaks of Zn were observed in the XPS 

spectra of pristine ZIF-8, where are at 1021.4 and 1044.5 eV corresponding to Zn 2p3/2 

and Zn 2p1/2 respectively.120-122 Since it’s difficult to distinguish the oxidation states of 

Zn by only using Zn 2p spectra due to the overlap of binding energy range of Zn0 and 

Zn2+,122 Zn LMM Auger spectra were carried out to determine the chemical states of Zn 

and the results were shown in Figure 27.  

After being treated in H2 at 150°C for 16 hours, no peak shifts were observed on both 

ZIF-8-150 and Pt-ZIF-8-150 in Figure 26 and Figure 27, which confirms the valence 
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states of Zn elements in ZIF-8 samples remained intact in the presence of H2 and 

dissociated hydrogen. This is in good agreement with XRD results. This phenomenon 

could also be explained by the lower reduction potential of Zn than hydrogen, which 

means hydrogen cannot reduce the divalent Zn. 

It is noted that Zn in ZIF-8 has no open coordination sites. The open metal sites are 

known to interact more strongly with adsorbate molecules than saturated metal sites. To 

see if the open sites affect the stability, Zn-MOF-74 with the open Zn sites was treated 

under the same conditions of ZIF-8. As shown in Figure 33 and 34, the open Zn sites in 

Zn-MOF-74 could not be reduced by hydrogen.  

The synthesis procedure of Zn-MOF-74 is summarized here, which is similar to 

previous reports.18,123,124 2,5-Dihydroxybenzene-1,4-dicarboxylic acid (0.2g, Sigma-

Aldrich) and zinc nitrate hexahydrate (0.91g, Sigma-Aldrich) were dissolved in 40 mL of 

N,N-dimethylformamide (Sigma-Aldrich) with stirring in a 80 ml wide mouth glass jar. 

After dissolution of the reagents, 2 mL of deionized water was added. The jar was tightly 

capped and placed in an 100 °C oven for 20 h to yield trigonal block crystals. After 

decanting the hot mother liquor and rinsing with DMF, the product was immersed in 

methanol (Sigma-Aldrich) for 6 d, during which the activation solvent was decanted and 

freshly replenished three times. The solvent was removed under vacuum at 270 °C, 

yielding the porous material. Pt doped Zn-MOF-74 was synthesized by the similar 

procedure with other Pt doped MOFs described above.  

Based on the XRD and XPS results, it could be concluded that the stabilities of 

MOFs in the presence of H2 or dissociated hydrogen are related with the reduction 

potentials of metal elements in MOFs. For metal elements like Zn or Al possessing much 
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lower reduction potentials (-0.76 and -1.66 V, respectively) compared with 

hydrogen125,126, they could retain original valence states after contact with H2 or 

dissociated hydrogen even at elevated temperatures. But for the MOFs with metal 

elements like Cu, which has a slightly higher reduction potential (+0.34 V) compared 

with hydrogen127, they can basically remain intact in dihydrogen molecules environment 

but they would lose structure when exposed to the more reactive dissociated hydrogen. 

The degree of hydrogenation is also related with temperature. More structural loss was 

observed at higher temperatures in the presence of dissociated hydrogen, as shown in the 

XRD patterns of Pt-HKUST-1 processed at different temperatures. 

 One important factor affecting the hydrogen spillover is the contact between 

dissociation metals and receptors.128,129 More intimate contacts between the metal and 

carbon lead to a lower energy barrier for the spillover of dissociated hydrogen from Pt to 

carbon.129 As shown above, Pt-HKUST-1 would lose part of crystalline integrity after 

contact with hydrogen atoms at elevated temperatures. Thus, the effect of contact on 

hydrogen spillover could be evaluated by the degree of collapse in the crystal structure of 

Pt-HKUST-1 via two different synthesis method, incipient wetness doping and 

organometallic chemical vapor deposition. 

 Powder X-ray diffraction patterns of pristine HKUST-1 and Pt-HKU-CVD are 

shown in Figure 28. As shown in Figure 28, the crystal structure of pristine HKUST-1 

severely collapsed after doping and reducing Pt-precursor by CVD method. Most 

characteristic peaks of pristine HKUST-1 disappeared during the CVD doping process. 

Moreover, a pronounced peak at 2θ =43.2° emerged, which is the characteristic peak of 

Cu0 species at (111) plane.109-112 This demonstrates that the majority part of divalent Cu 
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in HKUST-1 was reduced to metallic Cu0 by spiltover dissociated hydrogen generated on 

the surface of Pt in the CVD reduction process. The severe collapse was confirmed by 

BET measurements, which showed the surface area of treated Pt-HKU-CVD dropped 

dramatically from 1150 to 15 m2/g.  

In Figure 19, part of Pt-HKUST-1 structure exhibited peak variance, since the 

positions of most peaks remained intact in XRD patterns while the XRD intensity and 

BET surface area decreased less substantially compared with Pt-HKU-CVD. This is a 

distinct proof that contact between metals and receptors plays an important role in 

hydrogen spillover. To synthesize Pt-HKU-CVD, Pt was first doped on HKUST-1 by 

vapor deposition of a volatile platinum precursor (trimethyl)-methylcyclopentadienyl 

platinum (IV), then Pt organo-precursor decomposed and was reduced by H2 into metallic 

Pt on the surface of HKUST-1. Because of the in-situ reduction and growth of metallic Pt 

on the surface of HKUST-1 framework, the contact between Pt nanoparticles and 

HKUST-1 receptor is much more intimate than the doping of colloidal Pt nanoparticles 

on HKUST-1 via incipient wetness. Thus, it facilitated the migration of dissociated 

hydrogen from Pt surface to HKUST-1 framework surface and subsequently caused more 

severe hydrogenation of HKUST-1 framework due to more Cu-O bonding breaking in the 

presence of more migrated dissociated hydrogen. Meanwhile, the XRD pattern of Pt-

HKU-CVD also supports our conclusion that HKUST-1 is not stable in contact with 

dissociated hydrogen at elevated temperatures. It is worth noting that our previous results 

showed the crystal structures of Pt-doped IRMOF-8 (Zn cluster) prepared via the same 

CVD method remained intact.78 The stability difference between Pt-HKU-CVD and Pt-

IRMOF-8-CVD also confirms that the metal cluster in MOFs is a key factor influencing 



 

 65 

the stability of MOFs in the presence of dissociated hydrogen due to different reduction 

potentials of different metal elements. 

    We also measured the hydrogen uptakes on HKUST-1, untreated/fresh Pt-HKUST-1 

(never seen hydrogen before the measurement), treated Pt-HKUST-1 (treated in H2 at 

150°C for 16h). As shown in Figure 35, hydrogen uptake on fresh Pt-HKUST-1 was 1.5 

times that on HKUST-1. The 50% enhancement on fresh Pt-HKUST-1 was contributed 

by hydrogen adsorption on Pt and spiltover hydrogen adsorption on HKUST-1. Note that 

hydrogen uptake on treated Pt-HKUST-1 was much less than that on fresh Pt-HKUST-1. 

This is because Pt-HKUST-1 degraded after being treated in H2 at 150°C for 16h and the 

surface area was reduced from 960 m2/g (untreated Pt-HKUST-1) to 151 m2/g (treated Pt-

HKUST-1). It is interesting to note that hydrogen uptake on treated Pt-HKUST-1 was 

almost the same as that on HKUST-1, although the huge differences in their surface area, 

151 m2/g for treated Pt-HKUST-1 and 1150 m2/g for HKUST-1. Obviously, the spillover 

enhancement on treated Pt-HKUST-1 offset the loss of hydrogen uptake by its low 

surface area. These results also indicated the hydrogen spillover occurred on Pt-HKUST-

1. 

    Note that, as shown in Table 5, the huge differences between treated HKUST-1 and 

treated Pt-HKUST-1 were caused by the much higher activity of dissociated H than H2 

molecules. We conclude that reduction potential determines whether a metal can be 

reduced by hydrogen, and the forms of hydrogen, dissociated H atom or hydrogen 

molecules affected how much/fast the Cu in HKUST-1 was reduced. That is why a very 

small, barely noticeable Cu0 shoulder at 932 eV was observed in Cu 2p XPS of HKU-100 

and HKU-150 (meaning a very small fraction of Cu was reduced), and two intense, major 



 

 66 

peaks at 932.4 and 952.2 eV, assigned to Cu (0/1+), were observed on Pt-HKUST-1 

(meaning Cu in Pt-HKUST-1 was most/fast reduced). We emphasize that it is not “Pt 

speeding up kinetics of degradation” but the H atom dissociated by Pt caused the strong 

degradation of Pt-HKUST-1. If the degradation of Pt-HKUST-1 was caused by Pt not H, 

the other three MOFs doped with Pt should have shown degradation, but they did not. 

Also the XPS results have confirmed the severe reduction of Cu (intense, obvious Cu0 

peak at 932 eV) in Pt-HKUST-1 (Cu can be reduced by H not by Pt), which consequently 

led to the reduced surface area of Pt-HKUST-1.  

Conclusions 

In this work, a series of Pt-doped HKUST-1, MIL-53 and ZIF-8 samples were 

synthesized via colloidal nanoparticles incipient wetness impregnation and CVD method. 

Their stabilities in the presence of dihyrogen molecules and dissociated hydrogen were 

examined by XRD and XPS measurements. Al-based and Zn-based frameworks 

exhibited good stabilities in both dihydrogen molecules and dissociated hydrogen 

environments at elevated temperatures (up to 150°C).  The structure of Cu-based 

framework HKUST-1 remained intact in dihydrogen environment but the structure of the 

Pt-doped HKUST-1 began to collapse upon exposure to H2, as a result of spillover of the 

dissociated hydrogen.  The degree of collapse increased with temperature. The stabilities 

of MOFs with different metal clusters in H2 and dissociated hydrogen environments are 

related to the different reduction potentials of the metal elements. A further comparison 

of the stabilities of MOF-74 (with open coordination sites) and ZIF-8 (without open 

coordination sites) confirmed that the stability of MOF was related to reduction potential 

of metal in MOF not the presence/absence of open sites. This work provides useful 
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information for future optimization of MOFs as hydrogen storage candidate materials, 

which should have good stabilities in the presence of H2 or dissociated hydrogen at 

ambient as well as elevated temperatures. Moreover, significant difference in stabilities 

between Pt-HKU-CVD and Pt-HKU (via. incipient wetness) showed that the contacts 

between Pt metal and the framework played an important role in hydrogen spillover. 
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 (13) Dincǎ, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. 
Journal of the American Chemical Society 2006, 128, 16876. 
 (14) Ma, S.; Zhou, H. C. Journal of the American Chemical Society 2006, 128, 11734. 
 (15) Ma, S. Q.; Sun, D. F.; Ambrogio, M.; Fillinger, J. A.; Parkin, S.; Zhou, H. C. 
Journal of the American Chemical Society 2007, 129, 1858. 
 (16) Collins, D. J.; Zhou, H. C. J. Mater. Chem. 2007, 30, 3154. 
 (17) Chae, H.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A.; 
O’Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523. 
 (18) Rowsell, J. L. C.; Yaghi, O. M. Journal of the American Chemical Society 2006, 
128, 1304. 
 (19) Frost, H.; Snurr, R. Q. The Journal of Physical Chemistry C 2007, 111, 18794. 
 (20) Keskin, S.; Liu, J.; Rankin, R. B.; Johnson, J. K.; Sholl, D. S. Industrial & 
Engineering Chemistry Research 2008, 48, 2355. 
 (21) Watanabe, T.; Sholl, D. S. Journal of Chemical Physics 2010, 133. 
 (22) Walton, K. S.; Snurr, R. Q. Journal of the American Chemical Society 2007, 129, 
8552. 
 (23) Cai, Y.; Zhang, Y.; Huang, Y.; Marder, S. R.; Walton, K. S. Crystal Growth & 
Design 2012, 12, 3709. 
 (24) Mu, B.; Schoenecker, P. M.; Walton, K. S. The Journal of Physical Chemistry C 
2010, 114, 6464. 
 (25) Park, H. J.; Suh, M. P. Chemical Communications 2012, 48, 3400. 
 (26) Prasad, T. K.; Suh, M. P. Chemistry-a European Journal 2012, 18, 8673. 
(27) Park, H. J.; Suh, M. P. Chemical Communications 2010, 46, 610. 



 

 69 

(28) Prasad, T. K.; Hong, D. H.; Suh, M. P. Chemistry-a European Journal 2010, 16, 
14043. 
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Sample Doped 

Metal 

Doped 

amount 

(wt%) 

Surface area of 

pristine MOF 

(m2/g) 

Surface area 

of doped 

MOF (m2/g) 

Reference 

MOF-5 Pd 3 718 452a 130 

SNU-3 Pd 3 559 242b 76 

MIL-100 Pd 10 1200 380b 75 

IRMOF-8 Pt 4.8 1430 1175a 78 

MOF-5 Ru 30 3300 860a 131 

MOF-177 Pt 43 5600 867b 74 

HKUST-1 Pt 5 1150 960b This work 

 
Table 4. Surface area of MOFs before and after metal doping (a) Langmuir surface area 
(b) BET surface area. 
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Sample 
XRD 

Intensity 

Presence of 

Cu0 

at 2θ =43.2° in 

XRD 

BET Surface 

area (m2/g) 

Cu0 at 932 eV in 

Cu 2p XPS 

HKUST-1 High No 1150 No 

Pt-HKUST-1 High No 960 No 

Treated HKUST-1 
Slightly 

reduced 
No 901 

Small, barely 

noticeable shoulder  

Treated Pt-HKUST-

1 

Substantially 

reduced 
Yes 151 

Intense and major 

peak 

 
Table 5. Comparison of XRD, BET Surface area, and XPS of HKUST-1, Pt-HKUST-1, 
treated HKUST-1 and treated Pt-HKUST-1 (After being subjected to H2 treatment at 
150°C for 16 h)  
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Figure 17. XRD patterns of (A) HKUST-1, (B) HKU-100, (C) HKU-150; inset figure 
magnifies XRD patterns ranged from 40-50° in 2θ. 
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Figure 18. Cu 2p XPS spectra of pristine HKUST-1 and HKUST-1 processed in H2 at 
100°C and 150°C for 16 hours: (A) HKUST-1, (B) HKU-100, (C) HKU-150.  
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Figure 19. XRD patterns of (A) HKUST-1, (B) Pt-HKUST-1 before H2 treatment, (C) Pt-
HKU-150; inset figure magnifies XRD patterns ranged from 40-50° in 2θ. 
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Figure 20. XRD patterns ranged from 41-50° in 2θ for (A) Pt-HKUST-1 before H2 
treatment, (B) Pt-HKU-100, (C) Pt-HKU-75, (D) Pt-HKU-50 and (E) Pt-HKU-25. 
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Figure 21. Cu 2p XPS spectra of Pt-HKUST-1 processed in H2 at 150°C, 100°C, 75°C,  
50°C and 25°C for 16 hours: (A) Pt-HKU-150, (B) Pt-HKU-100, (C) Pt-HKU-75, (D) Pt-
HKU-50, (E) Pt-HKU-25.  
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Figure 22. Cu LMM XAES spectrum of Pt-HKU-100 
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Figure 23. XRD patterns of (A) MIL-53, (B) MIL-53-150, (C) Pt-MIL-53 and (D) Pt-
MIL-53-150. 
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Figure 24. Al 2s XPS spectra of (A) MIL-53, (B) MIL-53-150, (C) Pt-MIL-53-150 
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Figure 25. XRD patterns of ZIF-8 samples: (A) ZIF-8, (B) ZIF-8-150, (C) Pt-ZIF-8 and 
(D) Pt-ZIF-8-150. 
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Figure 26. Zn 2p XPS spectra of (A) ZIF-8, (B) ZIF-8-150, (C) Pt-ZIF-8-150 
  



 

 86 

978 980 982 984 986 988 990 992 994 996 9981000

(C)

(B)
In

te
ns

ity
 (a

.u
.)

Kinetic Energy (eV)

(A)

 

 
Figure 27. Zn LMM spectra of (A) ZIF-8, (B) ZIF-8-150, (C) Pt-ZIF-8-150 
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Figure 28. XRD patterns of (A) HKUST-1, (B) Pt-HKU-CVD; inset figure shows XRD 
patterns of these two samples from 40-50° in 2θ 
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Figure 29. TEM image of Pt doped HKUST-1. The Pt particle sizes are estimated to 
range from slightly below 1 nm to approximately 10 nm.   
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Figure 30. XRD patterns ranged from 5-60° in 2θ for (A) Pt-HKUST-1, (B) Pt-HKUST-
100, (C) Pt-HKU-75, (D) Pt-HKU-50 and (E) Pt-HKU-25. 
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Figure 31. XRD patterns ranged from 5-60° in 2θ for (A) Pt-HKUST-1, (B) Pt-HKUST-1 
after N2 treatment at 150°C for 16 hours.  
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Figure 32. Cu 2p XPS spectra of (A) pristine HKUST-1 and (B) Pt-HKUST-1 after N2 
treatment at 150°C for 16 hours. 
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Figure 33. XRD patterns ranged from 5-60° in 2θ for (A) pristine Zn-MOF-74, in good 
agreement with literature 123,124,132 ; (B) Pt doped Zn-MOF-74 before H2 treatment at 
150°C for 16 hours; (C) Pt doped Zn-MOF-74 after H2 treatment at 150°C for 16 hours.  
No peak change was observed on Zn-MOF-74 after Pt-doping procedure and H2 
treatment. 
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Figure 34. Zn 2p XPS spectra of (A) pristine Zn-MOF-74, (B) Pt doped Zn-MOF-74 after 
H2 treatment at 150°C for 16 hours; inset figure shows Zn LMM spectra of (A) pristine 
Zn-MOF-74, (B) Pt doped Zn-MOF-74 after H2 treatment at 150°C for 16 hours. 
No peak shift was observed in Zn 2p XPS spectra and Zn LMM spectra for Pt doped Zn-
MOF-74 after H2 treatment at 150°C for 16 hours compared with pristine Zn-MOF-74, 
which indicates that Zn2+ in Zn-MOF-74 was not reduced by H2 at 150°C for 16 hours.  
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Figure 35: H2 isotherms at 298K for (A) untreated Pt-HKUST-1 (never contacted with 
hydrogen before the measurement), (B) treated Pt-HKUST-1 (treated in H2 at 150°C for 
16 h), (C) Pristine HKUST-1. 
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Chapter 4: Investigation on the Effect of Zinc Ion on the Interaction  

between Hydrogen and Zeolites H-ZSM-5 and H-Y by TPD Study 

Introduction 

Recently, zeolite ZSM-5 modified with transition metal cations attracted much 

attention due to the unusual catalytic properties of ion exchanged ZSM-5 in many fields. 

Hammond et al. applied copper and iron modified ZSM-5 for selective oxidation of 

methane to methanol and found iron is involved in the activation of carbon-hydrogen 

bond while copper allows ethanol to form as the major product.1 Gruenert and coworkers 

studied the performance of Cu-ZSM-5 synthesized via different approaches for selective 

reduction of NOx by hydrocarbons in the presence of oxygen and concluded the variation 

of catalytic activities is related with the dispersion of Cu in zeolites.2 Ion exchanged 

ZSM-5 zeolites were also found to be efficient catalysts for dehydrogenation and 

aromatization of alkanes by many groups. Su’s work showed that Mo-ZSM-5 has high 

catalytic performance in the conversion of methane to aromatics.3 Ga-ZSM-5, Fe-ZSM-5 

and Mn-ZSM-5 were also studied by Hagen et al in the conversion of cyclohexane and 

the nonoxidative conversion of ethane and their catalytic behavior was related to acid 

properties through temperature programmed desorption of ammonia.4 Besides these ion 

exchanged ZSM-5, Zn-ZSM-5 also attracted much attention in this field, e.g., Heemsoth 

applied Zn-ZSM-5 for aromatization of ethane, 5 while Lee et al. utilized Zn-ZSM-5 as a 

catalyst for aromatization of branched olefins.6 During the aromatization process, one 

important step is dehydrogenation, which was facilitated by Zn cations in ZSM-5.7,8 

Kanzasky et al. utilized DRIFTS technology and observed special Zn-H stretching mode, 

which was assigned to the dissociative adsorption of H2 on Zn exchanged zeolites.9-11 
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Temperature programmed desorption (TPD) is a powerful tool to study the interaction 

between hydrogen and adsorbent.12-14 This work applied H2-TPD to investigate the 

interactions between hydrogen and several zeolites and found Zn cations indeed play an 

important role in the chemisorption of hydrogen on zeolites, which is also influenced by 

the type of zeolites framework. 

Experimental Section 

Sample synthesis. Zinc nitrate hexahydrate Zn(NO3)2∙6H2O was obtained from 

Sigma-aldrich Company; zeolite NH4-ZSM-5 and H-Y were obtained from Zeolyst 

International. NH4-ZSM-5 was calcined at 773K for 5h in order to form H-ZSM-5 by 

decomposing NH4
+ to H+. 0.5 gram H-ZSM-5 was ion exchanged with 50ml of 0.02M 

Zn(NO3)2 at 353K overnight and the ion exchange procedure was repeated three times. 

Then the sample was filtered, washed with deionized water, dried in air at 383K 

overnight and calcined in vacuo at 623K for 20h. The obtained sample was denoted as 

Zn-ZSM-5-1. 0.5 gram H-ZSM-5 was ion exchanged with 50ml of 0.01M Zn(NO3)2 at 

353K overnight and the ion exchange procedure was repeated only once. The following 

treatments to this sample are the same with Zn-ZSM-5-1. The obtained sample was 

denoted as Zn-ZSM-5-2. Similar with Zn-ZSM5-5-1, Zn-Y was obtained by three times 

ion exchange of 0.5 gram H-Y with 50ml of 0.02M Zn(NO3)2 at 353K overnight and the 

same following treatments. All these samples were subject to calcinations at 623K for 20 

hours in vacuo before further measurements. 

Characterization. The powder X-ray diffraction (XRD) measurements were carried 

out with a Rigaku Rotaflex D/Max-C system with Cu Kα (λ = 0.1543 nm) radiation. N2 

adsorption isotherms were measured by Micromeritics ASAP 2020. N2 adsorption 



 

 97 

isotherms were measured at 77K. The concentrations of Zn in Zn-ZSM-5 and Zn-Y were 

measured by using EDX affiliated Phillips XL30 FEG SEM. 

Temperature Programmed Desorption (TPD). TPD curves for all samples were 

measured with an AeroVac 1200 Magnetic Sector mass spectrometer (VTI, Inc.), 

operated at an accelerating voltage of 70 eV. The detailed description of the TPD 

apparatus was given in our previous work.12 And the TPD experiments were conducted 

by taking similar procedure with previous works.12-14 Initially, 120mg of sample was put 

into a stainless steel holder and degassed in a high vacuo at 623K overnight until the 

pressure in the system was lower than 5*10-8 Torr. Then the sample was cooled down to 

273K or 298K or 323K, dosed with pure hydrogen at the pressure of 750 Torr and 

allowed to reach equilibrium after a period of time at corresponding temperature. After 

reaching equilibrium, the sample holder was immersed and quenched in liquid nitrogen. 

The system was then slowly degassed until the pressure dropped down lower than 10-6 

Torr to remove excess gas and hydrogen level were at the background. After that, the 

sample was heated at a constant rate of 10K/min or 15K/min or 20K/min from 77K to 

623K, while the effluent gas was monitored with a mass spectrometer. 

Results and discussions 

The XRD pattern of Zn-ZSM-5 is shown in Figure 36.  The obtained Zn-ZSM-5 

exhibited the characteristic of peaks associated with MFI structure, indicating the zeolite 

structure was retained after the ion exchange process. EDX (Energy dispersive X-ray 

spectroscopy) was applied to measure the concentration of Zn in Zn-ZSM-5-1, Zn-ZSM-

5-2 and Zn-Y and the corresponding EDX spectra are shown in Figure 37 (A), (B) and 

(C). And the concentration of Zn in these three samples is 1.65wt%, 1.17wt% and 2.29 
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wt%, respectively. Higher zinc concentration in Zn-Y compared with Zn-ZSM-5-1 is 

probably because the Si/Al ratio in Zn-Y (Si/Al=15) is lower than that in Zn-ZSM-5-1 

(Si/Al=25) thus more cations can be exchanged. Through the comparison between Zn-

ZSM-5-1 and Zn-ZSM-5-2, it is also found that repeating exchange procedure multiple 

times and using higher concentration solution for exchange will lead more zinc ions 

introduced into zeolites. N2 isotherms at 77K were also measured to check the effect of 

ion exchange procedure on the zeolites and the corresponding results are shown in Figure 

38. BET surface area analysis showed that Zn-ZSM-5-1 has a surface area of 404 m2/g 

and Zn-ZSM-5-2 has a surface area of 420 m2/g, both of which are lower than the surface 

area of original form H-ZSM-5. This indicates that the ion exchange procedure with 

vigorous stirring at 353K caused slight collapse of structure. And multiple times 

exchange further decreased the surface area. Similar phenomenon was also observed on 

Zn-Y. After ion exchange procedure, the surface area of H-Y dropped from 780 m2/g to 

about 740 m2/g, which is similar with literature results.15  

The interaction between hydrogen and ZSM-5 was investigated by H2-TPD 

measurements by using mass spectrometer. Figure 39 shows the H2-TPD curves with a 

heating rate of 10K/min for sample Zn-ZSM-5-1, which was dosed with hydrogen at 

different temperature. 

Two split peaks were found in Figure 39. The first one around 120K was assigned to 

physisorption of H2 molecules on the surface of Zn-ZSM-5. Besides the weak Van der 

Waals interaction, the appearance of peaks in the range of 370K-450K indicates that there 

is another stronger interaction between hydrogen and Zn-ZSM-5, i.e., the chemisorption 

of hydrogen on Zn-ZSM-5. Moreover, it is found that the peak intensity of hydrogen 
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chemisorption on Zn-ZSM-5 is higher after reaching equilibrium with dosed hydrogen at 

higher temperature (the peak intensity of curve C > B > A in Figure 39), which means 

more hydrogen chemisorbed on Zn-ZSM-5 at higher dosing temperature. One possible 

explanation is that the chemisorption of hydrogen on Zn-ZSM-5 requires some energy to 

overcome the energy barrier, thus higher temperature environment provides extra 

external energy facilitating more hydrogen to overcome the energy barrier to chemisorb 

on Zn-ZSM-5. Meanwhile, higher dosing temperature also caused the TPD peak shifted 

to higher temperature position, which indicates the activation energy for desorption 

increases with increased dosing temperature. Similar phenomena were also observed 

when the heating rate of TPD changed to 15K/min and 20K/min and the results are 

shown in Figure 40 and 41. 

Figure 40 and 41 exhibit the same trend with Figure 39, which is that the peak 

intensity of hydrogen chemisorption increased and the peaks shifted to higher 

temperature position with elevated dosing temperature. Through the comparison of 

Figure 39, 40 and 41, it is also found that higher heating rates led higher peak intensity 

(higher desorption rate) and the shifts of TPD peaks to higher temperature positions, 

which is consistent with previous TPD studies.16-18 For example, when Zn-ZSM-5-1 was 

dosed with hydrogen at 298K and processed with TPD at the heating rate of 10K/min, the 

peak maximum temperature (Tm) for hydrogen chemisorption is about 408K. And this 

temperature increased to 428K at the heating rate of 15K/min and 450K at the heating 

rate of 20K/min, respectively. And the peak intensity (desorption rate) was increased 

from 5.3*10-9 at heating rate of 10K/min to 6.6*10-9 at 15K/min and 9.8*10-9 at 20K/min. 

This is because at higher heating rate, more energy was provided in unit time to break the 
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strong interaction between chemisorbed hydrogen and Zn-ZSM-5, thus more hydrogen 

was released in unit time, which eventually led to higher desorption rate (higher peak 

intensity). Similar procedures were also taken on Zn-ZSM-5-2 and the corresponding 

TPD curves are shown in Figure 42, 43 and 44. 

The TPD peak changes of Zn-ZSM-5-2 with dosing temperatures and heating rates 

show the same trend with Zn-ZSM-5-1, which was mentioned above. However, 

compared with Zn-ZSM-5-1, the peak intensity for hydrogen chemisorptions is lower 

under the same condition and peak maximum temperatures (Tm) shift to lower 

temperature position. For example, Tm for Zn-ZSM-5-2 dosed with hydrogen at 298K at 

the heating rate of 10K/min is 400K, which is lower than Tm (410K) for Zn-ZSM-5-1 

under the same condition. Meanwhile, the peak intensity for hydrogen chemisorptions on 

Zn-ZSM-5-2 dosed with hydrogen at 298K at the heating rate of 10K/min is 3.3*10-9, 

which is lower than the peak intensity (5.3*10-9) on Zn-ZSM-5-1 under the same 

condition. This is assumed to be related with lower Zn concentration in Zn-ZSM-5-2 

compared with Zn-ZSM-5-1 (as to be discussed). The complete comparison between Zn-

ZSM-5-1 (denoted as A) and Zn-ZSM-5-2 (denoted as B) is shown in Table 6. 

With assuming the pre-exponential factor and activation energy for desorption is 

independent of surface coverage and heating rates, modified Redhead equation can be 

used to estimate the activation energy for desorption by monitoring Tm changes with 

heating rates.16,19 The activation energy for desorption was determined by evaluating the 

slope of a plot of ln⁡(Tm
2 β� ) against 1/Tm. The plots are shown in Figure 45 and 46. 

The activation energy for hydrogen desorption from Zn-ZSM-5-1 was calculated to 

be 14.8 kJ/mol with dosing temperature at 273K, 19.3 kJ/mol at 298K and 33.6 kJ/mol at 
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323K, while the activation energy for hydrogen desorption from Zn-ZSM-5-2 was 

calculated to be 14.1 kJ/mol at 273K, 15.7 kJ/mol at 298K and 30.0 kJ/mol at 323K. 

These results confirm our previous conclusion that higher dosing temperature leads to 

higher activation energy for desorption. The comparison between the Zn-ZSM-5-1 and 

Zn-ZSM-5-2 also reveals that higher zinc concentration in ZSM-5 leads to higher 

activation energy for desorption from Zn-ZSM-5, which is consistent with the previous 

discovery that the TPD peaks of ZSM-5 with higher zinc concentration shifted to higher 

temperature positions. In order to verify this conclusion, H-ZSM-5 without zinc ion was 

also tested after reaching equilibrium with hydrogen at 298K and TPD experiments were 

taken at the heating rate of 10K/min and 20K/min. The corresponding TPD curves are 

shown in Figure 47. 

The only peak of the two TPD curves shown in Figure 47 was assigned to weak 

physisorption of hydrogen on H-ZSM-5. No peak at higher temperature position 

(chemisorption peak) was observed, which is totally contrary to previous results for Zn-

ZSM-5. This demonstrates that zinc ions in ZSM-5 indeed play an important role in the 

chemisorption of hydrogen on ZSM-5. This discovery is in good agreement with previous 

works. For example, Kazansky et al. observed the appearance of a new H-H stretching 

frequency at 3940 cm-1 and Zn-H stretching frequency at 1930cm-1 on Zn-ZSM-5 by 

using DRIFTS technique, which were assigned to dissociative adsorption of H2 on Zn-

ZSM-5.9-11 And they also observed increased intensity of Zn-H with elevated adsorption 

temperature, which indicates more hydrogen formed bonding with Zn in Zn-ZSM-5 with 

increased temperature. This also consolidates our above TPD works that chemisorption 

peak intensity increased with dosing temperature increasing. Iglesia et al found Zn has an 
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effect of facilitating dissociative adsorption of dihydrogen on ZSM-5 during their 

investigations of propane aromatization and alkane dehydrogenation mechanism by 

taking isotopic equilibration measurements.7,8 In order to further verify the effect of Zn 

cations on hydrogen chemisorption on zeolites, another pair of zeolites—Zn-Y and H-Y 

were also measured. The corresponding TPD curves of Zn-Y and H-Y dosed with 

hydrogen at 298K at the heating rate of 20K/min is shown in Figure 48. 

As shown in Figure 48, there is no chemisorption peak of hydrogen on H-Y while 

there is a chemisorptions peak on Zn-Y. These results confirm our previous conclusion 

that Zn has a significant influence on hydrogen chemisorption on zeolites, which is also 

consistent with other studies.7-11 However, the peak maximum temperature and the peak 

intensity of TPD on Zn-Y is lower than that on Zn-ZSM-5. This phenomenon means the 

interaction between hydrogen and Zn-Y is less strong than the interaction between 

hydrogen and Zn-ZSM-5, and more hydrogen chemisorbed on Zn-ZSM-5 than Zn-Y, 

although Zn concentration in Zn-Y is higher than in Zn-ZSM-5. This demonstrates that 

not only Zn cations but also the framework of zeolites affects hydrogen chemisorption on 

zeolites. This conclusion is in good agreement with many simulation works. For example, 

Barbosa et al. utilized periodical density functional theory to study the adsorption and 

dissociation of dihydrogen on several Zn exchanged zeolites and predicted that hydrogen 

adsorbs either molecularly or in a dissociative way on chabazite and mordenite but 

always adsorbs molecularly on ferrierite by evaluating the adsorption and dissociation 

energies for different structures.20 Shubin and his coworkers performed cluster model 

quantum chemical calculations to investigate in the interaction energies of hydrogen with 

Zn cations in different structures and demonstrated that even for Zn cations in the same 
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zeolites, different locations have different strength of the interaction between hydrogen 

and Zn ions.21 

Conclusions 

In this work, a series of TPD experiments were conducted on two Zn-ZSM-5 samples 

with different zinc concentration. It is found higher dosing temperature leads to higher 

activation energy for desorption, i.e., the interaction between hydrogen and Zn-ZSM-5 is 

stronger at higher dosing temperature. Meanwhile, more hydrogen chemisorbed on Zn-

ZSM-5 at higher dosing temperature due to more external energy provided to overcome 

the energy barrier. TPD studies also demonstrate that Zn cations play a significant role in 

hydrogen chemisorption on zeolites. Higher concentration of zinc ions in zeolites will 

strengthen the interaction between hydrogen and zeolites, thus leads to more hydrogen 

chemisorbed on ZSM-5 but it requires higher temperature to release hydrogen due to 

higher activation energy for hydrogen desorption. This effect of Zn on hydrogen 

chemisorptions on zeolites is also influenced by the framework of zeolites. Different 

types of frameworks exhibited different behaviors for hydrogen chemisorptions (the 

amount of chemisorbed hydrogen, the strength of the interaction between chemisorbed 

hydrogen and zeolites). 
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Heating 
rate 

10K/min 15K/min 20K/min 

Sample A B A B A B 

 Tm (K) Tm (K) Tm (K) Tm (K) Tm (K) Tm (K) 

dosed 
at 273K 

429 425 405 398 429 425 

dosed 
at 298K 

450 447 428 420 450 447 

dosed 
at 323K 

470 468 455 448 470 468 

 
Table 6. Summary of peak maximum temperatures for hydrogen chemisorptions on 

(A) Zn-ZSM-5-1 and (B) Zn-ZSM-5-2 at different dosing temperatures and heating rates 
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Figure 36. XRD pattern of Zn-ZSM-5. 
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Figure 37. EDX spectra of (A) Zn-ZSM-5-1, (B) Zn-ZSM-5-2, (C) Zn-Y 
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Figure 38. N2 isotherms at 77K on (A) Zn-Y, (B) Zn-ZSM-5-1, (C) Zn- ZSM-5-2; the 
isotherm of Zn-ZSM-5-2 was offset by 50 cc/g STP for clarity. 
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Figure 39. H2-TPD curves (10K/min) for Zn-ZSM-5-1, dosed with H2 at (A) 273K (B) 
298K (C) 323K. 
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Figure 40. H2-TPD curves (15K/min) for Zn-ZSM-5-1, dosed with H2 at (A) 273K (B) 
298K (C) 323K. 
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Figure 41. H2-TPD curves (20K/min) for Zn-ZSM-5-1, dosed with H2 at (A) 273K (B) 
298K (C) 323K. 
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Figure 42. H2-TPD curves (10K/min) for Zn-ZSM-5-2, dosed with H2 at (A) 273K (B) 
298K (C) 323K. 
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Figure 43. H2-TPD curves (15K/min) for Zn-ZSM-5-2, dosed with H2 at (A) 273K (B) 
298K (C) 323K. 
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Figure 44. H2-TPD curves (20K/min) for Zn-ZSM-5-2, dosed with H2 at (A) 273K (B) 
298K (C) 323K. 
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Figure 45. Plots of ln⁡(Tm
2 β� ) against 1/Tm for Zn-ZSM-5-1 at different dosing 

temperature: (A) 323K (B) 298K (C) 273K 
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Figure 46. Plots of ln⁡(Tm
2 β� ) against 1/Tm for Zn-ZSM-5-2 at different dosing 

temperature: (A) 323K (B) 298K (C) 273K 
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Figure 47. H2-TPD curves for H-ZSM-5 dosed with hydrogen at 298K at the heating rate 
of (A) 20K/min (B) 10K/min 
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Figure 48. TPD curves of samples dosed with hydrogen at 298K at the heating rate of 
20K/min. (A) Zn-Y (B) H-Y. (TPD curve of H-Y was offset by 1.5E-10 for clarity). 
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Chapter 5: Desulfurization of high-sulfur jet fuel by mesoporous π-complexation 

adsorbents 

Introduction 

Because of the high energy density, ready availability, safety and convenient storage, 

gasoline, diesel and jet fuel are the best sources for hydrogen for fuel cell applications.1  

In particular, military jet fuels are considered by many as an excellent fuel source for 

hydrogen for on-board fuel cell generator systems, and are desired for use in various 

military applications. For certain applications, such as distributed shipboard power 

generation, high flashpoint liquid fuels are absolutely mandatory for realization of such 

systems, as a result of safety considerations.2 However, jet fuels generally contain very 

high concentrations of sulfur. For example, JP-5 high flashpoint jet fuel typically contains 

1000–1500 ppm of sulfur (e.g., the JP-5 jet fuel contains around 1270 ppmw sulfur, with 

a maximum specification of 3000 ppm)3. Similarly, JP-8 jet fuel also has a maximum 

specification of 3000 ppm of sulfur. F-76 marine distillate fuel currently can contain up 

to 10000 ppm of sulfur, although a specification change will reduce this to 5000 ppm.4 

When the hydrogen feeding the fuel cell is produced via catalytic autothermal reforming 

of jet fuels, sulfur compounds that can poison the follow-on processing operations and 

ultimately the electrode catalyst of the fuel cell will also be generated simultaneously. 

Therefore, reducing the sulfur concentration of jet fuels is a key issue for the utilization 

of jet fuels as a hydrogen source for on-board fuel cells. Removal of sulfur containing 

compounds from transportation fuels is an important operation in petroleum refining, and 

is achieved by catalytic processes operated at high pressures and elevated temperatures. 

Today, refineries rely on hydrodesulfurization (HDS) processes to reduce sulfur levels, 
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but achieving deep-desulfurization levels would require increasing existing reactor sizes 

and increasing hydrogen consumption.5 There has been much recent interest in using 

adsorbents for selective desulfurization of fuels.6-23 Additionally, for military fuel cell 

generators, HDS is not a viable option due to the requirement of high purity, high 

pressure hydrogen, large reactors, valving, actuators and associated equipment. In 

systems that are sensitive to power density, weight and volume, these systems lose 

applicability.24 

Our group has recently developed a class of adsorbents that rely on π-complexation 

bonding to selectively remove organosulfur molecules from commercial fuels.1,3,25-27 It 

was found that Cu(I)-Y zeolite exhibited highly selective removal for sulfur compounds 

from transportation fuels. It was concluded that Cu+ in Cu(I)-Y zeolite can remove sulfur 

compounds by π-complexation adsorption with thiophenic compounds.1 Our results also 

indicted that metal halides supported on active carbon, such as CuCl/AC or PdCl2/AC, 

are effective in the desulfurization of JP-5.3,25 More recently, we have found that 

PdCl2/SBA-15 and PdCl2/MCM-41 were excellent adsorbents for desulfurizing very-

high-sulfur commercial jet fuels such as an JP-5 that contained 847 ppmw S.26 For this 

JP-5, significant breakthrough (<10 ppmw S) occurred at about 15.0 and 50.0 mL/g with 

PdCl2/MC-41 or PdCl2/SBA-15, respectively. Although the regeneration result of the 

spent PdCl2/SBA-15 was unsatisfactory as only around 48% capacity of PdCl2/SBA-15 

could be recovered, these findings demonstrated that the support has an important effect 

on the performance of adsorbents in the desulfurization of jet fuels.26 Regeneration is an 

important aspect that should be considered, especially for on-board applications. Safety, 

high efficiency and availability of reactants need to be considered for the regeneration of 
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saturated adsorbents. Heating the spent adsorbents using air is an effective choice for the 

regeneration of saturated adsorbent.1 Therefore, a convenient regeneration sorbent, 

Cu2O/MCM-41 was developed for the deep desulfurization of a JP-5 light fraction (841 

ppmw S). Although the spent Cu2O/MCM-41 can be completely regeneration by heating 

in air, the product fuel of 10 mL per gram sorbent still contained ~50 ppmw S.27 

In our previous study for the bulk separation of C4 olefins from paraffins, a π-

complexation capable sorbents, AgNO3/SiO2, was found to have excellent capacities and 

selectivities for this application.28 AgNO3/SBA-15 and AgNO3/MCM-41 adsorbents were 

prepared and studied in this work. The results show that the supported AgNO3 is an 

excellent adsorbent for selective desulfurization from the jet fuel; ~15.0 mL of the JP-5 

can be desulfurized per gram adsorbent from 1172 ppmw S to < 1 ppmw S with 

AgNO3/MCM-41 adsorbent, and ~50% capacity of the spent AgNO3/MCM-41 can be 

recovered upon air regeneration after the 1st regeneration cycle. 

Materials and methods 

Adsorbents preparation. Monolayer AgNO3/SBA-15 or AgNO3/MCM-41 was 

prepared by impregnating SBA-15 or MCM-41 with an appropriate amount of aqueous 

solution of silver nitrate (AgNO3). The weight ratios of silver nitrate to the support for 

AgNO3/SBA-15 and AgNO3/MCM-41 were, respectively, 0.43 and 0.60, based on 

estimate for monolayer spreading of AgNO3. First, a 1.2 M solution of AgNO3 was 

prepared. A volume of solution equal to the total pore volume of sample was introduced 

and mixed with the support so that a weight ratio of 0.43 or 0.60 was achieved. The 

sample was then heated for 12 h at 105 oC in air to remove the water.28-30 Before its use, 

the sample was heated in situ at 105 oC in flowing nitrogen. In the earlier work of Padin 
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and Yang,29 the dispersion of AgNO3 on various supports (including mesoporous silica 

MCM-41), by various methods (including spontaneous thermal spreading and wet 

impregnation, as used here), and detail characterization have been discussed.  The 

appropriate temperatures of sample treatment (as used in this work) have also been 

discussed.  

Cu(I)Y (VPIE, i.e., vapor-phase ion exchange) adsorbent was synthesized following 

the previous recipe developed in our laboratory.5 The particle or crystal sizes of the CuY 

zeolite were around 0.5 micron. SBA-15 consisted of rope-like domains with sizes of 

around 1 micron, which were aggregated, whereas MCM-41 consisted of irregular 

spheres with sizes of 1-3 microns. 

Adsorbent characterization. The BET surface areas of the samples were measured 

by physical adsorption of N2 at −196 oC using Micromeritics ASAP 2010. Pore size 

distribution was also analyzed by N2 adsorption at −196 oC. The BJH method was used 

for calculating the mean pore size and pore volume.37 

Reagents. A JP-5 jet fuel sample obtained from the Naval Business Center, 

NAVSEA, Philadelphia, was used in the desulfurization experiments. The sulfur 

concentration of the JP-5 was analyzed with a flame photometric detector - gas 

chromatograph (FPD-GC). For the JP-5 samples, the as-received JP-5 with 1172 ppmw 

total sulfur concentration and a light fraction of the JP-5 with 841ppmw sulfur 

concentration were used. The analysis result of 1172 ppmw-S concentration can be found 

in our previous work,3 and the analysis result for the JP-5 light fraction is shown in 

Figure 49. 
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A model fuel with 150 ppmw total sulfur concentration was also prepared in this 

work as follows: 10 ml benzene and 90 ml n-octane were well mixed first, and then 

0.0226g benzothiophene and 0.0251g methyl-benzothiophene were dissolved in the 

above solution and well stirred. After well mixed, the model jet fuel was kept in the flask. 

The corresponding analysis result is also shown in Figure 49.  The sulfur concentrations 

were 75 ppmw-S for both benzothiophene and methyl-benzothiophene, or total 150 

ppmw-S.  

Fixed-bed adsorption/breakthrough experiments. All dynamic adsorption or 

breakthrough experiments were performed in a vertical custom-made quartz adsorber 

equipped with a supporting glass frit as described elsewhere.31 The setup consisted of a 

low-flow liquid pump, feed tanks, and a heating element. Initially, the adsorbent was 

loaded inside the adsorber, and pretreated in situ using dry gases to avoid exposure to 

atmospheric moisture. The gases used for activation were pretreated (dried) inline before 

contacting the adsorbent using a column of 3A-type zeolite. After activation treatment, 

the adsorbent bed was washed with a sulfur free hydrocarbon (e.g., n-octane) to remove 

any entrapped gas. After allowing the liquid hydrocarbon head to disappear, the fuel was 

allowed to contact the bed in a down-flow direction. The effluent was sampled 

periodically until saturation was achieved, which depended on the adsorption dynamics 

and the amount of adsorbent. 

Breakthrough adsorption curves were generated by plotting the transient total sulfur 

concentration normalized by the feed total sulfur concentration versus cumulative fuel 

volume normalized by total adsorbent weight. The adsorption amounts (normalized per 

adsorbent weight) were obtained by integration.31 
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Gas chromatographic analysis. All the fuels from the desulfurization of JP-5 

collected during the breakthrough experiments were analyzed using a Shimadzu GC-17A 

v3 unit equipped with an EC-5 capillary column and a flame photometric detector (FPD). 

The sulfur detection limit was approximately 50 ppb. More details on the GC analysis 

could be found elsewhere.31 

Adsorbent regeneration. In this work, the feasibility for regeneration of the 

AgNO3/MCM-41 was investigated by heating the spent AgNO3/MCM-41 adsorbent in 

flowing air. The saturated sample (1.0 g) by JP-5 was heated at 200 oC for 24 h in 

flowing air of 50 mL/min. Afterward, the regenerated sorbent was further tested for 

desulfurization of JP-5.  

Ab initio molecular orbital computation. The nature and bond energy for π-

complexation bonding between the sorbate molecule and sorbent metal site can be 

calculated and understood by molecular orbital (MO) theory.  Molecular orbital studies 

on the π-complexation bonding for thiophene, benzene, benzothiophene and 4,6-

dimethyldibenzothiophene on sorbent surfaces and zeolites have been reported in our 

earlier work.32 In this work, similar MO studies were extended to a new sorbent, silver 

nitrate, and with an additional adsorbate, 2-methybenzothiophene. The Gaussian 03 

package33 and Cerius2 molecular modeling software (Cerius2, version 4.6, Accelrys, San 

Diego, CA) were used for all MO calculations. Geometry optimizations were performed 

at density functional theory (DFT) level using effective core potentials (ECPs).34 

Geometry optimization and bond energy calculations. Frequency analysis was 

used to verify that all geometry optimized structures were true minima on the potential 
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energy surface. The optimized structures were then used for bond energy calculations 

according to the following expression:  

   Eads = Eadsorbate + Eadsorbent – Eadsorbent-adsorbate        (1) 

where Eadsorbate is energy of free adsorbate, Eadsorbent is energy of free adsorbent and 

Eadsorbent-adsorbate is energy of the adsorbate/adsorbent system. A higher value of Eads 

corresponds to a stronger adsorption. 

Results and discussion 

Adsorbent characterization. Figure 50 shows the adsorption-desorption isotherms 

of N2 at –196 oC for the SBA-15 and MCM-41 based adsorbents. Figure 51 shows the 

pore size distributions of SBA-15 and MCM-41 based adsorbents. The corresponding 

BET surface areas, pore sizes and pore volumes are listed in Table 7. 

Molecular orbital calculation results. For the Cu-Y zeolite, a cluster model was 

chosen for the zeolite framework structure which represents well the chemistry of the 

zeolite.32 The zeolite anion is denoted as Z-. The adsorption bond energies for all relevant 

adsorbate molecules and three sorbents (CuZ, CuCl and AgNO3) were calculated and are 

shown in Table 8.  

 First, it is seen that the π-complexation bonding is stronger for thiophene than 

benzene for both Cu+ and Ag+.  This result assures selectivity for thiophene over benzene 

by sorbents containing these cations, i.e., selective desulfurization. Also, from Table 8, it 

is seen that the π-complexation bonding for all aromatic adsorbate molecules is 

considerable stronger for Cu+ than Ag+, i.e., Cu+ > Ag+. These results are consistent with 

that reported earlier, and are also consistent with experimental heats of adsorption data.35 

Comparing different anions, it is seen that the zeolite anion (Z-) is more electronegative 

than Cl-, resulting in stronger π-complexation bonding with CuZ than CuCl. These results 
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indicate that CuY zeolite would be the best sorbent for desulfurization (without 

considering the pore diffusion/limitation effects).   

Fixed-bed adsorption experiment. From Figure 52 and Table 9, it can be seen that 

the AgNO3/SBA-15 adsorbent was capable of removing 0.32 and 0.91 mmol of sulfur per 

gram at breakthrough and saturation, respectively. A significant or detectable 

breakthrough (~10 ppmw S) occurred at about 10.0 mL/g for 1.0 g of AgNO3/SBA-15. In 

comparison, the pure SBA-15 adsorbent could only remove 0.01 and 0.17 mmol of sulfur 

per gram at breakthrough and saturation, respectively.  It was concluded that AgNO3 was 

an effective selective metal salt for removing sulfur compounds from jet fuel. 

Figure 52 also shows the desulfurization performance for JP-5 on MCM-41 and 

AgNO3/MCM-41 adsorbents. Table 9 summarizes the results obtained from the 

corresponding breakthrough and saturation curves. The AgNO3/MCM-41 adsorbent 

exhibited higher adsorption capacity that was capable of removing 0.49 and 1.0 mmol of 

sulfur per gram at breakthrough and saturation, respectively. As seen in Figure 52, nearly 

15.0 mL of product fuel in which sulfur concentration was less than 10.0 ppmw could be 

obtained by the desulfurization of JP-5 (1172 ppmw S) with the fresh AgNO3/MCM-41 

adsorbent. It can be seen that the sulfur capacity of AgNO3/MCM-41 for JP-5 was higher 

than that of AgNO3/SBA-15. From Table 7, the AgNO3/MCM-41 contained more silver 

than that of AgNO3/SBA-15, 2.21 vs. 1.17 mmol/g. In addition, the BET surface area of 

AgNO3/MCM-41 was larger than that of AgNO3/SBA-15, 490 m2/g vs. 408 m2/g. 

However, the average pore size of AgNO3/MCM-41 was smaller than that of 

AgNO3/SBA-15, 19.1Å vs. 48.8Å. The pore volume of AgNO3/MCM-41 was smaller 

than that of AgNO3/SBA-15, 0.27 cm3/g vs. 0.55 cm3/g.  Since the pore sizes for both 
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sorbents were considerably larger compared with the sizes of the sorbate (sulfur) 

molecules, the pore size difference (19.1Å vs. 48.8Å) is not a factor in determining the 

desulfurization performance, as we have observed previously with similar mesoporous 

sorbent materials.27 The higher sulfur capacity of the AgNO3/MCM-41 was likely caused 

by the larger BET surface area and higher silver loading of the adsorbent. From these 

results, MCM-41 was a better support than SBA-15 for the AgNO3 supported adsorbents 

in the desulfurization of JP-5. This order was in agreement with our previous conclusion 

for the desulfurization of JP-5 by SBA-15 and MCM-41 supported cuprous oxide.28 

Table 9 also shows the ratios of the adsorbed sulfur molecules per silver cation at 

breakthrough and saturation. It can be seen that the ratios of sulfur to sliver metal were 

0.51 and 0.45 mmol/mmol for AgNO3/SBA-15 and AgNO3/MCM-41 at saturation, 

respectively. This result indicates that during the desulfurization of JP-5, almost equal 

utilization of AgNO3 occurred on AgNO3/SBA-15 and AgNO3/MCM-41. This is in 

agreement with the above conclusion that the diffusion of sulfur compounds is not a key 

factor for these adsorbents. 

The pore (or aperture) size of the CuY zeolite is approximately 7 Å.  It is similar to 

that of the sulfur molecules in the jet fuel (i.e., alkyl-benzothiophenes). The strong 

diffusion limitation of desulfurization was manifested by the long residence time that 

were needed for desulfurization.  The strong diffusion limitation has also been shown by 

the strong dependence of desulfurization on the flow rates.36  

The desulfurization results on Cu(I)Y (VPIE) and AgNO3/MCM-41 were also 

compared as shown in Figures 5-7. Figure 53 gives a direct comparison between these 

two sorbents for the model jet fuel.  The model jet fuel contained only benzothiophene 
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and methyl-benzothiophene (at 75 ppmw-S each).  As seen from Figure 49, the main 

sulfur compounds in the JP-5 were alkylated benzothiophenes with much larger 

molecules. As shown above, Cu+ forms stronger bonds with the sulfur molecules than 

Ag+.  For the model fuel, the sulfur molecules were sufficiently small compare to the 

aperture size of the Cu(I)Y zeolite, hence diffusion was not a factor for the 

desulfurization performance. As a result, the sulfur capacity of Cu(I)Y was higher than 

that of AgNO3/MCM-41 for the model fuel, as shown in Figure 53.    

Figures 54 and 55 show the sulfur breakthrough curves for the light fraction of JP-5 

(841 ppmw-S) on these two sorbents. It is seen that the desulfurization capacity of the 

AgNO3/MCM-41 was much higher than that of Cu(I)Y zeolite.  This result is a 

manifestation of the pore diffusion limitation for the sulfur molecules in the Cu(I)Y 

zeolite (~7 Å pores), as compared with the case of AgNO3/MCM-41 with ~19 Å pores. 

The sulfur molecules in the JP-5 were mostly dimethylbenzothiophene, 

trimethylbenzothiophene and a small amount of tetramethylbenzothiophene, while that in 

model jet fuel were benzothiophene and methylbenzothiophene. So the larger sulfur 

molecules in JP-5 light fraction could diffuse more freely in the large pores of 

AgNO3/MCM41 and not so in the much smaller pores of Cu(I)Y. As a result, 

AgNO3/MCM41 showed better desulfurization result for JP-5. 

Adsorbent regeneration. After saturation by JP-5, regeneration of the spent 

AgNO3/MCM-41 was conducted in situ by heating in flowing air at 200 oC for 24 h.  

Figure 56 shows the total sulfur breakthrough curves for JP-5 (1172 ppmw S) with fresh 

AgNO3/MCM-41 and regenerated AgNO3/MCM-41 sorbents. Three desulfurization-

regeneration cycles were performed. There was some loss of the sulfur capacity after the 
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first cycle.  However, there was no further loss after the second cycle, as shown in Figure 

56. The sulfur capacities at breakthrough and saturation over the fresh sorbent and 

regenerated sorbents are listed in Table 10. The results show that approximately 0.16 

mmol of sulfur per gram at breakthrough can be removed, for the second and third 

regeneration cycles. From Figure 56, more than 5.0 ml of “sulfur free” (well below 1 ppm) 

fuel can be obtained over 1.0 g of regenerated AgNO3/MCM-41 sorbents after the second 

regeneration cycle.  Nearly 50% total sulfur capacity of fresh sorbent could be recovered 

at saturation.  

As mentioned, metal halides supported on MCM-41 and SBA-15 and Cu2O 

supported on the same mesoporous silics supports have been studied for the 

desulfurization of JP-5.26-27 A comparison of the results showed that AgNO3/MCM-41 

was superior because it yielded the largest regenerable “sulfur free” fuel product. It is 

concluded that the AgNO3/MCM-41 sorbent is the best sorbent for desulfurization of 

high sulfur jet fuels.  

Conclusion 

Desulfurization of a JP-5 (1172 ppmw S) for on-board fuel cell applications was 

investigated by π-complexation adsorption with SBA-15 or MCM-41 supported AgNO3. 

It was found that significant breakthrough occurred near 15.0 mL/g for desulfurization of 

the JP-5 by AgNO3/MCM-41. The spent AgNO3/MCM-41 was regenerated by heating in 

air at 200oC, and the regenerated adsorbent was tested for re-use. The results showed that 

~ 50% of the sulfur capacity could be recovered for re-use.  Compared with all sorbents 

developed for the high sulfur jet fuels, AgNO3/MCM-41 showed the best desulfurization 

performance. 
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adsorbent metal loading 
(mmol/g) 

BET surface 
area (m2/g) 

BJH pore 
size (Å) a 

BJH pore 
volume (cm3/g) b 

SBA-15 - 901 58.7 1.14 

AgNO3/SBA-15 1.77 408 48.8 0.55 

MCM-41 - 1225 28.7 1.17 

AgNO3/MCM-41 2.21 490 19.1 0.27 
 

a BJH desorption average pore diameter (4V/A). b BJH desorption cumulative pore 
volume. 

Table 7. N2 adsorption characterization of different adsorbents   
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Adsorbate ∆E on CuZa ∆E on CuCl ∆E on AgNO3 

Thiophene 21.4 13.5 10.6 

Benzene 20.5 12.4 10.1 

Benzothiophene 22.9 16.2 12.0 

4,6-
Dimethyldibenzothiophene 

23.5 18.4 13.6 

2-Methylbenzothiophene 23.3 17.2 13.2 

a. CuZ: Z denotes zeolite anion using cluster model for zeolite framework.  

Table 8. Energy of adsorption (∆E, in kcal/mol) for different adsorbate/adsorbent (Z: 
zeolite anion using cluster model)  
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adsorbent adsorption capacity  (mmol 
S/g) 

ratio of sulfur on metal 
(mmol/mmol) b 

breakthrough a saturation breakthrough a saturation 

SBA-15 0.01 0.17 - - 

AgNO3/SBA-15 0.32 0.91 0.18 0.51 

MCM-41 0.02 0.22 - - 

AgNO3/MCM-41 0.49 1.0 0.22 0.45 
 

a The concentration of sulfur was ~10 ppmw S at breakthrough. b 1.77 mmol/g of silver 
on SBA-15 adsorbent or 2.21 mmol/g of silver on MCM-41 adsorbent. 

Table 9. Sulfur capacity at breakthrough and saturation over fresh adsorbents for JP-5 
(1172 ppmw S)  
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adsorbent breakthrough loading 
(mmol/g) a 

saturation loading 
(mmol/g) 

fresh 0.49 1.0 

1st regen’d AgNO3/MCM-41 0.16 0.50 

2nd regen’d AgNO3/MCM-41 0.16 0.52 
 

a The concentration of sulfur was ~10 ppmw S at breakthrough. 

Table 10. Sulfur capacity at breakthrough and saturation over regenerated AgNO3/MCM-
41 for JP-5 (1172 ppmw-S)
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Figure 49. GC-FPD chromatograms of JP-5 light fraction (A) and model jet fuel (B)



 

 139 

 

Figure 50. Nitrogen adsorption-desorption isotherm plots for SBA-15 () MCM-41 (●), 
AgNO3/SBA-15 () and AgNO3/MCM-41 (○); P0 is 760mmHg. 
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Figure 51. BJH pore volume plots of SBA-15 (), MCM-41 (), AgNO3/SBA-15 () 
and AgNO3/MCM-41 (○). 
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Figure 52. Breakthrough of total sulfur in a fixed-bed adsorber with SBA-15 (), MCM-
41 (), monolayer AgNO3/SBA-15 ().and monolayer AgNO3/MCM-41 () for JP-5 
Jet fuel (1172 ppmw-S) at room temperature. Ci is the total sulfur concentration of the 
feed at flow rate 1.0 mL/40 min, based on 1 gram of sorbents (S.V. = 1.25 h-1). 
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Figure 53. Breakthrough of total sulfur in a fixed-bed adsorber with Cu(I)Y and 
AgNO3/MCM-41 for Model Jet fuel (150 ppmw-S) at room temperature. Ci is the total 
sulfur concentration of the feed at flow rate 1.0 mL/40 min, based on 1 gram of sorbents 
(S.V. = 1.25 h-1). 
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Figure 54. Breakthrough of total sulfur in a fixed-bed adsorber with AgNO3/MCM-41 for 
JP-5 light fraction (841 ppmw-S) at room temperature. Ci is the total sulfur concentration 
of the feed at flow rate 1.0 mL/40 min, based on 1 gram of sorbents (S.V. = 1.25 h-1). 
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Figure 55. Breakthrough of total sulfur in a fixed-bed adsorber with Cu(I)-Y (VPIE), for 
JP-5 light fraction (841 ppmw-S) at room temperature. Ci is the total sulfur concentration 
of the feed at flow rate 1 mL/20 min, based on 1 gram of sorbents (S.V. = 2.5 h-1) 
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Figure 56. Breakthrough of total sulfur in a fixed-bed adsorber with fresh and regenerated 
AgNO3/MCM-41 for JP-5 Jet fuel (1172 ppmw-S) at room temperature. Ci is the total 
sulfur concentration of the feed at flow rate 1.0 mL/40 min, based on 1 gram of sorbents 
(S.V. = 1.25 h-1). 
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Chapter 6: Conclusions and Perspectives 

This section summarized the previous results and made some perspectives for future 

work. From Chapter 1, it was found that TiF3 is an effective catalyst for hydrogen 

spillover on Pt doped Maxsorb at 298K. Upon TiF3 doping, the BET surface area and 

pore volume of the Pt/Maxsorb decreased slightly, and consequently the hydrogen uptake 

amount also decreased slightly. However, the hydrogen adsorption and desorption rates 

on Pt/Maxsorb after doping TiF3 were 1.5 times that without TiF3. Moreover, heat 

treatment of the doped TiF3 at a higher temperature (675K vs. 475K) was found to be 

more effective, which could double both the hydrogen adsorption and desorption rates on 

Pt doped Maxsorb carbon. XPS analyses showed that C-F bonds were formed upon heat 

treatment and that the amount of C-F bonds increased with the heat treatment temperature. 

The catalytic effects also increased with the heat treatment temperature. Thus, the 

catalytic mechanism seems to involve the formation of the C-F bonds on the carbon edge 

sites. 

From Chapter 2, a series of Pt-doped IRMOF-8 samples have been prepared via 

organometallic chemical vapor deposition. It was found that the catalyst (Pt) size was 

affected by the doping temperature and number of doping cycles. The hydrogen storage 

studies showed the storage capacities via hydrogen spillover on Pt-doped IRMOF-8 

samples were enhanced by a factor 1.1 – 1.9 when compared to undoped IRMOF-8. 

Catalyst size was a crucial factor that determined the enhancements of the storage 

capacity of Pt-doped MOFs.  

From Chapter 3, a series of Pt-doped HKUST-1, MIL-53 and ZIF-8 samples were 

synthesized via colloidal nanoparticles incipient wetness impregnation and CVD method. 

Their stabilities in the presence of dihyrogen molecules and dissociated hydrogen were 
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examined by XRD and XPS measurements. Al-based and Zn-based frameworks 

exhibited good stabilities in both dihydrogen molecules and dissociated hydrogen 

environments at elevated temperatures (up to 150°C).  The structure of Cu-based 

framework HKUST-1 remained intact in dihydrogen environment but the structure of the 

Pt-doped HKUST-1 began to collapse upon exposure to H2, as a result of spillover of the 

dissociated hydrogen.  The degree of collapse increased with temperature. The stabilities 

of MOFs with different metal clusters in H2 and dissociated hydrogen environments are 

related to the different reduction potentials of the metal elements. A further comparison 

of the stabilities of MOF-74 (with open coordination sites) and ZIF-8 (without open 

coordination sites) confirmed that the stability of MOF was related to reduction potential 

of metal in MOF not the presence/absence of open sites. This work provides useful 

information for future optimization of MOFs as hydrogen storage candidate materials, 

which should have good stabilities in the presence of H2 or dissociated hydrogen at 

ambient as well as elevated temperatures. Moreover, significant difference in stabilities 

between Pt-HKU-CVD and Pt-HKU (via. incipient wetness) showed that the contacts 

between Pt metal and the framework played an important role in hydrogen spillover. 

From Chapter 4, a series of TPD experiments were conducted on two Zn-ZSM-5 

samples with different zinc concentration. It is found higher dosing temperature leads to 

higher activation energy for desorption, i.e., the interaction between hydrogen and Zn-

ZSM-5 is stronger at higher dosing temperature. Meanwhile, more hydrogen chemisorbed 

on Zn-ZSM-5 at higher dosing temperature due to more external energy provided to 

overcome the energy barrier for hydrogen chemisorption. TPD studies also demonstrate 

that Zn cations play a significant role in hydrogen chemisorption on zeolites. Higher 
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concentration of zinc ions in zeolites will strengthen the interaction between hydrogen 

and zeolites, thus leads to more hydrogen chemisorbed on ZSM-5 but it requires higher 

temperature to release hydrogen due to stronger interaction between hydrogen and 

zeolites. This effect of Zn on hydrogen chemisorptions on zeolites is also influenced by 

the framework of zeolites. Different types of frameworks exhibited different behaviors 

for hydrogen chemisorptions (the amount of chemisorbed hydrogen, the strength of the 

interaction between chemisorbed hydrogen and zeolites). 

From Figure 5, desulfurization of a JP-5 (1172 ppmw S) for on-board fuel cell 

applications was investigated by π-complexation adsorption with SBA-15 or MCM-41 

supported AgNO3. It was found that significant breakthrough occurred near 15.0 mL/g 

for desulfurization of the JP-5 by AgNO3/MCM-41. The spent AgNO3/MCM-41 was 

regenerated by heating in air at 200oC, and the regenerated adsorbent was tested for re-

use. The results showed that ~ 50% of the sulfur capacity could be recovered for re-use.  

Compared with all sorbents developed for the high sulfur jet fuels, AgNO3/MCM-41 

showed the best desulfurization performance. 

Based on the above conclusions, several perspectives can be made. Although TiF3 

can increase the hydrogen sorption rates on metal-carbon system by a factor of 50%-

100%, it still requires a long time to reach saturation compared with pristine adsorbents. 

Thus the development of more efficient and stable catalysts to facilitate hydrogen 

spillover will be desired for future industrial applications. More specifically, the other 

transition metal halides are worth to be tested for this purpose, e.g., ZrF4, CrF3, ZnF2, etc. 

For the same metal cation, the more stable halides are preferred. Metal particle size was 

found to be a crucial factor influencing the final performance of metal doped adsorbents 
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for hydrogen storage at ambient conditions. However, it still lacks a good way to ensure 

small particles and even distribution. Moreover, considering the different properties of 

different metals, developing a general way as the guidance for future material synthesis 

adds more difficulties to the task. Further investigation of the mechanism of hydrogen 

spillover and the factors affecting hydrogen spillover will be very helpful to obtain the 

most promising adsorbent for hydrogen storage. One prerequisite for adsorbents 

application for hydrogen storage is that the materials should be stable in such 

environment. It has been shown that the reduction potential of metal clusters have a great 

impact on the stabilities of MOFs in hydrogen environment, especially in atomic 

hydrogen environment. From the point view of stabilities, Cu based MOF was not 

recommended. Moreover, the stabilities of MOFs against moisture are also important. 

Thus the future selection of proper MOFs for hydrogen storage requires comprehensive 

consideration on moisture/air stability, hydrogen stability, cost, life cycle, etc. Zinc ion 

was found to be a catalyst for hydrogen chemisorption on zeolites and previous literature 

has shown its effect on hydrogen dissociation in the process of propane dehydrogenation. 

However, preliminary results showed that the catalytic effect of zinc ion is not as 

significant as noble-metal catalysts. Thus a more effective catalyst is needed to reduce the 

cost and keep the catalytic activity. AgNO3 doped on SBA-15 and MCM-41 was proved 

to be very effective for sulfur deep removal from jet fuel with high sulfur content. 

However, the stabilities of these two adsorbents upon desulfurization cycles are not 

satisfying (only 50% desulfurization capacity was recovered). A more efficient 

regeneration method needs to be developed to re-activate the adsorbents more thoroughly. 

 
 


