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Abstract 

 

Fatigue behavior of dissimilar ultrasonic welds between magnesium alloy AZ31 and 

galvanized steel sheets is investigated experimentally, with stress intensity factor solutions and 

with a kinked crack growth life estimation model.  First, stress intensity factor solutions for 

welds with various widths in lap-shear specimens with and without kinked cracks are obtained 

using finite element analyses.  The analytical stress intensity factor solutions for lap-shear 

specimens based on the beam bending theory and the analytical solutions for two dissimilar 

semi-infinite solids with connection under plane strain conditions are reviewed.  Results of the 

finite element analyses for global stress intensity factor solutions are compared with the 

analytical stress intensity factor solutions to identify transition weld widths for the analytical 

solutions.   

Finite element analyses were also conducted for the ultrasonic welded lap-shear specimens of 

magnesium and steel sheets, but with a modified fictitious Poisson’s ratio for the magnesium 

sheet such that the bimaterial constant is equal to zero.  The results indicate that the crack-tip 

stresses directly ahead of the main crack tip are influenced by the oscillation of the interface 

crack-tip field.  However, the crack-tip stresses directly above the main crack tips are weakly 

affected, and the oscillatory crack-tip stress distributions for both actual and modified material 

combinations are quite similar.  The results suggest that the stress intensity factor solutions for a 



xix 

 

kinked crack with a vanishing kink length can be approximated by the available analytical 

solutions for fatigue life estimation.   

Experimental fatigue results for dissimilar ultrasonic welds are presented for lap-shear 

specimens which have been machined into a dog-bone profile to approximate linear welds and 

specimens which have not been altered.  Optical micrographs of the welds after testing were 

examined to understand the failure modes.  Stress intensity factor solutions were obtained from 

finite element analyses of a plane strain model and a three-dimensional model.  The global stress 

intensity factor solutions and the local stress intensity factor solutions for vanishing and finite 

kinked cracks were used for fatigue life estimations using a Paris law kinked crack growth 

model.  
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Chapter 1  

Introduction 

 

Reducing the weight of a vehicle is imperative to meeting the changing fuel economy 

standards and addressing environmental concerns while maintaining vehicle performance.  One 

method to weight reduction is replacing traditional steel with a lighter alloy such as magnesium.  

This measure could result in significant weight savings; however certain strength components will 

still require a steel frame.  Using high strength steel for components which need to endure more 

stress and magnesium alloys for lower stress components is one method for reducing weight while 

preserving crash safety.  Therefore it is necessary to find a method to join these two metals and to 

study the resulting joint in detail.  In this thesis, the fatigue behavior of ultrasonic welded lap-shear 

joints between steel and magnesium sheets is investigated.  Each chapter covers a separate aspect of 

the fatigue behavior between the ultrasonic dissimilar welds.  The chapters were prepared as 

individual papers.  Therefore some concepts are repeated as necessary to facilitate comprehension for 

each chapter separately.  

In Chapter 2, ultrasonic spot welds between magnesium and steel sheets have been machined 

into dog-bone profile to approximate a linear weld.  This allows detailed study of the lap-shear weld 

while using two-dimensional finite element analyses and analytical solutions developed for plane 

strain.  Chapter 2 represents a paper for investigating the global and local stress intensity factor 

solutions of plane strain ultrasonic welds in lap-shear specimens.  The analytical stress intensity 

factor solutions for lap-shear specimens under plane strain conditions are reviewed based on the 
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beam bending theory and solutions based on two dissimilar semi-infinite solids with connection.  

Finite element analyses of lap-shear specimens with several different weld widths were 

conducted to obtain global stress intensity factors.  The stress intensity factors were compared to 

the analytical solutions to identify a transition weld width.  Then finite element analyses were 

conducted for a modified fictitious material combination which maintained the ratio of shear 

moduli, but modified the Poisson’s ratio for the magnesium sheet such that the bimaterial 

constant is equal to zero.  The results show that while the crack-tip stresses directly ahead of the 

crack tip are affected by the oscillation of the interface crack-tip field, the stresses above the 

crack tip are quite similar for both material combinations.  Stress intensity factor solutions for 

vanishing cracks are then obtained from computational results using the modified material 

combination for the main crack and existing analytical solutions.  Finite element analyses for 

welded lap-shear specimens were conducted to find local stress intensity factor solutions for 

kinked cracks for three weld widths as functions of the kink length.     

Chapter 3 represents a paper which builds on the concepts presented in Chapter 2 to compare 

experimental fatigue data with a kinked crack growth model for fatigue life estimation.  First, 

experimental fatigue results of ultrasonic welds between magnesium and steel sheets which have 

been machined into a dog-bone profile are reviewed.  Optical micrographs of the welds after testing 

are presented to observe the crack growth pattern of the fatigue failure.  The lap-shear specimens 

were modeled with two different two-dimensional finite element plane strain models.  The first 

model is idealized while the second model includes the sonotrode indentation which was created 

during welding.  Stress intensity factor solutions for the main and kinked cracks were obtained from 

finite element analyses.  The vanishing crack solution was obtained using existing analytical 
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solutions with the modified material combination to find the global stress intensity factor solutions 

from the finite element analyses.  A kinked crack growth model is adopted which uses the vanishing 

and finite kinked crack stress intensity factors, and Paris law constants from existing literature.  The 

fatigue life estimation from the kinked crack growth model is compared with fatigue results.    

In Chapter 4, fatigue of ultrasonic spot welds of magnesium and steel sheets in lap-shear 

specimens is investigated.  In contrast to the prior chapters, the welds were tested without 

modification and finite element models were constructed in three-dimensions.  First experimental 

fatigue results are reviewed.  Two three-dimensional finite element models were constructed.  The 

ideal model simply models the welds with a uniform thickness for the magnesium sheet.  The weld 

geometry model accounts for the sontrode indentation which was created during welding.  Then 

global stress intensity factor solutions were obtained from finite element analyses.  Local stress 

intensity factor solutions were obtained for four kink lengths from the finite element analyses.  The 

vanishing crack solution was found with existing analytical solutions and global stress intensity 

factors using a modified material combination as in Chapter 2.  The experimental fatigue results are 

then compared with a fatigue estimation using a kinked crack growth model.  The kinked crack 

growth model compares well with experimental results.   
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Chapter 2 

Stress Intensity Factor Solutions for Welds in Lap-Shear Specimens of Dissimilar Sheet 

Materials with and without Kinked Cracks 

 

 

2.1. Introduction 

The advantage of solid state joining methods such as ultrasonic welding and friction stir 

welding is that melting is either avoided or minimized.  Both solid state joining methods can be 

used to join dissimilar metals such as magnesium and steel sheets.  Resistance spot welding of 

magnesium alloys is possible [1], but fusion welding tends to cause coarse grains and porosity in 

magnesium [2].  Researchers have been using ultrasonic welding or friction stir welding to join 

both similar and dissimilar materials.  Similar joints between aluminum sheets have been made 

by many researchers, including Hetrick et al. [3], Jahn et al. [4], and Bakavos and Prangnell [5].  

Jordan et al. [6] produced similar magnesium friction stir spot welds.  Dissimilar welds have 

been produced most commonly between aluminum and steel sheets by researchers such as 

Gendo et al. [7], Liyanage et al. [8], and Watanabe et al. [9]. Dissimilar welds were also 

produced between magnesium and steel sheets by Santella et al. [10] Jana and Hovanski [11] and 

Uematsu et al. [12].  

Due to the geometry of a lap joint, natural or pre-existing crack tips or notch tips are 

presented at the edges of the weld bead.  Fatigue cracks usually are initiated from the natural 

crack tips or notch tips of lap joints.  Welded components with lap joints are often subjected to 

cyclic loading conditions.  Some researchers have investigated the fatigue behavior of solid state 
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welds.  This is an important and necessary step in order to develop life prediction and design 

tools for product development.   

In this study, ultrasonic spot welded lap-shear specimens of steel and magnesium sheets were 

machined into a dog-bone profile.  Certain ultrasonic welders are designed to produce seam 

welds such as those studied by Ueoka and Tsujino [13].  It is the hope that the results of this 

research would be applicable to welds produced with seam welders.  The experimental results 

based on these dog-bone specimens can be analyzed by using two-dimensional plane strain finite 

element analyses and available analytical stress intensity factor solutions.   

Fatigue models based on fracture mechanics rely on stress intensity factor solutions for the 

welds.  Many researchers developed stress intensity factor solutions for similar and dissimilar 

welds in lap-shear specimens.  For example, Sripichai et al. [14] developed stress intensity factor 

solutions for laser welds in lap-shear specimens based on the beam bending theory.  Zhang [15, 

16] developed stress intensity factor solutions for dissimilar welds in lap-shear specimens of 

different materials based on the J  integral and the work of Suo and Hutchinson [17].   

Figures 2.1(a) and 2.1(b) show the top and bottom views of an ultrasonic spot welded lap-

shear specimen after being machined into the dog-bone shaped profile.  Figure 2.1(c) shows a 

schematic of a lap-shear specimen with the loading direction represented by bold arrows.  As 

shown in the figure, the specimen has a width W  and overall length L  for the upper and lower 

sheets. The specimen has the thickness ut  for the upper sheet and lt  for the lower sheet.  The 

specimen has a reduced width b  for the central portion, an overlap length V , and a transition 

radius r  for the weld zone.  The width of the sontrode tip indentation on the top surface of the 

upper sheet is denoted by g .  The weld width w  of the ultrasonic weld is defined as the distance 

between two crack tips as shown in Figure 2.1(c).  Experimentally, the ultrasonic weld zone can 
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be observed from failed specimens and is larger than the sontrode tip indentation on the top 

surface.  For analytical and computational analyses presented in this paper, the sonotrode tip 

indentation will not be considered.  The specimen has two spacers to align the applied force F , 

shown with bold arrows, along the weld interface.  The weld zone is assumed to have the same 

elastic properties as the base metal.  The dimensions of the specimens are W  = 30 mm, L  = 100 

mm, b  = 8 mm, V  = 75 mm, w  = 8.78 mm, g  = 7 mm and r  = 10 mm.  The thickness ut  for 

the upper magnesium sheet is 1.58 mm and the thickness lt  for the lower steel sheet is 1.5 mm.  

Note that the upper and lower sheets used during the experiments have nearly the same 

thickness.  Specimens with similar shapes were adopted by a number of researchers for the study 

of laser welded joints, for example, see Lee et al. [18], Asim et al. [19], Anand et al. [20], and 

Sripichai et al. [21].  The geometry of the specimen investigated here varies slightly from the 

specimen used in the finite element models.  In the idealized model, the thickness of the 

magnesium sheet is taken to be 1.50 mm to provide a lap-shear specimen of equal thickness. 

Figure 2.2 shows a micrograph of the cross section of a failed ultrasonic weld in a lap-shear 

specimen under the load range of 1.70 kN at the fatigue life of 
3107.1  cycles.  The load is 

applied to the right on the upper right sheet and to the left on the lower left sheet as shown 

schematically with arrows.  As shown in Figure 2.2, a fatigue crack is initiated near the main 

crack tip on the right side of the edge of the weld.  The fatigue crack can be considered as a 

kinked crack with respect to the right main crack tip.  All of the observed partially and fully 

failed ultrasonic welds displayed kink angles close to 90°.   

As shown in Figure 2.2, the weld failed by the kinked crack emanating from the right main 

crack.  In order to determine the fatigue life of the weld based on a kinked fatigue crack growth 

model, stress intensity factor solutions for kinked cracks with various lengths are needed.  
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Therefore, in this investigation, the local stress intensity factors for kinked cracks will be 

obtained by finite element analyses.  He and Hutchinson [22] developed local stress intensity 

factor solutions for a small kinked crack growing from the bimaterial interface. However, for a 

material combination with a nonzero bimaterial constant, the local stress intensity factor 

solutions vary with the distance to the crack tip due to the stress oscillation which occurs at 

distances extremely close to the main crack tip.  Therefore, finite element analyses will be used 

to investigate the asymptotic crack-tip fields of kinked cracks with vanishing lengths at different 

kink angles. 

In this paper, the global stress intensity factor solutions for dissimilar welds in lap-shear 

specimens will first be investigated for various weld widths.  Two-dimensional finite element 

models are developed to obtain the stress intensity factor solutions for selected weld widths 

under plane strain conditions.  The computational stress intensity factor solutions are compared 

with both the global stress intensity factor solutions obtained from the beam bending theory and 

those found from the elasticity theory for two dissimilar semi-infinite solids with a connection as 

derived by Erdogan [23].  Based on the analytical stress intensity factor solutions obtained from 

the beam bending theory and the elasticity theory for two dissimilar semi-infinite solids with 

connection, the transition weld width is determined and compared with the computational 

solutions for the magnesium-steel material combination in this study.  

Next, the solutions for the vanishing crack are obtained by comparing the crack-tip stresses 

in the finite element model of the current material combination with a modified dissimilar 

material model which has a similar shear modulus ratio, but a bimaterial constant equal to zero.  

The solution of He and Hutchinson [22] is then adopted for the vanishing crack using the 

modified material since the stress distributions of interest are quite similar.  Then, finite element 
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models for three weld widths are developed to obtain local stress intensity factor solutions for 

kinked cracks with various lengths.  The global stress intensity factor solutions and local stress 

intensity factor solutions for vanishing and finite kinked cracks will then be used to estimate the 

fatigue lives of dissimilar ultrasonic welds in a separate study reported in the future.   

 

2.2. Analytical global stress intensity factor solutions for main cracks 

The asymptotic in-plane stress field around an interface crack tip is an oscillatory field that 

can be characterized by a complex stress intensity factor K ( 21 iKK  , 1i ) (Rice and Sih 

[24]).  The stresses y and xy  at a small distance r  ahead of the interface crack tip are 

characterized by K as 
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Here, the bimaterial constant   is defined as  
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where uG  represents the shear modulus of the upper sheet and lG  represents the shear modulus 

of the lower sheet.  Here, u  and l  for the upper and lower sheets, respectively, are defined as  

  uu  43             (3) 

and 

  ll  43                 (4) 

under plane strain conditions.  Note that u  and l  represent the Poisson’s ratios of the upper 

and lower sheets, respectively.  
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 In Equation (1), t  represents a characteristic length [25, 26].  In this investigation, t  

represents the upper sheet thickness ut  which is the smaller value of the thicknesses of the two 

sheets bonded together as in Suo and Hutchinson [17] and Zhang [25].  It should be noted that 

when the two materials are identical, 0 .  In this case, 1K  and 2K  in Equation (1) for the 

interface crack become the conventional stress intensity factors IK  and IIK , respectively.  

The dog-bone area of the lap-shear specimen shown in Figure 2.1 can be modeled as two 

sheets with connection under lap-shear loading conditions.  Figure 2.3(a) shows a schematic for 

two sheets with connection.  The width of the connection is w .  The two beams are subject to a 

lap-shear load bF / .   

The global stress intensity factor solutions, 1K  and 2K , are obtained by Zhang [25] as  
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where the modulus ratio   is defined as 

lu EE ''           (7) 

Here, 

)1/(' 2
uuu EE           (8) 

and  

)1/(' 2
lll EE           (9) 

Here, uE  and lE  represent the Young’s Moduli of the upper and lower sheets, respectively.  The 

thickness ratio   is defined as 

lu tt            (10) 

where ut  and lt  are the upper and lower sheet thicknesses, respectively.  Note that the 

expressions shown in Equations (5) and (6) are for welds joining sheets with 1 .  For welds 

joining sheets with 1 , one should rotate the strip model by an angle of 180º to represent the 

same physical system but with 1 .   

The values of the angular quantity   in Equations (5) and (6) can be found in Suo and 

Hutchinson [17].  The angular quantity   is a function of the thickness ratio   and the 

Dundurs’ parameters   and   which are defined as 
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Recall that the lap-shear specimen is loaded with a force per unit width, bF / , applied to the 

lower left and upper right sheets along the interface as shown in Figure 2.3(a).  Figure 2.3(b) 

shows the left part of the strip model near the crack tip with linearly distributed structural 

stresses based on the classical Kirchhoff plate theory based on the work of Zhang [25].  As 

shown in Figure 2.3(b), ui , uo , li  and lo  represent the normal stresses at the inner (i) and 

outer (o) surfaces of the upper (u) and lower (l) strips, respectively.  Note also that the normal 

stresses *

ui , *

uo , *

li  and *

lo  can be derived from the normal structural stresses ui , uo , li  

and lo  based on the equilibrium equations and the continuity conditions of the strain and the 

strain gradient along the bond line. The normal structural stresses ui , uo , li  and lo  which 

are marked in Figure 2.3(b) for the left crack tip are 
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The normal structural stresses ui , uo , li  and lo  for the right crack tip are 
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F

u
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2
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0, rightlo            (20) 

The values of the analytical global stress intensity factors, 1K  and 2K , for the left and right tips 

of the weld can be obtained from Equations (5) and (6) based on Equations (13)-(20).  

When the weld width w  becomes small compared to the upper thickness ut , the stress 

intensity factor 1K  and 2K  solutions should approach to those for two dissimilar semi-infinite 

solids with connection under shear loading conditions as presented by Erdogan [23].  Figure 2.4 

shows a schematic diagram of two dissimilar semi-infinite solids with connection of the length 

w  under remote shear and normal loads.  The Cartesian yx   coordinate system is also shown.  

The shear forces per unit width, bF / , are applied along the x  axis at x  and x  of the 

upper and lower solids, respectively.  The normal forces per unit width, bN /  , are applied along 

the y-axis at y  and y  of the two semi-infinite solids. Stress intensity factor EK1 and 

EK2  solutions of Erdogan [23] are in the form  
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where EK1  and EK2  are 
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For homogenous materials, 0 .  The stress intensity factor solutions in Equations (22) and 

(23) can be simplified to TPII,K  and TPIII,K , [14], based on the Westergaard stress function as in 

Tada et al. [27] as 

wb

N
K



2
TPI I,           (24) 

and 

wb

F
K



2
TPI II,           (25)  

 

2.3. Computational global stress intensity factor solutions for main cracks 

Finite element analyses were carried out in order to obtain the global stress intensity factor 

solutions as functions of the weld width and to determine the ranges of the weld width where the 

two sets of the analytical solutions are applicable.  Note that the upper and lower sheets used 

during the experiments have nearly the same thickness.  The finite element models for this 

investigation will be idealized with the same thickness for both sheets. Figure 2.5(a) shows a 

schematic of a two-dimensional finite elemental model of a lap-shear specimen and the boundary 

conditions.  The specimen has the same upper and lower sheet thickness t (= lu tt  ), length L , 

overlap length V , and weld width w .  The yx   coordinate system is shown in the figure.  The 

left edge has a fixed displacement condition at the middle surface while the right edge has a 

concentrated force per unit width, bF / , applied at the middle surface in the x  direction.   

The two-dimensional plane strain finite elemental model has the sheet thickness t 1.5 mm, 

length L 100 mm and overlap length V 75 mm.  The width b , as shown in Figure 2.1(c), of 

the reduced section in the dog-bone area of the specimen used in the model is 8 mm.  Note that 
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the ratio of the weld width to the thickness is 5.85 for the specimens used in the experiments.  

The stress intensity factor solutions in Equations (5) and (6) should be applicable to this case, but 

will be validated in this investigation. The two-dimensional plane strain finite element model is 

used to obtain the stress intensity factor solutions and compared to the solutions in Equations (5) 

and (6).  For future engineering applications, the weld width w  is varied for the finite element 

model in order to investigate the effect of the weld width on the global stress intensity factor 

solutions.  The displacements of the middle surface of the left edge in the x  and y  directions are 

constrained as shown in the Figure 2.5(a).  Figures 2.5(b) and 2.5(c) show the central part of the 

finite element mesh and a detailed view of the mesh for 85.5tw  near the right main crack tip, 

respectively.  The weld indentation in the upper sheet as shown in Figure 2.2 is not modeled in 

the finite element analyses.  The effect of the weld indentation on the weld failure was 

investigated in Lee [28] and in Chapter 3 under quasi-static and cyclic loading conditions, 

respectively.  The weld zone and the base metal are assumed to be linear elastic.  The top AZ31-

H24 sheet is modeled with the Young’s modulus E 45 GPa and the Poisson’s ratio  0.35.  

The bottom high strength low alloy steel sheet is modeled with the Young’s modulus E 206.3 

GPa and the Poisson’s ratio  0.3.  Second-order quarter point crack-tip elements with 

collapsed nodes were used to model the r/1  singularity near the crack tip.  Twelve width to 

thickness ratios, namely, tw / 0.0067, 0.05, 0.125, 0.25, 0.5, 0.64, 1, 2, 3, 4, 5.85 and 6 were 

evaluated in this investigation.  The commercial finite element program ABAQUS [29] was 

employed to perform the computation.   

 It should be noted that AK1  and AK2  of the complex stress intensity factor K
A
 ( AA iKK 21  ) 

obtained directly from ABAQUS are defined such that the stresses y  and xy  at a small 

distance r  ahead of an interface crack tip are characterized by K
A
 as 
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The 1K  and 2K  solutions as defined in Equation (1) are related to the AK1  and AK2  solutions as 

defined in Equation (26) as 

)lnsin()lncos( 211 tKtKK AA                 (27) 

)lncos()lnsin( 212 tKtKK AA                 (28) 

In this investigation, the computational 1K  and 2K  solutions for spot welds joining two sheets of 

dissimilar materials are obtained from Equations (27) and (28) with the AK1  and AK2  solutions 

obtained from ABAQUS [29]. 

The Erdogan stress intensity factor solutions [23] are also transformed into the form of 

Equation (1) as 
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(30) 

Substituting Equations (22) and (23) into (29) and (30) gives

  


coshlnsinlncos
2

,1 


























w

t
F

w

t
N

wb
K E

    

(31)  
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For lap-shear loading,

 

0N .  Therefore the stress intensity factor solutions can be 

simplified to  
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16 

 

 

 


coshlncos
2

,2 

















w

t
F

wb
K E

      

(34) 

The computational results are compared with the analytical results from the beam bending 

theory for large ratios of tw /  in Equations (5) and (6) and the Erdogan solution [23] for the ratio 

of tw /  approaching to zero in Equations (33) and (34).  For the convenience of comparison of 

the solutions, the effective stress intensity factor eK  is defined as 

2
2

2
1 KKKe            (35) 

Figure 2.6(a) and 2.6(b) show a comparison of the normalized effective stress intensity factor 

eK  solutions as functions of tw /  obtained from the finite element analyses, Equations (5) and 

(6) based on the beam bending theory, and Equations (33) and (34) based on the Erdogan 

solution in linear and logarithmic scales, respectively.  Note that the effective stress intensity 

factor solutions are normalized by the effective stress intensity factor solutions based on 

Equations (5) and (6) of the beam bending theory for the right crack tip.   

As shown in Figures 2.6(a) and 2.6(b), for large ratios of tw / , the computational solutions 

agree well with the effective stress intensity factor of the beam bending theory in Equations (5) 

and (6).  As the ratio tw /  decreases, the computational solutions approach to that of Erdogan.  It 

should be mentioned that although the left and the right side of the weld have different stress 

intensity factor solutions, as the weld width becomes sufficiently small, the solutions approach 

each other.  A normalized transition weld width can be defined where the effective stress 

intensity factor eK  of the beam bending theory is equal to that of Erdogan.  For the right tip, the 

normalized transition weld width occurs at 209.0/ tw .  For the left tip, the normalized 

transition weld width occurs at 216.1/ tw .  The transition does not occur at the same tw /  

ratio for the two crack tips.  The normalized transition weld width is smaller for the right side 



17 

 

with the higher effective stress intensity factor.  It should be noted that the normalized transition 

weld width for dissimilar welds in lap-shear specimens depends on the particular combination of 

materials.  Sripichai et al. [14] found the normalized transition weld width is 0.364 for similar 

welds in lap-shear specimens of equal thickness.  Generally speaking, the transition is expected 

to be at a small normalized width ratio.  Table 2.1 lists the normalized computational 1K  , 2K  

and eK  solutions as functions of tw /  for future engineering applications.  The 1K  and 2K  

solutions are normalized by the analytical 2K  solution for the right crack tip in Equation (6).  

The eK  solutions are normalized by the effective stress intensity factor solutions based on 

Equations (5) and (6) for the right crack tip. 

The near-tip stresses for main cracks are also examined in this section.  Figure 2.7(a) shows a 

magnified view of the finite element model near the right crack tip for the lap-shear specimen 

with 85.5/ tw .  The crack-tip stresses are obtained as functions of the radial distance to the 

tip, r , directly ahead of and above the crack tip.   

A second finite element analysis is also carried out with a set of modified elastics constants 

of 6.48E GPa and 458.0  for the magnesium sheet and 3.206E GPa and 3.0 for the 

steel sheet.  This set of material elastic constants gives the same ratio of the shear moduli, but the 

Poisson’s ratio of the magnesium sheet is modified to give 0  and consequently 0 .  

Here, the steel material constants are kept the same as in the actual material.  It would be 

preferred to keep the actual material constants from the magnesium sheet.  However, this results 

in a negative Poisson’s ratio for the steel.  The crack-tip stresses ahead of and above the crack tip 

are compared for the solutions based on the two sets of material elastic constants.   

Figures 2.7(b) and 2.7(c) show the normalized opening and shear stresses  /22 and  /12  

as functions of the normalized radius tr /  directly ahead of the crack tip.  Here, the stresses are 



18 

 

normalized by   (  btF / ) which is the normalized applied stress.  As shown in the figures, 

the normalized opening and shear stresses  /22  and  /12  directly ahead of the crack tip for 

the two sets of material elastic constants are different when the normalized radius decreases due 

to the oscillation of the stress near the crack tip for the actual material.  For the modified material 

combination with 0  or 0 , the crack tip stresses follow the usual r/1  singularity.  

Figures 2.7(d) and 2.7(e) show the normalized stresses  /11  and  /12  as functions of the 

normalized radius tr /  above the crack tip for the two sets of material elastic constants.  As 

shown in the figures, the dominant normalized opening stress  /11  appears to follow the 

r/1  singularity quite consistently for both sets of material elastic constants while the 

normalized shear stress  /12  remains slightly influenced by the oscillation of the actual 

material with 0  or 0 .  The crack-tip stress shown in Figures 2.7(b)-(c) indicate that the 

oscillations of the crack-tip stresses appear to be stronger directly ahead of the tip.  

The crack-tip opening stresses above the crack tip in the vertical direction does not appear to 

be influenced by the oscillation as the crack-tip stresses directly ahead of the crack tip.  Note that 

from the experimental observations, kinked cracks grew in the vertical direction above the crack 

tip.  This suggests that the local stress intensity factor solutions for the modified material with 

0  or 0  may be used for the kink crack with the vanishing kink length.  

 

2.4. Analytical local stress intensity factor solutions for kinked cracks 

Figure 2.8 shows a schematic of a main crack and a kinked crack with the kink length a  and 

the kink angle  .  Here, 1K  and 2K  represent the global stress intensity factor solutions for the 

main crack, and Ik  and IIk  represent the local stress intensity factor solutions for the kinked 
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crack.  Note that the arrows in the figure represent the positive values of the global and local 

stress intensity factors 1K , 2K , Ik  and IIk .   

For kinked cracks in dissimilar material, when the kink length approaches to 0, the Ik  and IIk  

solutions can be expressed as functions of the kink angle  , the Dundurs’ parameters   and  , 

and the global 1K  and 2K  solutions for the main crack.  The local stress intensity factors Ik  and 

IIk   are expressed in the complex form (He and Hutchinson [22]) as 

       iHH

I

HH

R

iHH

I

HH

RIII aiKKiddaiKKiccikk  2121    (36) 

where HH
Rc , HH

Ic , HH
Rd  and HH

Id  are the real and imaginary part of the complex function HHc  

and HHd .  Both HHc  and HHd  are complex functions of  ,   and  .  Equation (36) indicates 

that Ik  and IIk  depend on the crack length a  and bimaterial constant  .  The global stress 

intensity factors 1K  and 2K  are defined in the form as in Equation (26).    

The functions HH
Rc , HH

Ic , HH
Rd  and HH

Id  were tabulated in He and Hutchinson [30].  The 

values for HHc  and HHd  were interpolated from that report.  As indicated in Equation (36), 

when the crack length approaches zero, the values for the local stress intensity factor solutions 

depend on the value of a  when the bimaterial constant   is nonzero.  The dependence of the 

solutions on the crack length a  presents a challenge to develop a fatigue life estimation method 

based on a fatigue crack growth model, even though the oscillation is in a region which is too 

small to be of concern.  This challenge prevents the evaluation of the limit at the crack length of 

0a  in Equation (36). 

However, for 0 , Equation (36) simplifies to 

      210
KdcKdck HH

I

HH

I

HH

R

HH

RI        (37) 
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III        (38) 

where  
0Ik  and  

0IIk represent the mode I and II stress intensity factor solution at the kink 

length a  equal to zero.  For cracks between similar materials, Equations (37) and (38) are 

reduced to those of Cotterell and Rice [31].  It should be noted that for 0 , the crack-tip 

stresses recover the traditional r/1  singularity. 

The local stress intensity factor solutions for kinked cracks with finite crack lengths in lap-

shear specimens can be expressed as functions of the normalized kink length ta  as in [14] as 

     
0

, III ktwafak          (39) 

     
0

, IIIII ktwafak          (40) 

where If  and IIf  are geometric functions which depend on the crack length a , the weld width 

w  and the sheet thickness t  for the given material combinations. The local stress intensity factor 

solutions for idealized dissimilar welds in lap-shear specimens were obtained computationally 

and presented in the normalized form in for tw 5.85 to match the experimental specimen 

dimensions and for tw 1 and 0.5 for future engineering applications.  

 

2.5. Computational local stress intensity factor solutions for finite kinked cracks 

Sripichai et al. [14] obtained local stress intensity factor solutions for kink cracks of different 

kink lengths by two-dimensional plane strain finite element analyses for welds of similar 

material with 5.0/ tw , 1 and 2.  In this investigation, two-dimensional plane strain finite 

element analyses were carried out for dissimilar welds to investigate the local stress intensity 

factor solutions for kinked cracks with different kink lengths for 5.0/ tw , 1 and 5.85.  

Fourteen normalized kink lengths, namely, ta / 0.00093, 0.002, 0.005, 0.01, 0.025, 0.05, 0.075, 
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0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 are considered in this investigation.  First, local stress intensity 

factor solutions are obtained computationally for 85.5/ tw  for the actual material combination 

and the modified material combination with 0  or 0 .  These computational solutions are 

compared with each other and with the solutions for the vanishing crack length in Equations (37) 

and (38) for the modified material combination.  Then, the local stress intensity factor solutions 

for kinked cracks for 5.0/ tw , 1 and 5.85 will be investigated.   

Figure 2.9(a) again shows a schematic of a two-dimensional finite element model of a lap-

shear specimen and the boundary conditions similar to those in Figure 2.5(a).  The finite element 

models are developed for the weld widths of 75.0w , 1.5 and 8.78 mm that correspond to 

5.0/ tw , 1 and 5.85, respectively.  For 85.5/ tw , the finite element analyses are carried out 

for both the actual and modified material combinations with the additional normalized kink 

length 61067.6/ ta  for comparison as the crack length approaches zero.  The width b  of 

the central portion of the dog-bone area of the specimen is 8 mm.  The length L  of the upper and 

lower sheets and the overlap distance V  remain unchanged as 100 mm and 75 mm, respectively.  

Both upper and lower sheets have the same thickness of 1.5 mm.  The loading and boundary 

conditions of the specimen are the same as those for the finite element model shown in Figure 

2.5(a).  In Figure 2.9(a), a kinked crack is schematically shown to grow from the right crack tip 

into the upper magnesium sheet.  Based on the micrograph in Figure 2.2, the value of the kink 

angle in this investigation is selected to be 90  (according to the sign convention in Figure 2.8, 

the kinked angle   should be  90 ).  Figure 2.9(b) shows the finite element mesh near the right 

crack tip for 85.5/ tw  and 1.0/ ta .  Figures 2.9(c) and 2.9(d) show a detailed view of the 

mesh near the right main crack and a detailed view of the mesh near the kinked crack tip, 

respectively.   
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Figures 2.10(a) and 2.10(b) show the values of  
0II / kk  as functions of the normalized kink 

length ta /  for 85.5/ tw  for the actual material and the modified material combinations with 

0  in linear and logarithmic scales, respectively.  Note that the value of  
0Ik  used for 

normalization is based on the analytical 1K  and 2K  solutions in Equations (5) and (6) and 

Equation (37) for the modified material combination with 0  and the kink angle  90 .  

Also shown in the figures is the analytic solution for the kinked crack with vanishing kink length 

in Equation (37) for the modified material combination.  As shown in Figure 2.10(b) in the 

logarithmic scale, the computational local stress intensity factor solutions are similar for both 

materials.  The kinked crack solution in Equation (36) for the actual material combination would 

decrease as the kinked crack length decreases and does not appear to reach a limit.  However, the 

kinked crack solution shown in Figure 2.10(b) based on Equation (37) for the modified material 

combination is constant for all crack lengths.  This vanishing kinked crack solution correlates 

well with the computational  
0II / kk  solution for both the actual and modified materials.  

Figures 2.10(c) and 2.10(d) show the values of  
0III / kk as functions of the normalized kink 

length for both material combinations in linear and logarithmic scales, respectively.  First, it 

should be noted that the magnitude of the local shear stress intensity factor is much less than that 

of the local opening stress intensity factor.  From Figure 2.10(c), it can be seen that the 

computational solutions for the actual material combination are different from those of the 

modified material combination for small kink lengths.  The analytical vanishing kinked crack 

solution for the modified material combination correlate well to the computational solution for 

the modified material combination.  In summary, for the local shear stress intensity factor 

solutions, the results for the modified material combination do not agree well with those for the 

actual material combination.  Although Equation (38) can be used to accurately predict the 
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solution for vanishing kinked crack for the modified material combination, it is only an 

approximation for the actual material combination.  However, the shear contribution may not be 

important for a fatigue crack growth model, where the magnitude of the local shear stresses is 

much less than the magnitude of the local opening stresses.   

Figures 2.10(e) and 2.10(f) show the computational  
0e/ kke  along with the analytical 

vanishing kinked crack solution for the modified material combination in linear and logarithmic 

scales, respectively.  Note that the value of  
0ek  used for normalization is based on the 

analytical 1K  and 2K  solutions in Equations (5) and (6) and Equations (37) and (38) for the 

modified material combination with 0  and the kink angle  90 .  These figures are 

remarkably similar to Figures 2.10(a) and 2.10(b) for  
0I/ kk I .  It can be seen from Figure 

2.10(f) that the stress intensity factor solution for the vanishing kinked crack in Equations (37) 

and (38) for the modified material combination agree with the computational solutions as the 

kink length decreases for the actual material combination.  This is quite useful because a crack 

growth model needs to use the effective stress intensity factor ek  for the kink length equal to 

zero.  Therefore, the analytical solution for the modified material combination can be used to 

obtain the local stress intensity factor solutions for the kink length equal to zero without 

impacting the accuracy of the fatigue crack growth model.   

Figures 2.11(a) and 2.11(b) show the values of  
0II / kk  as functions of the normalized kink 

length ta /  for 5.0/ tw , 1 and 5.85 for the entire range and an enlarged section for small 

kinked cracks respectively.  Note that the value of  
0Ik  used for normalization is based on the 

analytical 1K  and 2K  solutions in Equations (5) and (6) and the kinked crack solution in 

Equation (37) for the modified material combination with 0  and the kink angle  90 .  
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Figure 2.11(b) shows that, as the kink length approaches to 0, the value of  
0II / kk  appears to 

approach to the local stress intensity factor solutions, shown as symbols at 0/ ta , based on 

Equation (37) for the modified material combination and the computational 1K  and 2K  solutions 

for the main crack (without kinked cracks) for the modified material combination.  The value of 

 
0II / kk  increases monotonically as the kink length increases.   

Figure 2.12 shows the values of  
0III / kk  as functions of the normalized kink length ta /  for 

5.0/ tw , 1 and 5.85.  Note that the local stress intensity factor solutions IIk  are negative as 

defined in Figure 2.8.  Figure 2.12 shows that for 5.0/ tw , 1 and 5.85, as the kink length 

approaches to 0, the value of  
0III / kk  does not appears to follow the trend to approach to the 

local stress intensity factor solutions, shown as symbols at 0/ ta .  The local vanishing crack 

solutions shown are based on Equation (38) and the computational 
1K  and 2K  solutions for the 

main crack for the modified material combination.  It should be noted that the Ik  local stress 

intensity factor solution which appears to be accurate is more dominant than the IIk  local stress 

intensity factor solution.  For 1/ tw  and 5.85, as the kink length increases beyond the small 

kink length of 025.0/ ta , the value of  
0III / kk  decreases and appears to approach to 0 for a 

very large kink length.   

As shown in Figure 2.12 for 5.0/ tw , as the kink length increases, the value of  
0III / kk  

increases until it reaches the maximum value near the normalized kink length 2.0/ ta .  This is 

similar to the behavior of  
0III / kk  for 5.0/ tw  for similar welds [14].  As the kink length 

further increases, the value of  
0III / kk  decreases and appears to approach to 0 for a very large 

kink length.  It should be noted that the computational Ik  and IIk  solutions in Sripichai et al. [14] 
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and in this paper, can only indicate the trends of the local Ik  and IIk  solutions as the kink length 

approaches to 0.   

Figures 2.13(a) and 2.13(b) shows the values of  
0e/ kke  as functions of the normalized kink 

length ta /  for 5.0/ tw , 1 and 5.85, for the entire range and an enlarged section for small 

kinked cracks respectively.  Note that the value of  
0ek  used for normalization is based on the 

analytical 1K  and 2K  solutions in Equations (5) and (6) and Equations (37) and (38) for the 

modified material combination with 0  and the kink angle  90 .  Figure 2.13(a) appears 

very similar to Figure 2.11(a) which displays the values of  
0II / kk .  This is consistent with the 

kinked crack growing under dominant mode I loading conditions.  Here, for a kinked crack of 

zero length, Figure 2.13(b) shows that the value of  
0e/ kke  appears to approach the local stress 

intensity factor solutions, shown as symbols at 0/ ta , based on Equations (37) and (38) for the 

modified material combination and the computational 1K  and 2K  solutions for the main crack 

for the modified material combination.  As the value of ta /  increases, the value of  
0e/ kke  

increases monotonically, just as seen in Figure 2.11(a) for  
0II / kk . 

The solution shows that the Ik  solutions for kinked cracks from the finite element analyses 

indeed show some trend to approach to the theoretical kinked crack solution at 0/ ta  for the 

modified material combination as the kink length decreases.  The IIk  solutions for kinked cracks 

from the finite element analyses do not approach to the theoretical kinked crack solution at 

0/ ta  for the modified material combination as the kink length decreases.  These normalized 

values of the local stress intensity factor solutions indicate that the kinked crack growth is under 

mixed mode I and II loading conditions.  However, the kinked cracks are under dominant mode I 

loading conditions and the computational ek  solutions approach to that for the vanishing kinked 
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crack solution for the modified material combination.  Table 2.2 and 2.3 list the normalized local 

stress intensity factor Ik  and IIk  solutions, respectively, for  90 , 5.0/ tw , 1 and 5.85 for 

future engineering applications.  Note that at 0/ ta  the values for  
0II / kk  are not 1, since the 

 
0Ik  solutions used for normalization are obtained from the analytical 1K  and 2K  solutions 

based on the beam bending theory while the values being normalized are based on computational 

results.   

 

2.6. Conclusions 

First, global stress intensity factors for welds of various widths in lap-shear specimens of 

magnesium and steel sheets were obtained using finite element analyses and compared with two 

analytical solutions.  The transition value is dependent on the weld width and the dissimilar 

materials used in the weld.  Welded specimens of magnesium and steel sheets with a normalized 

width ratio, tw / , smaller than a transition value of 0.209 more closely follow analytical solutions 

based on semi-infinite solids with connection.  Welds with a normalized width ratio, tw / , larger 

than a transition value of 1.216 more closely follow analytical solutions based on beam bending 

theory.  The accuracy of the analytical solution based on beam bending improves as the weld 

width increases.   

Next, welds in lap-shear specimens with kinked cracks of various lengths were modeled 

using finite element with both the actual material combination and a modified material 

combination such that the bimaterial constant was zero.  Stresses directly ahead of and directly 

above the crack tip were compared for both material combinations.  Ahead of the crack tip, the 

stresses were not similar due to the oscillation of the crack-tip stress field in the model with the 

actual material combination.  However, above the crack tip, at a kink angle of 90 , the 
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stresses were only weakly affected by the oscillation and stresses for both material combinations 

were quite similar. For large kink angles, the modified material combination may be substituted 

such that the bimaterial constant is zero, allowing use of existing analytical solutions to 

approximate the local stress intensity factors for a vanishing kinked crack of length 0a . 

Lastly, the local stress intensity factors for kinked cracks of finite length were obtained 

computationally and compared with vanishing crack solutions evaluated using the modified 

material.  As the kink length decreases, the local Ik  is shown to approach the solutions for a 

vanishing crack, while the local IIk  solutions do not trend toward the solutions for a vanishing 

crack.  The kinked cracks are under dominant mode I loading conditions.  Therefore the ek  

solutions, which are most important for fatigue estimations, are shown to approach the solutions 

for a vanishing crack as the kink length decreases.  The global stress intensity factor solutions 

and the local stress intensity factor solutions for vanishing and finite kinked cracks can be 

adopted for fatigue life estimations in future research.   
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Table 2.1a: The normalized global stress intensity factor 1K  , 2K  and  eK solutions for the left 

crack tip at various normalized weld widths. 

 

tw /  0.0067 0.05 0.125 0.25 0.5 0.64 

left , 1K  -2.633 -0.726 -0.370 -0.187 -0.025 0.037 

left 2K  6.378 2.296 1.365 0.864 0.510 0.425 

left , eK  5.572 1.944 1.142 0.714 0.412 0.344 

 

Table 2.1a continued  

tw /  1 2 3 4 5.85 6 

left , 1K  0.161 0.328 0.355 0.358 0.358 0.358 

left 2K  0.339 0.351 0.366 0.368 0.368 0.368 

left , eK  0.303 0.388 0.412 0.414 0.415 0.415 

 

Table 2.1b: The normalized global stress intensity factor 1K  , 2K  and  eK solutions for the right 

crack tip at various normalized weld widths. 

 

tw /  0.0067 0.05 0.125 0.25 0.5 0.64 

right , 1K  2.643 0.787 0.468 0.348 0.331 0.357 

right 2K  
6.412 2.540 1.746 1.390 1.193 1.152 

right , eK  5.600 2.147 1.460 1.157 1.000 0.974 

 

Table 2.1b continued  

tw /  1 2 3 4 5.85 6 

right , 1K  0.454 0.666 0.719 0.728 0.729 0.729 

right 2K  
1.099 1.029 1.006 1.003 1.002 1.002 

right , eK  0.960 0.990 0.999 1.001 1.001 1.001 
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Table 2.2: The normalized local stress intensity factor  
0II / kk  solutions for  90 , 

5.0tw , 1, and 5.85.   

 

  a/t 0 0.00093 0.002 0.005 0.01 0.025 0.05 0.075 

 
0II / kk  5.0tw  1.001 1.006 1.029 1.066 1.108 1.201 1.328 1.445 

 
0II / kk  1tw  0.979 0.995 1.012 1.045 1.079 1.162 1.279 1.389 

 
0II / kk  85.5tw  0.999 1.049 1.058 1.078 1.106 1.178 1.287 1.393 

 

Table 2.2 continued 

 

  a/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

 
0II / kk  5.0tw  1.558 2.038 2.637 3.483 4.783 6.975 11.191 

 
0II / kk  1tw  1.499 1.982 2.596 3.461 4.775 6.975 11.193 

 
0II / kk  85.5tw  1.500 1.973 2.586 3.448 4.761 6.957 11.169 

 

 

Table 2.3: The normalized local stress intensity factor  
0III / kk  solutions for  90 , 

5.0tw , 1, and 5.85.   

 

  a/t 0 0.00093 0.002 0.005 0.01 0.025 0.05 0.075 

 
0III / kk  5.0tw  0.136 0.076 0.084 0.094 0.103 0.115 0.127 0.136 

 
0III / kk  1tw  0.170 0.106 0.113 0.124 0.124 0.126 0.122 0.117 

 
0III / kk  85.5tw  0.236 0.175 0.181 0.187 0.189 0.187 0.178 0.168 

 

Table 2.3 continued 

 

  a/t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

 
0III / kk  5.0tw  0.144 0.158 0.147 0.119 0.084 0.051 0.024 

 
0III / kk  1tw  0.112 0.093 0.076 0.058 0.042 0.026 0.013 

 
0III / kk  85.5tw  0.158 0.124 0.095 0.069 0.047 0.028 0.013 
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(a) 

 

(b) 

 

(c) 

Figure 2.1. (a) A top view and (b) a bottom view of an ultrasonic welded lap-shear specimen 

which has been machined into a dog-bone shape. (c) A schematic of a lap-shear specimen.  The 

applied force F  is shown as the bold arrows. 
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Figure 2.2. An optical micrographs of a failed weld at the fatigue life of 
3107.1   cycles under a 

load range of 1.70 kN. 
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(a) 

 

 
 

(b) 
 
 

Figure 2.3. (a) A schematic of the weld with the lap-shear loading condition.  (b) A schematic of 

the left crack tip showing the normal stresses ui , uo , li  and lo  at the inner (i) and outer (o) 

surfaces of the upper (u) and lower (l) strips, respectively.   
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Figure 2.4. A schematic diagram of two semi-infinite solids of dissimilar materials with 

connection of the length w .  The Cartesian yx   coordinate system is shown.  The shear forces 

per unit width, bF / , are applied along the x  axis at x  and   of the upper solid and 

lower solid, respectively.  The normal forces per unit width, bN / , are applied along the y  axis 

at y  and   of the upper solid and lower solid, respectively.   
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(a) 

 

(b) 

 

(c)  

Figure 2.5. (a) A schematic of a two-dimensional finite element model of a lap-shear specimen 

with the boundary and loading conditions.  (b) A view of the finite element mesh for the 

idealized model showing the weld nugget and both pre-existing crack tips for a tw /  ratio of 

5.85, and (c) a close-up view of the finite element mesh near the right crack tip.  
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(a) 
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(b) 

 

Figure 2.6. The normalized effective stress intensity factor solutions as functions of tw /  plotted 

in (a) linear and (b) logarithmic scales.   
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 

Figure 2.7. (a) The finite element mesh near the right main crack indicating the directions ahead 

of the crack tip 0 , and above the crack tip 90 , as pointing horizontally and vertically 

from the main crack tip respectively.  (b) A comparison between the actual material combination 

and the modified material combination with 0  showing the normal stress in the y direction 

ahead of the crack tip, (c) the shear stress ahead of the crack tip, (d) the normal stress in the 

x direction vertically above the crack tip, and (e) the shear stress vertically above the crack tip. 
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Figure 2.8. A schematic of a main crack and a kinked crack with the kink length a  and the kink 

angle  .    
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(a) 

 
(b) 
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(c) 

 

 
(d) 

 

Figure 2.9. (a) A schematic of a two-dimensional finite elemental model of a lap-shear specimen 

with a kinked crack showing the boundary and loading conditions.  (b) The finite element mesh 

showing the pre-existing cracks and the kinked crack on the right hand side for 85.5/ tw  and 

1.0/ ta , (c) a view of the finite element mesh near the kinked crack, and (d) a close-up view of 

the mesh refinement near the kinked crack tip.  
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(d) 
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(e) 
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(f) 

 

Figure 2.10. The values of (a)  
0II / kk  , with linear axes, (b)  

0II / kk  , with logarithmic axes, (c) 

 
0III / kk , with linear axes, (d)  

0III / kk  , with logarithmic axes, (e)  
0e/ kke , with linear axes, 

and (f)  
0e/ kke , with logarithmic axes, as functions of the normalized kink length ta /  for the 

actual and modified material with 85.5tw  and  90 . 
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(a) 
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(b) 

 

Figure 2.11. (a) The values of  
0II / kk  as functions of the normalized kink length ta /  for 

5.0tw , 1 and 5.85 and  90 , and (b) an enlarged section showing the values near a kink 

crack of length zero. 
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Figure 2.12. The values of  
0III / kk  as functions of the normalized kink length ta /  for 

5.0tw , 1 and 5.85 and  90 . 
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(a) 
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(b) 

 

Figure 2.13. (a) The values of  
0e/ kke  as functions of the normalized kink length ta /  for 

5.0tw , 1 and 5.85 and  90 , and (b) an enlarged section showing the values near a kink 

crack of length zero. 
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Chapter 3 

Fatigue Behavior of Dissimilar Ultrasonic Welds in Lap-Shear Specimens of AZ31 and 

Steel Sheets 

 

 

3.1. Introduction 

Amid rising fuel efficiency standards, the automotive industry is seeking lightweight 

alternative materials such as aluminum or magnesium to replace steel where possible, reducing 

the overall weight of the vehicle.  The goal is simple: lighter vehicles correlate to improved fuel 

economy.  Using magnesium alloys, with a density 30% less than that of aluminum [1], could 

result in a significant reduction of the weight of a vehicle.  However, replacing the entire 

structure with magnesium is unrealistic due to cost and certain strength requirements.  One 

challenge to introducing more magnesium alloys into vehicle structures is joining magnesium 

components to the remaining steel structures.  Joining magnesium alloys to steels is especially 

difficult due to the extreme difference in their melting temperatures and immiscibility of 

magnesium and iron [2].   

The advantage of using ultrasonic welding or other solid state joining methods such as 

friction stir welding is that melting is either avoided or minimized.  Both methods can be used to 

join dissimilar metals.  Researchers have been using ultrasonic welding or friction stir welding to 

join both similar and dissimilar materials.  Similar joints are mainly produced using sheets of 

aluminum or magnesium alloys.  Similar joints in aluminum have been made by many 

researchers, including Hetrick et al. [3], Jahn et al. [4], and Bakavos and Prangnell [5].  Jordan et 
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al. has produced similar magnesium friction stir spot welds [6].  Dissimilar welds have been 

produced most commonly in aluminum-steel by researchers Gendo et al. [7], Liyanage et al. [8], 

and Watanabee et al. [9]. Dissimilar welds were also produced in magnesium and steel by 

Santella et al. [2].  

Some researchers have been investigating fatigue behavior of solid state welds.  This is an 

important and necessary step in order to develop life prediction and design tools for product 

development.  Tran and Pan [10] and Tran et al. [11-12] used a kinked fatigue crack growth 

model and the structural stress model for spot welds in lap-shear and cross tension specimens.  

Jordan et al. [6] modeled fatigue behavior in magnesium friction stir spot welds using a kinked 

fatigue crack growth model where the authors use an assumption that a three-dimensional crack 

maintains a constant stress intensity factor for all crack lengths, as used by Newman and 

Dowling [13].   

In this study, ultrasonic spot welds on lap-shear specimens have been machined into a dog-

bone profile to approximate an ultrasonic seam weld such as those studied by Ueoka and Tsujino 

[14].  This approach has been used in order to more thoroughly and accurately analyze 

experimental results using a two-dimensional finite element model and computational solutions 

which have been developed for plane strain.  The kinked crack growth model is presented in 

Asim et al. [15] and Sripichai et al.[16].  Both studies correlate experimental fatigue behavior of 

laser welds of similar material with fatigue life prediction.  Here, the same model will be used, 

except that these ultrasonic welds are of dissimilar materials.  Dissimilar materials require a 

different approach to analytically calculating the global stress intensity factor solutions and 

obtaining a vanishing crack solution.  Obtaining these stress intensity factor solutions will rely 

on solutions similar to those in Zhang [17] and Tran and Pan [18] for the global stress intensity 
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factor solutions and He and Hutchinson [19] for a vanishing crack solution.  The exact procedure 

for obtaining the stress intensity factors solutions is detailed in Chapter 2.  Then the kinked crack 

growth model will be compared with experimental fatigue results. 

 

3.2. Experiment 

3.2.1 Lap-shear specimen 

The lap-shear specimens were made by joining magnesium AZ31B-H24 sheets with a 

thickness of 1.58 mm to hot-dipped galvanized steel sheets.  Two types of steel sheets were used 

to make two sets of lap-shear AZ31-steel welded specimens.  The first type is a high strength low 

alloy (HSLA) steel sheet with a thickness of 1.50 mm.  The second type is a mild steel sheet with 

a thickness of 0.8 mm.  The magnesium and steel were cut into coupons of 30 mm   100 mm.  

The lap-shear specimen was made by welding the magnesium and steel coupons with a weld 

centered in the 30 mm   75 mm overlap area using an ultrasonic spot welder.  The machine used 

for the ultrasonic spot welding was a Sonobond CLF 2500 single-transducer, wedge-reed 

ultrasonic welder.  The sonotrode tip has a square face of 7 mm   7 mm and the surface of the 

face had a grooved pattern on it described by Jahn et al [4].  The spot welding was done with a 

power of 1500 W, an impedance setting of 6 and a welding time of 1 s.   The orientation of the 

sample was adjusted prior to welding so that the vibrations from the sonotrode tip were parallel 

to the surface of the sample and aligned with the short axis of the specimen.  The pressure to the 

tip clamping mechanism was adjusted for a constant nominal pressure of 39 MPa on the material 

beneath the sonotrode tip.  Figure 3.1(a) shows a lap-shear specimen with an ultrasonic weld.  

Figure 3.1(b) and 3.1(c) show the face and profile view of the sonotrode tip used in creating the 
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welds.  The microstructures of the sheets, the specimen preparation procedure and the processing 

conditions were detailed in Santella et al. [2].   

The USW lap-shear specimens were machined into a dog-bone shaped profile using a CNC 

milling machine.  The purpose of using a dog-bone shaped profile is to remove edge effects and 

approximate a two-dimensional weld.  This allows for simplified modeling and fatigue 

prediction of the weld.  Although it is documented by Wang and Pan [20] that a two-dimensional 

weld does not behave the same as the original spot weld, the work is still relevant because there 

are ultrasonic seam welders which produce a continuous linear weld.  Figure 3.2(a) and 3.2(b) 

show the top and bottom views of an USW lap-shear specimen after being machined into the 

dog-bone shaped profile. The specimen geometry in general follows the guidelines of the 

ANSI/AWS B4.0:2007 standard for the mechanical testing of welds. The central portion of the 

dog-bone shaped specimens has a reduced width. The width and length of the uniform straight 

part of the section with the reduced width are 8 mm and 13.5 mm, respectively.  The weld zone 

(crack tip to crack tip) has an average width of about 8.78 mm as measured from failed 

specimens.  During fatigue testing, two spacers were used to align the fixture to avoid the initial 

realignment of the specimen due to the non-aligned grips under lap-shear loading conditions. 

Figure 3.3 shows a schematic of a lap-shear specimen with the loading direction represented by 

bold arrows. As shown in the figure, the specimen has a width W  and overall length L  for the 

upper and lower sheets. The specimen has the thickness ut  for the upper sheet and lt  for the 

lower sheet.  The specimen has a reduced width b  for the central portion, an overlap length V , a 

weld width w , an indentation width g  and a transition radius r  for the weld zone. The 

dimensions of the specimens are W  = 30 mm, L  = 100 mm, b  = 8 mm, V  = 75 mm, w  = 8.78 

mm, g  = 7 mm and r  = 10 mm. The thickness ut  for the upper sheet is 1.58 mm for the top 
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magnesium sheet.  The thickness lt  is 1.5 mm for the bottom HSLA steel sheet or 0.8 mm for the 

bottom mild steel sheet.  Specimens with similar shapes were adopted by a number of 

researchers for the study of laser welded joints: for example, see, Lee et al. [21], Asim et al. [15], 

Anand et al. [22], and Sripichai et al. [16].  Lee also used the same geometry while studying 

quasi-static failure of ultrasonic welds [23].  The detailed dimensions of the lap-shear specimens 

are listed in Table 3.1. 

Before testing, an ultrasonic welded specimen for each steel thickness was sectioned along 

the symmetry plane on the longitudinal axis and future loading direction of the specimen.  The 

optical micrograph of the cross section can be seen in Figure 3.4(a) and 3.4(b) for the thick steel 

and thin steel welds respectively.  Figure 3.4(a) shows an untested specimen of the ultrasonic 

weld with 1.58 mm AZ31 and 1.5 mm HSLA steel.  The micrograph shows the indentation of the 

sonotrode tip into the magnesium sheet.  The weld reaches just outside of the visible indented 

region.  In Figure 3.4(a), it should be noted that the cross-section was taken near a ridge as 

opposed to a valley.  A slight deviation between the angle of the ridges and the cutting angle 

explains the asymmetry of the top profile in the magnesium.  The rest of the asymmetry, 

however, is not an artifact of sectioning.  As observed by Santella et al. [2], during welding the 

magnesium and zinc reached a eutectic temperature where they liquefied.  The pressure of the 

sonotrode tip along with the vibrations caused the layer to flow outward.  This eutectic layer is 

discussed in detail in Santella et al. [24].  On the right side, a gap and a layer between the 

magnesium and steel sheets is clearly visible.  On the left side, the gap between the magnesium 

and steel sheets is much smaller.  The uneven distribution of the layer which has been displaced 

from the interface is most likely due to the vibrational modes associated with the sample sheets 

during welding.  The third asymmetrical feature is the existing cracks within the welded region 
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which can be seen on the right side and also just left of center in the magnesium sheet in the 

thick steel weld.  These cracks are present in multiple sectioned USW lap-shear joints with this 

material combination.  This is believed to be caused upon cooling after welding due to a 

mismatch in thermal expansion coefficients.  These cracks do not appear in every micrograph.  It 

is possible that the cracks are present at some locations in every specimen which are not always 

bisected by the sectioning plane.  It is also possible that some welds have no internal cracks at 

all.   

The micrograph of the untested weld with 1.58 mm AZ31 and 0.8 mm steel is shown in 

Figure 3.4(b).  It also features a sonotrode tip indentation and a layer which was displaced from 

the interface on the right side.  In this weld, internal cracks are not observed.  Additional detail 

about the microstructure is discussed in Lee [23] and Santella et al. [2].  The magnesium and 

zinc in the displaced layer is thoroughly investigated in Santella et al. [24]. 

3.2.2 Quasi-static test of lap-shear specimen 

Lap-shear specimens were first tested under quasi-static loading conditions by using an 

automated MTS testing machine equipped with a load cell and a built-in position sensor to track 

the movement of the cross-head.  Spacers were not used during quasi-static tests.  The load and 

displacement histories were simultaneously recorded during each test.  The average failure or 

maximum load was about 2750 N for the weld with 1.5 mm HSLA steel.  The average failure 

load was about 2350 N for the weld with 0.8 mm mild steel.  The average failure load was used 

as the reference value to determine the applied load ranges for the fatigue tests.  The weld with 

1.5 mm HSLA steel failed through the magnesium sheet near the weld.  In the weld with 0.8 mm 

mild steel, necking was observed, followed by failure of the steel sheet near the weld.  A detailed 
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study of the failure mechanism under quasi-static tests of the dog-boned ultrasonic welds in 

AZ31 and hot-dipped galvanized HSLA steel is reported by Lee [23].    

The tested specimens were sectioned perpendicular to the welding direction and prepared for 

micrographic analyses.  In the present study, a micrograph of the cross sections of a failed 

specimen under quasi-static loading conditions for the weld with 1.5 mm HSLA steel is 

presented for comparison with the failure mechanisms of the lap-shear specimens under cyclic 

loading conditions.   

3.2.3 Fatigue test of lap-shear specimen 

Lap-shear specimens were tested under cyclic loading conditions with an Instron servo-

hydraulic fatigue testing machine using a load ratio of R 0.1.  A sinusoidal loading profile was 

chosen and the frequency was set at 10 Hz during the tests.  The test was considered to be 

completed at the final separation of the welded sheets.  A few tests were interrupted before the 

final separation to study the fatigue crack growth patterns.  The number of life cycles to failure 

was recorded for different applied load ranges.  A plot of the load range versus the fatigue life in 

a log-log scale is shown in Figure 3.5.  The fatigue tests were also terminated when specimens 

were nearing one hundred thousand loading cycles without separation.  These specimens were 

recorded as a runout and marked in the figure with an arrow.  Some specimens that failed under 

cyclic loading conditions were sectioned perpendicular to the weld direction and prepared for 

micrographic analyses.  The optical micrographs of the cross sections of the partially and fully 

failed specimens are presented in the following section.  
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3.3. Failure modes of ultrasonic welds under cyclic loading conditions 

Ultrasonic welds in lap-shear specimens with a dog-bone profile were studied under cyclic 

loading conditions.  The experimental observations indicate that the ultrasonic welds failed 

through the upper magnesium sheet on the right side under all cyclic conditions.  All of the 

specimens show a crack originating at the pre-existing crack notch formed at the edge of the 

weld on the right side.  The crack may grow along the interface briefly, but in all specimens 

before long, the crack kinks upward at roughly a 90° angle.  Generally as the cyclic loading 

amplitude increased, the final rupture, where the crack kinks a second time, is larger.  Under 

higher load ranges, the final rupture will connect the kinked crack with the corner of the 

indentation made by the sonotrode tip during welding.  Under lower load ranges, the final 

rupture connects with the indentation at a location closer the surface or continues to the surface 

without connecting.  Both of these crack growth patterns will be discussed in greater detail.  

The overall nature of the crack growth pattern in the magnesium and thick steel specimens 

can be observed in Figure 3.6, which shows a top view of the weld for failed specimens.  Figure 

3.6(a) shows a top view of a quasi-static specimen which is included as a comparison.  Figures 

3.6(b)-(d) show the top surface which failed under cyclic loading with the maximum load set at 

80%, 70%, and 50% respectively of the quasi-static failure load.  All of the specimens failed 

through the loaded side of the magnesium sheet which is on the right side of the weld.  From 

Figure 3.6, it can be seen that the two-dimensional approximation, which was created by milling 

a dog-bone profile, results in fractures which are nearly uniform through the reduced width of the 

sample.  Some specimens, such as the one observed in Figure 3.6(c) exhibit non-uniform cross 

sections which fracture closer to the weld at the edges than in the center.  Overall most 

specimens show a uniform fracture pattern across the reduced section.  This knowledge give 
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reassurance that the welds can be modeled using a two-dimensional finite element mesh.  It also 

illustrates that prepared micrographs may or may not be representative of the entire fracture 

front.  All micrographs have been sectioned along the center line where a plane strain assumption 

is valid, although there may be slight variation in the exact alignment.  It can be observed in 

Figures 3.6(a)-(c) that the welds failed with the fracture connecting into the inside of the weld 

indentation.  In contrast, Figure 3.6(d) shows a failed specimen tested under a lower load range 

with a fracture that appears to leave some material remaining on the right side of the weld 

indentation.  These differences will be clearer in the sectioned micrographs.   

The crack growth pattern in the magnesium and thin steel specimens can be observed in 

Figure 3.7.  Figure 3.7(a) shows a bottom view of a weld after quasi-static testing.  Under quasi-

static load, the welds in 1.58 mm AZ31 and 0.8 mm mild steel fail through the mild steel sheet.  

It should be noted that this is the only loading condition for these specimens which results in 

failure of the steel.  Figure 3.7(b) shows a top view of a failed weld after testing under cyclic 

loading with 2566 cycles and a load range of 1.57 kN.  This specimen was tested at a maximum 

load set at 75% of the quasi-static failure load and failed under low-cycle fatigue.  It can be seen 

that the weld failed through the magnesium sheet on the right side.  The crack path can be seen to 

connect with the weld indentation.  Figure 3.7(c) shows a weld which failed under high-cycle 

loading with 80,821 cycles under a load range of 0.72 kN. This specimen was tested at a 

maximum load set at 35% of the quasi-static failure load.  Here it is observed that the failure 

occurs through the magnesium sheet on the right side of the weld, but the fatigue crack did not 

connect with the weld indentation.  The magnesium on both sides of the weld still has excess 

magnesium material which was pushed from the indentation during welding, which shows the 

crack propagated nearly straight upward.    
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For the purpose of discussion in this paper, specimens will be divided into a low-cycle and 

high-cycle fatigue range.  This is determined by the failure mode from the fatigue tests and is 

chosen for convenience.  In actuality, the transition between low-cycle and high-cycle fatigue 

changes gradually as the load range is decreased.  For this paper, the transition between low-

cycle and high-cycle is set at roughly 8,000 cycles for both sets of specimens.  The load range for 

the two sets of samples is slightly different.  Welds with thick steel tested with a load range less 

than or equal to 1.3 kN, which lies between the specimens shown in Figures 3.6(c) and 3.6(d), 

will be referred to as high-cycle fatigue.  Specimens with a load range greater than 1.3 kN will be 

referred to as low-cycle fatigue.  Welds with thin steel tested at load ranges less or equal to 1.1 

kN will be referred to as high-cycle fatigue.  Welds with thin steel tested at a load range greater 

than 1.1 kN will be referred to as low-cycle fatigue.  Note that the definitions of low-cycle and 

high cycle fatigue loading conditions in this study are only provided for convenient presentation.  

Both low-cycle and high-cycle fatigue crack growth patterns will be discussed further by looking 

at micrographs of the sectioned failed and partial failed specimens.  

3.3.1.  Failure mode under quasi-static (QS) loading conditions 

Quasi-static results are included simply for comparison to cyclic loading.  The quasi-static 

failure modes differ for the two sets of samples with different steel types.  In the welds with 1.5 

mm HSLA steel, the failure occurs through the magnesium leg on the right side of the weld.  In 

the welds with 0.8 mm mild steel, the failure occurs through the mild steel leg on the left side of 

the weld.  
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3.3.1.1  Failure mode under quasi-static (QS) loading conditions  

in 1.58 mm AZ31 and 1.5 mm HSLA steel 

Figure 3.8 shows an optical micrograph of the cross sections of a failed weld in lap-shear 

specimens under quasi-static loading conditions.  The upper right and lower left sheets were the 

two load carrying sheets in these tests which is shown schematically with arrows.  The weld and 

failed magnesium leg do not exactly fit together which is the result of a non-uniform failure 

surface through the width of the specimen and slightly different polishing depths.  During the 

tests, the weld region and the non-load carrying leg rotated as the applied displacement 

increased. The angle of rotation continued to increase until failure.  Upon failure a final value of 

3.5° with respect to the line of loading was measured for quasi-static testing.  The rotation is the 

consequence of non-uniform plastic deformation through the thickness of the load carrying sheet 

near the weld nugget.  Under quasi-static loading, failure began in the right magnesium leg, 

where a crack propagates from the pre-existing crack tip.  Failure occurred when the crack 

connects with the sonotrode tip indentation.  A detailed investigation of the quasi-static failure 

mode is presented by Lee [23].  The welds failed through the upper right magnesium sheet which 

is also the case for all cyclic loading conditions.   

3.3.1.2  Failure mode under quasi-static (QS) loading conditions  

in 1.58 mm AZ31 and 0.8 mm mild steel 

The quasi-static failure of a 1.58 mm AZ31 and 0.8 mm mild steel weld is shown in Figure 

3.7(a).  Necking occurs on the lower left steel leg near the weld.  This is the only condition 

which results in failure through the steel sheet of the specimen.  No micrographs were prepared 

for this condition.   
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3.3.2  Failure mode under low-cycle (LC) loading conditions 

Fatigue failure under low-cycle conditions was similar for welds with 1.5 mm HSLA steel or 

0.8 mm mild steel.  In both cases, failure occurred through the right magnesium leg.  These are 

discussed next. 

3.3.2.1  Failure mode under low-cycle (LC) loading conditions 

in 1.58 mm AZ31 and 1.5 mm HSLA steel 

Figures 3.9(a)-3.9(d) show optical micrographs of the cross sections of partially and fully 

failed welds at low-cycle loading conditions.  Figure 3.9(a) shows a partially failed weld at the 

fatigue life 
3102.2   cycles under a load range of 1.43 kN.  Figure 3.9(b) shows an enlarged 

section near the kinked crack for the same weld.  Figures 3.9(c) and 3.9(d) show a failed weld at 

the fatigue life of 
3107.1   cycles under a load range of 1.70 kN and one at 

3103.3   cycles 

under a load range of 1.43 kN.  The upper right and lower left sheets were the two load carrying 

sheets in these tests which are shown schematically with arrows.  The partially failed weld in 

Figures 3.9(a) and 3.9(b) was tested under the same load range as previous specimens; however, 

the test was interrupted between 65% and 85% of the expected cycle life.  The partially failed 

weld allows observation of the crack growth pattern.  In Figure 3.9(b), a crack can be seen 

kinking upward at an angle of 72° on the right side of the weld in the magnesium sheet.  The 

kink angle is measured between the interface ahead of the crack and the kinked crack.  At the 

point of kinking, this crack has already separated the dispersed layer from the steel.  This can be 

observed by noting the absence of voids to the left of the kinked crack which are common in the 

dispersed layer.   

As shown in Figure 3.9(c), the dominant failure mode for the specimens under low-cycle 

loading conditions appears to be a kinked crack growing upward and connecting with the weld 
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indentation from the sonotrode tip.  Figure 3.9(d) shows a failed weld at a slightly lower load 

range of 1.43 kN.  Here it can be observed that the final fracture is slightly shorter than that seen 

in Figure 3.9(c).  The crack growth pattern in 3.9(d) follows the same overall pattern, kinking 

upward at roughly 82° and connecting with the right lower corner of the weld indentation during 

the final fracture.  The crack appears to kink a third time at the very end of its path, however, it 

should be remembered that the weld indentation is grooved and this micrograph was most likely 

sectioned at the edge of a ridge.  That is, the crack most likely connected with the valley, so that 

the extra apparent kink in the path is an artifact of sectioning.  This type of failure corresponds 

with low-cycle fatigue produced by testing with a load range greater than about 1.3 kN.  The 

ultrasonic welds mainly fail from the through-thickness crack propagation of the upper right 

magnesium sheet under low-cycle loading conditions.  The failure is most likely initiated from 

the pre-existing crack tips.  The crack appears to grow from the pre-existing crack tips along the 

interface between the dispersed layer and the steel.  As the crack reaches the end of the dispersed 

layer and the beginning of where the magnesium is bonded directly to steel, it kinks upward into 

the magnesium sheet, although there is variation in the exact kink location.  A total of six 

specimens were tested to complete failure under these load ranges and they all exhibited the 

same failure mode. 

3.3.2.2 Failure mode under low-cycle (LC) loading conditions 

in 1.58 mm AZ31 and 0.8 mm mild steel 

Figure 3.10 displays an optical micrograph of a welded specimen in 1.58 mm AZ31 and 0.8 

mm mild steel which failed under low-cycle loading conditions at a fatigue life of 
3109.6   

cycles under a load range of 1.16 kN.  The failure occurred in the right magnesium leg.  The 

fatigue crack propagated from the notch created at the edge of the weld, kinking upward at an 
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angle of 83°.  The final rupture connected the kinked crack with the weld indentation.  This 

failure mode is the same as that of the low-cycle thick steel welds.  For specimens with thin steel, 

load ranges greater than about 1.1 kN result in low-cycle fatigue failure.  Two specimens were 

tested to complete failure under these load ranges and they both exhibited the same failure mode. 

3.3.3  Failure mode under high-cycle (HC) loading conditions 

Specimens tested under high-cycle fatigue fail with a crack kinking upward into the 

magnesium from the notch formed at the right weld edge.  The failure mode differs from that of 

low-cycle fatigue in that the final rupture does not connect with the corner of the weld 

indentation.  Instead, the crack propagates further upward and connects with the side of the weld 

indentation or progresses to the right of the weld indentation without connecting.  Additionally 

the location where the crack kinks upward from the interface is more likely to be within the 

dispersed layer. 

3.3.3.1  Failure mode under high-cycle (HC) loading conditions 

in 1.58 mm AZ31 and 1.5 mm HSLA steel 

Figures 3.11(a) and 3.11(b) show optical micrographs of the cross section of a partially failed 

weld at 
41046.5  cycles under a load range of 0.95 kN and an enlarged section near the kinked 

crack of the same specimen.  Figure 3.11(c) shows a failed weld at the fatigue life of 

41050.3  cycles under a load range of 0.99 kN.  In Figure 3.11(a), a kinked fatigue crack is 

visible near the right pre-existing crack tip.  Figure 3.11(b) shows an enlarged section near the 

kinked crack from which several observations can be made.  The crack appears to kink out of the 

interface at an angle of approximately 85°.  As it grows it curves slightly so that it approaches 

90° with respect to the weld interface.  The crack appears to kink out from the interface from just 

within the dispersed layer, as can be observed by voids which persist in that region to the left of 
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the kinked crack in Figure 3.11(b).  After kinking, the crack propagates through the magnesium 

sheet.  This weld was not tested until failure, but it appears the crack would emerge on the 

outside of the indented region. 

Figure 3.11(c) shows an optical micrograph of a failed weld with slightly different crack 

growth patterns.  The kinked crack in this specimen appears to kink at an angle of 90°.  The 

crack grows upward as it propagates through the magnesium sheet.  In this micrograph, the final 

failure is shown to kink at another angle of 90° and connect with the side wall of the sonotrode 

indentation.  

The failure mode observed in Figures 3.11(a) and 3.11(c) is different from those observed 

under low-cycle loading conditions as discussed earlier.  Note that for low-cycle fatigue, the 

crack generally proceeded along the interface past the dispersed layer before kinking.  Under 

high-cycle fatigue, the crack has a tendency to kink upward from within the dispersed layer.  

This can be verified by comparing Figures 3.9(a) and 3.11(a) and observing that in the high-

cycle fatigue case as seen in Figure 3.11(a), the crack appears to begin kinking from a position to 

the right of that in Figure 3.9(a), with respect to the weld indentation.  Also note the angle of 

kinking is closer to 90° for high-cycle fatigue specimens.  Lastly for the high-cycle fatigue case, 

the final fracture occurs outside the weld indentation, or connecting with the side wall of the 

weld indentation, which is in contrast to the crack growth pattern seen in the low-cycle fatigue 

specimens.   

The dominant failure mode for the specimens under high-cycle loading appears to be 

through-thickness crack propagation in the upper right sheet with the crack emerging through the 

side of the weld indentation or outside the weld indentation.  This type of failure mode 

corresponds to the applied load range equal to or less than about 1.3 kN for thick steel welds and 
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a fatigue life greater than 
3100.8   cycles as indicated in Figure 3.5.  In summary, the ultrasonic 

welds in lap-shear specimens tested under high-cycle conditions fail mainly due to the kinked 

fatigue crack emanating from the right pre-existing crack tip and propagating through the upper 

right sheet thickness connecting with the side, rather than the corner of the weld indentation.  A 

total of five specimens were tested to complete failure under these load ranges and they exhibited 

the same failure mode. 

3.3.3.2  Failure mode under high-cycle (HC) loading conditions 

in 1.58 mm AZ31 and 0.8 mm mild steel 

Figures 3.12(a) shows an optical micrograph of the cross sections of a failed 0.8 mm steel 

weld at the fatigue life of 
41053.1   cycles under a load range of 0.96 kN.  The fatigue crack 

initially kinks at an angle of 79°, and then curves slightly so that it propagates at an angle of 90° 

with respect to the interface.  The fatigue crack then connects with the side wall of the sonotrode 

indentation during the final fracture.  Figure 3.12(b) shows a failed weld at the fatigue life of 

41008.8   cycles under a load range of 0.72 kN.   This specimen shows a slightly different crack 

pattern.  The fatigue crack still kinks upward at an angle of approximately 93°.  Instead of 

connecting with the sidewall of the sonotrode indentation, the crack propagates upward through 

the magnesium sheet without connecting. 

For welds with mild steel, high-cycle fatigue corresponds to the applied load ranges less than 

1.1 kN.  In summary, the ultrasonic welds in lap-shear specimens tested under high-cycle 

conditions fail mainly due to the kinked fatigue crack emanating from the right pre-existing 

crack tip and propagating through the upper right sheet thickness connecting with the side, rather 

than the corner of the weld indentation, or continuing upward outside the indentation.  A total of 

two specimens were tested to complete failure under these load ranges.  
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3.4. Global and local stress intensity factor solutions 

3.4.1 Theory 

Both the global stress intensity factor solutions and the local stress intensity factor solutions 

with a kinked crack are evaluated for the idealized two-dimensional ultrasonic weld.  A 

simplified schematic of the two-dimensional weld is shown in Figure 3.13(a).  The global stress 

intensity factor solutions of the pre-existing cracks are determined in order to explain the failure 

in the upper right magnesium sheet as observed experimentally and to validate the finite element 

model.  The global stress intensity factor solutions are first found analytically using closed-form 

solutions developed by Zhang [17].  The stress intensity factor solutions were used by Tran and 

Pan [18] for a spot weld in a lap-shear specimen.  They will be used here, with a simplification 

of the normal structural stresses, ui , uo , li  and lo , which are defined in Figure 3.13(b) to 

represent a plane strain model of the weld with a dog-bone cross section in a lap-shear specimen.   

The global stress intensity factor solutions, 1K  and 2K , are obtained by Zhang [17] as  
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where the stresses y and xy  at a small distance r  ahead of the interface crack tip are 

characterized by K as 

 






i

xyy
t

r

r

iKK
i
















2

21         (3) 

The modulus ratio   is defined as 
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uE  and lE  represent the Young’s Moduli of the upper and lower sheets, respectively.  The 

bimaterial constant   is defined as  
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where uG  represents the shear modulus of the upper sheet and lG  represents the shear modulus 

of the lower sheet.  Here, u  and l  for the upper and lower sheets, respectively, are defined as  

 uu  43             (8) 

and 

 ll  43                  (9) 

under plane strain conditions.  The thickness ratio   is defined as 

lu tt            (10) 

where ut  and lt  are the upper and lower sheet thicknesses, respectively.  Note that the 

expressions shown in Equations (1) and (2) are for welds joining sheets with 1 .  For welds 

joining sheets with 1 , one should rotate the strip model by an angle of 180º to represent the 

same physical system but with 1 .   

The values of the angular quantity   in Equations (1) and (2) can be found in Suo and 

Hutchinson [25].  The angular quantity   is a function of the thickness ratio   and the 

Dundurs’ parameters   and   which are defined as 
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Recall that the lap-shear specimen is loaded with a force per unit width, bF / , to the lower 

left and upper right sheets along the interface as shown in Figure 3.13(a).  Figure 3.13(b) shows 

the left part of the strip model near the crack tip with linearly distributed structural stresses based 

on the classical Kirchhoff plate theory based on the work of Zhang [17].  As shown in Figure 

3.13(b), ui , uo , li  and lo  represent the normal stresses at the inner (i) and outer (o) surfaces 
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of the upper (u) and lower (l) strips, respectively.  Note also that the normal stresses *

ui , *

uo , 

*

li  and *

lo  can be derived from the normal structural stresses ui , uo , li  and lo  based on 

the equilibrium equations and the continuity conditions of the strain and the strain gradient along 

the bond line. The normal structural stresses ui , uo , li  and lo  which are marked in Figure 

3.13(b) for the left crack tip are 
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The normal structural stresses ui , uo , li  and lo  for the right crack tip are 
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The values of the analytical global stress intensity factors, 1K  and 2K  for the left and right tips 

of the weld can be obtained from Equations (1) and (2) based on Equations (14)-(20).  

Figure 3.14 shows a schematic of a main crack and a kinked crack with the kink length a  

and the kink angle  .  Here, 1K  and 2K  represent the global stress intensity factors for the main 
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crack, and Ik  and IIk  represent the local stress intensity factors for the kinked crack.  Note that 

the arrows in the figure represent the positive values of the global and local stress intensity 

factors 1K , 2K , Ik  and IIk .  When using Equation (2) with Equations (13)-(16), the value of 2K  

should be multiplied by -1 to agree with the conventions in Figure 3.14.     

For kinked cracks in dissimilar material, when the kink length approaches 0, the Ik  and IIk  

solutions can be expressed as functions of the kink angle  , the Dunders’ parameters  and  , 

and the global 1K  and 2K  solutions for the main crack.  The local stress intensity factors Ik  and 

IIk   are expressed in the complex form, from  He and Hutchinson [19] as 
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where HH

Rc , HH

Ic , HH

Rd  and HH

Id  are the real and imaginary part of the complex function HHc  and 

HHd .  Both HHc  and HHd  are complex functions of  ,   and  .  Equation (21) indicates that 

Ik  and IIk  depend on the crack length a  and bimaterial constant  .  The global stress intensity 

factors 1K  and 2K  are defined in the form as in 



 i

AA

xyy r
r

iKK
i

2

21 
 .  

The functions HH

Rc , HH

Ic , HH

Rd  and HH

Id  were tabulated by He and Hutchinson [26].  The 

values for HHc  and HHd  were interpolated from that report.  As indicated in Equation (21), when 

the crack length approaches zero, the values for the local stress intensity factor solutions depend 

on the value of a  when the bimaterial constant  is nonzero.  The dependence of the solutions on 

the crack length a  presents a challenge to develop a fatigue life estimation strategy based on a 

fatigue crack growth model, even though the oscillation is in a region which is too small to be of 

concern.  This challenge prevents the evaluation of the limit at the crack length of 0a  in 

Equation (21).   
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Evaluating the local stress intensity factor at a crack length of 0a  is necessary in order to 

use the kinked crack growth model for predicting fatigue life.  As explained in Chapter 2, a 

modified material will be used to set   and   equal to zero.  The modified material chosen for 

this investigation has elastic constants 6.48E GPa and 458.0 for the magnesium sheet and 

3.206E GPa and 3.0  for the steel sheet.  This eliminates the dependence on the crack 

length for the vanishing crack.  It can be considered a reasonable approximation since the 

oscillation begins at 0.01 mm which is slightly smaller than the grain size of 0.02 mm for the 

AZ31 in the weld as observed by Santella et al [2].  If the oscillation is not disregarded, there 

may be a small region of contact for very small kink lengths.  This crack closure is calculated to 

at a distance of 10
-14

 mm from the main crack.  This length scale is not relevant to the problem 

since at regions very close to the crack tip, there will be a region of plasticity.  With the modified 

material,   and   are equal to zero.  With  =0, Equation (21) simplifies to 

      210
KdcKdck HH

I

HH

I

HH

R

HH

RI        (22) 

      210
KdcKdck HH

R

HH

R

HH

I

HH

III        (23) 

where HH

I

HH

R

HH iccc   and HH

I

HH

R

HH iddd   as developed by He and Hutchinson [19].  For 

similar welds, Equations (22) and (23) simplifies to the solution presented by Cotterell and Rice 

[27].  It should be noted that for 0 , the crack tip stresses recover the traditional r/1  

singularity.  The local stress intensity factor solutions for the vanishing crack can then be 

approximated using Equations (22) and (23) along with analytical or computational global stress 

intensity factor solutions obtained using the modified material.  As noted in Chapter 2, this 

approximation is reasonable because of the similarities of the stresses observed in the real and 

modified material which is due to the low value of   for the real materials and the large kink 
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angle of 90° (according to the sign convention in Figure 3.14, the kinked angle   should be 

 90 ).  

The local stress intensity factor solutions for kinked cracks with finite crack lengths for 

ultrasonic welds in lap-shear specimens can be expressed as functions of the normalized kink 

length ta  as in [28] as 

   
0III kfak           (24) 

   
0IIIII kfak           (25) 

where If  and IIf  are geometric functions which depend on the geometric parameters of the 

ultrasonic welded lap-shear specimens such as the weld width w  and the sheet thickness t .  The 

local stress intensity factor solutions for idealized ultrasonic welds in lap-shear specimens were 

obtained computationally and presented in the normalized form in [28] for tw 5.85 to match 

the experimental specimen dimensions.   

3.4.2 Finite Element Model 

A finite element model was constructed to find the global and local stress intensity factors.  

The two-dimensional lap-shear model for the weld with thick steel is shown in Figure 3.15(a) 

with the boundary and loading conditions.  The specimen has the upper sheet thickness ut , lower 

sheet thickness lt , the length L , the overlap length V , and the weld width w .  The x – y 

coordinate system is shown in the figure.  The left edge has a fixed displacement condition at the 

middle surface while the right edge has a concentrated force per unit width, bF / , applied at the 

middle surface in the x  direction.  Here, F  denotes the applied force and b  denotes the width 

of the central portion of the specimen with the reduced width.  The finite element model for the 
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weld with thin steel is exactly the same, except the lower sheet thickness, lt , is changed to 0.8 

mm. 

Finite element analyses have been conducted on both an idealized model and a model which 

follows the weld geometry for both steel thicknesses.  The central portion of the mesh for the 

idealized model, showing the pre-existing cracks and the crack-tips, can be seen in Figure 

3.15(b).  For the idealized model, the weld indentation has been omitted.  In the weld geometry 

model, the sonotrode indentation is modeled as shown in Figure 3.15(c).  Both models are 

computed in plane-strain which means any curvature on the weld front remaining from the 

original spot weld has been assumed as straight and uniform through the cross section.   

The two-dimensional plane-strain finite element model has the weld width w 8.78 mm, 

length, L 100 mm, and overlap length V 75 mm.  The thickness ut  for the upper sheet is 1.58 

mm for the top magnesium sheet and the thickness lt  is 1.5 mm or 0.8 mm for the bottom HSLA 

or mild steel sheet respectively.  The width b  of the central portion of the specimen is taken as 8 

mm to calculate the applied load per unit width for the finite element analyses.  Figures 3.15(b) 

and 3.15(c) shows the central portion of the finite element model with the welded portion and 

both crack tip notches which have formed during welding.  Figure 3.15(d) shows a close-up view 

of the finite element mesh near the right crack tip. Second-order quarter point crack-tip elements 

(CPE8R) with collapsed nodes were used to model the  r/1  singularity near the crack tip.  Any 

change in the metal due to welding has been ignored.  Both materials are assumed to be linear 

elastic.  Steel is modeled with a Young’s modulus E 206.3 GPa and a Poisson’s ratio  0.3.  

Magnesium (AZ31) is modeled with Young’s modulus E 45 GPa and a Poisson’s ratio 

 0.35.  These properties are listed in Table 3.2.  Computations were performed using the 

commercial finite element software ABAQUS [29].   
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The normalized computational global stress intensity factor solutions for the two pre-existing 

crack tips are listed in Table 3.3a and 3.3b for the idealized and weld geometry models with 1.5 

mm steel and 0.8 mm steel respectively.  Note that the computational stress intensity factor 

solutions have been normalized by the analytical 2K  solution for the right side in Equation (2) 

using the thick steel model for both tables.  The ratio of the analytical 2K  solutions for the thin 

and thick steel on the right side, 
thick

thin

K

K

,2

,2
, is 0.962.  The results of the finite element analysis 

show that the 1K  and 2K  solutions are higher for the right pre-existing crack tip compared to 

those for the left pre-existing crack tip for both the idealized and weld geometry model.  These 

results can be used to explain the favorable condition for kinked fatigue crack propagation in the 

upper right sheet under all cyclic loading conditions. 

As observed from the micrographs of partially failed specimens, kinked fatigue cracks are 

initiated from the pre-existing crack tips and propagate through the sheet thickness of the upper 

right sheet under cyclic loading conditions.  From the micrographs of the failed specimens, the 

kinked crack angle was found to be between 72  and 93  
for all the load ranges.  Figure 3.16(a) 

shows a schematic of a two-dimensional finite element model of a lap-shear specimen with a 

single kinked crack growing into the magnesium sheet.  The boundary and loading conditions of 

the specimen are the same as those for the finite element model shown in Figure 3.15(a).  The 

kink angle in this investigation is selected to be 90 (  90 ).  Fourteen normalized kink 

lengths, namely, ta /  0.0009, 0.0019, 0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, and 0.7 are considered in this investigation.  Figure 3.16(b) shows a close-up view of the 

finite element mesh near the right kinked crack tip for ta / 0.3. 
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Figure 3.17 shows the values of  
0II / kk  for the kinked cracks emanating from the right pre-

existing crack tips as functions of the normalized kink length ta /  for tw 5.85 and  90  

for both models.  The values of  
0II / kk  are also listed in Table 3.4a and 3.4b for the 1.5 mm 

steel welds and the 0.8 mm steel welds respectively.  Note that the solutions are normalized by 

 
0Ik  in Equation (22) with kink angle  90  and the analytical global stress intensity factor 

1K  and 2K  solutions in Equations (1) and (2) based on equations from Zhang [17].  The 

material used for the  
0Ik  solution has been modified to achieve 0  and allow the use of 

Equation (22) as discussed in Chapter 2.  The  
0Ik  solution for the thick steel model was used 

for normalizing both Table 3.4a and 3.4b.  The ratio of the analytical  
0Ik
 
solutions for the thin 

and thick steel, 
 

 
thickI

thinI

k

k

,0

,0
, is 1.075.  Figure 3.17 shows that the values of  

0II / kk  increase 

monotonically with the kink length.  

Figure 3.18 shows the values of  
0I/ kk II  for the kinked cracks emanating from the right 

pre-existing crack tips as functions of the normalized kink length ta /  for tw 5.85 and 

 90  for the idealized and weld geometry models for welds with both 1.5 mm and 0.8 mm 

steel sheet.  The values of  
0I/ kk II  are also listed in Table 3.4a and 3.4b for the welds with 1.5 

mm steel and 0.8 mm steel respectively.  The local stress intensity factor IIk  solutions are 

negative based on the definitions shown in Figure 3.14.  Figure 3.18 shows that the absolute 

values of  
0

/ III kk  for the idealized models decrease monotonically as the kink length increases 

for kinked cracks larger than ta  0.01.  The weld geometry models differ from the idealized 

models indicating that the sonotrode tip indentation has an effect on IIk .  Figures 3.17 and 3.18 
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show that fatigue kinked crack growth is under mixed mode I and mode II loading conditions 

with mode I being the dominant mode.  Table 3.4a and 3.4b lists the normalized local stress 

intensity factor Ik  and IIk  solutions with tw 5.85 and  90 , for 1.5 mm steel and 0.8 mm 

steel respectively.   

 

3.5. Fatigue life estimations 

The fatigue life for the ultrasonic welds in lap-shear specimens with a dog-bone profile is 

calculated using a Paris law method for kinked cracks.  To use the Paris law for fatigue 

estimation, the local stress intensity factor Ik  and IIk  solutions as functions of the normalized 

kink length ta /  are obtained from linear interpolation between those obtained from the finite 

element analyses in Table 3.4a and 3.4b.  The variations of the Ik  and IIk  solutions in the range 

of 0.1/7.0  ta  are assumed to be the same as those for 7.0/6.0  ta .  The local and global 

stress intensity factor solutions obtained from the finite element analyses as expressed in 

Equations (24) and (25) and the experimentally observed kink angle of 90  are used in a kinked 

fatigue crack growth model.  The Ik  and IIk  solutions for a vanishing crack, 0/ ta , are also 

required and are obtained using Equations (22) and (23) and 1K  and 2K  from the finite element 

computations with 0 , as in Chapter 2.  The Paris law is adopted to describe the propagation 

of the kinked fatigue cracks emanating from the pre-existing crack tips of ultrasonic welds in 

lap-shear specimens.  The Paris law is given as 

  makC
dN

da
eq          (26) 

where a  is the kink length and N  is the life or number of cycles.  Noting that the experiments 

show crack propagation only through the magnesium sheet, the material constants C  and m
 
for 
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AZ31 are found in the literature.  One complication of this study is that, while crack growth data 

is available for AZ31, the results vary by material, testing conditions and environment.  The wide 

range of values for C  and m
 
for AZ31 can be observed from data in Choi et al.[30], Ochi et 

al.[31], Ishihara et al. [32], Morita et al.[33] and Tokaji et al.[34].  Tokaji et al. suggest that 

magnesium is particularly sensitive to the humidity level during fatigue.  According to those 

results, magnesium samples tested in laboratory air, with a humidity of 50-70%, had shorter 

fatigue lives than samples tested in dry air.  Additionally plots of crack propagation rates vs. 

stress intensity factor range revealed that the slope changes at mMPa45.3 K [34].  The 

stress intensity factor range for this study is above mMPa4  for all load ranges.  The constants 

are therefore found from the upper stress intensity range for AZ31 using both the laboratory air 

and dry air in Tokaji et al.[34].  The constants are taken as 
61086.1 C  

m)m(MPa

mm/cycle
 and 

m 2.8 for laboratory air, and 
71036.1 C  

m)m(MPa

mm/cycle
 and m 2.8 for dry air [34].  Paris 

law constants are also taken from Ishihara et al. [32] as 
71000.4 C  

m)m(MPa

mm/cycle
 and 

m 2.7, where tests were conducted under laboratory air.  In Equation (26), eqk  is the range of 

the equivalent stress intensity factor under mixed mode loading conditions.  For the kinked 

fatigue crack growth model, the range of the equivalent stress intensity factor eqk  is given as 

      
     2II

2

Ieq akakak          (27) 

where   is an empirical constant to account for the sensitivity of material to mode II loading 

conditions.  The value of   is taken as 1 here.  The fatigue life N  can be obtained numerically 

by integrating the Paris law in Equation (27) as 
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here 0, 0.0009, 0.0019, 0.005, 0.025, 0.05, …, and 0.70 represent the values of the normalized 

kink length ta  where the computational local stress intensity factor solutions are available and 

t  is the crack growth distance  sintt  .  For  90 , tt  .   

In this investigation, a kinked crack emanating from the right pre-existing crack tips is 

modeled in the finite element analyses to represent the kinked crack in the ultrasonic weld as 

shown in the micrographs of partially failed specimens.  As stated earlier, this kinked crack is 

modeled for 14 normalized kink lengths.  The results of the local stress intensity factor solutions 

from the finite element analyses are input into Equations (27) and (28) to yield a prediction of 

the number of cycles to failure.  

The stress intensity factor solutions are found for the ideal model and weld geometry model 

for both the 1.5 mm and 0.8 mm steel welds.  The fatigue life is estimated based on those 

solutions, Equation (28) and the C  and m
 
constants obtained from Tokaji et al.[34] and Ishihara 

et al. [32].   

Figure 3.19 shows the fatigue life estimations based on the kinked fatigue crack growth 

model in Equation (28) with the global and local stress intensity factor solutions from the finite 

element analyses.  Twelve kinked crack growth models were computed.  These represent weld 

geometry and ideal geometry for welds with both thick and thin steel for three values of C  and 

m .  The C  and m
 
from Ishihara et al.[32]  and from the dry air and laboratory air in Tokaji et 

al. [34] were used.  The kinked crack growth model fatigue life for the 1.5 mm steel welds and 

the 0.8 mm steel welds are within 2% of each other.  Therefore these are consolidated, leaving 
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the ideal geometry and weld geometry models with three values of C  and m .  The idealized 

models use a magnesium sheet of uniform thickness, while the weld geometry models include 

the weld indentation.  All of the models have a magnesium sheet thickness of ut 1.58 mm.  

Stress intensity factor solutions from finite element analyses are found for each model.  The 

vanishing crack is obtained using Equations (22) and (23) with the appropriate global stress 

intensity factor solutions from each finite element model.  Then life estimations are found with 

the Paris law constants C  and m  from both Tokaji et al.[34] and Ishihara et al.[32].  In Figure 

3.19, the models for ideal and weld geometry nearly overlap.  This is not surprising since the 

local  
0II / kk
 
shown in Figure 3.17, which is the dominate mode, is nearly the same for both 

ideal and weld geometry models.  It can be observed, however, that the choice of C  and m  

greatly influences the kinked crack growth model predictions.  The shortest fatigue life 

prediction is based on the values for the laboratory air in Tokaji et al. [34], while the longest 

fatigue life prediction is based on the values for dry air.  The values obtained from Ishihara et al. 

[32] in laboratory air fall between those obtained from Tokaji et al.[34].  While interesting to 

note the large change in predicted life depends on the choice of C  and m , it is also distressing to 

the researcher since experimentally obtaining values for C  and m
 
would be preferable, but is 

typically not within the research scope.  

The ranges of cycle life predictions are shown in Figure 3.20 for the ideal and weld geometry 

models.  The fatigue life estimations based on the kinked fatigue crack growth model are mostly 

less than experimental results.  The only exception is that for high load ranges, the life estimation 

range overlaps and exceeds the experimental results slightly.  The life predictions are most 

accurate for low cycle fatigue.  For high cycle fatigue, the kinked crack growth model under 

predicts the experimental fatigue life by about a decade. 
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3.6. Discussion 

Estimations of the plastic zones size based on the linear elastic fracture mechanics were also 

carried out for different kinked fatigue crack lengths under various load ranges.  Plastic zone 

sizes were determined using o 2  with o   as the initial cyclic yield strength of the base metal.  

The estimations of the plastic zone sizes vary from 3% to 10% of the sheet thickness as the 

kinked fatigue crack propagates from about 2% to 20% of the sheet thickness for a load range of 

1.90 kN which represents the highest load range tested experimentally.  The plastic zone sizes 

become 29% of the sheet thickness as the kinked fatigue crack length reaches 40% of the sheet 

thickness for load ranges of 1.90 kN in welds with thick steel.  Similarly, specimens with thin 

steel had plastic zones that were 27% of the sheet thickness as the kinked fatigue crack length 

reached 40% of the sheet thickness for loads of 1.90 kN.  This means that under high load 

ranges, the plastic zones extend about half of the remaining ligament of the sheet when reaching 

40% of the sheet thickness.  As the kink crack propagates, the plastic zone continues to increase 

in size.  This can be used to explain the similarity of the final failure under low-cycle fatigue 

with that of quasi-static loading in thick steel welds.  For high-cycle fatigue with load ranges 

between 0.7 kN and 1.3 kN in welds with thick steel, the plastic zone size ranges from less than a 

percent to roughly 4% while propagating from about 2% to 20% of the sheet thickness.  For a 

load range of 1.3 kN, the plastic zone becomes 13% at a crack length of 40% of the sheet 

thickness.  Plastic zone sizes for welds with thin steel follow similar trends.  For high-cycle 

fatigue, this can be used to explain why the crack continued upward instead of connecting 

directly with the corner of the sonotrode tip indentation.  
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The fatigue life estimations based on the kinked crack growth models were less than those 

found experimentally.  Underestimation of fatigue life has also been reported by Jordan et al.[6] 

in AZ31 welds.   

It was shown that the Paris law constants, C  and m , have a substantial impact on the fatigue 

life predictions for the kinked crack growth model.  Environmental factors, such as humidity as 

well as material properties and heat treatment influence the values for C  and m .  The 

experiments necessary to obtain C  and m for the base material were not conducted due to a 

shortage of research material and lack of equipment.  If the C  and m were obtained, it would not 

entirely solve the problem because the magnesium changes slightly during welding.  The fatigue 

life estimations range from models based on constants in Tokaji et al. [34] for laboratory air 

resulting in lower life, to dry air resulting in higher life.  Fatigue life estimations based on 

constants from Ishihara et al. [32] fall between those based on constants from Tokaji et al. [34].  

Humidity measurements in the building where fatigue tests were conducted indicate that the 

relative humidity is 20-55% depending on the season.  This is generally less than 50-70% as 

reported by Tokaji et al. [34]. Our environmental conditions should lie between the two 

extremes.  Also interesting to note is that following the exact weld geometry did not change the 

kinked crack growth model appreciably.  

 

3.7. Conclusions 

In this paper, the fatigue behavior of dissimilar ultrasonic welds in lap-shear specimens of 

AZ31B-H24 and hot-dipped galvanized steel is investigated.  The welded specimens were 

modified into a dog-bone profile before experimental fatigue testing.  The fatigue life was also 

studied based on a kinked crack growth fatigue life estimation model.  Optical micrographs of 
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the ultrasonic welds before and after failure under quasi-static and cyclic loading conditions were 

examined.  The micrographs showed that fatigue failure in all cases is through the upper right 

AZ31 load bearing leg.  During quasi-static loading conditions, the failure began at the pre-

existing crack tip and fractured upward, into the weld indentation for the welds with 1.5 mm 

steel.  During quasi-static loading of welds with 0.8 mm mild steel, the failure occurred in the 

steel leg.  For all cyclic loading in welds with either steel type, the weld fracture appears to be 

initiated from the right pre-existing crack tip, propagating and kinking at roughly 90°.  Under 

low-cycle loading conditions, the weld failure appears to be initiated from the pre-existing crack 

tip and the specimens finally fail as the crack connects with the corner of the weld indentation in 

the AZ31 on the right side of the weld.  Under high-cycle loading conditions, the weld failure 

appears to be initiated from the pre-existing crack tip and the specimens finally fail from the 

kinked fatigue crack propagating through the upper right load carrying sheets, with the final 

fracture connecting with the side wall of the weld indentation, or outside the indentation.  Finite 

element analyses of the ultrasonic welded lap-shear specimens for an idealized weld and model 

representing the welded geometry with consideration of the weld indentation were carried out to 

obtain the global and local stress intensity factor solutions for the main cracks and kinked cracks, 

respectively.  The stress intensity factor solutions can be used to explain the crack growth on the 

right side of the weld for every cyclic load condition.  A kinked fatigue crack growth model 

based on the global and local stress intensity factor solutions for finite kinked cracks obtained 

from the finite element analyses is adopted to estimate the number of fatigue cycles to failure for 

the ultrasonic welds.  The fatigue life estimations based on the kinked fatigue crack growth 

model are nearly identical for welds with thick or thin steel.  The inclusion of the weld 

indentation resulted in slightly lower fatigue life estimations than the idealized model.  The 
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kinked crack growth model is particularly sensitive to the parameters C  and m .  The kinked 

crack growth models using dry air parameters [34] were closest to the experimental fatigue 

results, but still underestimated the fatigue life for high cycle fatigue.    
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Table 3.1. Dimensions of the lap-shear specimen 

Width of the grip section  W  30 mm 

Width of the central portion  b  8.0 mm 

Indentation width  g  7 mm 

Weld width  w  8.78 mm 

Length of each leg  L  100 mm 

Overlap length  V  75 mm 

Sheet thickness AZ31  ut  1.58 mm 

Sheet thickness steel, thick  lt  1.5 mm 

Sheet thickness steel, thin  lt  0.8 mm 

Radius  r  10.0 mm 

 

Table 3.2. Mechanical properties of AZ31-H24 and steel 

 Elastic 

Modulus 

(GPa) 

Poisson’s ratio 

AZ31-H24 45 0.35 

Steel 206.3 0.3 
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Table 3.3a: The normalized computational global stress intensity factor 1K and 2K  solutions for 

the right and left pre-existing crack tips for the thick steel welds. 

 

1.58 mm magnesium and 1.5 mm steel 1K  2K  

Model with weld geometry 

including sonotrode indentation 

Right crack tip 0.731 1.024 

Left crack tip 0.335 0.373 

Idealized model  

Right crack tip 0.736 1.003 

Left crack tip 0.373 0.382 

 

Table 3.3b: The normalized computational global stress intensity factor 1K and 2K  solutions 

for the right and left pre-existing crack tips for the thin steel welds. 

 

1.58 mm magnesium and 0.8 mm steel 1K  2K  

Model with weld geometry 

including sonotrode indentation 

Right crack tip 0.775 0.988 

Left crack tip 0.528 0.559 

Idealized model  

Right crack tip 0.760 0.975 

Left crack tip 0.547 0.558 
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Table 3.4a: The normalized local stress intensity factors  
0

/ II kk  and  
0

/ III kk  solutions for the 

right kinked crack with tw 5.85 and  90  for thick steel welds.   

  Idealized Model Weld Geometry Model 

ta /  

 
0

/ II kk   
0I/ kk II   

0
/ II kk   

0I/ kk II  

0.0 1.015 0.237 1.002 0.238 

0.0009 1.052 0.177 1.065 0.176 

0.0019 1.061 0.183 1.075 0.182 

0.005 1.082 0.189 1.098 0.188 

0.01 1.110 0.191 1.127 0.192 

0.025 1.183 0.189 1.205 0.192 

0.05 1.292 0.180 1.320 0.187 

0.075 1.398 0.170 1.432 0.182 

0.1 1.507 0.160 1.547 0.178 

0.2 1.983 0.125 2.045 0.169 

0.3 2.598 0.095 2.681 0.171 

0.4 3.465 0.070 3.558 0.179 

0.5 4.784 0.047 4.875 0.184 

0.6 6.992 0.028 7.059 0.170 

0.7 11.226 0.013 11.252 0.125 

 

Table 3.4b: The normalized local stress intensity factors  
0

/ II kk  and  
0

/ III kk  solutions for the 

right kinked crack with tw 5.85 and  90 for thin steel welds.   

  Idealized Model Weld Geometry Model 

ta /  

 
0

/ II kk   
0I/ kk II   

0
/ II kk   

0I/ kk II  

0.0 0.982 0.243 0.989 0.238 

0.0009 1.043 0.189 1.059 0.193 

0.0019 1.051 0.195 1.067 0.199 

0.005 1.072 0.200 1.089 0.205 

0.01 1.101 0.201 1.119 0.206 

0.025 1.175 0.197 1.197 0.204 

0.05 1.287 0.186 1.314 0.197 

0.075 1.394 0.175 1.427 0.190 

0.1 1.504 0.165 1.543 0.185 

0.2 1.982 0.127 2.043 0.172 

0.3 2.598 0.097 2.679 0.172 

0.4 3.465 0.070 3.558 0.179 

0.5 4.784 0.047 4.875 0.184 

0.6 6.992 0.028 7.059 0.170 

0.7 11.228 0.013 11.252 0.125 

 



94 

 

 

 

(a) 

 

   

(b)       (c) 

Figure 3.1 (a) A top view of an ultrasonic welded lap-shear specimen prior to being machined 

into a dog-bone shaped specimen. (b) Face view and (c) side view of the sonotrode tip used in 

the ultrasonic welding.
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(a) 

 

(b) 

Figure 3.2.  (a) A top view and (b) a bottom view of an ultrasonic welded lap-shear specimen 

which has been machined into a dog-bone shape. 
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Figure 3.3.  A schematic of a lap-shear specimen with the loading directions shown as the bold 

arrows. 
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(a) 

 

 
 

(b) 

 

Figure 3.4. An optical micrograph of the cross section of an ultrasonic welded joint in (a) 1.58 

mm AZ31 and 1.5 mm HSLA steel and (b) 1.58 mm AZ31 and 0.8 mm mild steel prior to 

testing. 
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Figure 3.5.  The experimental results of the fatigue tests of ultrasonic spot welds with a dog-bone 

profile in lap-shear specimens under cyclic loading conditions. 
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Figure 3.6. A top view of the weld in magnesium and thick steel after testing for (a) quasi-static 

load, (b) (low cycle) cyclic loading with 697 cycles under a load range of 1.93 kN, (c) (low 

cycle) cyclic loading with 2194 cycles under a load range of 1.66 kN, (d) (high cycle) cyclic 

loading with 8962 cycles under a load range of 1.19 kN. 
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Figure 3.7. (a) A bottom view of the weld in magnesium and thin steel after testing for quasi-

static load. A top view of the weld in magnesium and thin steel after testing for (b) (low cycle) 

cyclic loading with 2566 cycles under a load range of 1.57 kN and (c) (high cycle) cyclic loading 

with 80,821 cycles under a load range of 0.72 kN. 
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Figure 3.8. Optical micrograph of a failed weld in 1.58 mm AZ31 and 1.5 mm HSLA steel under 

quasi-static loading conditions. 

 



102 

 

 

 

(a) 

 

(b) 
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(c) 

 

 
 

(d) 

 

Figure 3.9. Optical micrographs of (a) the entire section and (b) an enlarged near the kinked 

crack of a partially failed thick steel weld at the fatigue life of 
3102.2   cycles under a load range 

of 1.43 kN.  Optical micrographs of a failed thick steel welds (c) at the fatigue life of 
3107.1   

cycles under a load range of 1.70 kN and (d) at the fatigue life of 
3103.3   cycles under a load 

range of 1.43 kN (low-cycle (LC) loading conditions). 
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Figure 3.10. Optical micrograph of a failed thin steel weld at the fatigue life of 
3109.6   cycles 

under a load range of 1.16 kN (low-cycle (LC) loading conditions). 
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(a) 

 

 
(b) 

 

 
 



106 

 

 
(c) 

Figure 3.11. Optical micrographs of (a) the entire section and (b) an enlarged section near the 

kinked crack of a partially failed thick steel weld at the fatigue life of 
41046.5   cycles under a 

load range of 0.95 kN.  (c) Optical micrograph of a fully failed weld at a fatigue life of 
41050.3   

cycles under a load range of 0.99 kN (high-cycle (HC) loading conditions). 
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(a) 

 

 
 

 

(b) 

Figure 3.12. Optical micrographs of (a) a failed thin steel weld at a fatigue life of 
41053.1   

cycles under a load range of 0.96 kN and (b) a failed thin steel weld at a fatigue life of 
41008.8   

cycles under a load range of 0.72 kN (high-cycle (HC) loading conditions). 
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(a) 

 
 

(b) 

 

 

Figure 3.13. (a) A schematic of the weld with the lap-shear loading condition.  (b) A schematic 

of the left crack tip showing the normal stresses ui , uo , li  and lo  at the inner (i) and outer 

(o) surfaces of the upper (u) and lower (l) strips, respectively. 
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Figure 3.14. A schematic of a main crack and a kinked crack with the kink length a  and the kink 

angle  . 
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 (a) 

 

(b) 

 

(c) 
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(d)  

Figure 3.15. (a) A schematic of a two-dimensional finite element model of a lap-shear specimen 

with the boundary and loading conditions, (b) a view of the finite element mesh for the idealized 

showing the weld nugget and both pre-existing crack tips (c) a view of the finite element mesh 

for the weld geometry model showing the weld nugget and pre-existing crack tips and (d) a 

close-up view of the finite element mesh near the right crack tip. 
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(a) 

 

 

(b) 

Figure 3.16. (a) A schematic of a two-dimensional finite element model of a lap-shear specimen 

showing a kinked crack on the right side of the weld and the boundary and loading conditions, 

and (b) a close-up view of the finite element mesh near the right kinked crack tip for t/a 0.3. 
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Figure 3.17. The values of  
0II / kk  for the kinked cracks emanating from the right pre-existing 

crack tips as functions of the normalized kink length ta /  for tw 5.85 and  90 . 
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Figure 3.18. The values of  
0I/ kk II  for the kinked cracks emanating from the right pre-existing 

crack tips as functions of the normalized kink length ta /  for tw 5.85 and  90 . 
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Figure 3.19. The experimental results and the fatigue life estimations based on the kinked fatigue 

crack growth models for three values of C  and m . 
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Figure 3.20. The experimental results and the fatigue life estimation ranges based on the kinked 

fatigue crack growth models for ideal and weld geometry models. 
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Chapter 4 

Investigations of Dissimilar Ultrasonic Spot Welds in Lap-Shear Specimens of AZ31 and 

Steel Sheets under Cyclic Loading 

 

 

4.1. Introduction 

Replacing heavier metals in automobiles with magnesium is a great way to reduce vehicle 

weight.  As the transportation industry is evolving toward better fuel efficiency and lower 

environmental impact, reducing weight by material substitution is becoming a priority.  

Therefore incorporating magnesium into traditional steel frames will require joining the two 

dissimilar materials.  Many researchers are investigating all methods and aspects of joining 

magnesium and steel.   

Santella et al.[1, 2] studied feasibility and metallurgical aspects of  ultrasonic welding of a 

magnesium alloy (AZ31) to steel sheets.  Jana et al. [3] studied friction stir welding of AZ31 to 

steel sheets.  Additional research on dissimilar magnesium and steel friction stir lap joints is 

presented in Chen and Nakata [4], Wei et al.[5] and Schneider et al. [6].  Wahba and Katayama 

investigated laser welding of AZ31 to steel [7].   

In this study, dissimilar ultrasonic spot welds between AZ31 and steel sheets in lap-shear 

specimens are investigated.  The focus of this study is fatigue behavior of these dissimilar joints.  

Fatigue behavior is important for components intended for automotive application since welds 

will be subjected to cyclic loading conditions.  Specimens were created and tested under cyclic 

loading with a load ratio of R 0.1.  The experimental results are reviewed and compared with 
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analytical and computational solutions for stress intensity factors.  The global stress intensity 

factor solutions were found analytically using equations obtained by Zhang [8].  This approach 

has also been used for spot welds in lap-shear specimens by Tran and Pan [9].  A three 

dimensional welded lap-shear finite element model was constructed.  Global stress intensity 

factor results were obtained and compared with analytical results to validate the model.  Then 

equations from He and Hutchinson [10] were used, with the modified material combination used 

in Chapter 2, to estimate the local stress intensity factor solutions for a vanishing crack.  Local 

stress intensity factors for four maximum kink depths were obtained computationally.  Then, a 

kinked crack growth model was adopted to estimate the fatigue life of the dissimilar spot welds 

in lap-shear specimens.  The life estimations from the kinked crack growth model will be 

compared with the experimental fatigue results. 

 

4.2. Experiment 

4.2.1 Lap-shear specimen 

The lap-shear specimens were made by joining magnesium AZ31B-H24 sheets with a 

thickness of 1.58 mm and 1.5 mm hot-dipped galvanized high strength low alloy (HSLA) steel 

sheets.  The magnesium and steel were cut into coupons of 30 mm   100 mm.  The lap-shear 

specimen was made by welding the magnesium and steel coupons with a weld centered in the 30 

mm   75 mm overlap area using a Sonobond CLF 2500 single-transducer, wedge-reed 

ultrasonic welder.  The spot welding was done with a power of 1500 W, an impedance setting of 

6 and a welding time of 1 s.  The orientation of the sample was adjusted prior to welding so that 

the vibrations from the sonotrode tip were parallel to the surface of the sample and aligned with 

the short axis of the specimen.  The pressure to the tip clamping mechanism was adjusted for a 
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constant nominal pressure of 39 MPa on the material beneath the sonotrode tip.  Figure 4.1(a) 

shows a lap-shear specimen with an ultrasonic weld.  Figures 4.1(b) and 4.1(c) show the face and 

profile view of the 7 mm   7 mm sonotrode tip used in creating the welds.  The microstructures 

of the sheets, the specimen preparation procedure and the processing conditions were explained 

in Santella et al. [1].   

The lap-shear specimens were produced just as in Chapter 3.  In this investigation, however, 

the lap-shear spot welded specimens were tested as-welded rather than machined into a dog-bone 

profile.  During fatigue testing, two spacers were used to align the fixture to avoid the initial 

realignment of the specimen due to the non-aligned grips under lap-shear loading conditions.  

Figure 4.2(a) shows a schematic of a lap-shear specimen with the loading direction represented 

by bold arrows.  The figure also shows the points A, B, C and D around the circumference of the 

weld.  Figure 4.2(b) clearly illustrates the points A, B, C and D with respect to the angle   

around the weld.  As shown in the figure, the specimen has a width b2  and overall length L  for 

the upper and lower sheets. The specimen has the thickness ut  for the upper sheet and lt  for the 

lower sheet.  The specimen has an overlap length V , a weld diameter ra2 , and an indentation 

width g .  The dimensions of the specimens are b2  = 30 mm, L  = 100 mm, V  = 75 mm, ra2  = 

8.78 mm and g  = 7 mm. The thickness ut  for the upper sheet is 1.58 mm for the top magnesium 

sheet.  The thickness lt  is 1.5 mm for the bottom HSLA steel sheet.  The detailed dimensions of 

the lap-shear specimens are listed in Table 4.1. 

Before testing, an ultrasonic welded specimen was sectioned along the symmetry plane on 

the longitudinal axis.  The optical micrograph of the cross section can be seen in Figure 4.3.  The 

micrograph shows the indentation of the sonotrode tip into the magnesium sheet.  The weld 

reaches just outside of the visible indented region.  It should be noted that the cross-section was 
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taken near a ridge as opposed to a valley of the impression left from the sonotrode tip.  A slight 

deviation between the angle of the ridges and the cutting angle explains the asymmetry of the top 

profile in the magnesium.  The rest of the asymmetry, however, is not an artifact of sectioning.  

As observed by Santella et al. [1], during welding the magnesium and zinc reached a eutectic 

temperature where they liquefied.  The pressure of the sonotrode tip along with the vibrations 

caused the Mg-Zn eutectic layer to flow outward.  This eutectic layer is discussed in detail in 

Santella et al. [2].  On the right side, a gap and a layer between the magnesium and steel sheets is 

visible.  On the left side, the layer between two sheets is quite thin and the gap between the 

magnesium and steel sheets is much smaller.  The uneven distribution of this dispersed layer is 

most likely due to the vibrational modes associated with the sample sheets during welding.  The 

third asymmetrical feature is the existing cracks which can be seen on the right side and also just 

left of center in the magnesium sheet.  These cracks are present in multiple sectioned USW lap-

shear joints with this material combination.  This is believed to be caused upon cooling after 

welding due to a mismatch in thermal expansion coefficients.   

4.2.2 Quasi-static test of lap-shear specimen 

Lap-shear specimens were first tested under quasi-static loading conditions by using an 

automated MTS testing machine equipped with a load cell and a built-in position sensor to track 

the movement of the cross-head.  Spacers were not used during quasi-static tests.  The load and 

displacement histories were simultaneously recorded during each test.  The average failure or 

maximum load was about 4490 N.  The average failure load was used as the reference value to 

determine the applied load ranges for the fatigue tests.  The welds failed through the interface, 

leaving a small amount of magnesium material on the steel coupon.     
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4.2.3 Fatigue test of lap-shear specimen 

Lap-shear specimens were tested under cyclic loading conditions with an Instron servo-

hydraulic fatigue testing machine using a load ratio of R 0.1.  A sinusoidal loading profile was 

chosen and the frequency was set at 10 Hz during the tests.  The test was considered to be 

completed at the final separation of the welded sheets.  A few tests were interrupted before the 

final separation to study the fatigue crack growth patterns.  A plot of the load range versus the 

fatigue life in a log-log scale is shown in Figure 4.4.  Some specimens that failed under cyclic 

loading conditions were sectioned perpendicular to the weld direction and prepared for 

micrographic analyses.  The optical micrographs of the cross sections of the partially and fully 

failed specimens are presented in the following section.  

 

4.3. Failure modes of ultrasonic spot welds under cyclic loading conditions 

Ultrasonic spot welds in lap-shear specimens were studied under cyclic loading conditions. 

For all specimens tested under cyclic loading, a kinked crack initiated in the magnesium sheet at 

the edge of the weld near point A in Figure 4.2(a).  The kinked crack propagated at roughly a 90° 

angle through the magnesium sheet for all specimens.  Then, the failures can be separated into 

two different failure modes depending on the applied load range.  Under higher load ranges, the 

failed specimens exhibit a kinked crack near point A, but ultimately separate along the interface.  

Under lower load ranges, the kinked crack near point A continues to propagate transversely 

through the magnesium sheet, forming an eyebrow crack and then failing completely through the 

magnesium sheet on the right side of the weld.  Both of these crack growth patterns will be 

discussed in greater detail.  
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The general nature of the crack growth pattern can be observed in Figures 4.5(a)-(g), which 

show views of the failed surfaces for quasi-static and two specimens tested under cyclic loading.  

Figure 4.5(a)-(c) shows a top view of a the magnesium sheet, the bottom view of the magnesium 

sheet, and the top view of the steel sheet of a specimen tested under quasi-static loading 

conditions respectively.  The loading in each case is shown schematically with arrows.  Figure 

4.5(b) and 4.5(c) show that the quasi-static specimen failed through the interface, leaving a small 

amount of material on the steel sheet.  Figure 4.5(b) shows some cracking on the underside of the 

magnesium coupon, however, a kinked crack at the edge of the weld is not observed.   

Figures 4.5(d)-(f) shows a top view of a the magnesium sheet, the bottom view of the 

magnesium sheet, and the top view of the steel sheet, respectively, of a specimen tested at a 

maximum of 80% of the quasi-static failure load.  This specimen was tested for 
3107.5   cycles 

under a load range of 3.20 kN.  Similarly to the quasi-static specimen, this specimen failed 

through the welded interface, leaving some magnesium material on the steel sheet.  Figures 

4.5(d) and 4.5(e) show that the specimen had a kinked crack on the right side of the weld, near 

point A, growing completely through the thickness of the magnesium sheet.  This feature is 

difficult to observe here and will be clearer in the sectioned micrographs.   

Figure 4.5(g) shows a top view of a failed specimen tested at a maximum of 48% of the 

quasi-static failure load.  This specimen had a fatigue life of 
41008.3   cycles under a load range 

of 1.91 kN.  This weld failed by a kinked crack originating near point A on the right side and 

propagating upward and outward through the thickness and width of the magnesium sheet.   

For the purpose of discussion in this paper, specimens will be divided into a low-cycle and 

high-cycle fatigue range.  This is determined by the failure mode from the fatigue tests and is 

chosen only for convenience.  In actuality, the transition between low-cycle and high-cycle 
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fatigue changes gradually as the load range is decreased.  For this paper, the transition between 

low-cycle and high-cycle is set at a load range of 2.1 kN which lies between the specimens 

shown in Figures 4.5(d)- (f) and 4.5(g).  Welds tested at load ranges less or equal to 2.1 kN will 

be referred to as high-cycle fatigue.  Note that the definitions of low-cycle and high cycle fatigue 

loading conditions in this study are only provided for convenient presentation.  Both low-cycle 

and high-cycle fatigue crack growth patterns will be discussed further by looking at micrographs 

of the sectioned failed and partially failed specimens.  

4.3.1 Failure mode under low-cycle (LC) loading conditions 

Fatigue failure under low-cycle conditions is observed with an optical micrograph in Figure 

4.6.  Figure 4.6 shows an optical micrograph of a failed spot weld at a fatigue life of 
3105.9   

cycles under a load range of 2.82 kN.  The upper magnesium sheet is loaded on the right, while 

the lower steel sheet is loaded on the left as indicated schematically with arrows.  The upper 

magnesium sheet, shows a kinked crack which propagated from the right side of the weld, 

upward through the thickness of the magnesium and into the indentation from the sonotrode tip.  

It should be noted that although the left and right side of the magnesium sheet appear completely 

separated in the sectioned view, the sheet is still intact at a small distance away from the weld, 

just as in Figures 4.5(d) and 4.5(e).  On the left side of the weld, at point B, a kinked crack 

propagated into the weld at a shallow angle.  On the left side, as the kinked crack advances from 

the main crack, it effectively reduces the load carrying area of the weld.  Near the central portion 

of the weld, a third crack front propagated upward, possibly initiated at a pre-existing defect in 

the weld.  The weld finally separated through the interface leaving residual magnesium material 

on the steel sheet.  The specimens tested at this loading condition showed some variation as to 

the amount of magnesium left on the steel coupon, but all of the specimens displayed a kinked 
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crack which propagated through the thickness of the magnesium on the right side near the weld 

before failure.  Figure 4.7(a) shows a partially failed weld tested for 
4106.1   cycles under a load 

range of 2.38 kN.  A box indicates the enlarged portion which is shown in Figure 4.7(b).  In the 

enlarged section, the beginning of kinked cracks growing from the edge of the weld near point A 

can be seen.  This shows that kinked crack initiation on the right side is one of the first 

observable features indicating fatigue failure is underway.  In summary, specimens failing under 

low-cycle fatigue, with testing load ranges greater than 2.1 kN, display a kinked crack 

propagating at roughly a 90° angle and a final failure through the interface.  A total of six 

specimens were tested to complete failure under these load ranges and they all exhibited the 

same failure mode. 

4.3.2 Failure mode under high-cycle (HC) loading conditions 

Specimens tested under high-cycle fatigue fail with a kinked crack forming on the right edge 

of weld and propagating upward through the thickness of the sheet.  Then this crack grows 

transversely through the entire width of the magnesium sheet, separating the loaded magnesium 

leg from the rest of the weld.  Figure 4.8 shows an optical micrograph of the cross section of a 

failed weld at the fatigue life of 
4106.6  cycles under a load range of 2.02 kN.  The upper 

magnesium sheet is loaded on the right, while the lower steel sheet is loaded on the left as 

indicated schematically with arrows.  The kinked crack, visible on the right side of the 

micrograph, appears to kink upward at an angle of 82° with respect to the weld interface.  Unlike 

the specimens tested under low-cycle fatigue, the kinked crack in Figure 4.8 extends the entire 

width of the magnesium coupon.  It also can be seen that the crack kinks upward through the 

dispersed layer, instead of propagating briefly along the interface before kinking.  The dominant 

failure mode for the specimens under high-cycle loading appears to be a kinked crack 
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propagation upward and then transversely through the upper right sheet.  This type of failure 

mode corresponds to the applied load ranges equal to or less than about 2.1 kN.  A total of four 

specimens were tested to complete failure under these load ranges and they exhibited the same 

failure mode. 

 

4.4. Global and local stress intensity factor solutions 

4.4.1 Theory 

Global stress intensity factors can be found analytically and used to explain the crack growth 

pattern and validate the three-dimensional finite element model.  The asymptotic in-plane stress 

field around an interface crack tip is an oscillatory field that can be characterized by a complex 

stress intensity factor K ( 21 iKK  , 1i ) (Rice and Sih [11]).  The stresses y and xy  at a 

small distance r  ahead of the interface crack tip are characterized by K as 
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Here, the bimaterial constant   is defined as  
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where uG  represents the shear modulus of the upper sheet and lG  represents the shear modulus 

of the lower sheet.  Here, u  and l  for the upper and lower sheets, respectively, are defined as  

  uu  43             (3) 

and 

  ll  43                 (4) 
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under plane strain conditions.  Note that u  and l  represent the Poisson’s ratios of the upper 

and lower sheets, respectively.  

 In Equation (1), t  represents a characteristic length [8, 12].  In this investigation, t  

represents the upper sheet thickness ut  which is the smaller value of the thicknesses of the two 

sheets bonded together as in Suo and Hutchinson [13] and Zhang [8].  It should be noted that 

when the two materials are identical, 0 .  In this case, 1K  and 2K  in Equation (1) for the 

interface crack become the conventional stress intensity factors IK  and IIK , respectively.  

The global stress intensity factor solutions, 1K  and 2K , are obtained by Zhang [8] as  
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where the modulus ratio   is defined as 

lu EE ''           (7) 

Here, 

)1/(' 2
uuu EE           (8) 

and  

)1/(' 2
lll EE           (9) 

Here, uE  and lE  represent the Young’s Moduli of the upper and lower sheets, respectively.  The 

thickness ratio   is defined as 

lu tt            (10) 

where ut  and lt  are the upper and lower sheet thicknesses, respectively.  Note that the 

expressions shown in Equations (5) and (6) are for welds joining sheets with 1 .  For welds 

joining sheets with 1 , one should rotate the strip model by an angle of 180º to represent the 

same physical system but with 1 .   

 The values of the angular quantity   in Equations (5) and (6) can be found in Suo and 

Hutchinson [13].  The angular quantity   is a function of the thickness ratio   and the 

Dundurs’ parameters   and   which are defined as 
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 The 3K  solution can be obtained from Tran and Pan [9] as 

ulu tK )(
)1)(1(

2
3 





         (13) 

where   is the shear modulus ratio defined as 

lu GG            (14) 

Recall that the lap-shear specimen is loaded with a force, F , applied to the lower left and 

upper right sheets along the interface as shown in Figure 4.9(a).  Figure 4.9(b) shows the left part 

of the strip model near the crack tip with linearly distributed structural stresses based on the 

classical Kirchhoff plate theory based on the work of Zhang [8].  As shown in Figure 4.9(b), ui , 

uo , li  and lo  represent the normal stresses at the inner (i) and outer (o) surfaces of the upper 

(u) and lower (l) strips, respectively.  Note also that the normal stresses *

ui , *

uo , *

li  and *

lo  

can be derived from the normal structural stresses ui , uo , li  and lo  based on the 

equilibrium equations and the continuity conditions of the strain and the strain gradient along the 

bond line. The normal structural stresses ui , uo , li  and lo  which are marked in Figure 

4.9(b) were obtained from Tran and Pan [9].  Based on the superposition principle of the linear 

elasticity theory, the normal structural stresses ui , uo , li  and lo  for the spot weld under lap-

shear loading conditions can be written as functions of k

CB , k

CtB , k

S  and k

T  ( luk , ) as 
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The maximum stresses k

CB , k

CtB , k

S  and k

T  ( luk , ) along the nugget circumference 

rar   under counter bending, central bending, shear and tension/compression loading 

conditions, respectively, are shown from Tran and Pan [9] as functions of the radius ra  of the 

spot weld (idealized as a rigid inclusion), the thicknesses kt  and the Poisson’s ratios k  ( luk , ) 

of the upper (u) and lower (l) sheets, the half width b  of the lap-shear specimen and the angular 

location   as defined in Figure 4.2(b) as  
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where kX  and kY  ( luk , ) are defined as 
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The shear stresses u  and l  in Equation (13) are obtained from Tran and Pan [9] as 
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The values of the analytical global stress intensity factors, 1K , 2K and 3K , for any angle around 

the circumference of the weld can be obtained from Equations (5), (6) and (13) based on 

Equations (15)-(26).  

Figure 4.10 shows a schematic of a main crack and a kinked crack with the maximum kink 

depth d  and the kink angle  .  Here, 1K , 2K and 3K  represent the global stress intensity factors 

for the main crack, and Ik , IIk  and IIIk  represent the local stress intensity factors for the kinked 

crack.  Note that the arrows in the figure represent the positive values of the global and local 

stress intensity factors 1K , 2K , 3K , Ik , IIk  and IIIk .     

For kinked cracks in dissimilar material, when the kink length approaches 0, the Ik  and IIk  

solutions can be expressed as functions of the kink angle  , the Dunders’ parameters  and  , 

and the global 1K  and 2K  solutions for the main crack, just as in the two-dimensional case.  The 

local stress intensity factors Ik  and IIk  are expressed in the complex form, from He and 

Hutchinson [10] as 
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HH iddd  from He and Hutchinson [10] are complex functions of 

 ,   and  .  Equation (27) indicates that Ik  and IIk  depend on the crack depth d  and 

bimaterial constant  .  The global stress intensity factors 1K  and 2K  are defined in the form as 
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The functions HH

Rc , HH

Ic , HH

Rd  and HH

Id  were tabulated by He and Hutchinson [14].  The 

values for HH

Rc , HH

Ic , HH

Rd  and HH

Id  were interpolated from that report.  As indicated in Equation 

(27), when the crack length approaches zero, the values for the local stress intensity factor 

solutions depend on the value of d  when the bimaterial constant   is nonzero.  The dependence 

of the solutions on the crack depth d  presents a challenge to develop a fatigue life estimation 

approach based on a fatigue crack growth model, even though the oscillation is in a region which 

is too small to be of concern.  This challenge prevents the evaluation of the limit at the crack 

depth of 0d  in Equation (27).   

Evaluating the local stress intensity factor at a crack length of 0d  is necessary in order to 

use the kinked crack growth model for predicting fatigue life.  As explained in Chapter 2, a 

modified material will be used to set   and   equal to zero.  The modified material chosen for 

this investigation has elastics constants 6.48E GPa and 458.0  for the magnesium sheet 

and 3.206E GPa and 3.0  for the steel sheet.  This ignores the oscillation and eliminates 

the dependence on the crack depth for the vanishing crack which was validated for the two-

dimensional models in Chapter 2.  With the modified material,   and   are equal to zero.  With 

0 , Equation (27) simplifies to 
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as developed by He and Hutchinson [10].  For similar welds, Equations (28) and (29) simplifies 

to the solution presented by Cotterell and Rice [15].  It should be noted that for 0 , the crack 

tip stresses recover the traditional r/1  singularity.  The local stress intensity factor solutions 

for the vanishing crack can then be approximated using Equations (28) and (29) along with 
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analytical or computational global stress intensity factor solutions obtained using the modified 

material.  As noted in Chapter 2, this approximation is reasonable because of the similarities of 

the stresses observed in the real and modified material which is due to the small value of   for 

the real materials and the large kink angle of 90° (  90 ). 

The local stress intensity factor solutions for kinked cracks with finite crack lengths for 

ultrasonic welds in lap-shear specimens can be expressed as functions of the normalized 

maximum kink depth td  as 

   
0III kfdk           (30) 

   
0IIIII kfdk           (31) 

where If  and IIf  are geometric functions which depend on the geometric parameters of the 

ultrasonic welded lap-shear specimens such as the weld radius ra  and the sheet thickness t .  The 

local stress intensity factor solutions for idealized ultrasonic welds and welds featuring weld 

geometry in lap-shear specimens were obtained computationally and presented in the normalized 

form. 

4.4.2 Finite Element Model 

A finite element model was constructed in order to find the global and local stress intensity 

factor solutions.  A schematic of the three-dimensional lap-shear model is shown in Figure 

4.11(a) with the boundary and loading conditions.  The spot-welded lap-shear specimen is 

symmetry about the longitudinal axis and therefore only half of the specimen is modeled.  The 

specimen has upper sheet thickness ut , lower sheet thickness lt , the length L , the overlap length 

V , the half width b , and the weld diameter ra2 .  The left edge has a fixed displacement 

condition along a line at the middle surface while the right edge has an applied uniform 
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displacement along a line at the middle surface.  The resultant force, F , is determined by adding 

the forces output at each node with the initial displacement condition.   

Finite element analyses have been conducted on both an idealized model and a model which 

follows the weld geometry and includes the sonotrode tip indentation.  The entire mesh for the 

idealized model is shown in Figure 4.11(b).  The right half of the mesh is shown in Figure 

4.11(c).  The circled area is shown in an enlarged section in Figure 4.11(d).  Here the main crack 

surfaces are indicated between the upper and lower sheets.  The main crack tip is shown for 

0  at point A.  The main crack tip extends around the entire quarter circle.  The shape of the 

weld in the experimental specimens can be seen in failed specimens in Figures 4.5(c) and 4.5(f).  

Although the welded area is the shape of a rounded square, the weld is simplified to a circle for 

the finite element models.  The central portion for the weld geometry model is shown in Figure 

4.11(e).  The sonotrode tip indentation is modeled according to specimen geometry, but the 

ridges and valleys present on the actual specimens are omitted.  Figure 4.11(f) shows the same 

enlarged region as in 11(d), but with the sonotrode tip indentation for the weld geometry model.   

The three-dimensional finite element model has the weld diameter ra2 8.78 mm, length 

L 100 mm, half width b 15 mm and overlap length V 75 mm.  The thickness ut  for the 

upper sheet is 1.58 mm for the top magnesium sheet and the thickness lt  is 1.5 mm for the 

bottom HSLA steel sheet.  Second-order quarter point crack-tip elements (C3D20R) with 

collapsed nodes were used to model the r/1  singularity near the crack tip.  The rest of the 

model was constructed mostly with second-order brick elements (C3D20R) although second-

order wedge elements (C3D15) were used where necessary.  Both materials are assumed to be 

linear elastic.  Any change in the metal due to welding has been ignored.  Steel is modeled with a 

Young’s modulus E 206.3 GPa and a Poisson’s ratio  0.3.  Magnesium (AZ31) is modeled 
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with Young’s modulus E 45 GPa and a Poisson’s ratio  0.35.  These material parameters 

are listed in Table 4.2.  Computations were performed using the commercial finite element 

software ABAQUS [16].   

The normalized computational global stress intensity factor solutions and the analytical 

global stress intensity factors for an idealized model for the main crack tip for 1800   are 

graphed in Figure 4.12.  The analytical solutions are found using Equations (5), (6) and (13).  

The stress intensity factors have been normalized by the maximum computational 2K  solution 

for the ideal geometry which is found at point A.  There is some difference between analytical 

and computational stress intensity factor solutions.  This is mostly due to the small ratio of half 

width to weld radius rab / .  Due to the specimen geometry, rab / 3.4.  While developing mode 

I analytical solutions, Lin et al.[17] noted that the solutions deviate for rab / 5.  The stress 

intensity factor solutions for finite element models with larger values of rab /  are closer to the 

analytical results.  

The normalized computational global stress intensity factor solutions for both the ideal model 

and the weld geometry model are shown in Figure 4.13.  The stress intensity factors have been 

normalized by the maximum computational 2K  solution for the ideal geometry which is found at 

point A.  The 1K  and 2K  solutions are largest at  0 or point A.  The most pronounced 

difference between the ideal and weld geometry models is that 1K  is larger at  0 or point A 

for the weld geometry model.  These results can be used to explain the favorable condition for 

kinked fatigue crack propagation at point A as seen in the experimental results. 

As observed from the micrographs of partially failed specimens, kinked fatigue cracks are 

initiated from the pre-existing main crack tip at point A and propagate through the sheet 

thickness of the upper right sheet under cyclic loading conditions.  For low-cycle fatigue 
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specimens, a kinked crack can also be observed propagating from point B.  Since the stress 

intensity factors at point A are dominate, it is reasonable that the kinked crack at point B grew 

more slowly or after the crack at point A.  The micrographs in Figures 4.7(a) and 4.7(b) show a 

partially failed specimen under low-cycle fatigue which has been tested up to 75% of the life 

cycles to failure of a fully failed specimen under similar loading conditions.  The kinked crack 

emanating from point A, as seen in Figure 4.7(b), is still very small.  This means the majority of 

the cycle life of a specimen is experienced as the kink crack grows from the main crack to the 

surface at point A.  The fatigue models will follow the approach of Newman and Dowling [18] 

and account for fatigue life only until the kinked crack reaches the surface of the magnesium 

sheet.  From the micrographs of the failed specimens, the kinked crack angles are observed to be 

near 90  
for all the load ranges.  With these observations, the computational model will focus on 

a three-dimensional model with a single kinked crack at a kink angle of 90  with a maximum 

depth at point A.   

Figure 4.14(a) shows a schematic of a three-dimensional finite element model of a lap-shear 

specimen with a single kinked crack of depth d , growing into the magnesium sheet.  The 

boundary and loading conditions of the specimen are the same as those for the finite element 

model shown in Figure 4.11(a).  The kink angle in this investigation is selected to be 90 .  The 

shape of the kinked crack is selected to be semi-elliptical with the aspect ratio cd / 0.4 as used 

in Pan and Sheppard [19] and Wang and Pan [20], where c  represents the half of the length of 

the semi-elliptical crack.  Four normalized kink depths, namely, td /  0.05, 0.2, 0.5, and 0.7 are 

considered in this investigation.  Half of the finite element model with a kinked crack is shown in 

Figure 4.14(b).  Figure 4.14(c) shows a close-up view of the finite element mesh near the semi-

elliptical kinked crack for td / 0.5. 
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Figure 4.15 shows the values of  
0II / kk  at  0 for the kinked cracks emanating from 

point A as functions of the normalized maximum kink depth td /  for  90  for the idealized 

and weld geometry model.  The values of  
0II / kk  are also listed in Table 4.3.  Note that the 

solutions are normalized by  
0Ik  in Equation (28) with kink angle  90  and the 

computational global stress intensity factor 1K  and 2K  solutions based on the ideal geometry 

model.  The material used for the  
0Ik  solution has been modified to achieve 0  and allow 

the use of Equation (28) as discussed in Chapter 2.  The value of  
0Ik
 
is also displayed in Figure 

4.15 at a maximum normalized crack depth of td / 0.  This value is based on Equation (28) and 

computational stress intensity factor solutions for the main crack at point A.  This has also been 

normalized by the value of
 
 

0Ik
 
based on the computational solutions for the ideal geometry 

model.  The values of  
0II / kk
 
are at a maximum near td / 0.05 for the weld geometry model 

or td / 0.2 for the ideal model and decrease modestly as the maximum kink depth is increased.  

This is in contrast to the behavior for similar material models in which the local model I stress 

intensity factor increases until a normalized depth of td / 0.5 and then decreases as seen in 

Wang and Pan [20].  Compared with the results from two-dimensional models in Chapter 3, the 

magnitude of change is much smaller, which is in agreement with the results shown by Wang 

and Pan [20].   

Figure 4.16 shows the values of  
0I/ kk II  for the kinked cracks emanating the main crack at 

point A as functions of the normalized kink depth td /  for  90  for the idealized and weld 

geometry models for welds.  The values of  
0I/ kk II  are also listed in Table 4.3.  Note that the 

solutions are normalized by  
0Ik  in Equation (28) and computational global stress intensity 
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factor 1K  and 2K  solutions from the ideal geometry model.  The local stress intensity factor IIk  

solutions are negative based on the definitions shown in Figure 4.10.  Figure 4.16 shows that the 

absolute values of  
0

/ III kk  for the ideal and weld geometry models decrease as the kink length 

increases for kinked cracks for 5.005.0  td .  Both models show an increase in the absolute 

values of  
0

/ III kk  as the normalized depth is increased to 0.7.  Overall both models show 

similar trends, with slightly higher  
0I/ kk II  values for the weld geometry model.  The models 

for  td  0.05 and td  0.2 had further mesh refinement in the area of the kinked crack.  The 

values of  
0IIk , at a depth of td  0.0, are also shown in the figure.  These values are obtained 

with the use of Equation (29) and the results from the computational models.  They are 

normalized by the  
0Ik  solution which is obtained with Equation (28) and the comutational 

stress intensity factors from the ideal geometry model.  The values of  
0I/ kk II  are small 

compared with the values of  
0II / kk  as seen in Figure 4.15.  The values of  

0I/ kk II  are similar 

in magnitude for the two-dimensional models in Chapter 2.  The dissimilar lap-shear joint shows 

a steeper decline in the value of  
0I/ kk II  between td  0.2 and td  0.5 than is observed for 

lap-shear joints with similar material as studied by Wang and Pan [20] and Pan and Sheppard 

[19].  Figures 4.15 and 4.16 indicate that the fatigue kinked crack growth is under mixed mode I 

and II loading conditions with mode I being the dominant mode.  Table 4.3 lists the normalized 

local stress intensity factor Ik  and IIk  solutions with  90  for both the ideal and weld 

geometry models.   
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4.5. Fatigue life estimations 

The fatigue life for the ultrasonic spot welds in lap-shear specimens is calculated using a 

Paris law method for kinked cracks.  To use the Paris law for fatigue estimation, the local stress 

intensity factor Ik  and IIk  solutions as functions of the normalized kink depth td /  are obtained 

from linear interpolation between those obtained from the finite element analyses in Table 4.3.  

The variations of the Ik  and IIk  solutions in the range of 0.1/7.0  td  are assumed to be the 

same as those for 7.0/5.0  td .  The local finite kink crack and vanishing crack stress 

intensity factor solutions obtained from the finite element analyses as expressed in Equations 

(30) and (31) and the experimentally observed kink angle of 90  are used in a kinked fatigue 

crack growth model.  The Paris law is adopted to describe the propagation of the kinked fatigue 

cracks emanating from the pre-existing crack tips of ultrasonic welds in lap-shear specimens.  

The Paris law is given as 

 
  mdkC

dN

dd
eq          (32) 

where d  is the kink depth and N  is the life or number of cycles.  Noting that the experiments 

show crack propagation only through the magnesium sheet, the material constants C  and m  for 

AZ31 are found in the literature.  One complication of this study is that it is impossible to find 

material constants for magnesium which is exactly the same and tested under the same 

conditions as in this study.  The wide range of values for C  and m  for AZ31 can be observed 

from data in Choi et al. [21], Ochi et al.[22], Ishihara et al. [23] Morita et al.[24] and Tokaji [25].  

Tokaji et al. suggest that magnesium is particularly sensitive to the humidity level during fatigue.  

According to those results, magnesium samples tested in laboratory air, with a humidity of 50-

70%, experienced a shorter fatigue life than samples tested in dry air.  Additionally plots of crack 

propagation rates vs. stress intensity factor range reveal that the slope changes at 
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mMPa45.3 K [25].  The stress intensity factor range for this study is above mMPa4  

for all load ranges.  The constants are therefore found from the upper stress intensity range for 

AZ31 using both the laboratory air and dry air.  The constants are taken as 
61086.1 C  

m)m(MPa

mm/cycle
 and m 2.8 for laboratory air, and 

71036.1 C  
m)m(MPa

mm/cycle
 and m 2.8 for 

dry air [25].  Paris law constants are also taken from Ishihara et al. [23] as 
71000.4 C  

m)m(MPa

mm/cycle
 and m 2.7, where tests were conducted under laboratory air.  In Equation (32), 

eqk  is the range of the equivalent stress intensity factor under mixed mode loading conditions.  

For the kinked fatigue crack growth model, the range of the equivalent stress intensity factor 

eqk  is given as 

      
     2

II

2

Ieq dkdkdk          (33) 

where   is an empirical constant to account for the sensitivity of material to mode II loading 

conditions.  The value of   is taken as 1 here.  The fatigue life N  can be obtained numerically 

by integrating the Paris law in Equation (32) as 

                    


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
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




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




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C

N

mt

t

eq

mt

t

eq

mt

eq

70.0

20.0

05.0

05.0

0

1
  (34) 

here 0, 0.05, 0.20, 0.50 and 0.70 represent the values of the maximum normalized kink depth 

td  where the computational local stress intensity factor solutions are available and t  is the 

crack growth distance  sintt  .  For  90 , tt  .   

In this investigation, a kinked crack emanating from the right pre-existing crack tips is 

modeled in the finite element analyses to represent the kinked crack in the ultrasonic weld as 
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shown in the micrographs of partially failed specimens.  As stated earlier, this kinked crack is 

modeled for four normalized maximum kink depths.  The results of the local stress intensity 

factor solutions from the finite element analyses are input into Equations (33) and (34) to yield a 

prediction of the number of cycles to failure.  The stress intensity factor solutions are found for 

the ideal model and weld geometry model.  The fatigue life is estimated based on those solutions, 

Equation (34) and the C  and m
 
constants for both laboratory and dry air as obtained from 

Tokaji et al.[25] and for laboratory air from Ishihara et al.[23].  In this kinked crack growth 

model, the growth period from td 0 to 1td  is modeled.  This should account for most of 

the fatigue life.  Although specimens tested under low-cycle fatigue conditions finally fail 

through the interface, after the kinked crack reaches the surface of the magnesium, most of the 

cycles have already occurred.  

Figure 4.17 shows the fatigue life estimations based on the kinked fatigue crack growth 

model in Equation (34) with the global and local stress intensity factor solutions from the finite 

element analyses.  Six kinked crack growth models were computed; weld geometry and ideal 

geometry models with three Paris law constants.  The vanishing crack is computed using 

Equations (28) and (29) with the appropriate global stress intensity factor solutions from each 

finite element model.  Then life estimations are found with the Paris law constants C  and m  

from both Tokaji et al.[25] and Ishihara et al [23].  In Figure 4.17, the models for ideal geometry 

show slightly shorter fatigue life estimates than those for the weld geometry model.  It can be 

observed, however, that the choice of C  and m  greatly influences the kinked crack growth 

model predictions.  While interesting, this choice is also distressing to the researcher since 

experimentally obtaining values for C  and m would be preferable, but is typically not within the 

research scope.  Overall, the fatigue estimations for low-cycle fatigue correlate well with the 
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experimental results.  The fatigue estimations for high-cycle fatigue are slightly lower than 

experimental results.   

When comparing low-cycle and high-cycle fatigue failure in Figures 4.6 and 4.8, it can be 

noted that the location of the kinked crack is closer to the weld for specimens tested under higher 

load ranges.  Although there is some variation, this trend can be observed for all tested.  The 

location of the kinked crack was measured for several failed specimens.  Then the fatigue life 

estimations were adjusted to account for the change in weld radius using the analytical solution.  

The fatigue life estimation range based on the adjustment due to the variation in radius is shown 

in Figure 4.18.  The kinked crack growth model for the ideal model predicts slightly lower 

fatigue life than the weld geometry model.  Both models agree well with the experimental results 

for low-cycle fatigue.  For high-cycle fatigue, the fatigue life estimations still show a slightly 

lower life than the experimental results.  Generally, the experimental results and kinked crack 

growth model are well correlated.    

 

4.6. Discussion 

Stress intensity factor solutions in spot welds of lap-shear specimens have been studied by 

Wang and Pan [20] for similar materials.  The stress intensity factor solutions found in that study 

can not be directly compared with those found in this study because the ratio of rab / 3.4 in 

this study, while rab / 5.9 in Wang and Pan [20].  As mentioned previously, according to work 

by Lin et al.[17], the mode I solutions for ratios of rab / 5 are not well described by the 

analytical solutions.  These two geometries therefore will have different stress intensity factor 

solutions even before dissimilar materials are introduced.  To understand the influence, stress 

intensity factor solutions for similar spot welds were obtained from the finite element model with 
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ideal geometry.  In agreement with Wang and Pan [20], these results confirmed that the mode I 

stress intensity factor reached a maximum at td / 0.5.  For dissimilar spot welds, the maximum 

mode I stress intensity factor is observed between td / 0.05 and td / 0.2.  The mode I stress 

intensity factor were dominate in both dissimilar and similar welds in lap-shear specimens.  It 

was also observed that as td /  increased, the dissimilar stress intensity factor solutions 

approached that of the stress intensity factor solutions for similar spot welds.   

Also observed by Wang and Pan [20], mode I stress intensity factor solutions for a three 

dimensional spot weld are fairly constant as td /  increases, when compared to the solutions for a 

two dimensional plane strain model.  The same statement can be made for dissimilar spot welds.  

The magnitude of  
0II / kk
 
in Figure 4.15 decreases only slightly as td /  increases.  In contrast, 

the magnesium of  
0II / kk
 
in Figure 3.17 in Chapter 3 increases considerably as ta /  increases.  

The fatigue crack growth model proposed by Newman and Dowling [18] use the assumption that 

the kinked crack stress intensity factors are fairly constant through the sheet thickness.  The 

assumption seems to be reasonable for a spot weld, but would not be valid for a linear weld as 

studied in Chapter 3.   

The fatigue predictions based on the kinked crack growth model for the three dimensional 

model correlate well the experimental results.  The fatigue life estimation model agrees most 

closely with the experimental results for low-cycle fatigue.  High-cycle fatigue is slightly under 

predicted when compared to the experimental results. 

The Paris law constants, C  and m , have a substantial impact on the fatigue life predictions 

for the kinked crack growth model.  Environmental factors, such as humidity as well as material 

properties and heat treatment influence the values for C  and m .  The experiments necessary to 

obtain C  and m
 
for the base material were not conducted due to a shortage of research material 
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and lack of equipment.  If the C  and m
 
were obtained, it would not entirely solve the problem 

because the magnesium changes slightly during welding.  The fatigue estimations range from 

laboratory air resulting in lower life, to dry air resulting in higher life.  Humidity measurements 

in the building where fatigue tests were conducted indicate that the relative humidity is 20-55% 

depending on the season.  This is generally less than 50-70% as reported by Tokaji [25].  Our 

environmental conditions should lie between the two extremes.  The model which uses Paris law 

constants in laboratory air from Ishihara et al. [23] compares most closely with the experimental 

results.  The adjustment which accounts for changes in kink location due to the load range 

improves the correlation with the experimental results for high-cycle fatigue.  

 

4.7. Conclusions 

Fatigue behavior of dissimilar ultrasonic spot welds between magnesium and steel sheets was 

investigated.  The welds show a longer fatigue life than the welds which were machined into a 

dog-boned profile in Chapter 3.  Two failure modes were observed.  For higher load ranges, the 

welds first experienced a kinked fatigue crack which propagated through the loaded magnesium 

sheet.  The spot welds also had a kinked crack growing from the left crack front at a shallow 

angle.  The welds tested under low-cycle fatigue finally failed through the interface, leaving 

some magnesium material on the steel sheet.  For lower load ranges, the welds fail from a kinked 

crack which grew on the right side through the magnesium sheet.  After reaching the surface of 

the magnesium, the crack grew transversely through the magnesium sheet.  The welds tested 

under high-cycle loading conditions finally failed from an eyebrow crack on the right side of the 

weld which propagated through the entire magnesium sheet.  
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Finite element analyses were conducted on two finite element models, an idealized model 

and a model which include the weld geometry.  Stress intensity factor solutions were obtained 

for the main crack and a kinked crack at several depths.  Stress intensity factor solutions for a 

vanishing crack were obtained from global stress intensity factors for a modified material and 

existing analytical solutions as in Chapter 2.  The stress intensity factor solutions for the 

vanishing crack and kinked crack were used in a kinked crack growth fatigue life estimation 

model.  The kinked crack growth model used three values of Paris law constants.  This model 

outlines a range of fatigue life values expected at a given load range.  The model has been 

adjusted to account for the change in the kink location for different load ranges which provides 

good agreement with experimental results.   
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Table 4.1. Dimensions of the lap-shear specimen 

Width of the grip section  b2  30 mm 

Indentation width  g  7 mm 

Weld radius  ra  4.39 mm 

Length of each leg  L  100 mm 

Overlap length  V  75 mm 

Sheet thickness AZ31  ut  1.58 mm 

Sheet thickness steel  lt  1.5 mm 

 

Table 4.2. Mechanical properties of AZ31-H24 and steel 

 Elastic 

Modulus 

(GPa) 

Poisson’s ratio 

AZ31-H24 45 0.35 

Steel 206.3 0.3 
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Table 4.3. The normalized local stress intensity factors  
0

/ II kk  and  
0

/ III kk  solutions for 

several values of normalized kink depth td  based on the semi-elliptical crack at point A of the 

three-dimensional finite element computational model with  90 .  The values for vanishing 

crack have been obtained with the use of global stress intensity factors from the computational 

model and Equations (28) and (29).  These values have been normalized by  
0Ik  which is based 

on Equation (28) and computational solutions for the ideal geometry model at point A.  

 

 

Idealized Model Weld Geometry Model 

td   
0I/ kk I   

0I/ kk II   
0

/ II kk   
0I/ kk II  

0.0 1.000 0.264 1.049 0.286 

0.05 1.068 0.271 1.108 0.322 

0.2 1.073 0.252 1.076 0.274 

0.5 1.009 0.058 0.988 0.095 

0.7 0.774 0.120 0.749 0.145 
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(a) 

 

   

(b)       (c) 

Figure 4.1 (a) A top view of an ultrasonic welded lap-shear specimen prior to testing.  (b) Face 

view and (c) side view of the sonotrode tip used in the ultrasonic welding.



151 

 

 

 
(a) 

 

 

 

 

 
 

(b) 

Figure 4.2. (a) A schematic of a lap-shear specimen with a spot weld idealized as a circular 

cylinder, and (b) a top view of the weld nugget showing the orientation angle 
 
with respect to 

points A, B, C and D. . 

 

 



152 

 

 

 
 

 

Figure 4.3. An optical micrograph of the cross section of an ultrasonic welded joint in 1.58 mm 

AZ31 and 1.5 mm HSLA steel.    
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Figure 4.4. The experimental results of the fatigue tests of ultrasonic spot welds in lap-shear 

specimens under cyclic loading conditions. 
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(a)   (b)   (c) 

 

 
(d)   (e)   (f)  

 

 
(g) 

Figure 4.5. (a) A top view of the magnesium sheet, (b) a bottom view of the magnesium sheet 

and (c) a view of the steel sheet after quasi-static testing.  (d) A top view of the magnesium 

sheet, (e) a bottom view of the magnesium sheet and (f) a view of the steel sheet after (low cycle) 

cyclic loading with 
3107.5   cycles under a load range of 3.20 kN.  (g) A top view of the weld 

after (high cycle) cyclic loading with 
41008.3   cycles under a load range of 1.91 kN. The 

loading direction is shown schematically with arrows.  
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Figure 4.6. Optical micrograph of a failed weld at the fatigue life of 
3105.9   cycles under a load 

range of 2.82 kN (low-cycle (LC) loading conditions).  
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(a) 

 

 
(b) 

Figure 4.7. Optical micrographs of (a) the entire section and (b) an enlarged near the kinked 

crack of a partially failed thick steel weld at the fatigue life of 
4106.1   cycles under a load range 

of 2.38 kN (low-cycle (LC) loading conditions).   
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Figure 4.8. Optical micrograph of a failed weld at the fatigue life of 
4106.6   cycles under a load 

range of 2.02 kN (high-cycle (HC) loading conditions).  
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(a) 

 
 

(b) 

 

 

Figure 4.9. (a) A schematic of the weld with the lap-shear loading condition.  (b) A schematic of 

the left crack tip showing the normal stresses ui , uo , li  and lo  at the inner (i) and outer (o) 

surfaces of the upper (u) and lower (l) strips, respectively.   

 



159 

 

 

 

 

Figure 4.10. A schematic of a main crack and a kinked crack with the kink depth d  and the kink 

angle  .    
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(a) 

 

(b) 



161 

 

 

(c)  

 

(d) 
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(e) 
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(f) 

Figure 4.11. (a) A schematic of a three-dimensional finite element model featuring half of the 

lap-shear specimen with the boundary and loading conditions, (b) a view of the entire finite 

element mesh for the idealized model, and (c) a view of the half of the finite element mesh 

indicating the area shown in (d).  (d) An enlarged view of the finite element mesh for the 

idealized model showing the main crack surfaces and main crack tips. (e) A view of the central 

portion of the finite element mesh for the weld geometry model showing the weld indentation.  

(f) An enlarged view of the finite element mesh near the weld for the weld geometry model.   
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Figure 4.12. The normalized 1K , 2K  and 3K  solutions as functions of   for an idealized weld 

of 1.58 mm magnesium and 1.50 mm steel sheets based on the finite element analysis and the 

analytical solutions.  
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Figure 4.13. The normalized 1K , 2K  and 3K  solutions as functions of  for a lap-shear spot 

welded specimen of 1.58 mm magnesium and 1.50 mm steel sheets based on the finite element 

analysis of an ideal model and a model which follows the weld geometry.  
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(a) 

 

(b) 
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(c) 

Figure 4.14. (a) A schematic of a three-dimensional finite element model with an elliptical 

kinked crack of maximum depth, d , at point A with the boundary and loading conditions, (b) a 

view of half of the finite element mesh for the idealized model with a kinked crack, and (c) a 

view of the an enlarged section near the weld for the idealized model with a kinked crack of 

td / 0.5, with the welded area hidden.   
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Figure 4.15. The values of  
0II / kk  for the semi-elliptical kinked cracks emanating from point A 

as functions of the normalized kink depth td /  for  90 . 
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Figure 4.16. The values of  
0I/ kk II  for the semi-elliptical kinked cracks emanating from point 

A as functions of the normalized kink depth td /  for  90 . 
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Figure 4.17. The experimental results and the fatigue life estimations based on the kinked fatigue 

crack growth models for three values of C  and m . 
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Figure 4.18. The experimental results and the fatigue life estimation ranges based on the kinked 

fatigue crack growth models for ideal and weld geometry models. 
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Chapter 5 

Conclusion 

 

Stress intensity factor solutions and fatigue behavior of dissimilar ultrasonic welds between 

magnesium and steel sheets are investigated.  In Chapter 2, analytical solutions for dissimilar 

plane strain joints are reviewed.  Global stress intensity factor solutions for dissimilar welds of 

various widths in lap-shear specimens are obtained from a two-dimensional plane strain finite 

element model.  The computational solutions are compared with two analytical solutions.  The 

analytical solution based on structural stresses and beam bending theory is appropriate for 

magnesium and steel welds with a normalized width ratio, tw / , larger than a transition value of 

1.216.  The analytical solution for two dissimilar semi-infinite solids with connection under 

shear loading conditions is useful for welded specimens of magnesium and steel sheets with a 

normalized width ratio, tw / , smaller than a transition value of 0.209.  Note that the transition 

value is dependent on both the weld width and the dissimilar materials used in the weld, so these 

transitions would not be applicable for other dissimilar materials.   

The next part of Chapter 2 investigates local stress intensity factors for kinked cracks.  Welds 

in lap-shear specimens with kinked cracks of various lengths were modeled using finite element 

with both the actual material combination and a modified material combination such that the 

bimaterial constant was zero.  Stresses directly ahead of and directly above the crack tip were 

compared for both material combinations.  Ahead of the crack tip, the stresses were not similar 

due to the oscillation of the crack-tip stress field in the model with the actual material 
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combination.  However, above the crack tip, at a kink angle of 90 , the stresses were only 

weakly affected by the oscillation and stresses for both material combinations were quite similar. 

For large kink angles, the modified material combination may be substituted such that the 

bimaterial constant is zero, allowing use of existing analytical solutions to approximate the local 

stress intensity factors for a vanishing kinked crack of length 0a .  The local stress intensity 

factors for kinked crack were compared with the vanishing crack solutions which were evaluated 

using the modified material.  The Ik  solution is shown to approach the solutions for a vanishing 

crack.  While the IIk  solutions do not approach the solutions for a vanishing crack, the magnitude 

of the IIk  solutions is less than that of the Ik  solutions.  Therefore the ek  solutions, which are 

most important for fatigue estimations, are shown to approach the solutions for a vanishing crack 

as the kink length decreases. 

In Chapters 3 and 4, the vanishing crack stress intensity factor solutions investigated in 

Chapter 2 are used to complete the set of local stress intensity factors, allowing the use of a 

fatigue estimation model.  Fatigue behavior of ultrasonic welds in lap-shear specimens of 

magnesium and steel sheets were also investigated experimentally and with optical micrographs.  

In Chapter 3, the experimental lap-shear specimens were machined into a dog-bone profile to 

approximate a linear weld.  Two types of steel were used for experiments in this chapter.  For all 

cyclic loading in welds with either type of steel, the weld fracture appears to be initiated from the 

pre-existing crack which propagates and kinks upward at roughly 90°.  Under low-cycle loading 

conditions, the weld failure appears to be initiated from the pre-existing crack tip and the 

specimens finally fail as the crack connects with the corner of the weld indentation in the 

magnesium on the right side of the weld.  Under high-cycle loading conditions, the weld failure 

appears to be initiated from the pre-existing crack tip and the specimens finally fail from the 
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kinked fatigue crack propagating through the upper right load carrying sheets, with the final 

fracture connecting with the side wall of the weld indentation, or outside the indentation.  In 

Chapter 3, two-dimensional plane strain finite element models were constructed to obtain global 

stress intensity factor solutions and local stress intensity factor solutions for finite kinked cracks.  

The stress intensity solution for the vanishing crack was obtained using computational results for 

the global stress intensity factors using a modified material as detailed in Chapter 2.   

In Chapter 4, fatigue behavior is investigated experimentally with dissimilar ultrasonic spot 

welds which have not been altered after welding.  For higher load ranges, the welds first 

experienced a kinked fatigue crack which propagated through the loaded magnesium sheet and a 

shallow kinked crack growing from the left crack front.  The welds tested under low-cycle 

fatigue finally failed through the interface, leaving some magnesium material on the steel sheet.  

For lower load ranges, the welds fail from a kinked crack which grew on the right side through 

the magnesium sheet.  After reaching the surface of the magnesium, the crack grew transversely 

through the magnesium sheet.  The welds tested under high-cycle loading conditions finally 

failed from an eyebrow crack on the right side of the weld which propagated through the entire 

magnesium sheet. For this chapter, three-dimensional finite element models were constructed to 

obtain global and local stress intensity factor solutions.  The global stress intensity factor 

solutions and the local stress intensity factor solutions for vanishing and finite kinked cracks are 

used for fatigue life estimations with a kinked crack growth model.  The fatigue estimations are 

compared with experimental fatigue results.   

The three-dimensional spot welds in Chapter 4 had better correlation between the fatigue 

estimations and the experimental results than the plane strain models in Chapter 3.  In Chapter 3, 

the fatigue estimation model tended to predict a slightly lower life than observed experimentally, 
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particularly for high-cycle fatigue.  The kinked crack growth model used three values of Paris 

law constants and was particularly sensitive to the parameters C  and m .  The model was not 

sensitive to the thickness of the steel in Chapter 3.  It was also only mildly influenced by the 

modeling of the sonotrode indentation for both the plane strain and three-dimensional models.  

The kinked crack growth model and the experimental results were in good agreement for the 

three-dimensional study found in Chapter 4.  The kinked crack model estimated cycles about 1 

decade under the experimental result for the plane strain model in Chapter 3.  It may be that even 

after machining the experimental specimens into a dog-bone shape, they did not behave exactly 

as if they were a linear weld.  A tendency for the kinked crack to grow in a semi-elliptical pattern 

instead of a planer crack would contribute to a longer life.   

In summary, existing analytical results for stress intensity factor solutions for dissimilar 

joints are reviewed in Chapter 2.  A comparison of the stresses present in a lap-shear weld of 

modified material made it possible to use existing analytical solutions to obtain a vanishing crack 

solution.  This vanishing crack solution is used in combination with global and local stress 

intensity factor solutions from finite element models for a two-dimensional plane strain model 

and a three-dimensional model.  These stress intensity factor solutions are used in a kinked crack 

fatigue estimation model.  The fatigue estimations for the plain strain model in Chapter 3 under 

predict the experimental results by roughly 1 decade while the estimations for the three-

dimensional spot welds in Chapter 4 correlate well with experimental results.  
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