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x̂(k) to obtain ŷ(k). These estimates are then sent to Processor 0 where

RCUIO uses them to obtain ˆ̄F10.7(k), which is then sent to all processors to
allow GITM to propagate states to the next time step. If rem(kTs, ν) 6= 0,

then RCUIO is not used and ˆ̄F10.7(k) remains unchanged from its previous
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

x



5.4 Measured output y(k) and the estimated output ŷ(k) for the case of sim-
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σ90,ŷG,m
(k) for real GRACE satellite data and the case of real CHAMP

satellite data and GITM with photoelectron heating. For this example,
GITM with RCUIO yields 11% reduction in RMS(zG) compared to GITM
with measured F̄10.7(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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σ90,ŷG,m
(k) for real GRACE satellite data and the case of real CHAMP

satellite data and GITM without photoelectron heating. For this example,
GITM with RCUIO yields 21.61% reduction in RMS(zG) compared to
GITM with measured F̄10.7(k), which shows that RCUIO yields better
state estimates than GITM with measured F̄10.7(k) by reducing the errors
between the CHAMP satellite data and the computed output from GITM. 149

5.18 ˆ̄F10.7(k) for the case of real CHAMP satellite data and GITM without
photoelectron heating using four different values of H̃. The parameter
H̃−1 acts as an effective gain of the adaptive subsystem. . . . . . . . . . 150

xii



ABSTRACT

The classical Kalman filter is the optimal state estimator for linear systems under

white process and sensor noise with zero mean and finite second moments. In addition,

the Kalman filter accommodates the presence of a known, deterministic input. In

practice, however, the deterministic input may not be known exactly, and this error

can be viewed as a component of the process noise. However, this approach may be

too conservative and can lead to bias when the unknown input has a nonzero “mean”

value. Consequently, a more direct approach is to extend the estimator to include an

estimate of the unknown input.

In this work, we consider an unknown input observer based on retrospective cost

optimization, where the unknown input is estimated by first minimizing a retrospec-

tive cost function, and then updating an adaptive feedback system using recursive

least squares. The retrospective cost method is a minimal modeling approach that is

applicable to both minimum- and nonminimum-phase systems.

Since the retrospective cost observer relies on recursive least squares to update an

adaptive feedback system, a novel sliding window, variable regularization recursive

least squares algorithm is developed and investigated. In contrast to classical recursive

least squares algorithms, the sliding window recursive least squares algorithm does not

lose its ability to adapt, and does not become unstable when the data lose persistency.

Finally, we use the retrospective-cost-based observer to estimate states and input

in the ionosphere-thermosphere using real satellite data and the Global Ionosphere-

Thermosphere model.
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CHAPTER 1

Introduction

State estimation of dynamical systems is a well studied problem in control theory.

After the development of the Kalman filter [2–4] in the 1960s and its successful appli-

cation to various commercial and national projects, a considerable amount of effort

has been devoted to developing filters for nonlinear systems with Gaussian output and

process noise, such as the extended Kalman Filter [5, 6] and the Unscented Kalman

filter [7,8], as well as nonlinear systems with non-Gaussian output and process noise,

such as the Gaussian sum filter [9], moving horizon estimators [10], and particle fil-

ters [11].

In many applications, such as fault detection, parameter estimation, and model

correction, the objective is to obtain input estimates in addition to state estimates.

Recently, considerable attention has been given to developing state estimators that

are either insensitive to the lack of knowledge of the deterministic input or attempt

to estimate this signal along with the states. These techniques are referred to as

unbiased Kalman Filters, unknown input observers, and state estimators with input

reconstruction [1, 12–20].

A further challenge in state estimation is the case of uncertain modelling infor-

mation or the unavailability of explicit dynamical equations that describe the model.

Such models occur in space weather applications, where the models are a combina-

tion of partial differential equations, empirical models of poorly understood physical
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phenomena, and lookup tables that approximate parameters in the model based on

initial conditions or the current state of the system. In these cases, a Jacobian of

the dynamics cannot be obtained, and thus methods such as the Extended Kalman

Filter cannot be applied. For these applications, ensemble-based data-assimilation

methods, known as particle filters, are typically used, such as the Unscented Kalman

Filter [21], Ensemble Kalman Filters [22,23], and the Ensemble Adjustment Kalman

Filter [24]. In order to apply these methods in the presence of unknown inputs, the

state vector must be augmented with the unknown inputs as state variables, and

models of the unknown inputs must be provided.

To illustrate these challenges, we begin with the classical Luenberger observer.

Consider the discrete-time linear system

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),

where x(k) ∈ R
n is the unknown state, y(k) ∈ R

q is the measured output, u(k) ∈ R
p

is the measured input, and A ∈ R
n×n, B ∈ R

n×p, and C ∈ R
q×n are system matrices,

which are assumed to be known. Furthermore, we assume that the pair (A, C) is

observable. The Luenberger observer is given by [25]

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k)),

ŷ(k) = Cx̂(k),

where x̂(k) ∈ R
n is the estimated state, ŷ(k) ∈ R

q is the estimator output, and

L ∈ R
n×p is the observer gain matrix. A schematic of the Luenberger observer is

shown in Figure 1.1. Since (A, C) is observable, there exists L ∈ R
n×q such that the

2



error system

e(k + 1) = (A− LC)e(k),

is asymptotically stable. In other words, when (A,C) is observable, we can place the

eigenvalues of (A− LC) at any desired location. However, in the case where A, and

C, or u(k) are unknown, then choosing L to stabilize (A−LC) is not straightforward.

Furthermore, the term L(y(k)− ŷ(k)) does not account for the unknown input.

Figure 1.1: Architecture of the Luenberger Observer. The residual ŷ(k) − y(k) is
multiplied by the observer gain L, which is fed back into the estimator to drive the
residual to zero.

For discrete-time systems, one of the earlier approaches to unknown-input state-

estimation was presented by Kitanidis [12], in which a recursive unbiased minimum-

variance filter was developed in the presence of an arbitrary unknown input. The

approach taken was to solve an optimization problem in the presence of an algebraic

constraint that guaranteed that the filter was unbiased. This filter is only robust to

the presence of an unknown input, and does not provide an estimate of the input

itself. In [14], Darouach and Zasadzinski solved the optimization problem proposed

in [12] under more generalized conditions, from which the Kitanidis filter can be
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obtained as a special case. Kerwin and Prince [26] showed that the recursive form

of the filter considered in [12] and [14] was indeed the optimal form for the unbiased

minimum-variance estimator.

The results in [12] and [14] were extended by [1], which provides minimum-variance

unbiased estimates of both the states and the unknown inputs. The filters in [12]

and [14] can be obtained as special cases of the filter in [1]. These methods were then

extended to the case where the unknown input or disturbance affects not only the state

but also the measurements [27, 28]. The above filters are also subject to an observer

matching condition, which was relaxed in [18] by designing a delayed observer. The

drawback of these methods is that they cannot be applied to nonminimum-phase

systems. A method for simultaneous estimation of states and inputs for nonminimum-

phase systems was proposed in [29], where it is assumed that the input is slowly time

varying, and remains approximately constant over a certain time interval.

In this thesis, we consider the Retrospective Cost Unknown Input Observer (RCUIO),

which is based on Retrospective Cost Adaptive Control (RCAC) [30,31] shown in Fig-

ure 1.2. RCAC uses the residual ŷ(k)− y(k) to update an adaptive feedback system

which then drives the residual ŷ(k) − y(k) to zero. The implementation of RCAC

to unknown input state estimation, known as RCUIO, is shown in Figure 1.3. This

ensemble-free method has the following features:

1. RCUIO is a minimal modeling approach that only needs a limited number

of Markov parameters. For some systems, we have shown that RCUIO can be

successfully applied using only one Markov parameter. Due to this, RCUIO can

be applied to systems where explicit equations of the dynamics of the system

are not known, such as large scale computational fluid dynamics (CFD) codes.

2. Using small modifications to RCUIO, it can be applied to systems with non-

minimum phase zeros.
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3. Because RCUIO uses only a limited number of Markov parameters, it turns out

to be effective for some nonlinear systems.

Figure 1.2: Architecture of RCAC. The residual ŷ(k) − y(k) is used to update an
adaptive feedback system, which then drives the residual to zero.

1.1 Contributions� RCUIO relies on recursive least squares. In this thesis, we develop a novel

variable regularization sliding window recursive least squares algorithm, and

analyze its convergence properties, numerical stability, and computational com-

plexity. We also incorporate this algorithm into RCUIO, and compare it with

RCUIO with standard least squares.� We successfully use RCUIO and the Global Ionosphere-Thermosphere Model

[32] to obtain estimates of the states and input in the ionosphere-thermosphere

using simulated and real satellite data.
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Figure 1.3: Architecture of RCUIO. The residual ŷ(k) − y(k) is used to update an
adaptive feedback system, which then drives the residual to zero and, as a conse-
quence, yields an estimate û(k) of u(k).

1.2 Chapter Outlines

This dissertation is organized in the following chapters.

1.2.1 Chapter II

The classical Kalman filter is the optimal state estimator for linear systems under

white process and sensor noise with zero mean and finite second moments. Im-

plementation of the optimal estimator under these idealized conditions depends on

knowledge of the linear dynamics and noise covariances. When these assumptions are

not satisfied, the accuracy of the Kalman filter can be degraded [33–35].

If the transfer function from the process noise to the measurements is minimum

phase, the number of outputs equals the number of disturbances, and there is no

sensor noise, then the minimum achievable estimation error is zero [36]. On the other

hand, the presence of nonminimum-phase zeros increases the minimum achievable
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estimation error and thus, for harmonic disturbances, the Kalman filter does not give

perfect state estimates [37, 38].

A more proactive approach is to implement an adaptive state estimator, where

the goal is to identify the dynamics and noise statistics during system operation and

use this information to tune the estimator on-line [39].

In addition to compensating for white process noise, the Kalman filter accommo-

dates the presence of a known, deterministic input. By injecting this signal into the

estimator, the estimator experiences no loss of estimation accuracy relative to the case

in which no deterministic input is present. This feature is essential when the Kalman

filter is used in conjunction with the linear-quadratic regulator for constructing the

full-order dynamic LQG controller.

In practice, however, the deterministic input may not be known exactly, and

this error can viewed as a component of the process noise. However, this approach

may be conservative and can lead to bias when the unknown input has a nonzero

“mean” value. Consequently, a more direct approach is to extend the estimator to

include an estimate of the unknown input [13, 20, 40, 41]. Yet another approach is to

constrain the gains of the estimator in order to guarantee that the state estimates are

unbiased [1, 12, 14, 42].

In this chapter we consider state estimation for minimum- or nonminimum-phase

systems in the presence of an unknown harmonic input. To address this problem

we consider the estimator structure shown in Figure 2.13 with an auxiliary input û,

which is the output of an adaptive feedback system that is updated on-line. The

signal û is estimated using a retrospective-cost-based input-reconstruction technique.

In this way, the adaptive feedback system uses knowledge of the estimator residual to

improve the accuracy of the state estimator by reconstructing the harmonic distur-

bance, thereby achieving perfect estimates in the minimum and nonminimum-phase

cases. A related technique is used in
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1.2.2 Chapter III

Recursive-least-squares (RLS) and gradient-based algorithms are widely used in signal

processing, estimation, identification, and control [43–51]. Under ideal conditions,

that is, noiseless measurements and persistency of the data, these techniques are

guaranteed to converge to the minimizer of a quadratic function [44,47]. In practice,

the accuracy of the estimates depends on the level of noise and the persistency of the

data.

The standard RLS algorithm operates on a growing window of data, where new

data are added to the RLS cost function as they become available and past data are

progressively discounted through the use of a forgetting factor. In contrast, sliding-

window RLS algorithms [52–56] require no forgetting factor since they operate on

a finite data window of fixed length, where new data replace past data in the RLS

cost function. Sliding-window least-squares techniques are available in both batch

and recursive formulations. As shown in [53], sliding-window RLS algorithms have

enhanced tracking performance compared to standard RLS algorithms in the presence

of time-varying parameters.

In standard RLS, the positive-definite initialization of the covariance matrix is the

inverse of the weighting on a regularization term in a quadratic cost function. This

regularization term compensates for the potential lack of persistency, ensuring that

the cost function has a unique minimizer at each step. Traditionally, the regularization

term is fixed for all steps of the recursion. Additionally, an optimally regularized

adaptive filtering algorithm with constant regularization is presented in [57]. However,

variants of RLS with time-varying regularization have been developed in the context

of adaptive filtering, echo cancellation, and affine projection [58–63].

In the present work, we derive a novel sliding-window variable-regularization RLS

(SW-VR-RLS) algorithm, where the weighting on the regularization term can change

at each step. An additional extension presented in this chapter also involves the
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regularization term. Specifically, the regularization term in standard RLS weights the

difference between the next estimate and the initial estimate, while the regularization

term in sliding-window RLS weights the difference between the next estimate and

the estimate at the beginning of the sliding window. In this work, the regularization

term weights the difference between the next estimate and an arbitrarily chosen time-

varying vector. As a special case, the time-varying vector can be the current estimate

or a recent estimate. These variable-regularization extensions of sliding-window RLS

can facilitate tradeoffs among transient error, rate of convergence, and steady-state

error.

In this work, we derive the SW-VR-RLS equations and analyze their convergence

properties in the absence of noise. While standard RLS entails the update of the

estimate and the covariance matrix, sliding-window RLS involves the update of an

additional symmetric matrix of size n× n, where n is the dimension of the estimate.

Furthermore, SW-VR-RLS requires updating of one more symmetric matrix of size

n× n to account for the time-varying regularization.

The SW-VR-RLS algorithm was first presented in [64] together with a preliminary

numerical study and without convergence analysis. In addition, a growing-window

RLS algorithm with time-varying regularization appears in [65]. The goal of this work

is to provide a more complete development of the SW-VR-RLS algorithm, including

an analysis of convergence and numerical stability.

1.2.3 Chapter V

In this chapter, we derive a growing-window variable-regularization RLS (GW-VR-

RLS) algorithm, where the weighting of the regularization term changes at each step.

As a special case, the regularization can be decreased in magnitude or rank as the

rank of the covariance matrix increases, and can be removed entirely when no longer

needed. This ability is not available in standard RLS where the regularization term
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is weighted by the inverse of the initial covariance at every step.

A second extension presented in this work also involves the regularization term.

Specifically, the regularization term in standard RLS weights the difference between

the next state estimate and the initial state. In GW-VR-RLS, the regularization

term weights the difference between the next state estimate and an arbitrarily chosen

time-varying vector of parameters. As a special case, the time-varying vector can be

the current state estimate, and thus the regularization term weights the difference

between the next state estimate and the current state estimate. This formulation

allows us to modulate the rate at which the current estimate changes from step to

step.

For these extensions, we derive GW-VR-RLS update equations. While standard

RLS entails the update of the state estimate and the covariance matrix, GW-VR-

RLS entails the update of an additional symmetric matrix of dimension n × n to

allow for the variable regularization. Thus, GW-VR-RLS entails some additional

computational burden relative to classical RLS.

1.2.4 Chapter VI

This chapter is concerned with modeling and prediction of space weather effects. In

the near-Earth environment, the effects of space weather are primarily manifested by

the properties of the ionosphere and thermosphere, which influence radio propagation

and satellite drag. The sun is one of the primary drivers of the ionosphere and

thermosphere. In particular, extreme ultraviolet (EUV) and X-ray radiation produce

photo-ionization, which, in turn, through chemistry and heating, drives the formation

of the ionosphere and shapes the thermosphere. In addition, the effect of the EUV

and X-ray radiation is sufficient to render the ionosphere-thermosphere a strongly

driven system.

Since a significant portion of EUV and X-ray radiation is absorbed by the at-
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mosphere, it is not possible to measure these quantities from the ground. Instead,

a proxy is used. The most common proxy for EUV and X-ray radiation is the flux

solar irradiance at a wavelength of 10.7 cm (F10.7), which is measured (in units of

10−22 W Hz−1 m−2 = 1 solar flux unit (SFU)) by the Dominion radio observatory in

Penticton, Canada [66]. A shortcoming of this technique is that F10.7 does not have

a one-to-one correlation with each of the wavelengths in the EUV and X-ray bands,

and thus the measured F10.7 is often a misrepresentation of the true solar spectrum.

Although our ultimate goal is to estimate the true flux in multiple EUV and X-ray

wavelength bins, a more attainable intermediate goal is to estimate the value of F10.7

that best characterizes the ionosphere and thermosphere. The ability to estimate

F10.7 from alternative measurements can provide a cross check on the available mea-

surements, while also providing an illustrative proof-of-concept demonstration of the

adaptive state estimation algorithm described below as a first step toward estimating

X-ray and EUV in multiple bands. Furthermore, current models do not fully capture

the dynamics of the ionosphere-thermosphere, in which case F10.7 can be used as an

input to the model for the purpose of eliminating the errors between real measure-

ments and simulated measurements. This study thus attempts to specify F10.7 based

on simulated measurements of the atmosphere as well as with real satellite data. The

specified F10.7 can then be used to obtain improved estimates of the state of the iono-

sphere and thermosphere globally and possibly predict its future evolution. This is a

problem of state and input estimation.

To estimate F10.7, we use the Global Ionosphere Thermosphere Model (GITM) [32].

GITM simulates the density, temperature, and winds in the thermosphere and iono-

sphere across the globe from 100 km to 600 km altitude, depending on the solar con-

ditions at the time. The main inputs to GITM are the high-latitude electrodynamics

(i.e., the aurora and the associated electric fields), tides from the lower atmosphere,

and the brightness of the sun at various wavelengths, which can be proxied through
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the use of F10.7. GITM solves for the chemistry, dynamics, and thermodynamics of

the upper atmosphere self-consistently by accounting for interactions among various

species of ions and neutrals.

In this work, we use the retrospective cost adaptive unknown input observer

(RCUIO) technique given in Chapter 2 to estimate the unknown solar driver F10.7 us-

ing the Global Ionosphere-Thermosphere Model and satellite measurements. RCUIO

assumes that the input to the system is unknown, and uses retrospective optimiza-

tion to construct an input to the adaptive estimator that minimizes the retrospective

cost function given in Chapter 2. The retrospectively optimized input is then used

to asymptotically drive the error between the measured output and the estimator

output to zero. In this way, RCUIO asymptotically estimates the unknown input

to the system and the unknown states of the system. A useful feature of RCUIO

is that an explicit nonlinear or linearized model is not required. In addition, unlike

ensemble-based data-assimilation algorithms [23, 24, 67], RCUIO uses only one copy

of the system model and thus is ensemble-free.

The derivation of the RCUIO algorithm given in Chapter 2 is based on a linear

dynamics model, and the modeling information needed to implement the algorithm

consists of components of the impulse response. However, since RCUIO does not

require an explicit model of the dynamics (which may, for example, be in the form of a

computer code as in the case of GITM), RCUIO can be applied to nonlinear systems.

In this case, ersatz modeling information can be chosen based on the qualitative

behavior of the system, or can be determined by trial and error. Numerical examples

show that RCUIO is effective on nonlinear plants, which is presumably due to the

fact that extremely limited modeling information is required by the algorithm.

In [68], RCUIO was used to estimate a constant F10.7 in 3D GITM using simulated

measurement data, where the measurement was assumed to be at a fixed position in

the terrestrial atmosphere. The goal of this work is to extend this application to the
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case where the measurements are obtained from real or simulated satellites. Further-

more, the ability of the method to estimate a time-varying F10.7 using simulated data

is demonstrated.
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CHAPTER 2

Retrospective-Cost Adaptive Unknown

Input Observers

In this chapter, we formulate the unknown input estimation problem and develop the

Retrospective-Cost Adaptive Unknown Input Observer (RCUIO). In Section 2.1, we

define input observability for linear systems and, in Section 2.2, we consider RCUIO

for a special case where the first Markov parameter is non-zero and only one measure-

ment is used. In Section 2.3, we derive RCUIO for general systems, and in Section

2.4, we analyze the computational complexity of RCUIO. Finally, in Section 2.5, we

give illustrative examples.

2.1 Input Observability

Consider the linear time-invariant system

x(k + 1) = Ax(k) +Bu(k), (2.1)

y(k) = Cx(k), (2.2)
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where x ∈ R
n, u ∈ R

p, y ∈ R
q, A ∈ R

n×n, B ∈ R
n×p, and C ∈ R

q×n. The input u(k)

is assumed to be unknown. Next, let ℓ be a positive integer, and define

Yℓ
△
=
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y1
...
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, Uℓ
△
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u0
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0 0 · · · 0

CB 0 · · · 0

CAB CB · · · 0
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...

. . .
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, Ψℓ
△
=

[

Γℓ Mℓ

]

.

Definition 2.1.1 ( [20]). Let ℓ ≥ 1. Then the input and state unobservable subspace

of (2.1) and (2.2) is given by

















x0

Uℓ






∈ R

n+ℓp : Yℓ = 0











.

Next, define

ℓ0
△
=











max{⌈n−q
q−p

⌉, 1}, p < q,

1, p = q,

where ⌈a⌉ is the smallest integer greater than or equal to a. We now give sufficient

conditions for input and state observability.

Theorem 1 ( [20]). The following statements are equivalent:

(i) (2.1) and (2.2) are input and state observable.
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(ii) For all ℓ ≥ ℓ0, Yℓ = 0 if and only if







x0

Uℓ−1






= 0.

(iii) For all ℓ ≥ ℓ0, rank (Ψℓ) = n+ ℓp.

(iv) rank (Ψn−1) = n+ (n− 1)p and, for all ℓ ≥ ℓ0, rank (CℓBℓ−1).

2.2 Problem Formulation : Full Column Rank First

Markov Parameter

In this section, we derive RCUIO for linear systems where the first Markov parameter

has full column rank. The purpose of this chapter is to give insight into RCUIO and

comparisons to other unknown input state estimators. A more general development

of RCUIO is done in Section 2.3. Consider the linear time-invariant system

x(k) = Ax(k − 1) +Bu(k − 1), (2.3)

y(k) = Cx(k), (2.4)

where x ∈ R
n, u ∈ R

p, y ∈ R
q, A ∈ R

n×n, B ∈ R
n×p, C ∈ R

q×n. Furthermore, we

assume that u(k) is unknown and we consider the following assumption:

Assumptions 2.2.1. CB has full column rank.

Assumption 2.2.1 is used to simplify the analysis, and will not be used in Section 2.3.

The goal is to obtain u(k) and x(k) using y(k). First, we develop an unknown input

and state estimator based on direct input reconstruction.
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2.2.1 Unknown Input and State Estimation Using Direct In-

put Reconstruction

Let x̂(k − 1) be the estimate of x(k − 1). For k > 0, define

x−(k) = Ax̂(k − 1) +Bu−(k − 1), (2.5)

y−(k) = Cx−(k), (2.6)

where x−(k), y−(k), u−(k − 1) ∈ R are prior estimates. Note that u−(k − 1) can be

chosen to be any value. Next, define the error

z(k) = y−(k)− y(k). (2.7)

Using (2.5) and (2.6), it follows from (2.7) that

z(k) = CAx̂(k − 1) + CBu−(k − 1)− y(k).

We now wish to replace u−(k−1) with an input u∗(k−1) that minimizes z(k). Define

ẑ(k)
△
= CAx̂(k − 1) + CBu∗(k − 1)− y(k),

and the optimization problem

min
u∗(k−1)∈R

(

ẑT(k)ẑ(k)
)

= min
u∗(k−1)∈R

[

(CAx̂(k − 1) + CBu∗(k − 1)− y(k))T(CAx̂(k − 1) + CBu∗(k − 1)− y(k))
]

,

= min
u∗(k−1)∈R

[

(CBu∗(k − 1)− CBu−(k − 1) + z(k))T(CBu∗(k − 1)− CBu−(k − 1) + z(k))
]

.

(2.8)
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Note that (2.8) resembles the least squares minimization problem

min
x∈R

[

(b− Ax)T(b−Ax)
]

with x = u∗(k − 1), b = CBu−(k − 1)− z(k), and A = CB. Solving (2.8) yields

u∗(k − 1) = [(CB)TCB]−1(CB)T
(

CBu−(k − 1)− z(k)
)

. (2.9)

Next, we set û(k−1) = u∗(k−1), and obtain the posterior state and output estimates

using

x̂(k) = Ax̂(k − 1) +Bû(k − 1), (2.10)

ŷ(k) = x̂(k). (2.11)

The schematic of the direct input reconstruction based estimator is shown in Figure

2.1. Next, define the error e(k) = x̂(k) − x(k). It follows from (2.10), (2.11), and

(2.9) that

e(k) = x̂(k)− x(k)

= Ax̂(k − 1) +Bû(k − 1)− Ax(k − 1)−Bu(k − 1)

= Ae(k − 1)− Bu(k)−B[(CB)TCB]−1(CB)T
(

CBu−(k − 1)− z(k)
)

= Ae(k − 1)− Bu(k)−B[(CB)TCB]−1(CB)T (CAx̂(k − 1)− y(k))

= Ae(k − 1)− Bu(k − 1)− B[(CB)TCB]−1(CB)T (CAe(k − 1)− CBu(k − 1))

=
(

A− B[(CB)TCB]−1(CB)TCA
)

e(k − 1).

It can be shown that the eigenvalues of A− B[(CB)TCB]−1(CB)TCA are the zeros

of (2.10) and (2.11). Therefore, if the system (2.3), (2.4) is input observable and

minimum-phase, then the error system is asymptotically stable. This method is

18



Figure 2.1: Schematic of the direct input reconstruction based estimator.

demonstrated in the following example

Example 2.2.1. Consider the system

x(k + 1) =







0.2 2

0 0.4






x(k) +







0

0.1






u(k),

y(k) =

[

0.1 0.5

]

x(k), (2.12)

where u(k) = 5 sin(0.1k) and is unknown. Furthermore, x̂(0) =

[

0 0

]

. The poles

and zero of (2.12) are at 0.2, 0.4 and -0.2, respectively, and thus (2.12) is minimum

phase. Figures 2.2 and 2.3 shows x(k), x̂(k) and u(k), û(k), respectively. For this
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example, x̂(k) converges to x(k), and û(k) converges to u(k).
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Figure 2.2: State estimates for the minimum-phase system given by (2.12) using direct
input reconstruction. For this example, x̂(k) converges to x(k).
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Figure 2.3: Input estimates for the minimum-phase system given by (2.12) using
direct input reconstruction. For this example, û(k) converges to u(k).
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Example 2.2.2. Consider the system

x(k + 1) =







0.2 2

0 0.4






x(k) +







0

0.1






u(k),

y(k) =

[

1.2 0.5

]

x(k), (2.13)

where u(k) = 5 sin(0.1k) and is unknown. Furthermore, x̂(0) =

[

0 0

]

. The poles

and zero of (2.13) are at 0.2, 0.4 and -4.6, respectively, and thus (2.13) is nonminimum

phase. Figures 2.4 and 2.5 shows x(k), x̂(k) and u(k), û(k), respectively. For this

example, x̂(k) and û(k) are unbounded.
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Figure 2.4: State estimates for the nonminimum-phase system given by (2.13) using
direct input reconstruction. For this example, x̂(k) is unbounded.

In [1], a weighted least squares cost function is used to obtain a minimum variance

unbiased input estimate. However, when the output and process noise covariances are

zero, the weighted least squares cost function in [1] reduces to (2.8). In the following
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Figure 2.5: Input estimates for the nonminimum-phase system given by (2.13) using
direct input reconstruction. For this example, û(k) is unbounded.

examples we show that, for nonminimum phase MIMO systems, even in the presence

of process and output noise, the filter in [1] can be unstable.

Example 2.2.3. Consider the MIMO system

x(k + 1) =

































0.5 −0.34 0.208 0 0 0

0.5 0 0 0 0 0

0 0.125 0 0 0 0

0 0 0 0.5 −0.34 0.208

0 0 0 05 0 0

0 0 0 0 0.125 0

































x(k) +

































16 00

0 0

0 0

0 16

0 0

0 0

































u(k) + w(k),

y(k) =













0.0625 0.1250 2 0.0625 0 −12

0.0625 0.1250 −4 0.1250 −0.1250 −8

0.0625 0 −4 0.1250 0 −8













x(k) + ν(k), (2.14)

where u(k), w(k) ∈ R
6, v(k) ∈ R

3, and w(k) and v(k) are sampled from white noise
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processes with zero-mean Gaussian distributions with variances

Q =

































0.0245 −0.0157 −0.0277 0.0041 0.0019 −0.0151

−0.0157 0.0194 0.0219 −0.0032 −0.0101 0.0124

−0.0277 0.0219 0.1220 −0.0131 0.0541 −0.0479

0.0041 −0.0032 −0.0131 0.0095 0.0167 −0.0085

0.0019 −0.0101 0.0541 0.0167 0.1122 −0.0670

−0.0151 0.0124 −0.0479 −0.0085 −0.0670 0.1145

































,

and

R =













0.0650 −0.0133 −0.0228

−0.0133 0.1123 0.0034

−0.0228 0.0034 0.0144













,

respectively, and the unknown input is u(k) =

[

10 sin(k) 0.1 cos(k)

]T

. The poles of

(2.14) are 0.2±0.3i, 0.2±0.3i, 0.1, and 0.1, and the zero of (2.14) is 2, and thus (2.14)

is nonminimum-phase. The matrices Q and R are assumed to be known. We use the

filter equations given in [1]. Figure 2.6 shows the first four elements of x(k) and x̂(k),

and Figure 2.7 shows u(k) and û(k). These figures show that, for this example, the

filter given in [1] is unstable.

Since the direct input reconstruction method yields an unbounded input estimate,

we test the effect of saturating the estimated input û(k) obtained from direct input

reconstruction.

Example 2.2.4. Consider the same setup as in Example 2.2.2. Let u∗max = 5, u∗min =
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Figure 2.6: State estimates for system given by (2.14) using the filter given in [1].
For this example, the state estimates are unbounded.

−5, and

u∗(k − 1) =























u∗max, if u∗(k − 1) > umax,

u∗min, if u∗(k − 1) < umin,

u∗(k − 1), otherwise.

Figure 2.8 shows x̂(k) and x(k). For this example, although x̂(k) is bounded in

contrast to the x̂(k) in Example 2.2.2, x̂(k) does not converge to xk. Figure 2.9 shows

û(k) and u(k), and shows that û(k) does not converge to u(k).
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Figure 2.7: Input estimates for system given by (2.14) using the filter given in [1].
For this Example, the input estimates are unbounded.

2.2.2 RCUIO: Combining direct input reconstruction with

the adaptive feedback system

Instead of setting û(k − 1) = u∗(k − 1) and using it in (2.10), as was done in the

direct input reconstruction method, where u∗(k− 1) is obtained from equation (2.9),

we use u∗(k − 1) to update the coefficients mi(k) and ni(k) of the adaptive feedback

system

û(k) =

nc
∑

i=1

mi(k)û(k − i) +

nc
∑

i=0

ni(k)z(k − i),

where nc is the order of the adaptive feedback system. The adaptive feedback system

is then used to obtain û(k), which is consequently used to obtain x̂(k+1). The com-

bination of input reconstruction and adaptive feedback system update yields RCUIO.

Note that, unlike the direct input reconstruction based estimator, RCUIO does not
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Figure 2.8: State estimates for Example 2.2.4 for the nonminimum phase system
(2.13) using direct input reconstruction with saturated u∗(k − 1). For this example,
the state estimates x̂(k) are bounded, but do not converge to the true states x(k).
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Figure 2.9: Input estimates for Example 2.2.4 for the nonminimum phase system
(2.13) using direct input reconstruction with saturated u∗(k − 1). For this example,
û(k) does not converge to u(k).
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use the optimized input u∗(k − 1) to update x̂(k), but instead obtains x̂(k + 1). In

this respect, RCUIO resembles the Luenberger observer, which uses y(k) to obtain

x̂(k + 1), and does not use it to update x̂(k).

Since û(k) is computed at step k, it follows that û(k − 1) is available at step

k + 1. Therefore, in (2.5), if we set u−(k − 1) = û(k − 1), then it follows from (2.10)

that x−(k) = x̂(k), and since x̂(k) is known as it was computed at step k − 1, we

do not need to first compute x−(k − 1) and then x̂(k − 1). This is beneficial from a

computational point of view. In this dissertation, we focus on this implementation of

RCUIO. The schematic of RCUIO is given in 2.10.

We now derive RCUIO. Define the estimator equations

x̂(k) = Ax̂(k − 1) +Bû(k − 1), (2.15)

ŷ(k) = Cx̂(k), (2.16)

û(k) =
nc
∑

i=1

mi(k)û(k − i) +
nc
∑

i=0

ni(k)z(k − i). (2.17)

As in the case of the direct input reconstruction based estimator, we define

z(k)
△
= ŷ(k)− y(k). (2.18)

Using (2.15) and (2.16), it follows from (2.18) that

z(k)
△
= CAx̂(k − 1) + CBû(k − 1)− y(k).

Next, define

ẑ(k)
△
= CAx̂(k − 1) + CBu∗(k − 1)− y(k),
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and pose the optimization problem

min
u∗(k−1)∈R

(

ẑT(k)ẑ(k)
)

= min
u∗(k−1)∈R

[

(CAx̂(k − 1) + CBu∗(k − 1)− y(k))T(CAx̂(k − 1) + CBu∗(k − 1)− y(k))
]

.

= min
u∗(k−1)∈R

[

(CBu∗(k − 1)− CBû(k − 1) + z(k))T(CBu∗(k − 1)− CBû(k − 1) + z(k))
]

.

(2.19)

Solving (2.19) yields

u∗(k − 1) = [(CB)TCB]−1(CB)T
(

CBu−(k − 1)− z(k)
)

.

If the system (2.15) and (2.16) is nonminimum phase, we restrict u∗(k − 1) by satu-

rating it or adding an adaptive regularization term in (2.9). In this development, we

saturate u∗(k − 1). More specifically, let u∗max, u
∗
min ∈ R, such that u∗min < u∗max, and

define

u∗(k − 1) =























u∗max, if u∗(k − 1) > umax,

u∗min, if u∗(k − 1) < umin,

u∗(k − 1), otherwise.

Now, we update the coefficients mi(k) and ni(k) using least squares. Let (2.17)

be expressed as

û(k) = θ(k)φ(k − 1), (2.20)

where

θ(k)
△
= [m1(k) · · · mnc

(k) n0(k) · · · nnc
(k)] ,

28



and

φ(k − 1)
△
=

































û(k − 1)

...

û(k − nc)

z(k)

...

z(k − nc)

































.

Now, define the least squares cost function

JR(θ(k))
△
=

k
∑

i=1

λk−i‖φT(i− 2)θT(k − 1)− u∗(i− 1)‖2, (2.21)

where ‖ · ‖ is the Euclidean norm, and λ(k) ∈ (0, 1] is the forgetting factor. In this

cost function, we use the optimized input u∗(k − 1) to update the coefficients θ(k).

The recursive minimizer of (2.21) is given by

P (k) = λ−1(k)P (k − 1)− λ−1(k)P (k − 1)φ(k − d− 1)

× [φT(k − d− 1)P (k − 1)φ(k − d− 1) + λ(k)]−1

× φT(k − d− 1)P (k − 1), (2.22)

θT(k) = θT(k − 1) + P (k)φ(k − d− 1)

× [φT(k − d− 1)θT(k − 1)− u∗T(k − d)], (2.23)

with the initial conditions θT(0) ∈ R
2nc+1 and P (0) = γI, where γ > 0.

To summarize, at each step k RCUIO involves the following steps:

1. Use x̂(k) and û(k − 1) to compute u∗(k − 1).

2. Use (2.22) and (2.23) to obtain θ(k).
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3. Use θ(k) in (2.20) to obtain û(k).

4. Use û(k) in (2.15) to obtain x̂(k + 1).

Example 2.2.5. We consider the same setup in Example 2.2.2, in which a second

order, nonminimum-phase system is considered. For this example, we let nc = 3,

u∗min = −10, and u∗max = 10. Figure 2.11 shows the true and estimated states, and

shows that the estimated states converge to the true states. Figure 2.12 shows the

true and estimated inputs for both RCUIO and the direct input reconstruction based

estimator with saturation. For this example, the input estimate from the direct input

reconstruction based method does not converge to the true input, whereas the input

estimate from RCUIO converges to the true input.

2.3 Problem Formulation : General Linear Sys-

tems

In this chapter, we derive RCUIO for linear MIMO systems. Consider the linear-

time-invariant system

x(k + 1) = Ax(k) +Bu(k), (2.24)

y(k) = Cx(k),

where x(k) ∈ R
n is the unknown state, u(k) ∈ R

m is an unknown input, and y(k) ∈ R
p

is the measured output, which is assumed to be bounded. The matrices A ∈ R
n×n,

B ∈ R
n×m, and C ∈ R

p×n are known, and (A,C) is observable. Furthermore, we

assume that u(k) is the output of a Lyapunov-stable, linear system, which means

that u(k) is a sum of constant and sinusoidal signals.

In order to obtain an estimate x̂(k) ∈ R
n of the state x(k), we construct an
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Figure 2.10: Schematic of RCUIO.

adaptive state estimator of the form

x̂(k + 1) = Ax̂(k) +Bû(k), (2.25)

ŷ(k) = Cx̂(k), (2.26)

z(k) = ŷ(k)− y(k), (2.27)

where x̂(k) ∈ R
n is the estimated state, ŷ(k) ∈ R

p is the estimated output, û(k) ∈ R
m
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Figure 2.11: State estimates for Example 2.2.5 and the nonminimum phase system
(2.13) using RCUIO. This figure shows that x̂(k) converges to x(k).

is the estimator input, and z(k) ∈ R
p is the output error. The signal û(k) is the output

of the strictly proper adaptive subsystem of order nc, with input z(k), given by

û(k) =

nc
∑

i=1

Mi(k)û(k − i) +

nc
∑

i=0

Ni(k)z(k − i), (2.28)

where Mi(k) ∈ R
m×m, i = 1, . . . , nc, and Ni(k) ∈ R

m×p, i = 0, . . . , nc. The goal is to

use z(k) to update Mi(k) and Ni(k). Figure 2.13 shows the structure of the adaptive

estimator.

For all i ≥ 1, define the Markov parameter Hi of (A,B,C) by Hi
△
= CAi−1B. Let

r be a nonnegative integer. Then, substituting (2.25) into itself r − 1 times yields,

for all k ≥ r,

x̂(k) = Arx̂(k − r) +

r
∑

i=1

Ai−1Bû(k − i). (2.29)
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û(k)

Figure 2.12: State estimates for Example 2.2.5 and the nonminimum phase system
(2.13) using RCUIO. This figure shows that û(k) converges to u(k).

It follows from (2.24), (2.26), (2.27), and (2.29) that

z(k) = CArx̂(k − r)− y(k) + H̄ ˆ̄U(k − 1), (2.30)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
p×rm

and

ˆ̄U(k − 1)
△
=

[

û(k − 1) · · · û(k − r)

]T

.

Next, we rearrange the columns of H̄ and the components of ˆ̄U(k − 1) and partition
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Figure 2.13: Adaptive state estimator structure. The adaptive state estimator uses
the error z(k) between the measured output y(k) and the computed output ŷ(k)
to update the adaptive subsystem in order to obtain an estimate û(k) of u(k) that
minimizes the retrospective cost J̄ defined by (2.43). The estimate û(k) asymptoti-
cally drives the error between y(k) and ŷ(k) to zero. Consequently, the states of the
physical system model x̂(k) converge to the physical system states x(k).

the resulting matrix and vector so that

H̄ ˆ̄U(k − 1) = H′Û ′(k − 1) +HÛ(k − 1), (2.31)

where H′ ∈ R
p×(rm−l), H ∈ R

p×l, Û ′(k−1) ∈ R
rm−l, and Û(k−1) ∈ R

l. For example,

if H̄ =

[

H1 H2 H3 H4 H5

]

, then H̄ can be partitioned as (2.31) with

H′ =

[

H1 H2 H4

]

, U ′(k − 1) =













û(k − 1)

û(k − 2)

û(k − 4)













,
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and

H =

[

H3 H5

]

, Û(k − 1) =







û(k − 3)

û(k − 5)






.

Next, using (2.31), we can rewrite (2.30) as

z(k) = S(k) +HÛ(k − 1), (2.32)

where

S(k)
△
= CArx̂(k − r)− y(k) +H′Û ′(k − 1). (2.33)

Next, for j = 1, . . . , s, we rewrite (2.32) with a delay of kj time steps, where 0 ≤ k1 ≤

k2 ≤ · · · ≤ ks, in the form

zj(k − kj) = Sj(k − kj) +HjÛj(k − kj − 1), (2.34)

where (2.33) becomes

Sj(k − kj)
△
= CArx(k − kj − r)− y(k − kj) +H′

jÛ
′
j(k − kj − 1)

and (2.31) becomes

H̄ ˆ̄U(k − kj − 1) = H′
jÛ

′
j(k − kj − 1) +HjÛj(k − kj − 1), (2.35)

where H′
j ∈ R

p×(rm−lj), Hj ∈ R
p×lj , Û ′

j(k−kj−1) ∈ R
rm−lj , and Ûj(k−kj−1) ∈ R

lj .

The subscript j in H′
j, Hj , Û

′
j , and Ûj indicates that the portioning of H̄ ˆ̄U(k−kj−1)

can be different for each delay. Now, by stacking z(k − k1), . . . , z(k − ks), we define
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the extended performance

Z(k)
△
=













z1(k − k1)

...

zj(k − ks)













∈ R
sp. (2.36)

Therefore,

Z(k)
△
= S̃(k) + H̃ ˆ̃U(k − 1), (2.37)

where

S̃(k)
△
=













S1(k − k1)

...

Ss(k − ks)













∈ R
sp

and

ˆ̃U(k − 1)
△
=













û(k − q1)

...

û(k − qg)













∈ R
mg, (2.38)

where, for i = 1, . . . , g, k1 ≤ qi ≤ ks + r, and H̃ ∈ R
sp×mg is constructed according

to the structure of ˆ̃U(k − 1). The vector ˆ̃U(k − 1) is formed by stacking Û1(k − k1 −

1), . . . , Ûs(k − ks − 1) and removing copies of repeated components.

For example, with k1 = 0 and k2 = 1, stacking Û1(k−1) =

[

û(k − 1) û(k − 2)

]T

and Û2(k − 2) = û(k − 2) results in ˆ̃U(k − 1) =

[

û(k − 1) û(k − 2)

]T

. The co-

efficient matrix H̃ consists of the entries of H1, . . . ,Hs arranged according to the

structure of ˆ̃U(k − 1).
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Next, we define the retrospective performance

ẑj(k − kj)
△
= Sj(k − kj) +HjU

∗
j (k − kj − 1), (2.39)

where the past inputs Ûj(k − kj − 1) in (2.34) are replaced by the retrospectively

optimized inputs U∗
j (k − kj − 1), which are obtained below using retrospective cost

optimization. In analogy with (2.36), the extended retrospective performance for (2.39)

is defined as

Ẑ(k)
△
=













ẑ1(k − k1)

...

ẑs(k − ks)













∈ R
sp,

and thus is given by

Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (2.40)

where the components of Ũ∗(k − 1) ∈ R
g are the components of U∗

1 (k − k1 −

1), . . . , U∗
s (k − ks − 1) ordered in the same way as the components of ˆ̃U(k − 1).

Subtracting (2.37) from (2.40) yields

Ẑ(k) = Z(k)− H̃ ˆ̃U(k − 1) + H̃Ũ∗(k − 1). (2.41)

Finally, we define the retrospective cost function

J(Ũ∗(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (2.42)

where R(k) ∈ R
ps×ps is a positive-definite performance weighting. The goal is to

determine retrospectively optimized inputs Ũ∗(k−1) that would have provided better
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performance than the inputs ˆ̃U(k − 1) that were applied to the estimator system.

2.3.1 Cost Function Optimization with Adaptive Regulariza-

tion

To ensure that (2.42) has a global minimizer, we consider the regularized cost

J̄(Ũ∗(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k)

+ η(k)Ũ∗T(k − 1)Ũ∗(k − 1), (2.43)

where η(k) ≥ 0. Substituting (2.41) into (2.43) yields

J̄(Ũ∗(k − 1), k) = Ũ∗(k − 1)TA(k)Ũ∗(k − 1)

+ B(k)Ũ∗(k − 1) + C(k),

where

A(k)
△
= H̃TR(k)H̃ + η(k)Ig,

B(k)
△
= 2H̃TR(k)[Z(k)− H̃ ˆ̃U(k − 1)],

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃ ˆ̃U(k − 1)+

ˆ̃UT(k − 1)H̃TR(k)H̃ ˆ̃U(k − 1).

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this

case, J̄( ˆ̃U(k − 1), k) has the unique global minimizer

Ũ∗(k − 1) = −
1

2
A−1(k)B(k). (2.44)
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The optimized inputs Ũ∗(k − 1) are subsequently used to update the adaptive sub-

system (2.28). Note that H̃ is the only modeling information required by RCUIO.

2.3.2 Adaptive Subsystem Update

The subsystem model (2.28) can be expressed as

û(k) = θ(k)φ(k − 1),

where

θ(k)
△
= [M1(k) · · · Mnc

(k) N0(k) · · · Nnc
(k)]

and

φ(k − 1)
△
=

































û(k − 1)

...

û(k − nc)

z(k)

...

z(k − nc)

































.

Next, let d be a positive integer such that Ũ∗(k− 1) contains u∗(k− d). Then, we

define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=1

λk−i‖φT(i− d− 1)θT(k − 1)− u∗(i− d)‖2, (2.45)

where ‖ · ‖ is the Euclidean norm, and λ(k) ∈ (0, 1] is the forgetting factor. In this

cost function, we aim to update the controller gains θ(k) using the retrospectively

optimized input u∗T(k − d) and the product φT(k − d − 1)θT(k − 1). The recursive
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minimizer of (2.45) is given by

P (k) = λ−1(k)P (k − 1)− λ−1(k)P (k − 1)φ(k − d− 1)

× [φT(k − d− 1)P (k − 1)φ(k − d− 1) + λ(k)]−1

× φT(k − d− 1)P (k − 1), (2.46)

θT(k) = θT(k − 1) + P (k)φ(k − d− 1)

× [φT(k − d− 1)θT(k − 1)− u∗T(k − d)], (2.47)

with the initial conditions θT(0) ∈ R
[nc(m+p)+1]×m and P (0) = γI, where γ > 0.

2.4 Computational Complexity

Since RCUIO is an ensemble-free algorithm, it has significantly lower computational

complexity than ensemble-based data assimilation algorithms. For implementation,

RCUIO requires the computation of equations (2.28), (2.44), (2.46), and (2.47). The

computational complexity of the matrix product in (2.28) is O(m[ncm+ (nc + 1)p]),

and the computational complexity of the matrix products in (2.46) and (2.47) is

O((ncm+(nc+1)p)2). Finally, the computational complexity of the matrix products

and inverse in (2.44) is max(O((mg)2sp),O((sp)2mg)) and O((mg)3), respectively.

2.5 Illustrative Examples

The above derivation of RCUIO is based on a linear dynamics model, and the im-

plementation of this algorithm requires the matrix H̃, whose entries are components

of the impulse response. In this section we apply RCUIO to illustrative linear and

nonlinear examples, where, in the latter case, we choose H̃ based on trial and error.

For all examples in this section, x(0) = 0, and RCUIO is switched on after 80 time

steps with x̂(80) = 0, where, for all k < 80, û(k) = 0.

40



Example 2.5.1 (mass-spring-damper system). Consider the discretized linear mass-

spring-damper system

x1(k + 1) = x1(k) + Tsx2(k),

x2(k + 1) =

(

1−
Tsc

m

)

x2(k)−
Tsk

m
x1(k) +

Ts
m
u(k),

y(k) = x1(k),

where Ts = 0.1 s, m = 1 kg, c = 1 N s m−1, k = 1 N m−1, and the input u(k) =

10 sin(0.01k) + sin(0.1k) N is assumed to be unknown. The adaptive estimator has

the form

x̂1(k + 1) = x̂1(k) + Tsx̂2(k),

x̂2(k + 1) =

(

1−
Tsc

m

)

x̂2(k)−
Tsk

m
x̂1(k) +

Ts
m
û(k),

ŷ(k) = x̂1(k).

Since H1 = 0, we use

H̃ =







H3

H2






=







0.019

0.01






.

Then, using (2.37), we have

Z(k) = S̃(k) + H̃ ˆ̃U(k − 1),

where

Z(k) =







z(k)

z(k − 1)






,
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S(k) =







S1(k)

S2(k − 1)






,

and

ˆ̃U(k − 1) =

[

û(k − 3)

]

.

We use (2.44) to obtain the retrospectively optimized input û∗(k − 3), which is then

used in (2.46) and (2.47) to update the coefficients of the adaptive subsystem (2.28).

The updated adaptive subsystem (2.28) is then used to obtain the next input û(k).

For this example, R(k) ≡ 1, η = 0, nc = 10, and γ = 100. Figure 2.14 shows the true

and estimated states and input, and Figure 2.15 shows |z(k)|. Figure 2.14 shows that,

after RCUIO is turned on at k = 80, RCUIO reduces the error in x̂1(k), x̂2(k), and

û(k) by approximately two orders of magnitude. Finally, Figure 2.15 shows that, after

k = 80, RCUIO reduces the error in |z(k)| by approximately two orders of magnitude.

Example 2.5.2 (Van der Pol oscillator). Consider the nonlinear discretized Van der

Pol oscillator

x1(k + 1) = x1(k) + Tsx2(k),

x2(k + 1) = x2(k) + Ts
(

1− x1(k)
2
)

x2(k)− Tsx1(k) + Tsu(k),

y(k) = x1(k) + 0.2x2(k),

where Ts = 0.1 s and the unknown input u(k) = sin(0.01k). Let R(k) ≡ 1, H̃ = 0.03,

η = 0.001, nc = 4, γ = 200, where H̃ is chosen by trial and error. Figure 2.16 shows

the true and estimated states and input. Figure 2.16 shows that, after RCUIO is

turned on at k = 80, RCUIO reduces the error in x̂1(k), x̂2(k), û(k) by approximately

three orders of magnitude.
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Figure 2.14: True and estimated position x1(k), velocity x2(k), and input u(k) for the
mass-spring-damper system. The vertical black line indicates that RCUIO is turned
on at k = 80. After k = 80, RCUIO reduces the error in x̂1(k), x̂2(k), and û(k) by
approximately two orders of magnitude.

Example 2.5.3 (Van der Pol oscillator with matched unmodeled dynamics). Con-

sider the modified discretized Van der Pol oscillator

x1(k + 1) = x1(k) + Tsx2(k),

x2(k + 1) = x2(k) + Ts
(

1− x1(k)
2
)

x2(k)− Tsx1(k)+

sin(x2(k)) + Tsu(k),

y(k) = x1(k) + 0.2x2(k),

where sin(x2(k)) is an unmodeled feature of the dynamics, Ts = 0.1 s, and the input

u(k) = sin(0.01k) is unknown. Note that the unmodeled term sin(x2(k)) is matched

to the unknown input in the sense that there exists an input signal that can account
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Figure 2.15: Error |z(k)| for the mass-spring-damper example. After RCUIO is turned
on at k = 80, RCUIO reduces the error in |z(k)| by approximately two orders of
magnitude.

for the presence of this term. In particular, replacing u(k) by u(k) − sin(x2(k))/Ts

effectively removes the unmodeled term. Since the term sin(x2(k)) is unmodeled, the

estimator has the form

x̂1(k + 1) = x̂1(k) + Tsx̂2(k),

x̂2(k + 1) = x̂2(k) + Ts
(

1− x̂1(k)
2
)

x̂2(k)− Tsx̂1(k) + Tsû(k),

ŷ(k) = x̂1(k) + 0.2x̂2(k).

Let R(k) ≡ 1, H̃ = 0.008, η = 0.0008, nc = 4, and γ = 1000. Figure 2.17 shows the

true and estimated states and input. Figure 2.17 shows that, after RCUIO is turned

on at k = 80, RCUIO reduces the error in x̂1(k) and x̂2(k) by one order of magnitude.

For this example, the estimated input does not converge to the true input due to the
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Figure 2.16: True and estimated position x1(k), velocity x2(k), and input u(k) for
the Van der Pol oscillator. The vertical black line indicates that RCUIO is turned
on at k = 80. After k = 80, RCUIO reduces the error in x̂1(k), x̂2(k), and û(k) by
approximately three orders of magnitude.

matched unmodeled term sin(x2(k)) in the dynamics of the oscillator. In fact, the

estimated input û(k) converges to u(k) − sin(x2(k))/Ts, which shows that RCUIO

reconstructs not only the unknown input but also the matched unmodeled feature of

the dynamics.
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Figure 2.17: True and estimated position x1(k), velocity x2(k), and input u(k) for
the Van der Pol oscillator with matched unmodeled dynamics. The vertical black line
indicates that RCUIO is turned on at k = 80. After k = 80, RCUIO reduces the
errors in x̂1(k) and x̂2(k) by approximately one order of magnitude. For this example,
the estimated input does not converge to the true input because of the unknown term
sin(x2(k)) in the dynamics of the oscillator. However, û(k) does give an estimate of
u(k) − sin(x2(k))/Ts, which shows that RCUIO reconstructs not only the unknown
input but also the matched unmodeled feature of the dynamics.
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Example 2.5.4 (Van der Pol oscillator with unmatched unmodeled dynamics). Con-

sider the modified discretized Van der Pol oscillator

x1(k + 1) = x1(k) + Tsx2(k) + 0.1 sin(x2(k)),

x2(k + 1) = x2(k) + Ts
(

1− x1(k)
2
)

x2(k)− Tsx1(k) + Tsu(k),

y(k) = x1(k) + 0.2x2(k),

where 0.1 sin(x2(k)) is an unmodeled feature of the dynamics, Ts = 0.1 s, and the

input u(k) = sin(0.01k) is unknown. Note that, unlike Example 3.3, the unmodeled

term 0.1 sin(x2(k)) is not matched to the unknown input, and thus there does not

exist an input signal that can account for the presence of this term. Since the term

0.1 sin(x2(k)) is unmodeled, the estimator has the form

x̂1(k + 1) = x̂1(k) + Tsx̂2(k),

x̂2(k + 1) = x̂2(k) + Ts
(

1− x̂1(k)
2
)

x̂2(k)− Tsx̂1(k) + Tsû(k),

ŷ(k) = x̂1(k) + 0.2x̂2(k).

Let R(k) ≡ 1, H̃ = 0.008, η = 0.0008, nc = 4, and γ = 1000. Figure 2.18 shows that

there is a persistent error in the estimated states and that û(k) cannot estimate u(k)

due to the unmatched unmodeled feature of the dynamics.

2.6 Conclusions

In this chapter, we developed RCUIO for the special case where the first Markov

parameter is nonzero and a single past input is reconstructed, and the general case.

RCUIO was demonstrated on minimum-phase, nonminimum-phase, and nonlinear

systems. For the special case where the first Markov parameter is non-zero, we showed
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Figure 2.18: True and estimated position x1(k), velocity x2(k), and input u(k) for
the Van der Pol oscillator with unmatched unmodeled dynamics. The persistent
errors in the estimates of x1(k) and x2(k) are due to the unmatched unmodeled term
0.1 sin(x2(k)), which cannot be estimated by the adaptive estimator. Furthermore,
the estimated input does not converge to the true input because of the unmatched
unmodeled term 0.1 sin(x2(k)) in the dynamics of the oscillator.

the connection between RCUIO and direct input reconstruction based estimators, and

the use of adaptive feedback systems to handle nonminimum-phase systems.
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CHAPTER 3

Sliding Window Variable Regularization

Recursive Least Squares

In this chapter, we develop the sliding window, variable regularization recursive least

squares (SW-VR-RLS) algorithm and analyze its convergence properties, numerical

stability, and computational complexity. Finally, we compare SW-VR-RLS with the

Proportionate Affine Projection algorithm and the Proportionate Normalized Least

Mean Squares algorithm. In Section 3.2, we give the cost function and the non-

recursive solution. In Section 3.3, we derive the Sliding Window Variable Regulariza-

tion Recursive Least Squares Algorithms and, in Section 3.4, we give their computa-

tional complexity. Section gives convergence properties of SW-VR-RLS, and Section

3.6 gives simulation results and a numerical stability analysis.

3.1 Introduction

Recursive-least-squares (RLS) and gradient-based algorithms are widely used in signal

processing, estimation, identification, and control [43–51]. Under ideal conditions,

that is, noiseless measurements and persistency of the data, these techniques are

guaranteed to converge to the minimizer of a quadratic function [44,47]. In practice,

the accuracy of the estimates depends on the level of noise and the persistency of the

data.
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The standard RLS algorithm operates on a growing window of data, where new

data are added to the RLS cost function as they become available and past data are

progressively discounted through the use of a forgetting factor. In contrast, sliding-

window RLS algorithms [52–56] require no forgetting factor since they operate on

a finite data window of fixed length, where new data replace past data in the RLS

cost function. Sliding-window least-squares techniques are available in both batch

and recursive formulations. As shown in [53], sliding-window RLS algorithms have

enhanced tracking performance compared to standard RLS algorithms in the presence

of time-varying parameters.

In standard RLS, the positive-definite initialization of the covariance matrix is the

inverse of the weighting on a regularization term in a quadratic cost function. This

regularization term compensates for the potential lack of persistency, ensuring that

the cost function has a unique minimizer at each step. Traditionally, the regularization

term is fixed for all steps of the recursion. Additionally, an optimally regularized

adaptive filtering algorithm with constant regularization is presented in [57]. However,

variants of RLS with time-varying regularization have been developed in the context

of adaptive filtering, echo cancellation, and affine projection [58–63].

In the present work, we derive a novel sliding-window variable-regularization RLS

(SW-VR-RLS) algorithm, where the weighting on the regularization term can change

at each step. An additional extension presented in this chapter also involves the

regularization term. Specifically, the regularization term in standard RLS weights the

difference between the next estimate and the initial estimate, while the regularization

term in sliding-window RLS weights the difference between the next estimate and

the estimate at the beginning of the sliding window. In this work, the regularization

term weights the difference between the next estimate and an arbitrarily chosen time-

varying vector. As a special case, the time-varying vector can be the current estimate

or a recent estimate. These variable-regularization extensions of sliding-window RLS
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can facilitate tradeoffs among transient error, rate of convergence, and steady-state

error.

In this work, we derive the SW-VR-RLS equations and analyze their convergence

properties in the absence of noise. While standard RLS entails the update of the

estimate and the covariance matrix, sliding-window RLS involves the update of an

additional symmetric matrix of size n× n, where n is the dimension of the estimate.

Furthermore, SW-VR-RLS requires updating of one more symmetric matrix of size

n× n to account for the time-varying regularization.

The SW-VR-RLS algorithm was first presented in [64] together with a preliminary

numerical study and without convergence analysis. In addition, a growing-window

RLS algorithm with time-varying regularization appears in [65]. The goal of this work

is to provide a more complete development of the SW-VR-RLS algorithm, including

an analysis of convergence and numerical stability.

In this chapter, a matrix A ∈ R
n×n is positive semidefinite (A ≥ 0) if it is

symmetric and has nonnegative eigenvalues. Furthermore, A ∈ R
n×n is positive

definite (A > 0) if it is symmetric and has positive eigenvalues.

3.2 The Non-Recursive Solution

Let r be a nonnegative integer. For all integers i ≥ −r, let αi, bi ∈ R
n and Ai ∈ R

n×n,

where Ai is positive semidefinite. For all i ≥ 0, let Ri ∈ R
n×n, where Ri is positive

semidefinite. Assume that, for all k ≥ 0,
∑k−1

i=k−r Ai + Rk is positive definite. In

practice, the matrix Ak depends on data, whereas Rk is chosen by the user. For all

k ≥ 0, the sliding-window, variable-regularization quadratic cost is defined by

Jk(x)
△
=

k
∑

i=k−r

(

xTAix+ bTi x
)

+ (x− αk)
TRk(x− αk), (3.1)
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where x ∈ R
n and x0 = −1

2

(
∑0

i=−r Ai +R0

)−1 (∑0
i=−r bi − 2R0α0

)

is the minimizer

of J0(x). For all k ≥ 0, the unique minimizer xk of (3.1) is

xk = −1
2

(

k
∑

i=k−r

Ai +Rk

)−1( k
∑

i=k−r

bi − 2Rkαk

)

. (3.2)

Example 3.2.1. Consider the weighted regularized least-squares cost function

Jk(x)
△
=

k
∑

i=k−r

(yi − FT
i x)

TWi(yi − FT
i x) + (x− αk)

TRk(x− αk),

where x ∈ R
n. Let r be a nonnegative integer, and, for all i ≥ −r, let yi ∈ R

l, αi ∈ R
n,

Fi ∈ R
n×l, Ri ∈ R

n×n, and Wi ∈ R
l×l, where Wi is positive definite. Furthermore, for

all i ≥ −r, define Ai
△
= FiWiF

T
i and bi

△
= −2FiWiyi. Then, for all k ≥ 0 and x ∈ R

n,

Jk(x) = Jk(x) +
∑k

i=k−r y
T
i Wiyi. Thus, the minimizer of Jk(x) is also the minimizer

of Jk(x). Moreover, it follows from (4.2) that the minimizer of Jk(x) is given by

xk =

(

k
∑

i=k−r

FiWiF
T
i +Rk

)−1( k
∑

i=k−r

FiWiyi +Rkαk

)

.

Example 3.2.2. Let n and r be positive integers, for i ∈ {1, . . . , n}, let ai, ci ∈ R,

and, for all i ≥ −r − n, let ui, yi ∈ R. Furthermore, for all k ≥ 0, let yk satisfy the

infinite impulse response model

yk =
n
∑

i=1

aiyk−i +
n
∑

i=1

ciuk−i. (3.3)

Next, for all i ≥ −r, define ψi
△
=

[

ui−1 · · · ui−n yi−1 · · · yi−n

]T

. Furthermore,

for all i ≥ −r, define Ai
△
= ψiψ

T
i , bi

△
= −2yiψi. Finally, for all k ≥ 0, let Rk ∈ R

2n×2n

and αk ∈ R
2n, and define x∗

△
=

[

a1 · · · an c1 · · · cn

]T

. The objective is to
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choose Rk and αk such that the sequence of minimizers {xk}
∞
k=0 of (3.1) converges to

x∗. Note that, for all k ≥ −r, rank(Ak) ≤ 1. As shown in Section IV, the rank of Ak

affects the computational complexity of the recursive formulation of (4.2).

3.3 The SW-VR-RLS Solution

Defining

Pk
△
=

(

k
∑

i=k−r

Ai +Rk

)−1

, (3.4)

(4.2) can be written as

xk = −1
2
Pk

(

k
∑

i=k−r

bi − 2Rkαk

)

. (3.5)

To express Pk recursively, consider the decomposition

Ak = ψkψ
T
k , (3.6)

where ψk ∈ R
n×nk and nk

△
= rank(Ak). Next, for all k ≥ 1, define

Qk
△
=

(

k−1
∑

i=k−r

Ai +Rk

)−1

=
(

P−1
k − Ak

)−1
. (3.7)

It follows from (3.6) and (3.7) that

Pk =
(

Q−1
k + ψkψ

T
k

)−1
.

Using the matrix inversion lemma

(X + UCV )−1 = X−1 −X−1U
(

C−1 + V X−1U
)−1

V X−1, (3.8)

53



with X
△
= Q−1

k , U
△
= ψk, C

△
= Ink

, where Ink
is the nk × nk identity matrix, and

V
△
= ψT

k , it follows that

Pk = Qk −Qkψk
(

Ink
+ ψT

kQkψk
)−1

ψT
kQk.

To express Qk recursively, for all k ≥ 1, define

Lk
△
=

(

k−1
∑

i=k−r−1

Ai +Rk

)−1

=
(

Q−1
k −Ak−r−1

)−1
=
(

Q−1
k − ψk−r−1ψ

T
k−r−1

)−1
. (3.9)

Using (3.8) with X
△
= L−1

k , U
△
= ψk−r−1, C

△
= −Ink−r−1

, and V
△
= ψT

k−r−1, it follows

that

Qk = Lk − Lkψk−r−1

(

−Ink−r−1
+ ψT

k−r−1Lkψk−r−1

)−1
ψT
k−r−1Lk.

To express Lk recursively, we substitute (3.4) into itself to obtain

P−1
k =

k
∑

i=k−r

Ai +Rk = P−1
k−1 + Ak − Ak−r−1 +Rk − Rk−1. (3.10)

Thus, it follows from (3.7), (3.9), and (3.10) that

Lk =
(

P−1
k−1 +Rk − Rk−1

)−1
. (3.11)

Next, we factor Rk − Rk−1 as

Rk − Rk−1 = φkSkφ
T
k , (3.12)

where φk ∈ R
n×mk , mk

△
= rank(Rk − Rk−1), and Sk ∈ R

mk×mk has the form Sk
△
=

diag (±1, . . . ,±1). Using (3.8) with X
△
= P−1

k−1, U
△
= φk, C

△
= Sk, and V

△
= φT

k , it
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follows from (4.7) that

Lk = Pk−1 − Pk−1φk
(

Sk + φT
kPk−1φk

)−1
φT
kPk−1.

We now summarize the SW-VR-RLS algorithm

Algorithm 1. For each k ≥ 1, the unique minimizer xk of (3.1) is given by

Lk = Pk−1 − Pk−1φk
(

Sk + φT
kPk−1φk

)−1
φT
kPk−1, (3.13)

Qk = Lk − Lkψk−r−1

(

−Ink−r−1
+ ψT

k−r−1Lkψk−r−1

)−1
ψT
k−r−1Lk, (3.14)

Pk = Qk −Qkψk
(

Ink
+ ψT

kQkψk
)−1

ψT
kQk, (3.15)

xk = −1
2
Pk

(

k
∑

i=k−r

bi − 2Rkαk

)

, (3.16)

where P0 =
(
∑0

i=−r Ai +R0

)−1
and x0 = −1

2
P0

(
∑0

i=−r bi − 2R0α0

)

.

As an alternative to Algorithm 1, the equation for xk can be expressed using the

recursion matrix Pk. First, it follows from (3.16) that

k−1
∑

i=k−r−1

bi = −2P−1
k−1xk−1 + 2Rk−1αk−1. (3.17)

Using (3.10) and (4.10), it follows that (3.16) can be written as

xk = −1
2
Pk

(

k−1
∑

i=k−r−1

bi + bk − bk−r−1 − 2Rkαk

)

= −1
2
Pk
(

−2P−1
k−1xk−1 + 2Rk−1αk−1 + bk − bk−r−1 − 2Rkαk

)

= −1
2
Pk
[

−2(P−1
k −Ak + Ak−r−1 − Rk +Rk−1)xk−1 + 2Rk−1αk−1 + bk − bk−r−1 − 2Rkαk

]

= xk−1 − Pk
[

(Ak − Ak−r−1)xk−1 + (Rk −Rk−1)xk−1 +Rk−1αk−1 +
1
2
(bk − bk−r−1)−Rkαk

]

.

We now summarize the alternative SW-VR-RLS algorithm.
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Algorithm 2. For each k ≥ 1, the unique minimizer xk of (3.1) is given by

Lk = Pk−1 − Pk−1φk
(

Sk + φT
kPk−1φk

)−1
φT
kPk−1, (3.18)

Qk = Lk − Lkψk−r−1

(

−Ink−r−1
+ ψT

k−r−1Lkψk−r−1

)−1
ψT
k−r−1Lk, (3.19)

Pk = Qk −Qkψk
(

Ink
+ ψT

kQkψk
)−1

ψT
kQk, (3.20)

xk = xk−1 − Pk
[

(Ak − Ak−r−1)xk−1 +
1
2
(bk − bk−r−1)

]

− Pk [(Rk −Rk−1)xk−1 +Rk−1αk−1 − Rkαk] , (3.21)

where P0 =
(
∑0

i=−r Ai +R0

)−1
and x0 = −1

2
P0

(
∑0

i=−r bi − 2R0α0

)

.

The theoretical properties and computational complexity of Algorithm 1 and 2

are identical, but their numerical properties are different, which will be discussed in

Section 3.7.

If, for all i ∈ {−r, . . . , 0}, Ai = 0 and bi = 0, then x0 = α0 and P0 = R−1
0 .

Furthermore, if the regularization weighting Rk is constant, that is, for all k ≥ 0, Rk =

R0 > 0, then (3.12) implies that φk = 0 and (3.18) simplifies to Lk = Pk−1, and thus

computation of Lk is not required.

3.4 Computational Complexity

First, consider Algorithm 1. The computational complexity of the matrix products

and inverse in (3.13) are O(n2mk) and O(m3
k), respectively, where mk = rank(Rk −

Rk−1) ≤ n. Hence, (3.13) is O(n2mk). In particular, if, for all k ≥ 0, mk = 1, then

the inverse in (3.13) is a scalar inverse, and (3.13) is O(n2).

The matrix products and inverse in (3.15) are O(n2nk) and O(n3
k), respectively,

where nk = rank(Ak) ≤ n. Hence, (3.15) is O(n2nk). Similarly, (3.14) is O(n2nk−r−1).

In particular, if, for all k ≥ 0, nk = 1, then the inverses in (3.14) and (3.15) are scalar

inverses, and (3.14) and (3.15) are O(n2).

56



Finally, note that (3.16) is O(n2). Therefore, if for all k ≥ 0, rank(Rk−Rk−1) = 1

and rank(Ak) = 1, then the computational complexity of Algorithm 1 is O(n2).

Now, consider Algorithm 2. Since (3.18), (3.19), and (3.20) are identical to (3.13),

(3.14), and (3.15), respectively, and (3.21) is O(n2), it follows that the computational

complexity of Algorithm 2 is identical to the computational complexity of Algorithm

1.

3.5 Convergence Analysis of SW-VR-RLS

Definition 3.5.1 ( [69]). Let xeq ∈ R
n. Consider the system

xk+1 = f(xk, k), (3.22)

where f : Rn × {0, 1, 2, . . .} → R
n is a continuous function such that, for all k ≥ 0,

f(xeq, k) = xeq. The equilibrium solution xk ≡ xeq of (3.22) is Lyapunov stable if,

for every ε > 0 and k0 ≥ 0, there exists δ(ε, k0) > 0 such that ||xk0 − xeq|| < δ

implies that, for all k ≥ k0, ||xk − xeq|| < ε. The equilibrium solution xk ≡ xeq of

(3.22) is uniformly Lyapunov stable if, for every ε > 0, there exists δ = δ(ε) > 0 such

that, for all k0 ≥ 0, ||xk0 − xeq|| < δ implies that, for all k ≥ k0, ||xk − xeq|| < ε.

The equilibrium solution xk ≡ xeq of (3.22) is globally asymptotically stable if it is

Lyapunov stable and, for all k0 ≥ 0 and xk0 ∈ R
n, limk→∞ xk = xeq.

The following result provides boundedness properties of the SW-VR-RLS algo-

rithm. This result applies to both SW-VR-RLS implementations, specifically, Algo-

rithm 1 and Algorithm 2.

Theorem 2. For all k ≥ 0, let Tk ∈ R
n×n be positive definite, and assume there exist

ε1, ε2 ∈ (0,∞) such that, for all k ≥ 0,

ε1In ≤ Tk+1 ≤ Tk ≤ ε2In. (3.23)
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Furthermore, for all k ≥ 0, let ξk ∈ R, assume that 0 < inf
k≥0

ξk ≤ sup
k≥0

ξk < ∞, and

define Rk
△
= ξkTk. Then the following statements hold:

(i) {Lk}
∞
k=1, {Qk}

∞
k=1, and {Pk}

∞
k=0 are bounded.

(ii) Assume that {αk}
∞
k=0 and {bk}

∞
k=0 are bounded. Then {xk}

∞
k=0 is bounded.

Proof. (i) It follows from the first inequality in (3.23) that, for all k ≥ 0, Rk ≥ c1In,

where c1
△
= ε1 infk≥0 ξk > 0. Since, for all k ≥ 0, Ak is positive semidefinite, it follows

from (3.4) that P−1
k ≥ c1In, which implies that 0 ≤ Pk ≤ 1

c1
In. Thus, {Pk}

∞
k=0 is

bounded. Similarly, it follows from (3.7) and (3.9) that, for all k ≥ 1, Q−1
k ≥ c1In

and L−1
k ≥ c1In, which imply that 0 ≤ Qk ≤

1
c1
In and 0 ≤ Lk ≤

1
c1
In. Thus, {Qk}

∞
k=1

and {Lk}
∞
k=1 are bounded.

(ii) Since {bk}
∞
k=0 is bounded, it follows that κ1

△
= supk ||bk|| < ∞. Additionally,

since {αk}
∞
k=0 is bounded, it follows that κ2

△
= supk ||αk|| < ∞. Furthermore, it

follows from the last inequality in (3.23) that, for all k ≥ 0, Rk ≤ c2In, where

c2
△
= ε2 supk≥0 ξk <∞. Hence, it follows from (3.5) that, for all k ≥ 0,

||xk|| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2
Pk

(

k
∑

i=k−r

bi − 2Rkαk

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 1
2
||Pk||

(

∣

∣

∣

∣

∣

∣

k
∑

i=k−r

bi

∣

∣

∣

∣

∣

∣
+ 2||Rk||||αk||

)

≤
1

c1
((r + 1)κ1 + 2c2κ2) .

Therefore, {xk}
∞
k=0 is bounded.

For all k ≥ 0, define Φk
△
= [ψk · · · ψk−r] ∈ R

n×qk , where qk
△
=
∑r

i=0 nk−i, so

that
∑k

i=k−rAi = ΦkΦ
T
k . Furthermore, using the matrix inversion lemma, it follows

from (3.4) that

Pk = R−1
k − R−1

k Φk
(

Iqk + ΦT
kR

−1
k Φk

)−1
ΦT
kR

−1
k . (3.24)

58



Next, let ν be a positive integer, for all k ≥ ν, let αk = xk−ν , for all k > ν − 1,

define χk
△
=

[

xTk xTk−1 · · · xTk−ν+1

]T

∈ R
nν , and, for all i ∈ {1, . . . , ν}, let

χk,i
△
= xk−i+1. Then it follows from (3.16) that, for all k > ν − 2,



















χk+1,1

χk+1,2

...

χk+1,ν



















=























−Pk+1

(

k+1
∑

i=k+1−r

1
2
bi − Rk+1χk,ν

)

χk,1
...

χk,ν−1























. (3.25)

Theorem 3. For all k ≥ 0, let Tk ∈ R
n×n be positive definite, and assume there

exist ε1, ε2 ∈ (0,∞) such that, for all k ≥ 0, (3.23) holds. Furthermore, for all

k ≥ 0, let ξk ∈ R, assume that 0 < inf
k≥0

ξk ≤ sup
k≥0

ξk < ∞, and define Rk
△
= ξkTk

and Ωk
△
= ξkIqk + ΦT

k T
−1
k Φk. Let ν be a positive integer and let η ∈ R

n, for all

0 ≤ k ≤ ν−1, define αk
△
= η, and, for all k ≥ ν, define αk

△
= xk−ν , where xk−ν satisfies

(3.5). Furthermore, let P0 =
(
∑0

i=−r Ai +R0

)−1
and x0 = −1

2
P0

(
∑0

i=−r bi − 2R0η
)

,

assume there exists a unique x∗ ∈ R
n such that, for all k ≥ 0,

Akx∗ +
1
2
bk = 0, (3.26)

and define χ∗

△
=

[

xT∗ xT∗ · · · xT∗

]T

∈ R
nν . Then the following statements hold:

(i) χk ≡ χ∗ is an equilibrium solution of (3.25)

(ii) The equilibrium solution χk ≡ χ∗ of (3.25) is uniformly Lyapunov stable, and,

for all x0 ∈ R
n, {xk}

∞
k=0 is bounded.

(iii)
∑∞

j=ν(xj−ν − x∗)
TΦjΩ

−1
j ΦT

j (xj−ν − x∗) and
∑∞

j=ν ||xj − xj−ν ||
2 exist.

(iv) Assume that {Ak}
∞
k=0 is bounded. Then lim

k→∞

(

Akxk +
1
2
bk
)

= 0, and lim
k→∞

ψT
k (xk−ν−

x∗) = 0.
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(v) Assume that {Ak}
∞
k=0 is bounded and there exists c > 0 and a positive integer

l such that, for all k ≥ ν(l − 1) − r, cIn ≤
∑l−1

i=0Ak−νi. Then lim
k→∞

xk = x∗,

χk ≡ χ∗ is the unique equilibrium solution of (3.25), and, χk ≡ χ∗ is globally

asymptotically stable.

Proof. (i) Let χν−1 = χ∗. Then it follows from (3.25) and (3.26) that χν,2 = χν,3 =

χν,ν = · · · = x∗, and

χν,1 = −Pν

(

ν
∑

i=ν−r

1
2
bi − Rνx∗

)

= −Pν

(

−
ν
∑

i=ν−r

1
2
Ai − Rν

)

x∗ = x∗,

and thus χν = χ∗. Similarly, for k = ν, it follows from (3.25) and (3.26) that

χν+1,2 = χν+1,3 = χν+1,ν = · · · = x∗, and

χν+1,1 = −Pν+1

(

ν+1
∑

i=ν+1−r

1
2
bi − Rν+1x∗

)

= −Pν+1

(

−

ν+1
∑

i=ν+1−r

1
2
Ai − Rν+1

)

x∗ = x∗,

and thus χν+1 = χ∗. It follows that, for all k > ν − 2, χk = χ∗, and thus χk ≡ χ∗ is

an equilibrium solution of (3.25).

(ii) Since, for all k ≥ ν, αk = xk−ν , it follows from (3.5) that, for all k ≥ ν,

xk = −Pk

(

k
∑

i=k−r

1
2
bi − Rkxk−ν

)

= Pk

(

k
∑

i=k−r

Ai +Rk

)

xk−ν − Pk

k
∑

i=k−r

(

Aixk−ν +
1
2
bi
)

= xk−ν − Pk

k
∑

i=k−r

(

Aixk−ν +
1
2
bi
)

. (3.27)

Define x̃k
△
= xk − x∗. Subtracting x∗ from (3.27), and using (3.24) and (3.26) yields,
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for all k ≥ ν,

x̃k = x̃k−ν − Pk

k
∑

i=k−r

Aix̃k−ν

= x̃k−ν − PkΦkΦ
T
k x̃k−ν

= Pk
(

P−1
k − ΦkΦ

T
k

)

x̃k−ν

= PkRkx̃k−ν

=
[

R−1
k − R−1

k Φk
(

Iqk + ΦT
kR

−1
k Φk

)−1
ΦT
kR

−1
k

]

Rkx̃k−ν

= x̃k−ν − T−1
k Φk

(

ξkIqk + ΦT
k T

−1
k Φk

)−1
ΦT
k x̃k−ν

= x̃k−ν − T−1
k ΦkΩ

−1
k ΦT

k x̃k−ν . (3.28)

Define χ̃k
△
= χk − χ∗, and, for all i ∈ {1, . . . , ν}, let χ̃k,i

△
= x̃k−i+1. Then it follows

from (3.25) and (3.28) that, for all k > ν − 2,



















χ̃k+1,1

χ̃k+1,2

...

χ̃k+1,ν



















=



















(

I − T−1
k+1Φk+1Ω

−1
k+1Φ

T
k+1

)

χ̃k,ν

χ̃k,1
...

χ̃k,ν−1



















. (3.29)

Note that χ̃k ≡ 0 is an equilibrium solution of (3.29). For all z ∈ R, define the strictly

increasing functions α(z)
△
= ε1z and β(z)

△
= ε2z, and, for all k ≥ ν − 1, define the

function

V (χ̃k, k)
△
=

ν
∑

i=1

χ̃T
k,iTk+1−iχ̃k,i.
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The difference ∆Vk
△
= V (χ̃k, k)− V (χ̃k−1, k − 1) is given by

∆Vk = χ̃T
k−1,ν (Tk − Tk−ν) χ̃k−1,ν − 2χ̃T

k−1,νΦkΩ
−1
k ΦT

k χ̃k−1,ν

+ χ̃T
k−1,νΦkΩ

−1
k ΦT

k T
−1
k ΦkΩ

−1
k ΦT

k χ̃k−1,ν

≤ −2χ̃T
k−1,νΦkΩ

−1
k ΦT

k χ̃k−1,ν + χ̃T
k−1,νΦkΩ

−1
k ΦT

k T
−1
k ΦkΩ

−1
k ΦT

k χ̃k−1,ν

≤ −χ̃T
k−1,νΦkΩ

−1
k

(

Iqk + Iqk − ΦT
k T

−1
k ΦkΩ

−1
k

)

ΦT
k χ̃k−1,ν

≤ −χ̃T
k−1,νΦkΩ

−1
k

[

Iqk +
(

Ωk − ΦT
k T

−1
k Φk

)

Ω−1
k

]

ΦT
k χ̃k−1,ν

≤ −χ̃T
k−1,νΦkΩ

−1
k

(

Iqk + ξkΩ
−1
k

)

ΦT
k χ̃k−1,ν

≤ −χ̃T
k−1,νΦkΩ

−1
k ΦT

k χ̃k−1,ν . (3.30)

Since, for all k ≥ ν − 1 and χ̃k ∈ R
nν, α(||χ̃k||) ≤ V (χ̃k, k) ≤ β(||χ̃k||) and ∆Vk ≤ 0,

it follows from [69, Theorem 13.11] that the equilibrium solution χ̃k ≡ 0 of (3.29) is

uniformly Lyapunov stable. Furthermore, since α(z) → ∞ as z → ∞, it follows from

[69, Corollary 13.4] that, for each χ̃ν−1 ∈ R
nν , the sequence {χ̃k}

∞

k=ν−1 is bounded.

Hence, for each x0 ∈ R
n, {x̃k}

∞

k=0 is bounded, and thus {xk}
∞

k=0 is bounded.

(iii) It follows from (3.30) that

0 ≤

k
∑

j=ν

x̃Tj−νΦjΩ
−1
j ΦT

j x̃j−ν ≤ −

k
∑

j=ν

∆Vj = V (χ̃ν−1, ν − 1)− V (χ̃k, k) ≤ V (χ̃ν−1, ν − 1).

Hence, the nondecreasing sequence {
∑k

j=ν x̃
T
j−νΦjΩ

−1
j ΦT

j x̃j−ν}
∞
k=ν is bounded, and

thus
∑∞

j=ν x̃
T
j−νΦjΩ

−1
j ΦT

j x̃j−ν exists.
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Next, for all k ≥ ν, define Mk
△
=
∑k

j=ν ||xj − xj−ν ||
2. It follows from (3.28) that

Mk =

k
∑

j=ν

||T−1
j ΦjΩ

−1
j ΦT

j x̃j−ν ||
2

=

k
∑

j=ν

x̃Tj−νΦjΩ
−1
j ΦT

j T
−2
j ΦjΩ

−1
j ΦT

j x̃j−ν

≤

k
∑

j=ν

‖T−1
j ‖x̃Tj−νΦjΩ

−1
j ΦT

j T
−1
j ΦjΩ

−1
j ΦT

j x̃j−ν .

Note that, for all k ≥ ν, ‖T−1
k ‖ ≤ ‖ 1

ε1
In‖ = 1

ε1
. Therefore,

Mk ≤
1

ε1

k
∑

j=ν

x̃Tj−νΦjΩ
−1
j

(

ξjIqj + ΦT
j T

−1
j Φj − ξjIqj

)

Ω−1
j ΦT

j x̃j−ν

=
1

ε1

k
∑

j=ν

x̃Tj−νΦjΩ
−1
j

(

Ωj − ξjIqj
)

Ω−1
j ΦT

j x̃j−ν

=
1

ε1

k
∑

j=ν

x̃Tj−νΦjΩ
−1
j ΦT

j x̃j−ν −
1

ε1

k
∑

j=ν

ξjx̃
T
j−νΦjΩ

−2
j ΦT

j x̃j−ν

≤
1

ε1

k
∑

j=ν

x̃Tj−νΦjΩ
−1
j ΦT

j x̃j−ν.

Since
∑∞

j=ν x̃
T
j−νΦjΩ

−1
j ΦT

j x̃j−ν exists, it follows that the nondecreasing sequence {Mk}
∞
k=ν

is bounded, and thus limk→∞Mk exists, which verifies (iii).

(iv) It follows from (iii) that limk→∞Ω
−1/2
k ΦT

k x̃k−ν = 0. Next, since {Ak}
∞
k=0

is bounded, it follows that {Φk}
∞
k=0 is bounded. Since, in addition, {ξk}

∞
k=0 and

{T−1
k }∞k=0 are bounded, it follows that there exists c3 > 0 such that, for all k ≥ 0,

c3Iqk ≤ σmin

(

Ω
−1/2
k

)

Iqk ≤ Ω
−1/2
k . Therefore,

0 ≤ c3||Φ
T
k x̃k−ν || ≤ σmin

(

Ω
−1/2
k

)

||ΦT
k x̃k−ν || ≤ ||Ω

−1/2
k ΦT

k x̃k−ν || → 0 as k → ∞.

Therefore, limk→∞ΦT
k x̃k−ν = 0, which implies that limk→∞ ψT

k x̃k−ν = 0. Next, since
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{Ak}
∞
k=0 is bounded, it follows that κ

△
= sup

k≥0
σmax(ψk) <∞. It follows from (iii) that

||x̃k − x̃k−ν || → 0 as k → ∞, and thus

||Akxk +
1
2
bk|| = ||Akxk − Akx∗||

= ||ψkψ
T
k x̃k||

≤ κ||ψT
k x̃k||

= κ||ψT
k x̃k−ν + ψT

k x̃k − ψT
k x̃k−ν ||

≤ κ
(

||ψT
k x̃k−ν ||+ ||ψk||||x̃k − x̃k−ν ||

)

≤ κ
(

||ψT
k x̃k−ν ||+ κ||x̃k − x̃k−ν ||

)

= κ||ψT
k x̃k−ν ||+ κ2||x̃k − x̃k−ν ||

→ 0 as k → ∞, (3.31)

which proves (iv).

(v) First, we show that χk = χ∗ is the unique equilibrium solution of (3.25). Let

x̄ ∈ R
n, and assume χ̄

△
=

[

x̄T . . . x̄T
]T

is an equilibrium solution of (3.25). Let

χν−1 = χ̄. It follows that χν,2 = χν,3 = · · · = χν,ν = x̄, and

χν,1 = x̄ = −

(

ν
∑

i=ν−r

Ai +Rν

)−1( ν
∑

i=ν−r

1
2
bi − Rν x̄

)

. (3.32)

Multiplying both sides of (3.32) by
(
∑ν

i=ν−r Ai +Rν

)

yields
∑ν

i=ν−r Aix̄ = −
∑ν

i=ν−r
1
2
bi.

Similarly, for k = ν, it follows from (3.25) that χν+1,2 = χν+1,3 = · · · = χν+1,ν = x̄

and
∑ν+1

i=ν+1−r Aix̄ = −
∑ν+1

i=ν+1−r
1
2
bi. Repeating this process for k = ν + 1, ν + 2, . . .

yields, for all k ≥ ν,

k
∑

i=k−r

Aix̄ = −

k
∑

i=k−r

1
2
bi. (3.33)
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Summing (3.33) over k ≥ νl yields





k−ν(l−1)+r
∑

k−ν(l−1)

Ai +

k−ν(l−1)+1+r
∑

k−ν(l−1)+1

Ai + · · ·+

k
∑

k−r

Ai



 x̄

= 1
2





k−ν(l−1)+r
∑

k−ν(l−1)

bi +

k−ν(l−1)+1+r
∑

k−ν(l−1)+1

bi + · · ·+

k
∑

k−r

bi



 .

(3.34)

Since for all k ≥ ν(l − 1) − r, cIn ≤
∑l−1

i=0Ak−νi, the coefficient of x̄ in equation

(3.34) is positive definite, and thus solution of (3.34) is unique. Since for all k ≥ 0,

Akx∗ +
1
2
bk = 0, it follows that x∗ is the unique solution of (3.34), and thus x̄ = x∗,

and χk ≡ χ∗ is the unique equilibrium solution of (3.25).

Now, since {Ak}
∞
k=0 is bounded, it follows that κ

△
= sup

k≥0
σmax(ψk) <∞. Using (iii)

and arguments similar to prove (3.31) in (iv), it follows that

||Ak−νx̃k|| ≤ κ||ψT
k−ν x̃k||

= κ||ψT
k−ν x̃k−ν + ψT

k−ν x̃k − ψT
k−ν x̃k−ν ||

≤ κ||ψT
k−ν x̃k−ν ||+ κ2||x̃k − x̃k−ν ||

→ 0 as k → ∞. (3.35)

Note that (3.35) implies that limk→∞ ||ψT
k−2ν x̃k−ν || = 0. It follows that

||Ak−2νx̃k|| ≤ κ||ψT
k−2ν x̃k||

= κ||ψT
k−2ν x̃k−ν + ψT

k−2ν x̃k − ψT
k−2ν x̃k−ν ||

≤ κ||ψT
k−2ν x̃k−ν ||+ κ2||x̃k − x̃k−ν ||

→ 0 as k → ∞.

Repeating this argument shows that, for all i ∈ {k−(l−1)ν, k−(l−2)ν, . . . , k−ν, k},
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limk→∞ ||Aix̃k|| = 0. Since, for all k ≥ ν(l − 1)− r, cIn ≤
∑l−1

i=0Ak−νi, it follows that

||x̃k|| ≤
1

c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l−1
∑

i=0

Ak−νix̃k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
1

c

l−1
∑

i=0

||Ak−νix̃k||

→ 0 as k → ∞.

Hence, lim
k→∞

x̃k = 0. Thus the unique equilibrium solution χk ≡ χ∗ of (3.25) is globally

asymptotically stable.

3.6 Simulations

In this section, we study the effect of Rk and r on SW-VR-RLS, and compare SW-

VR-RLS with the proportionate affine projection algorithm (PAPA) [70] and the

proportionate normalized least mean squares (PNLMS) algorithm [71] for systems

where x∗ changes abruptly.

Let ℓ be the number of data points, and, for {pk}
ℓ
k=1 ⊂ R, define

σp
△
=

√

√

√

√

1

ℓ

ℓ
∑

k=1

p2k.

Let n be a nonnegative integer. For i ∈ {0, . . . , n− 1}, let hi ∈ R, and define

x∗
△
=

[

h0 h1 · · · hn−1

]T

.

For all k ≥ 1, let uk, yk ∈ R, and, for all −r − n + 1 ≤ k ≤ 0, let uk = 0 and yk = 0.
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Furthermore, for all k ≥ 1, let yk satisfy the finite impulse response

yk =

n−1
∑

i=0

hiuk−i. (3.36)

Next, for all k ≥ −r − n + 1, define the noisy output ȳk
△
= yk + wk, where, for all

−r−n+1 ≤ k ≤ 0, wk = 0, and, for all k ≥ 1, wk ∈ R is sampled from a white noise

process with a zero-mean Gaussian distribution with variance σ2
w. Define the signal

to noise ratio SNR
△
= σy/σw.

Let x ∈ R
n, for all k ≥ −r, define ψk

△
=

[

uk · · · uk−n+1

]T

, and, for all k ≥ 0,

define the cost function

Jk(x)
△
=

k
∑

i=k−r

(

ȳk − ψT
k x
)T (

ȳk − ψT
k x
)

+ (x− αk)
TRk(x− αk). (3.37)

For all k ≥ −r, define Ak
△
= ψkψ

T
k and bk

△
= −2ȳkψk. It follows from (3.37) that

Jk(x) =

k
∑

i=k−r

(

xTAkx+ bkxk
)

+ (x− αk)
TRk(x− αk) +

k
∑

i=k−r

ȳTk ȳk. (3.38)

Then, for all k ≥ 0, Jk(x) = Jk(x)+
∑k

i=k−r ȳ
T
i ȳi, and thus the minimizer xk of (3.38)

is given by the minimizer (4.2) of the SW-VR-RLS cost function (3.1).

Next, define the performance εk
△
= 20 log10 (‖x∗ − xk‖/‖x∗‖). Define

z1
△
=

[−1.0667 0.9337 0.3503 − 0.0290 0.1825 − 1.5651 − 0.0845

1.6039 0.0983 0.0414 − 0.7342 − 0.0308 0.2323 0.4264 − 0.3728]T ∈ R
15,

z2
△
=

[−0.0835 0.8205 − 1.3594 1.4417 0.8726 0.4442 − 0.2222

−0.8215 0.5131 − 0.6638 0.1265 − 0.0155 − 0.1581 0.6957 − 0.8379]T ∈ R
15.
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For all examples, α0 = x0, for all k ≥ 1, αk = xk−1, n = 15, and

x∗ =















z1, if 0 ≤ k ≤ 999,

z2, if k ≥ 1000,

(3.39)

unless otherwise specified. Furthermore, for all examples, we use Algorithm 1. We

compute the ensemble average of εk based on 100 simulations with independent real-

izations of uk and wk.

3.6.1 Effect of Rk

First, we examine the effect of Rk on the performance of SW-VR-RLS, where Rk ≡ R

is constant and the coefficients of (3.36) change abruptly at k = 1000. Let r = 60, for

all k ≥ 0, let uk be sampled from a white noise process with a zero-mean Gaussian

distribution with variance 10, and let x∗ be given by (3.39).

We test SW-VR-RLS for three values of Rk and three values of SNR. Specifically,

R = 1, 000In×n, R = 10, 000In×n, and R = 30, 000In×n. Figure 3.1 shows that, for

this example, a smaller value of R yields faster convergence of εk but also a larger

asymptotic mean value of εk. Furthermore, for each R, a larger value of SNR yields

a smaller asymptotic mean value of εk.

To understand why a smaller value of R yields a larger asymptotic mean value of

εk in the case of noisy data, first note that a smaller R makes the regularization term

(xk−xk−1)
TR(xk−xk−1) of (3.1) smaller. Since the regularization term has the effect

of opposing movement of the estimate xk away from xk−1, smaller R makes xk more

sensitive to noise. Furthermore, as k increases, ||xk − xk−1|| tends to decrease to its

asymptotic mean value, and thus the regularization term (xk − xk−1)
TR(xk − xk−1)

decreases. Thus, a larger value of R means that the regularization term contributes

more asymptotically to the cost function (3.1). Thus, more regularization (i.e., larger
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R = 1000In×n R = 10000In×n R = 30000In×n

Figure 3.1: Effect ofRk on convergence of εk to its asymptotic mean value, where Rk ≡
R is a constant. For this example, a smaller value of R yields faster convergence of εk
to its asymptotic mean value but a larger asymptotic mean value of εk. Furthermore,
for each value of R, a larger value of SNR yields a smaller asymptotic mean value of
εk.

R) can make the estimate xk asymptotically less sensitive to noise in yk, which in

turn can yield smaller asymptotic mean values of εk.

Next, we consider a time-varying Rk. First, define the residual vk
△
= ||ȳk − xkψk||

and the filtered residual

v̄k = γv̄k−1 + (1− γ)vk,

where γ ∈ (0, 1) is a smoothing factor. Furthermore, let

Rk =











RminIn×n, v̄k ≤ ρ,

RmaxIn×n, v̄k > ρ.
(3.40)

For this example, γ = 0.05, Rmin = 10, 000, Rmax = 50, 000, ρ = 2.5, and SNR=

20. Note that we allow only rank-1 modifications in Rk so that the computational

complexity of SW-VR-RLS is O(n2). Therefore, in order to modify Rk from RminIn×n

to RmaxIn×n, we modify the first diagonal entry of Rk at the current time step, and

change the next diagonal entry at the next time step and so on. Figure 3.2 shows
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that (3.40) yields a smaller asymptotic mean value of εk than Rk ≡ 10, 000In×n, and

faster convergence of εk to its asymptotic mean value than Rk ≡ 50, 000In×n.
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Figure 3.2: Effect of Rk on convergence of εk to its asymptotic mean value when Rk

is time-varying. The solid line, dashed line, and dotted line indicate SW-VR-RLS
with Rk ≡ 10, 000In×n, Rk ≡ 50, 000In×n, and Rk given by (3.40), respectively. For
this example, Rk given by (3.40) yields a smaller asymptotic mean value of εk than
Rk ≡ 10, 000In×n, and yields faster convergence of εk to its asymptotic mean value
than Rk ≡ 50, 000In×n.

3.6.2 Effect of window size

For all k ≥ 0, let uk be sampled from a zero-mean Gaussian white noise process

with variance 10, let SNR= 20, let x∗ be given by (3.39), and, for all k ≥ 0, let

Rk = 1, 000In×n. We test SW-VR-RLS with r = 0, r = 50, r = 100, and r = 200.

Figure 3.3 shows that, as r is increased from 0, the asymptotic mean value of εk and

the speed of convergence of εk to its asymptotic mean value initially increase and

then decrease.

To gain further insight into how to choose r, we fix r = 200, and test SW-VR-RLS

when Rk ≡ R is constant. We test five different values of R, specifically, R = In×n,

R = 10In×n, R = 100In×n, R = 1, 000In×n, and R = 10, 000In×n. For this simulation,

Figure 3.4 shows that decreasing the value of R from 1, 000In×n to In×n does not

increase the speed of convergence of εk to its asymptotic mean value. This suggests

that, as R is decreased beyond a certain value, it no longer affects the speed of
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Figure 3.3: Effect of r on convergence of εk to its asymptotic mean value. This plot
shows that, as r is increased from 0, the asymptotic mean value of εk and the speed
of convergence of εk to its asymptotic mean value first increase and then decrease.

convergence or asymptotic mean value of εk, and r must be decreased in order to

increase the speed of convergence of εk.
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R = In×n
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Figure 3.4: Effect of constant R on convergence of εk to its asymptotic mean value
when r = 200. This plot shows that decreasing the value of R from 1, 000In×n to In×n
does not increase either the speed of convergence or the asymptotic mean value of εk.

3.6.3 Comparison with PAPA and PNLMS

To compare SW-VR-RLS with PAPA and PNLMS, for all k ≥ 0, let uk be sampled

from a white noise process with a zero-mean Gaussian distribution with variance 10,

let x∗ be given by (3.39), and let SNR = 20. For SW-VR-RLS, we use r = 60 and

Rk specified by (3.40) with Rmin = 6, 000, Rmax = 25, 000, ρ = 2.5, and γ = 0.1. For

PNLMS [71], we set δ(PNLMS)= 0.01, ρ(PNLMS)= 15/(n + 1), µ(PNLMS)= 0.2,

and, for the PAPA [70], we set δρ(PAPA)= 0.01, ρ(PAPA)= 15/n, µ(PAPA)= 0.2,
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and δ(PAPA)= 100/n. Note that for these parameters all three algorithms have

approximately the same mean steady-state error. Figure 3.5 shows that, for k ≤

999, SW-VR-RLS yields faster convergence of εk to its asymptotic mean value than

PNLMS and PAPA. Furthermore, at k = 1000, x∗ 6= z1, and SW-VR-RLS yields

faster convergence of εk to its new asymptotic mean value than PNLMS and PAPA.
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Figure 3.5: This plot compares SW-VR-RLS with PAPA and PNLMS when the
input signal is white. For k ≤ 1000, SW-VR-RLS yields faster convergence of εk
to its asymptotic mean value than PNLMS and PAPA. Furthermore, at k = 1000,
x∗ 6= z1, and SW-VR-RLS yields faster convergence of εk to its new asymptotic mean
value than PNLMS and PAPA.

Next, we consider the case where uk is colored. Since convergence of SW-VR-RLS,

PAPA, and PNLMS are slower in the presence of colored inputs as compared to white

inputs, we consider

x∗ =















z1, if 0 ≤ k ≤ 3999,

z2, if k ≥ 4000.

Let SNR= 20, ūk be sampled from a white noise process with a zero-mean Gaussian
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distribution with variance 10, and let

uk = 0.9uk−1 + ūk.

For SW-VR-RLS, we use r = 800 and Rk specified by (3.40) with Rmin = 5 × 104,

Rmax = 35× 104, ρ = 3.5, and γ = 0.01. For PNLMS [71], we set δ(PNLMS)= 0.05,

ρ(PNLMS)= 15/(n+ 1), µ(PNLMS)= 0.085, and, for PAPA [70], we set δρ(PAPA)=

0.01, ρ(PAPA)= 15/n, µ(PAPA)= 0.02, and δ(PAPA)= 5/n. Note that we have

chosen these parameters such that all three algorithms have approximately the steady-

state mean error. Figure 3.6 shows that, for this example, and for k ≤ 3999, SW-VR-

RLS yields faster convergence of εk to its asymptotic mean value than PNLMS and

PAPA. Furthermore, at k = 4000, x∗ 6= z1, and SW-VR-RLS yields faster convergence

of εk to its asymptotic mean value than PNLMS and PAPA.
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Figure 3.6: This plot compares SW-VR-RLS with PAPA and PNLMS when the input
signal uk is colored. For k ≤ 1000, SW-VR-RLS yields faster convergence of εk to its
asymptotic mean value than PNLMS and PAPA. Furthermore, at k = 4000, x∗ 6= z1,
and SW-VR-RLS yields faster convergence of εk to its new asymptotic mean value
than PNLMS and PAPA.
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3.7 Numerical Stability

In this section, we investigate the numerical stability of SW-VR-RLS to account for

the effects of roundoff and quantization errors in xk and Pk. Throughout this section,

we assume that, for all 0 ≤ k ≤ ν − 1, αk
△
= x0, and, for all k ≥ ν, αk

△
= xk−ν , where

ν is a positive integer.

3.7.1 Numerical Errors in xk

To examine the numerical stability of Algorithm 2, we perturb xk0 at step k0, and ana-

lyze the propagation of this error, assuming all subsequent calculations are performed

with infinite-precision arithmetic. Let γ ∈ R
n. For all k > k0, let x̄k denote the SW-

VR-RLS minimizer given by Algorithm 2, where the initial condition is x̄k0
△
= xk0 +γ,

where xk0 is the SW-VR-RLS minimizer given by Algorithm 2 at step k0. Thus, it

follows from (3.21) that, for all k ≥ k0, x̄k satisfies

x̄k = [In − Pk(Ak − Ak−r−1 +Rk − Rk−1)] x̄k−1 −
1
2
Pk(bk − bk−r−1)

+ PkRkᾱk − PkRk−1ᾱk−1, (3.41)

where, for all k0 ≤ k ≤ k0 + ν − 1, ᾱk
△
= αk, and, for all k ≥ k0 + ν, ᾱk

△
= x̄k−ν . For

all k ≥ k0, define δk
△
= x̄k −xk and note that δk0 = γ. Subtracting (3.21) from (3.41),

and using (3.10), it follows that, for all k > k0,

δk = [In − Pk(Ak − Ak−r−1 +Rk −Rk−1)] (x̄k−1 − xk−1)

+ PkRk (ᾱk − αk)− PkRk−1 (ᾱk−1 − αk−1)

= (In − Pk(P
−1
k − P−1

k−1)) (x̄k−1 − xk−1) + PkRk (ᾱk − αk)− PkRk−1 (ᾱk−1 − αk−1)

= PkP
−1
k−1δk−1 + PkRkδk−ν − PkRk−1δk−ν−1, (3.42)
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where, for all k0 − ν ≤ k ≤ k0 − 1, we define δk
△
= 0. We show numerically that there

exists δk0 ∈ R
n such that δk given by (3.42) does not decay to zero.

We now analyze the numerical stability of Algorithm 1, that is, we analyze the

propagation of a perturbation in xk0 at step k0 assuming that, for all k > k0, xk

is updated using (3.16). For all k > k0, let x̄k denote the SW-VR-RLS minimizer

given by Algorithm 1, where the initial condition is x̄k0
△
= xk0 + γ, where xk0 is the

SW-VR-RLS minimizer given by Algorithm 1 at step k0. Thus, it follows from (3.16)

that, for all k ≥ k0, x̄k satisfies

x̄k = −1
2
Pk

(

k
∑

i=k−r

bi − 2Rkᾱk

)

, (3.43)

where, for all k0 ≤ k ≤ k0+ν−1, ᾱk
△
= αk, and, for all k ≥ k0+ν, ᾱk

△
= x̄k−ν . For all

k ≥ k0, define δk
△
= x̄k − xk and note that δk0 = γ. It follows from (3.43) and (3.16)

that, for all k > k0,

δk = PkRk (ᾱk − αk) = PkRkδk−ν , (3.44)

where, for all k0− ν +1 ≤ k ≤ k0− 1, we define δk
△
= 0. For all k > k0 + ν − 1, define

∆k
△
=

[

δTk δTk−1 · · · δTk−ν+1

]T

∈ R
nν and, for all i ∈ {1, . . . , ν}, let ∆k,i

△
= δk−i+1.

Then it follows from (3.44) that, for all k > k0 + ν − 2,



















∆k+1,1

∆k+1,2

...

∆k+1,ν



















=



















Pk+1Rk+1∆k,ν

∆k,1

...

∆k,ν−1



















. (3.45)

Note that ∆k ≡ 0 is an equilibrium solution of (3.45). The following result shows

that, under the assumptions of Theorem 2, the equilibrium solution ∆k ≡ 0 of (3.45)
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is globally asymptotically stable.

Theorem 4. Consider the error system (3.18), (3.19), (3.20), and (3.44). For all

k ≥ k0, let Tk ∈ R
n×n be positive definite, and assume there exist ε1, ε2 ∈ (0,∞) such

that, for all k ≥ k0, (3.23) holds. Furthermore, for all k ≥ k0, let ξk ∈ R, assume

that 0 < inf
k≥k0

ξk ≤ sup
k≥k0

ξk <∞, and define Rk
△
= ξkTk. Then the following statements

hold:

(i) {Lk}
∞
k=k0+1, {Qk}

∞
k=k0+1, and {Pk}

∞
k=k0

are bounded.

(ii) The equilibrium solution ∆k ≡ 0 of (3.45) is uniformly Lyapunov stable, and,

for all δk0 ∈ R
n, {δk}

∞
k=k0

is bounded.

(iii) Assume that {Ak}
∞
k=k0

is bounded and there exists c > 0 and a positive integer

l such that, for all k ≥ k0 + ν(l − 1) − r, cIn ≤
∑l−1

i=0Ak−νi. Then, for all

δk0 ∈ R
n, lim

k→∞
δk = 0, ∆k ≡ 0 is the unique equilibrium solution of (3.25), and,

furthermore, ∆k ≡ 0 is globally asymptotically stable.

Proof. (i) Since the update equations for Lk, Qk, and Pk are identical to those in

SW-VR-RLS, (i) follows directly from Theorem 1.

(ii) It follows from (3.44) and (3.24) that, for all k ≥ k0 + ν,

δk = PkRkδk−ν

=
[

R−1
k − R−1

k Φk
(

Iqk + ΦT
kR

−1
k Φk

)−1
ΦT
kR

−1
k

]

Rkδk−ν

= δk−ν − T−1
k Φk

(

ξkIqk + ΦT
k T

−1
k Φk

)−1
ΦT
k δk−ν.

The remainder of the proof is analogous to the proof of Theorem 2 from (3.28) onwards

with xk replaced by δk, χ̃k replaced by ∆k, x∗ = 0, and x̃k replaced by δk.

We now numerically test the stability of the single error propagation dynamics

for xk given by (3.42) and (3.44). Let n = 10, r = 5, ν = 1, and, for all k ≥ −r,
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let the entries of ψk be generated from a zero mean Gaussian distribution with unit

variance. Furthermore, for all k ≥ −r, let Ak = ψkψ
T
k , and, for all k ≥ 0, let

Rk = In×n. Moreover, let δ−1 = 0, and let δ0 be generated from a zero mean Gaussian

distribution with unit variance. Finally, for all k ≥ 0, let Pk be given by (3.4). For

all k ≥ 1, Figure 3.7 shows δk for (3.42) and (3.44), and shows that, for this example,

δk given by (3.42) does not decay to zero, whereas δk given by (3.44) decays to zero.

0 100 200 300 400 500 600 700 800 900 1000
10

−60

10
−40

10
−20

10
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10
20

Time step k

||
δ k
||

Figure 3.7: This plot shows the solution δk of the error-propagation systems for xk
given by (3.42) and (3.44). The solid line indicates the solution to (3.42), whereas the
dashed line indicates the solution to (3.44). This plot shows that δk given by (3.42)
does not decay to zero, whereas δk given by (3.44) decays to zero.

Next, we test Algorithm 1 and Algorithm 2 using the same setup as in Section

3.6.1 but with no noise, x∗ = z1, and a perturbation in xk at step k = 500. Figure

3.8 shows εk for Algorithm 1 and Algorithm 2 with perturbation (dashed line) and

without perturbation (solid line) in xk and shows that, after k = 500, for Algorithm

1 with perturbation, εk converges to the unperturbed value of εk, but for Algorithm

2 with perturbation, εk does not converge the unperturbed value of εk.

Since the xk update for Algorithm 2 is derived from the xk update for Algorithm

1, Figure 3.8 suggests that the derivation of the xk update for Algorithm 2 introduces

the equivalent of a pole on the unit circle at 1 of a linear time-invariant discrete-time
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Figure 3.8: This plot shows εk for Algorithm 1 and Algorithm 2 with perturbation
(dashed line) and without perturbation (solid line) in xk and shows that, after k =
500, for Algorithm 1 with perturbation, εk converges to the unperturbed value of εk,
but for Algorithm 2 with perturbation, εk does not converge the unperturbed value
of εk.

system, due to which a perturbation in xk does not decay. To illustrate this, let κ ∈ R,

for all k ≥ 0, let ak ∈ R be sampled from a white noise process with a zero-mean

Gaussian distribution and variance 0.0025, let bk = ak + 0.5 sin(0.01k), and, for all

k ≥ 0, define the stable linear system

xk+1 = 0.5xk + bk+1 + bk, (3.46)

with the initial condition x0 = κ. It follows from (3.46) that xk = 0.5xk−1+ bk+ bk−1,

and thus

bk = xk − 0.5xk−1 − bk−1. (3.47)

Using (3.47) in (3.46) yields, for all k ≥ 0,

xk+2 = 1.5xk+1 − 0.5xk + bk+2 − bk, (3.48)
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with the initial conditions x0 = κ and x1 = 0.5κ+ b1+ b0. Note that (3.48) has a pole

at 1. Note that using (3.47) in (3.46) is similar to using (3.10) and (4.10) in (3.16)

to obtain

xk = −1
2
Pk

(

k−1
∑

i=k−r−1

bi + bk − bk−r−1 − 2Rkαk

)

= −1
2
Pk
(

−2P−1
k−1xk−1 + 2Rk−1αk−1 + bk − bk−r−1 − 2Rkαk

)

,

which is one of the steps in deriving Algorithm 2 from Algorithm 1.

Figure 3.9 shows xk given by (3.46) and (3.48) with a perturbation at step k = 200

(dashed line) and without perturbation (solid line) and shows that, after k = 200, for

(3.46) with perturbation, xk converges to the unperturbed value of xk, but for (3.48)

with perturbation, xk does not converge the unperturbed value of xk.
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Figure 3.9: This plot shows xk given by (3.46) and (3.48) with perturbation at step
k = 200 (dashed line) and without perturbation (solid line) and shows that, after
k = 200, for (3.46) with perturbation, xk converges to the unperturbed value of xk,
but for (3.48) with perturbation, xk does not converge the unperturbed value of xk.
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3.7.2 Numerical Errors in Pk

We now consider the effect of roundoff and quantization errors in Pk. As in the

case of xk, we perturb Pk0 at step k0, and analyze the propagation of this error,

assuming all subsequent calculations are performed with infinite-precision arithmetic.

Let Γ ∈ R
n×n. For all k > k0, let P̄k be given by Algorithm 1, where the initial

conditions are P̄k0 = Pk0 +Γ, Q̄k0 = Qk0 , and L̄k0 = Lk0 , where Pk0, Qk0 , and Lk0 are

given by Algorithm 1 at step k0. Thus, it follows that, for all k ≥ k0, P̄k, Q̄k, and L̄k

satisfy

L̄k = P̄k−1 − P̄k−1φk
(

Sk + φT
k P̄k−1φk

)−1
φT
k P̄k−1,

Q̄k = L̄k − L̄kψk−r−1

(

−Ink−r−1
+ ψT

k−r−1L̄kψk−r−1

)−1
ψT
k−r−1L̄k,

P̄k = Q̄k − Q̄kψk
(

Ink
+ ψT

k Q̄kψk
)−1

ψT
k Q̄k.

For all k ≥ k0, define δPk
△
= P̄k−Pk and note that δPk0 = Γ. We now show numerically

that δPk does not decay to zero. In this work, we mitigate this by resetting SW-VR-

RLS at regular intervals.

We consider the same setup as in Example 3.6.3, where the input is white except,

for all k ≥ 0, Rk = 3 × 103In×n and wk = 0. We compare SW-VR-RLS with

P400 perturbed by a positive definite matrix Γ = δP400 and SW-VR-RLS with no

perturbation. Figure 3.10 shows that the error δPk does not decay.

We now numerically investigate the effect of resetting SW-VR-RLS at regular

intervals. The following procedure resets SW-VR-RLS at time step k:

1. xk is unchanged.

2. For all i < k, set xi = 0.

3. Set αk = xk.

4. For all i ≤ k, set Ai = 0 and bi = 0.
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Figure 3.10: This Figure shows ||Pk|| for SW-VR-RLS with Pk perturbed at k = 400
(solid line) and SW-VR-RLS with unperturbed Pk (dashed line). This figure shows
that, after Pk is perturbed at k = 400, the error between SW-VR-RLS with perturbed
Pk and SW-VR-RLS with unperturbed Pk does not decay.

5. Set Pk = R−1
k .

Note that the resetting procedure is the same for Algorithm 1 and Algorithm 2 as the

Qk, Lk, and Pk update equations are identical for both algorithms. Furthermore, note

that if Rk is a diagonal matrix, then the inverse in Step 5 is O(n). We now investigate

the effect of periodically resetting SW-VR-RLS after ks steps. For this example, we

consider the same setup as in Example 3.6.3 where the input is white. We compare

SW-VR-RLS without resetting, and SW-VR-RLS with ks = 60, ks = 120 steps, and

ks = 300 steps. We show εk for a single trial. Figure 3.11 shows that, if εk reaches its

asymptotic value and Rk = Rmax, then εk for SW-VR-RLS with covariance resetting

does not deviate significantly from SW-VR-RLS without resetting. However, resetting

SW-VR-RLS when Rk = Rmin and εk is adapting quickly yields slower convergence

of εk to its asymptotic value as compared to SW-VR-RLS without resetting. Note

that in all cases, resetting SW-VR-RLS does not introduce large transients in εk.
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Figure 3.11: Effect of resetting on SW-VR-RLS for ks = 60 (dashed line), ks = 120
(dash-dotted line), ks = 300 (dotted line), and no resetting (solid line). This plot
shows that, after εk reaches its asymptotic value and Rk = Rmax, then εk for SW-
VR-RLS with covariance resetting does not deviate significantly from SW-VR-RLS
without resetting.

3.8 RCUIO with SW-VR-RLS based adaptive sub-

system update

In this example, we compare RCUIO with the adaptive feedback subsystem updated

using standard RLS, given in Section 4.4.1, and RCUIO with the adaptive feedback

subsystem updated using SW-VR-RLS. Consider the truth system

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) + v(k),

where

A =







0.2 2

0 0.4






, B =







0

0.1






,
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C =



















[

0.1 0.5

]

, k < 2500,

[

1.2 0.5

]

, k ≥ 2500,

and the unknown input is

u(k) =











5 sin(0.01πk), k < 2500,

6 sin(0.005πk), k ≥ 2500.

Furthermore, let v(k) be sampled from a white noise process with a zero-mean Gaus-

sian distribution with variance 0.04. For RCUIO, we use an adaptive feedback system

of order 50, we set H̃ = CB, and saturate the optimized input u∗(k−1) between ±10.

For RCUIO with standard RLS, we set γ = 0.01, and for RCUIO with SW-VR-RLS,

we set αk = xk−1, Rk ≡ 30000, and r = 0. Note that at step k = 2500, not only does

the input change, but also the truth system changes from a minimum-phase system

to a nonminimum-phase system. Figures 3.14 and 3.15 show the estimated states

and estimated input, respectively, for RCUIO with standard RLS. These figures show

that, for k < 2500, x̂(k) and û(k) converge to x(k) and u(k), respectively, and for

k ≥ 2500, x̂(k) and û(k) do not converge to x(k) and u(k), respectively.

Figures 3.12 and 3.13 show the estimated states and estimated input, respectively,

for RCUIO with SW-VR-RLS. These figures show that, for k < 2500, x̂(k) and û(k)

converge to x(k) and u(k), respectively, and for k ≥ 2500, RCUIO with SW-VR-RLS

yields smaller steady state mean value of x̂(k)− x(k) and û(k)− u(k) than RCUIO

with standard RLS.
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Figure 3.12: True and estimated states for RCUIO with standard RLS. This figure
shows that, for k < 2500, x̂(k) converges to x(k), and for k ≥ 2500, x̂(k) does not
converge to x(k).

3.9 Conclusions

A sliding-window variable-regularization recursive-least-squares algorithm has been

presented. This algorithm allows for a cost function that has a time-varying regular-

ization term, which provides the ability to vary the weighting in the regularization

as well as what is being weighted. The convergence properties of the algorithm in

the absence of noise were proved, and the effects of window size and regularization

were investigated numerically. Furthermore SW-VR-RLS was numerically compared

to PAPA and PNLMS for white and colored input noise. Numerical examples demon-

strated that time-varying regularization can have a positive impact on the convergence

properties. The numerical stability of the algorithm was analyzed analytically and

numerically, and it was proved that numerical errors in xk decay to zero. Furthermore,
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Figure 3.13: True and estimated input for RCUIO with standard RLS. This figure
shows that, for k < 2500, û(k) converges to u(k), and for k ≥ 2500, û(k) does not
converge to u(k).

the numerical errors in Pk were mitigated using resetting, and the effect of resetting

on SW-VR-RLS was investigated numerically. Future work will concentrate on the

use of alternative methods for obtaining Pk recursively to improve the numerical sta-

bility of the algorithm, such as QR decomposition, and a computationally efficient

method for obtaining an optimal variable Rk.
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Figure 3.14: True and estimated states for RCUIO with SW-VR-RLS. This figure
shows that, for k < 2500, x̂(k) converges to x(k), and for k ≥ 2500, RCUIO with
SW-VR-RLS yields smaller steady state mean value of x̂(k)−x(k) than RCUIO with
standard RLS.
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Figure 3.15: True and estimated input for RCUIO with SW-VR-RLS. This figure
shows that, for k < 2500, û(k) converges to u(k), and for k ≥ 2500, RCUIO with
SW-VR-RLS yields smaller steady state mean value of û(k)−u(k) than RCUIO with
standard RLS.
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CHAPTER 4

Growing Window Variable Regularization

Recursive Least Squares

In this chapter, we present a growing-window variable-regularization recursive least

squares (GW-VR-RLS) algorithm. Standard recursive least squares (RLS) uses a

time-invariant regularization. More specifically, the inverse of the initial covariance

matrix in classical RLS can be viewed as a regularization term, which weights the

difference between the next state estimate and the initial state estimate. The present

work allows for time-varying in the weighting as well as what is being weighted. This

extension can be used to modulate the speed of convergence of the estimates versus

the magnitude of transient estimation errors. Furthermore, the regularization term

can weight the difference between the next state estimate and a time-varying vector

of parameters rather than the initial state estimate as is required in standard RLS.

4.1 Introduction

Recursive least squares (RLS) is widely used in signal processing, identification, esti-

mation, and control [43,44,46–51]. Under ideal conditions, that is, nonnoisy measure-

ments and persistency of the data, RLS is guaranteed to converge to the minimizer

of a quadratic function [44, 47]. In practice, the accuracy of the estimates and the

rate of convergence depend on the level of noise and persistency of the data. The
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goal of this chapter is to extend standard RLS in two ways. First, in standard RLS,

the positive-definite initialization of the covariance matrix serves as the weighting

of a regularization term within the context of a quadratic optimization. Until at

least n measurements are available, this regularization term compensates for the lack

of persistency in order to obtain a unique minimizer. Traditionally, the regulariza-

tion weighting is fixed for all steps of the recursion. In the present work, we derive

a growing-window variable-regularization RLS (GW-VR-RLS) algorithm, where the

weighting of the regularization term changes at each step. As a special case, the

regularization can be decreased in magnitude or rank as the rank of the covariance

matrix increases, and can be removed entirely when no longer needed. This ability

is not available in standard RLS where the regularization term is weighted by the

inverse of the initial covariance at every step.

A second extension presented in this work also involves the regularization term.

Specifically, the regularization term in standard RLS weights the difference between

the next state estimate and the initial state. In the present work, the regularization

term weights the difference between the next state estimate and an arbitrarily chosen

time-varying vector of parameters. As a special case, the time-varying vector can be

the current state estimate, and thus the regularization term weights the difference

between the next state estimate and the current state estimate. This formulation

allows us to modulate the rate at which the current estimate changes from step to

step.

For these extensions, we derive GW-VR-RLS update equations. While standard

RLS entails the update of the state estimate and the covariance matrix, GW-VR-

RLS entails the update of an additional symmetric matrix of dimension n × n to

allow for the variable regularization. Thus, GW-VR-RLS entails some additional

computational burden relative to classical RLS.
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4.2 The Non-Recursive Solution

For all integers i, let αi ∈ R
n, bi ∈ R

n, Ai ∈ R
n×n, and Ri ∈ R

n×n, where Ai and Ri

are positive semidefinite; and, for i ≤ 0, let Ai = 0 and bi = 0. Furthermore, assume

that, for all k ≥ 0,
∑k−1

i=0 Ai + Rk is positive definite. Thus, R0 and R1 are positive

definite.

Define the growing-window variable-regularization quadratic cost

Jk(x)
△
=

k
∑

i=0

(

xTAix+ bTi x
)

+ (x− αk)
TRk(x− αk), (4.1)

where x ∈ R
n and x0 = α0 is the minimizer of J0(x). For all k ≥ 0, the minimizer xk

of (4.1) is

xk = −1
2

(

k
∑

i=0

Ai +Rk

)−1( k
∑

i=0

bi − 2Rkαk

)

, (4.2)

where the inverse exists because
∑k

i=0Ai +Rk is positive definite.

4.3 The GW-VR-RLS Solution

The equations for the GW-VR-RLS algorithm are derived in this section. Define

Pk
△
=

(

k
∑

i=0

Ai +Rk

)−1

, (4.3)

which is the matrix inverse that appears in the solution (4.2). To write Pk recursively,

define

Qk
△
=

(

k−1
∑

i=0

Ai +Rk

)−1

, (4.4)
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where the inverse exists because
∑k−1

i=0 Ai+Rk is positive definite. Next, consider the

decomposition

Ak = ψkψ
T
k , (4.5)

where ψk ∈ R
n×nk and nk

△
= rank(Ak). It follows from (4.3)-(4.5) that Pk =

(

Q−1
k + ψkψ

T
k

)−1
. Using the matrix inversion lemma

(X + UCV )−1 =X−1 −X−1U
(

C−1 + V X−1U
)−1

V X−1, (4.6)

with X
△
= Q−1

k , U
△
= ψk, C

△
= Ink

, where Ink
is the identity matrix of dimension nk,

and V
△
= ψT

k , it follows that

Pk = Qk

(

In − ψk
(

Ink
+ ψT

kQkψk
)−1

ψT
kQk

)

.

To write Qk recursively, it follows from (4.3) and (4.4) that

Qk =
(

P−1
k−1 +Rk − Rk−1

)−1
=
(

P−1
k−1 + φkSkφ

T
k

)−1
. (4.7)

where Rk −Rk−1 has the decomposition

Rk − Rk−1 = φkSkφ
T
k , (4.8)

where φk ∈ R
n×mk , mk

△
= rank(Rk −Rk−1), and Sk ∈ R

mk×mk is a matrix of the form

Sk
△
= diag (±1, . . . ,±1). Using (4.6) with X

△
= P−1

k−1, U
△
= φk, C

△
= Sk, and V

△
= φT

k ,

it follows from (4.7) that

Qk = Pk−1

(

In − φk
(

Sk + φT
kPk−1φk

)−1
φT
kPk−1

)

.
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Finally, to write xk recursively, it follows from (4.2) and (4.3) that

xk = −1
2
Pk

(

k
∑

i=0

bi − 2Rkαk

)

, (4.9)

which implies that

k−1
∑

i=0

bi = −2P−1
k−1xk−1 + 2Rk−1αk−1. (4.10)

Furthermore, note that (4.3) and (4.4) imply

P−1
k =

k
∑

i=0

Ai +Rk = P−1
k−1 + Ak + Rk −Rk−1. (4.11)

Using (4.10) and (4.11), it follows that (4.9) can be written as

xk = −1
2
Pk

(

k−1
∑

i=0

bi + bk − 2Rkαk

)

= −1
2
Pk

(

−2P−1
k−1xk−1 + 2Rk−1αk−1 + bk − 2Rkαk

)

= −1
2
Pk

(

−2(P−1
k −Ak − Rk +Rk−1)xk−1 + 2Rk−1αk−1 + bk − 2Rkαk

)

= xk−1 − Pk

(

Akxk−1 +
1
2
bk + (Rk −Rk−1)xk−1 +Rk−1αk−1 − Rkαk

)

.

The following result summarizes the GW-VR-RLS algorithm.

Algorithm 3. For each k > 0, the unique global minimizer of (4.1) is given by

Qk = Pk−1 − Pk−1φk
(

Sk + φT
kPk−1φk

)−1
φT
kPk−1, (4.12)

Pk = Qk −Qkψk
(

Ink
+ ψT

kQkψk
)−1

ψT
k Qk, (4.13)

xk = xk−1 − Pk

(

Akxk−1 +
1
2
bk + (Rk − Rk−1)xk−1 +Rk−1αk−1 − Rkαk

)

, (4.14)

where x0 = α0 and P0 = R−1
0 , ψk is given by (4.5), and φk is given by (4.8).
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Note that in the case where the regularization weighting is constant, that is, for

all k ≥ 0, Rk = R0 > 0, (4.12) simplifies to Qk = Pk−1, and thus propagation of Qk is

not required.

4.4 Specializations

4.4.1 Standard RLS

Consider the special case Rk ≡ R0 and αk ≡ x0. Then the quadratic cost

Jk(x)
△
=

k
∑

i=0

(

xTAix+ bTi x
)

+ (x− x0)
TR0(x− x0) (4.15)

is minimized by

xk=xk−1 − Pk

(

Akxk−1 +
1
2
bk

)

, (4.16)

Pk=Pk−1

(

In−ψk(Ink
+ ψT

k Pk−1ψk)
−1ψT

k Pk−1

)

, (4.17)

where P0 = R−1
0 . Since the recursive update for Qk given by (4.13) simplifies to

Qk = Pk, standard RLS does not require the update of Qk.

4.4.2 Standard RLS with αk = xk−1 and Rk ≡ R0

Consider the special case Rk ≡ R0 and αk = xk−1. Then the quadratic cost

Jk(x)
△
=

k
∑

i=0

(

xTAix+ bTi x
)

+ (x− xk−1)
TR0(x− xk−1)

is minimized by

Pk = Pk−1

(

Ink
−ψk(Ink

+ ψT
k Pk−1ψk)

−1ψT
k Pk−1

)

,

xk = xk−1 − Pk

(

Akxk−1 + P−1
0 (xk−2− xk−1) +

1
2
bk

)

,
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where P0 = R−1
0 . Note that the update for Pk does not require Qk.

4.4.3 Standard RLS with forgetting factor

Let 0 < λ ≤ 1, and consider the modified cost

J̄k(x)
△
=

k
∑

i=0

λk−i
(

xTĀix+ b̄Ti x
)

+ (x−x0)
T λkR̄0 (x−x0) ,

where for i ≥ 0, Āi = ψ̄iψ̄
T
i . Next, it follows that

J̄k(x) = λk
k
∑

i=0

λ−i
(

xTĀix+ b̄Ti x
)

+(x− x0)
TR̄0 (x− x0)

= λk
k
∑

i=0

(

xTAix+ bTi x
)

+ (x− x0)
TR0 (x− x0) ,

where Ai
△
= λ−iĀi, bi

△
= λ−ib̄i, and R0

△
= R̄0. Therefore, J̄k(x) = λkJk(x), where Jk(x)

is given by the traditional RLS quadratic cost (4.15). Minimizing J̄k(x) is equivalent

to minimizing Jk(x). In this case, the minimizer of Jk is given by (4.16) and (4.17);

however, the minimizer xk is expressed in terms of Ak and bk rather than Āk and b̄k.

Substituting Ak = λ−kĀk, bk = λ−k b̄k, and ψk = λ−k/2ψ̄k into (4.16) and (4.17) yields

Pk = Pk−1

(

In − λ−kψ̄k(Ink
+ λ−kψ̄T

k Pk−1ψ̄k)
−1ψ̄T

k Pk−1

)

,

xk = xk−1 − Pk

(

λ−kĀkxk−1 +
1
2
λ−kb̄k

)

.

Next, for i ≥ 0, define P̄i
△
= λ−iPi, and it follows that the minimizer of J̄k is given by

P̄k =λ
−1P̄k−1

(

In−ψ̄k(λInk
+ ψ̄T

k P̄k−1ψ̄k)
−1ψ̄T

k P̄k−1

)

,

xk = xk−1 − P̄k

(

Ākxk−1 +
1
2
b̄k

)

,

where P̄0 = R−1
0 .
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4.4.4 Standard RLS with αk = xk−1 and forgetting factor

Let 0 < λ ≤ 1, and consider the modified cost

J̄k(x)
△
=

k
∑

i=0

λk−i
(

xTĀix+ b̄Ti x
)

+ (x− xk−1)
T λkR̄0(x− xk−1),

where for i ≥ 0, Āi = ψ̄iψ̄
T
i . Next, it follows that

J̄k(x) = λk
k
∑

i=0

λ−i
(

xTĀix+ b̄Ti x
)

+ (x− xk−1)
T R̄0 (x− xk−1)

= λk
k
∑

i=0

(

xTAix+ bTi x
)

+ (x− xk−1)
TR0 (x− xk−1) , (4.18)

where Ai
△
= λ−iĀi, bi

△
= λ−ib̄i, and R0

△
= R̄0. Combining the steps in Section 4.4.3

and Section 4.4.4, it follows that the minimizer of J̄k is given by

P̄k=λ
−1P̄k−1

(

In−ψ̄k(λInk
+ψ̄T

k P̄k−1ψ̄k)
−1ψ̄T

k P̄k−1

)

,

xk= xk−1−P̄k

(

Ākxk−1+λ
k+1P−1

0 (xk−2−xk−1)+
1
2
b̄k

)

,

where P0 = R−1
0 .

4.5 Convergence Analysis of GW-VR-RLS

In this section, we analyze the GW-VR-RLS algorithm.

Theorem 5. For all k ≥ 0, let Tk ∈ R
n×n be positive definite, and assume there exist

ε1, ε2 ∈ (0,∞) such that, for all k ≥ 0,

ε1In ≤ Tk+1 ≤ Tk ≤ ε2In. (4.19)
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Furthermore, for all k ≥ 0, let ξk ∈ R, assume that 0 < inf
k≥0

ξk ≤ sup
k≥0

ξk < ∞, and

define Rk
△
= ξkTk, Ψk

△
=
(

∑k
i=0Ai

)1/2

, and Ωk
△
= ξkIqk + ΨT

k T
−1
k Ψk. Let δ ∈ R

n,

let ν be a positive integer and, for all 0 ≤ k ≤ ν − 1, define αk
△
= δ, and, for all

k ≥ ν, define αk
△
= xk−ν , where xk−ν satisfies (4.2). Furthermore, assume there exists

a unique x∗ ∈ R
n such that, for all k ≥ 0,

Akx∗ +
1
2
bk = 0. (4.20)

Then the following statements hold:

(i) Qk, Pk, and xk are bounded.

(ii)
∑∞

j=ν(xj−ν − x∗)
TΨjΩ

−1
j ΨT

j (xj−ν − x∗) and
∑∞

j=ν ||xj − xj−ν ||
2 exist.

(iii) lim
k→∞

(

Akxk +
1
2
bk
)

= 0, and lim
k→∞

ψT
k (xk−ν − x∗) = 0.

(iv) Assume that {Ak}
∞
k=0 is bounded and there exists c > 0 and a positive integer

l such that, for all k ≥ ν(l − 1)− r, cIn ≤
∑l−1

i=0Ak−νi. Then, for all x0 ∈ R
n,

lim
k→∞

xk = x∗.

Proof. (i) It follows from the first inequality in (4.19) that, for all k ≥ 0, Rk ≥ c1In,

where c1
△
= ε1 infk≥0 ξk > 0. Since, for all k ≥ 0, Ak is positive semidefinite, it follows

from (4.3) that P−1
k ≥ c1In, which implies that 0 ≤ Pk ≤ 1

c1
In. Thus, {Pk}

∞
k=0 is

bounded. Similarly, it follows from (4.4), for all k ≥ 1, Q−1
k ≥ c1In, which implies

that 0 ≤ Qk ≤
1
c1
In. Thus, {Qk}

∞
k=1 is bounded.

Next, we show that xk is bounded. Since, for all k ≥ ν, αk = xk−ν , it follows from
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(4.3), (4.9), and (4.20) that

xk = Pk

(

Rkxk−ν −
k
∑

i=0

1

2
bi

)

= Pk

(

P−1
k xk−ν −

k
∑

i=0

Aixk−ν −
1

2

k
∑

i=0

bi

)

= xk−ν − Pk

(

k
∑

i=0

Aixk−ν −

k
∑

i=0

Aix∗

)

. (4.21)

Define x̃k
△
= xk − x∗ and Ψk

△
=
(

∑k
i=0Ai

)1/2

. Subtracting x∗ from (4.21) yields

x̃k = x̃k−ν − PkΨkΨkx̃k−ν . (4.22)

Since Pk = (ΨkΨk +Rk)
−1 and Rk = ξkTk, it follows from (4.6) that

Pk = R−1
k −R−1

k Ψk

(

In +ΨkR
−1
k Ψk

)−1
ΨkR

−1
k

=
1

ξk

(

T−1
k − T−1

k ΨkΩ
−1
k ΨkT

−1
k

)

. (4.23)

Using (4.23), it follows from (4.21) that

x̃k = x̃k−ν −
1

ξk
T−1
k ΨkΨkx̃k−ν +

1

ξk
T−1
k ΨkΩ

−1
k ΨkT

−1
k ΨkΨkx̃k−ν

= x̃k−ν −
1

ξk
T−1
k ΨkΩ

−1
k

(

ξkIn +ΨkT
−1
k Ψk

)

Ψkx̃k−ν +
1

ξk
T−1
k ΨkΩ

−1
k ΨkT

−1
k ΨkΨkx̃k−ν

= x̃k−ν − T−1
k ΨkΩ

−1
k Ψkx̃k−ν . (4.24)
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Next, note that

P−1
k T−1

k ΨkΩ
−1
k =

(

Ψ2
k + Tkξk

)

T−1
k ΨkΩ

−1
k

= Ψ2
kT

−1
k ΨkΩ

−1
k + ξkΨkΩ

−1
k

= Ψk

(

ΨkT
−1
k Ψk + ξkIn

)

Ω−1
k

= Ψk. (4.25)

Next, define the function

V (x̃k, k)
△
=

k
∑

i=k−ν+1

ξ−1
k x̃Ti P

−1
i x̃i.

Using (4.25), the difference ∆Vk
△
= V (x̃k, k)− V (x̃k−1, k − 1) is given by

∆Vk = ξ−1
k x̃Tk P

−1
k x̃k − ξ−1

k−ν x̃
T
k−νP

−1
k−νx̃k−ν ,

= ξ−1
k

(

x̃Tk−ν − x̃Tk−νΨkΩ
−1
k ΨkT

−1
k

)

P−1
k

(

x̃k−ν − T−1
k ΨkΩ

−1
k Ψkx̃k−ν

)

− ξ−1
k−νx̃

T
k−νP

−1
k x̃k−ν

= ξ−1
k x̃Tk−νP

−1
k x̃k−ν − ξ−1

k−νx̃
T
k−νP

−1
k−ν x̃k−ν − 2ξ−1

k x̃Tk−νP
−1
k T−1

k ΨkΩ
−1
k Ψkx̃k−ν

+ ξ−1
k x̃Tk−νΨkΩ

−1
k ΨkT

−1
k P−1

k T−1
k ΨkΩ

−1
k Ψkx̃k−ν

= ξ−1
k x̃Tk−νΨ

2
kx̃k−ν − ξ−1

k−νx̃
T
k−νΨ

2
k−νx̃k−ν

+ x̃Tk−ν (Tk − Tk−ν) x̃k−ν − 2ξ−1
k x̃Tk−νΨ

2
kx̃k−ν

+ ξ−1
k x̃Tk−νΨkΩ

−1
k ΨkT

−1
k P−1

k T−1
k ΨkΩ

−1
k Ψkx̃k−ν

≤ −ξ−1
k x̃Tk−νΨ

2
kx̃k−ν − ξ−1

k−νx̃
T
k−νΨ

2
k−νx̃k−ν

+ ξ−1
k x̃Tk−νΨkΩ

−1
k ΨkT

−1
k P−1

k T−1
k ΨkΩ

−1
k Ψkx̃k−ν .
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≤ −ξ−1
k−ν x̃

T
k−νΨ

2
k−νx̃k−ν − ξ−1

k x̃Tk−νΨ
2
kx̃k−ν + ξ−1

k x̃Tk−νΨkΩ
−1
k ΨkT

−1
k Ψ2

kx̃k−ν

= −ξ−1
k−νx̃

T
k−νΨ

2
k−ν x̃k−ν − ξ−1

k x̃Tk−νΨ
2
kx̃k−ν

+ ξ−1
k x̃Tk−νΨkΩ

−1
k

(

ξkIn − ξkIn +ΨkT
−1
k Ψk

)

Ψkx̃k−ν

= −ξ−1
k−νx̃

T
k−νΨ

2
k−ν x̃k−ν − ξ−1

k x̃Tk−νΨ
2
kx̃k−ν + ξ−1

k x̃Tk−νΨkΩ
−1
k (−ξkIn + Ωk)Ψkx̃k−ν

= −ξ−1
k−νx̃

T
k−νΨ

2
k−ν x̃k−ν − x̃Tk−νΨkΩ

−1
k Ψkx̃k−ν (4.26)

≤ −x̃Tk−νΨkΩ
−1
k Ψkx̃k−ν . (4.27)

Since P−1
k is positive definite, and ξ−1

k is positive, it follows that V (x̃k, k) is a positive-

definite function of x̃k, . . . , x̃k−ν+1. Furthermore, since for all k ≥ 0, P−1
k ≥ c1In and

infk≥0

{

ξ−1
k

}

≥ 0, it follows that x̃k is bounded, and thus xk is bounded.

(ii) It follows from (4.27) that

0 ≤

k
∑

j=ν

x̃Tj−νΨjΩ
−1
j ΨT

j x̃j−ν ≤ −

k
∑

j=ν

∆Vj = V (x̃ν−1, ν − 1)− V (x̃k, k) ≤ V (x̃ν−1, ν − 1).

Hence, the nondecreasing sequence {
∑k

j=ν x̃
T
j−νΨjΩ

−1
j ΨT

j x̃j−ν}
∞
k=ν is bounded, and

thus
∑∞

j=ν x̃
T
j−νΨjΩ

−1
j ΨT

j x̃j−ν exists.

Next, for all k ≥ ν, define Mk
△
=
∑k

j=ν ||xj − xj−ν ||
2. It follows from (4.24) that

Mk =

k
∑

j=ν

||T−1
j ΨjΩ

−1
j ΨT

j x̃j−ν ||
2

=

k
∑

j=ν

x̃Tj−νΨjΩ
−1
j ΨT

j T
−2
j ΨjΩ

−1
j ΨT

j x̃j−ν

≤

k
∑

j=ν

‖T−1
j ‖x̃Tj−νΨjΩ

−1
j ΨT

j T
−1
j ΨjΩ

−1
j ΨT

j x̃j−ν .
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Note that, for all k ≥ ν, ‖T−1
k ‖ ≤ ‖ 1

ε1
In‖ = 1

ε1
. Therefore,

Mk ≤
1

ε1

k
∑

j=ν

x̃Tj−νΨjΩ
−1
j

(

ξjIqj +ΨT
j T

−1
j Ψj − ξjIqj

)

Ω−1
j ΨT

j x̃j−ν

=
1

ε1

k
∑

j=ν

x̃Tj−νΨjΩ
−1
j

(

Ωj − ξjIqj
)

Ω−1
j ΨT

j x̃j−ν

=
1

ε1

k
∑

j=ν

x̃Tj−νΨjΩ
−1
j ΨT

j x̃j−ν −
1

ε1

k
∑

j=ν

ξjx̃
T
j−νΨjΩ

−2
j ΨT

j x̃j−ν

≤
1

ε1

k
∑

j=ν

x̃Tj−νΨjΩ
−1
j ΨT

j x̃j−ν.

Since
∑∞

j=ν x̃
T
j−νΨjΩ

−1
j ΨT

j x̃j−ν exists, it follows that the nondecreasing sequence {Mk}
∞
k=ν

is bounded, and thus limk→∞Mk exists, which verifies (ii).

(iii) Since infk≥0 ξ
−1
k > 0, it follows that there exists κ > 0 such that, for all k ≥ 0,

ξk ≥ κ. It follows from (4.26) that

∆Vk ≤ −ξ−1
k x̃Tk−νΨ

2
k−νx̃k−ν

= −ξ−1
k x̃Tk−ν

(

k−ν
∑

i=0

Ai

)

x̃k−ν

≤ −κx̃Tk−νψk−νψ
T
k−ν x̃k−ν . (4.28)

It follows from (i) that

0 ≤

k
∑

j=ν

x̃Tj−νψjψ
T
j x̃j−ν ≤ −

k
∑

j=ν

∆Vj = V (x̃ν−1, ν − 1)− V (x̃k, k) ≤ V (x̃ν−1, ν − 1),

Hence, the nondecreasing sequence {
∑k

j=ν x̃
T
j−νψjψ

T
j x̃j−ν}

∞
k=ν is bounded, and thus

∑∞

j=ν x̃
T
j−νψjψ

T
j x̃j−ν exists. It follows that limk→∞ ||ψT

k x̃k−ν || = 0. It follows from (ii)
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that ||x̃k − x̃k−ν || → 0 as k → ∞, and thus

||Akxk +
1
2
bk|| = ||Akxk − Akx∗||

= ||ψkψ
T
k x̃k||

≤ κ||ψT
k x̃k||

= κ||ψT
k x̃k−ν + ψT

k x̃k − ψT
k x̃k−ν ||

≤ κ
(

||ψT
k x̃k−ν ||+ ||ψk||||x̃k − x̃k−ν ||

)

≤ κ
(

||ψT
k x̃k−ν ||+ κ||x̃k − x̃k−ν ||

)

= κ||ψT
k x̃k−ν ||+ κ2||x̃k − x̃k−ν ||

→ 0 as k → ∞,

which proves (iii).

(iv) Now, since {Ak}
∞
k=0 is bounded, it follows that κ

△
= sup

k≥0
σmax(ψk) < ∞. It thus

follows from (ii) and (iii) that

||Ak−νx̃k|| ≤ κ||ψT
k−ν x̃k||

= κ||ψT
k−ν x̃k−ν + ψT

k−ν x̃k − ψT
k−ν x̃k−ν ||

≤ κ||ψT
k−ν x̃k−ν ||+ κ2||x̃k − x̃k−ν ||

→ 0 as k → ∞. (4.29)

Similarly, It follows from (ii) and (4.29) that

||Ak−2νx̃k|| ≤ κ||ψT
k−2ν x̃k||

= κ||ψT
k−2ν x̃k−ν + ψT

k−2ν x̃k − ψT
k−2ν x̃k−ν ||

≤ κ||ψT
k−2ν x̃k−ν ||+ κ2||x̃k − x̃k−ν ||.

→ 0 as k → ∞.
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Repeating this argument shows that, for all i ∈ {k−(l−1)ν, k−(l−2)ν, . . . , k−ν, k},

limk→∞ ||Aix̃k|| = 0. Since, for all k ≥ ν(l − 1)− r, cIn ≤
∑l−1

i=0Ak−νi, it follows that

||x̃k|| ≤
1

c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l−1
∑

i=0

Ak−νix̃k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
1

c

l−1
∑

i=0

||Ak−νix̃k||

→ 0 as k → ∞.

Hence, lim
k→∞

x̃k = 0.

4.6 Setup for Numerical Simulations

For all k ≥ 0, let xk,opt ∈ R
n, let ψk ∈ R

n be generated from a zero mean, unit

variance Gaussian distribution, and define

βk
△
= ψT

k xk,opt.

Let K be the number of data points. Define

σψ,i
△
=

√

√

√

√

1

K

K
∑

k=1

ψ2
k,i

K→∞
−−−→ 1,

σβ
△
=

√

√

√

√

1

K

K
∑

k=1

β2
k

K→∞
−−−→ 1,

where ψk,i is the i
th entry of ψk. Next, for i = 1, . . . , n, let Nk,i ∈ R, and Mk ∈ R be

generated from zero mean Gaussian distributions with standard deviations σN,i and

σM , respectively, where σN,i and σM are determined from the signal-to-noise ratio
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(SNR). More specifically, for i = 1, . . . , n,

SNRψ,i
△
=
σψ,i
σN,i

, and

SNRβ
△
=

σβ
σM

,

where, for i = 1, . . . , n, σN,i =
√

1
K

∑K
k=1N

2
k,i and σM =

√

1
K

∑K
k=1M

2
k .

Finally, for k ≥ 0, define Ak
△
= (ψk+Nk)(ψk+Nk)

T and bk
△
= −2(βk+Mk)(ψk+Nk),

where Nk
△
= [Nk,1 Nk,2 · · · Nk,7]

T is the noise in ψk and Mk is the noise in βk.

Define

z1
△
=

[

0.08 −1.12 1.55 1.47 −2.22 −2.07 0.32

]

,

z2
△
=

[

−1.11 −0.19 1.09 −0.21 0.45 0.23 −2.48

]

.

Unless otherwise specified, for all k ≥ 0, xk,opt = z1, αk = x0 and x0 = 07×1.

Define the performance

εk
△
=

‖xk,opt − xk‖

‖xk,opt‖
.

4.7 Numerical Simulations of VR-RLS with Noise-

less Data

In this section, we investigate the effect of Rk, αk and λ on Variable Regularization

RLS(VR-RLS). Furthermore, in this section, Ak and bk contain no noise, specifically,

for all k ≥ 0, Nk = 07×1 and Mk = 0.

4.7.1 Effect of Rk

First, we begin by testing the effect of Rk on convergence of εk when Rk is constant. In

the following example, we test VR-RLS for three different values of Rk. Specifically,
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for all k ≥ 0, Rk = I7×7, Rk = 0.1I7×7 or Rk = 0.01I7×7. In all three cases, for

all k ≥ 0, Ak and bk are the same. For this example, Figure 4.1 shows that smaller

values of Rk yield faster convergence of εk to zero. Note that this effect occurs because

decreasing Rk reduces the magnitude of the regularization term in the cost function

(4.1).
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Figure 4.1: Effect of Rk on convergence of xk to xk,opt. For this example, smaller
values of Rk yield faster convergence of εk to zero.

Next, we let Rk be constant and positive definite until
∑k−1

i=0 Ai has full rank, then

we let Rk = 0. More specifically,

Rk =











0.1I7×7, if rank
∑k−1

i=0 Ai < n,

0, if rank
∑k−1

i=0 Ai = n.
(4.30)

For Rk given by (4.30), if there is no noise in the data, then xk can converge to xk,opt

in finite time. In particular, if there exists a positive integer N such that
∑N−1

i=0 Ai

has full rank, then, for all k ≥ N , xk = xk,opt. Figure 4.2 shows that εk converges to

zero in finite time when Rk is given by (4.30). In this case for all k ≥ 7,
∑k−1

i=0 Ai has

full rank. Thus, for all k ≥ 8, xk = xk,opt.
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Figure 4.2: Effect of Rk on convergence of xk to xk,opt. In this example,
∑7

i=0Ai has
full rank. Therefore, for k ≥ 8, Rk = 0 and xk = xk,opt.

Next, we pick the smallest Rk such that
∑k

i=0Ai is positive definite. More

specifically, we conduct the singular value decomposition USUT =
∑k−1

i=0 Ai, where

U ∈ R
n×n, S ∈ R

n×n and has the form

S
△
=







Γm×m 0m×(n−m)

0(n−m)×m 0(n−m)×(n−m)






,

where Γ ∈ R
m×m contains the m non-zero singular values of

∑k−1
i=0 Ai. Note that the

singular value decomposition has the form USUT because
∑k−1

i=0 Ai is symmetric [72,

Corollary 5.4.5]. Next, define

Ŝ
△
=







0m×m 0m×(n−m)

0(n−m)×m ǫI(n−m)×(n−m)






,

105



where ǫ ∈ R
+. Finally,

Rk
△
=























R0, k = 0

UŜUT, if rank
∑k−1

i=0 Ai < n,

0, if rank
∑k−1

i=0 Ai = n,

(4.31)

In the following example we compare VR-RLS with Rk = I3×3 and Rk given by

(4.31) with ǫ = 1. In both cases, for all k ≥ 0, Ak and bk are the same. For this

example, Figure 4.3 shows that setting Rk given by (4.31) with ǫ = 1 yields faster

convergence of εk to zero than setting Rk = I7×7
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Figure 4.3: Effect of Rk on convergence of xk to xk,opt. The solid line denotes εk with
Rk given by (4.31) and the dashed line denotes εk with Rk = I7×7. For this example,
setting Rk given by (4.31) with ǫ = 1 yields faster convergence of εk to zero than
setting Rk = I7×7

4.7.2 Effect of αk

Figure 4.4 compares VR-RLS with αk = xk−1 and αk = x0, where, for all k ≥ 0,

Rk = I7×7. For this example, setting αk = xk−1 yields faster convergence of εk to zero

than setting αk = x0.
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Figure 4.4: Effect of one step regularization on convergence of xk to xk,opt. For this
example, setting αk = xk−1 yields faster convergence of εk to zero than setting αk = x0

4.7.3 Effect of Forgetting Factor

In this section, we examine standard RLS with forgetting factor (as described in

Section 4.4.3). Using a forgetting factor allows xk to approximate xk,opt when xk,opt

varies with time.

In the following example, we test RLS for three values of λ, specifically λ=1,

λ=0.995 or λ=0.9. For all k ≥ 0, Rk = 0.1I7×7 and

xk,opt =











z1, 0 ≤ k ≤ 200

z2, k > 200

For this example, Figure 4.5 shows that, for k ≤ 200, the forgetting factor has neg-

ligible impact on the behavior of εk. For k > 200, smaller values of λ yield faster

convergence of εk to zero.
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Figure 4.5: Effect of forgetting factor on convergence of xk to xk,opt. For k ≤ 200,
the forgetting factor has negligible impact on the behavior of εk. For k > 200,
xk,opt 6= x200,opt, and a smaller value of λ yields faster convergence of xk to xk,opt.

4.7.4 Loss of Persistency

In this example, we study the effect of loss of persistency on standard RLS with

forgetting factor. More specifically, for all k ≥ 500, Ak = A500 and bk = b500. For

all k ≥ 0, Rk = 0.1I7×7 and λ=0.95. For this example, Figure 4.6 shows that εk

approaches zero, however, Figure 4.7 shows that ‖Pk‖ grows without bound after the

data lose persistency.

4.8 Numerical Simulations of VR-RLS with Noisy

Data

We now investigate the effect of Rk, αk, and λ on VR-RLS when the data have noise.

More specifically, for all k ≥ 0, Mk and Nk,i are generated from zero mean Gaussian

distributions with variances depending on SNRψ,i and SNRβ, respectively. Figure 4.8

shows the effect of noise on standard RLS for different SNR values. In this example,
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Figure 4.6: Effect of loss of persistency on convergence of xk to xk,opt. The data lose
persistency at the 500th step. In this example, εk approaches zero.

a smaller value of SNR yields a larger asymptotic value of εk.

In the next example, we examine the convergence of εk for standard RLS when

ψk and βk have constant bias. We consider three cases of constant bias, specifically,

for all k ≥ 0, Nk = (0.2)17×1 and Mk = 0.2, Nk = (0.2)17×1 and Mk = 0 or Nk = 07×1

and Mk = 0.2. For this example, Figure 4.9 shows that bias increases the asymptotic

value of εk. Furthermore, bias in βk yields a higher asymptotic value of εk than an

equal percent of bias in ψk.

4.8.1 Effect of Rk

In this section, we examine the effect of Rk where Rk is constant. In the following

example, we test VR-RLS for three different values of Rk. Specifically, for all k ≥ 0,

Rk = I7×7, Rk = 0.1I7×7 or Rk = 0.01I7×7. Furthermore, SNRψ,i = SNRβ = 5 and,

for all k ≥ 0, Ak and bk are the same. For this example, Figure 4.10 shows that

smaller values of Rk can result in larger peak values of εk.

Recall that, Figure 4.1 showed that smaller values of Rk can yield faster conver-

gence of εk to zero. However, if the data have noise, then Figure 4.10 shows that the

transient response of εk can be worse for smaller values of Rk. As the SNR increases,
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Figure 4.7: Effect of loss of persistency on ‖Pk‖ for standard RLS with λ = 0.95. The
data lose persistency at the 500th step. In this example, ‖Pk‖ grows without bound.

Figure 4.10 converges to Figure 4.1.

4.8.2 Effect of αk

Figure 4.11 compares VR-RLS with αk = xk−1 and αk = x0, where, SNRψ,i = SNRβ =

5 and for all k ≥ 0 Rk = I7×7. For this example, Figure 4.11 shows that the transient

response of εk can be worse for αk = xk−1 than it is for αk = x0.

Recall that, Figure 4.4 showed that setting αk = xk−1 can yield faster convergence

of εk to zero than setting αk = x0. However, if the data have noise, then Figure 4.11

shows that the transient response of εk can be worse with αk = xk−1 than it is with

αk = x0. As the SNR increases, Figure 4.11 converges to Figure 4.4.

Next, we compare VR-RLS for different choices of αk. More specifically, we let

αk = Lν(k) where

Lν(k)
△
=











xk−1, 0 < k ≤ ν,

xk−ν , k > ν,

where ν is a positive integer. In the following example, we test VR-RLS for three

different ν. Specifically, ν = 1, ν = 5, ν = 10. In all cases, for all k ≥ 0, Ak and
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Figure 4.8: Effect of noise on standard RLS. In this example, smaller values of SNR
yield larger asymptotic values of εk.

bk are the same, Rk = I7×7 and SNRβ = SNRψ,i = 5. For this example, Figure 4.12

shows that larger values of ν can yield better transient performance of εk.

Next, we let αk =Wρ(k) where

Wρ(k)
△
=























x0, k = 1,

1
k−1

∑k−1
i=1 xk−i, 1 < k ≤ ρ,

1
ρ

∑ρ
i=1 xk−i, k > ρ,

where ρ is a positive integer. In the following example, we test VR-RLS for three

different values of ρ. Specifically, ρ = 1, ρ = 5, ρ = 10. In all cases, for all k ≥ 0, Ak

and bk are the same, Rk = I7×7 and SNRβ = SNRψ,i = 5. For this example, Figure

4.13 shows that larger values of ρ can yield better transient performance of εk than

smaller values of ρ.

4.8.3 Effect of Forgetting Factor

In this section, we examine standard RLS with forgetting factor. In the following

example, we test RLS for three values of λ, specifically λ=1, λ=0.95 or λ=0.9. Let

SNRψ,i = SNRβ = 5, and, for all k ≥ 0, Rk = 0.1I7×7. For this example, Figure 4.14
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Figure 4.9: Effect of bias on standard RLS. For this example, bias increases the
asymptotic value of εk. Furthermore, bias in βk yields a higher asymptotic value of
εk than an equal percent of bias in ψk.
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Figure 4.10: Effect of Rk on convergence of xk to xk,opt. For this example, smaller
values of Rk can result in larger peak values of εk.

shows that smaller values of λ yield larger asymptotic value of εk.

Next, we let

xk,opt =











z1, 0 ≤ k ≤ 500

z2, k > 500

For this example, Figure 4.15 shows that, for k ≤ 500, smaller values of λ yield larger

112



0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

k

ε k
(%

)

 

 
αk = xk−1
αk = x0

Figure 4.11: Effect of αk on convergence xk to xk,opt. For this example, this figure
shows that the transient response of εk can be worse for αk = xk−1 than it is for
αk = x0.

asymptotic values of εk. For k > 500, xk,opt 6= x500,opt, and a smaller value of λ yields

faster convergence of εk to its asymptotic value.

4.8.4 Loss of Persistency

In this section, we study the effect of loss of persistency on standard RLS with for-

getting factor. More specifically, for all k ≥ 500, Ak = A500 and bk = b500. For all

k ≥ 0, Rk = 0.1I7×7 and λ=0.95 and SNRψ,i = SNRβ = 5.

In the first example, the data have noise in both ψk and βk. For this example,

Figure 4.16 shows that εk increases after the data lose persistency, but εk remains

bounded.

Next, there is no noise in ψk and βk but only bias in ψk. More specifically, for all

k ≥ 0, Nk = 0.5I7×1 and Mk = 0. For this example, Figure 4.17 shows that εk grows

without bound.

Next, there is no noise in ψk and βk but only bias in βk. More specifically, for all
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Figure 4.12: Convergence of xk to xk,opt. For this example, larger values of ν yield
better transient performance of εk.

k ≥ 0, Nk = 07×1 and Mk = 0.5. For this example, Figure 4.18 shows that εk grows

without bound.

Next, there is noise in βk but no noise in ψk. More specifically, for all k ≥ 0,

Nk = 07×1 and SNRβ = 5. For this example, Figure 4.19 shows that εk grows without

bound.

If there is noise in ψk but no noise in βk then λ−k(
∑k

i=0Ai + Rk) is always full

rank. Therefore, εk and ‖Pk‖ remain bounded after the data lose persistency.

4.9 Conclusions

In this chapter, we presented a growing-window variable-regularization recursive least

squares (GW-VR-RLS) algorithm. This algorithm allows for a time-varying regular-

ization term in the RLS cost function. More specifically, GW-VR-RLS allows us to

vary both the weighting in the regularization as well as what is being weighted, that

is, the regularization term can weight the difference between the next state estimate

114



0 5 10 15 20 25
10

20

30

40

50

60

70

80

90

k

ε k
(%

)

 

 
αk = Wρ(k), ρ = 1
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Figure 4.13: Convergence of xk to xk,opt. In this example, larger values of ρ yield
better transient performance of εk than smaller values of ρ.
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Figure 4.14: Effect of forgetting factor on convergence of xk to xk,opt. For this example,
this figure shows that smaller values of λ yield larger asymptotic value of εk.

and a time-varying vector of parameters rather than the initial state estimate.
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Figure 4.15: Effect of forgetting factor on convergence of xk to xk,opt. For k ≤ 500,
smaller values of λ yield larger asymptotic values of εk. For k > 500, xk,opt 6= x500,opt,
and a smaller value of λ yields faster convergence of εk to its asymptotic value.
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Figure 4.16: Effect of loss of persistency on convergence of xk to xk,opt. The data
lose persistency at the 500th step. In this example, εk increases after the data lose
persistency, but εk remains bounded.
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Figure 4.17: Effect of loss of persistency on convergence of xk to xk,opt. The data
lose persistency at the 500th step and there is bias ψk. For this example, εk grows
without bound after the data lose persistency.
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Figure 4.18: Effect of loss of persistency on convergence of xk to xk,opt. The data lose
persistency at the 500th step and there is bias βk. For this example, εk grows without
bound after the data lose persistency.
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Figure 4.19: Effect of loss of persistency on convergence of xk to xk,opt. The data lose
persistency at the 500th step and there is noise in βk. For this example, εk grows
without bound after the data lose persistency.
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CHAPTER 5

Input and State Estimation in the

Ionosphere-Thermosphere

In this chapter, we formulate RCUIO for state and input estimation in the ionosphere-

thermosphere using the Global Ionosphere-Thermosphere Model and real satellite

data. Section 5.2 describes the Global Ionosphere-Thermosphere Model and the

GRACE and CHAMP satellites that are used in the numerical experiments. In Sec-

tion 5.3, we formulate RCUIO for GITM and describe the implementation of RCUIO

on a multiprocessor GITM simulation. Section 5.4 presents state and input estimation

results. Finally, in Section 5.5, we give conclusions and future directions.

5.1 Introduction

This chapter is concerned with modeling and prediction of space weather effects. In

the near-Earth environment, the effects of space weather are primarily manifested by

the properties of the ionosphere and thermosphere, which influence radio propagation

and satellite drag. The sun is one of the primary drivers of the ionosphere and

thermosphere. In particular, extreme ultraviolet (EUV) and X-ray radiation produce

photo-ionization, which, in turn, through chemistry and heating, drives the formation

of the ionosphere and shapes the thermosphere. In addition, the effect of the EUV

and X-ray radiation is sufficient to render the ionosphere-thermosphere a strongly
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driven system.

Since a significant portion of EUV and X-ray radiation is absorbed by the at-

mosphere, it is not possible to measure these quantities from the ground. Instead,

a proxy is used. The most common proxy for EUV and X-ray radiation is the flux

solar irradiance at a wavelength of 10.7 cm (F10.7), which is measured (in units of

10−22 W Hz−1 m−2 = 1 solar flux unit (SFU)) by the Dominion radio observatory in

Penticton, Canada [66]. A shortcoming of this technique is that F10.7 does not have

a one-to-one correlation with each of the wavelengths in the EUV and X-ray bands,

and thus the measured F10.7 is often a misrepresentation of the true solar spectrum.

Although our ultimate goal is to estimate the true flux in multiple EUV and X-ray

wavelength bins, a more attainable intermediate goal is to estimate the value of F10.7

that best characterizes the ionosphere and thermosphere. The ability to estimate

F10.7 from alternative measurements can provide a cross check on the available mea-

surements, while also providing an illustrative proof-of-concept demonstration of the

adaptive state estimation algorithm described below as a first step toward estimating

X-ray and EUV in multiple bands. Furthermore, current models do not fully capture

the dynamics of the ionosphere-thermosphere, in which case F10.7 can be used as an

input to the model for the purpose of eliminating the errors between real measure-

ments and simulated measurements. This study thus attempts to specify F10.7 based

on simulated measurements of the atmosphere as well as with real satellite data. The

specified F10.7 can then be used to obtain improved estimates of the state of the iono-

sphere and thermosphere globally and possibly predict its future evolution. This is a

problem of state and input estimation.

To estimate F10.7, we use the Global Ionosphere Thermosphere Model (GITM) [32].

GITM simulates the density, temperature, and winds in the thermosphere and iono-

sphere across the globe from 100 km to 600 km altitude, depending on the solar con-

ditions at the time. The main inputs to GITM are the high-latitude electrodynamics
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(i.e., the aurora and the associated electric fields), tides from the lower atmosphere,

and the brightness of the sun at various wavelengths, which can be proxied through

the use of F10.7. GITM solves for the chemistry, dynamics, and thermodynamics of

the upper atmosphere self-consistently by accounting for interactions among various

species of ions and neutrals.

In this work, we use the retrospective cost unknown input observer (RCUIO)

technique given in Chapter 2 to estimate the unknown solar driver F10.7 using the

Global Ionosphere-Thermosphere Model and satellite measurements. RCUIO assumes

that the input to the system is unknown, and uses retrospective optimization to

construct an input to the adaptive estimator that minimizes the retrospective cost

function given in Chapter 2. The retrospectively optimized input is then used to

asymptotically drive the error between the measured output and the estimator output

to zero. In this way, RCUIO asymptotically estimates the unknown input to the

system and the unknown states of the system. A useful feature of RCUIO is that an

explicit nonlinear or linearized model is not required. In addition, unlike ensemble-

based data-assimilation algorithms [23, 24, 67], RCUIO uses only one copy of the

system model and thus is ensemble-free.

The derivation of the RCUIO algorithm given in Chapter 2 is based on a linear

dynamics model, and the modeling information needed to implement the algorithm

consists of components of the impulse response. However, since RCUIO does not

require an explicit model of the dynamics (which may, for example, be in the form of a

computer code as in the case of GITM), RCUIO can be applied to nonlinear systems.

In this case, ersatz modeling information can be chosen based on the qualitative

behavior of the system, or can be determined by trial and error. Numerical examples

show that RCUIO is effective on nonlinear plants, which is presumably due to the

fact that extremely limited modeling information is required by the algorithm.

In [68], RCUIO was used to estimate a constant F10.7 in 3D GITM using simulated
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measurement data, where the measurement was assumed to be at a fixed position in

the terrestrial atmosphere. The goal of this work is to extend this application to the

case where the measurements are obtained from real or simulated satellites. Further-

more, the ability of the method to estimate a time-varying F10.7 using simulated data

is demonstrated.

5.2 GITM and Satellites

GITM is a three-dimensional, spherical model that solves the Navier-Stokes equations

for the thermosphere in a spherical coordinate system. For the ionosphere, the conti-

nuity equation is solved, while the momentum and energy equations are simplified to

be steady state. This approach is effective in the ionosphere, where the time scales

for changes in the ion and electron velocities and temperatures are extremely small.

In the cases presented here, the grid resolution in GITM is set to 5◦ latitude by 5◦

longitude. The altitude spacing is roughly 1/3 of the scale height, and is fixed in time.

The vertical direction is treated differently from the horizontal direction because of

gravity. In GITM, the full vertical momentum equation is computed along with the

major neutral species. Frictional terms couple the species and capture Eddy diffusion

in the lower thermosphere. In the upper thermosphere all of the species separate out

and reach a roughly hydrostatic balance. In the horizontal directions, all species move

with the bulk wind speed. Viscosity couples the neutral winds at different altitudes.

The magnetic field is given as the International Geophysical Reference Field model.

The ion velocities are separated into parallel and perpendicular components, which

is a common technique [e.g., Kelley]. GITM is fully described in [32] and has been

used to study various geophysical phenomena such as non-hydrostatic wind struc-

tures [73]], circulation in the ionosphere, and the influence of ion variability and grid

resolution on heating in the thermosphere [74].
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The inputs to GITM include the solar luminosity (as described later in this study),

tides at the lower boundary, which are specified by the MSIS empirical atmosphere

model [75–77], the Horizontal Wind Model [78], the high-latitude electric field, which

is specified by the [79] model, and the aurora, which is specified by the [80] model.

The grid structure within GITM is fully parallel and covers the entire planetary

surface by using a block-based two-dimensional domain decomposition in the hori-

zontal coordinates [73]. The number of latitude and longitude blocks can be specified

at run time in order to modify the horizontal resolution. GITM has been run on up

to 256 processors with a resolution as fine as 0.31◦ latitude by 2.5◦ longitude over

the entire globe with 50 vertical levels, covering a vertical domain from 100 km to

roughly 600 km [32]. This flexibility can be used to validate consistency by running

the estimator at various levels of resolution. In summary, GITM can be implemented

on multiple processors with a nonuniform grid, using a variety of models of electric

fields, magnetic fields, auroral particle precipitation, solar EUV and X-ray drivers,

and particle energy deposition.

In this work, we use neutral density data from CHAMP (Challenging Mini Satellite

Payload [81]) and GRACE (Gravity Recovery and Climate Experiment [82]) satellites.

The CHAMP data are used as measurements to obtain state and input estimates,

whereas the GRACE data are used as a metric for assessing the accuracy of state

estimates. Figure 5.1 shows the trajectories of CHAMP and GRACE from 02:12:00

to 03:40:00 UTC on 2002-11-21. Note that, since only one satellite is used to obtain

measurements, this satellite may be located where the solar zenith angle is greater

than 90◦. When this occurs, the effect of F10.7 on the estimator output is significantly

delayed [83]. This delay can be mitigated by using multiple satellites, such that the

solar zenith angle at the location of at least one satellite is less that 90◦. However, in

this work we use only one satellite.
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Figure 5.1: This plot shows CHAMP and GRACE trajectories on 2002-11-21.

5.3 RCUIO formulation for GITM

We now consider state and driver estimation in the ionosphere and thermosphere.

Consider the GITM model of the ionosphere thermosphere system represented by

x̂(k + 1) = f̂(x̂(k), v(k), û(k)),

ŷ(k) = ĥ(x̂(k)),

where x̂(k) ∈ R
31ng is the estimated state, where ng is the number of grid points,

ŷ(k) ∈ R
p are the estimator outputs at satellite locations, where p is the number of

satellites, and û(k) ∈ R
37 is the estimated input. Within this formulation, GITM uses

EUVAC, a model of the solar EUV flux [84], to provide an estimate of u(k), given by

û(k) = ˆ̄F10.7(k)E +Q,
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where E ∈ R
37, Q ∈ R

37, and

ˆ̄F10.7(k)
△
=
(

F̂10.7(k) + F̂10.7a(k)
)

/2,

where F̂10.7(k) ∈ R is the estimated solar flux at a wavelength of 10.7 cm and F̂10.7a ∈

R is an 81-day average of F̂10.7(k). In other words, GITM uses the EUVAC model

to estimate u(k) using ˆ̄F10.7(k). The matrices E and Q are given in [84, Table 1].

Finally, we define the error z(k) = y(k)− ŷ(k).

Our goal is to estimate x(k) by finding an input ˆ̄F10.7(k) that minimizes J̄ . We

implement RCUIO on GITM with H̃ = H1. In order to select a suitable value of

H1, we use the following modifications of RCUIO. First, we use statistical knowledge

of the desired rate of change of ˆ̄F10.7 during a 24-hour period, and design a low-

pass filter that limits the rate of change of the output ˆ̄F10.7(k) from the adaptive

subsystem (2.28). This prevents (2.28) from converging to a system that yields a

highly oscillatory ˆ̄F10.7(k). Second, we saturate the output from (2.28) in order to

prevent GITM from yielding nonphysical states. We set these saturation limits to

70 ≤ ˆ̄F10.7(k) ≤ 400. Finally, we account for unknown dynamics and measurement

noise. More specifically, if z(k) is nonzero, RCUIO will attempt to minimize it by

changing ˆ̄F10.7(k). However, since the response to a change in ˆ̄F10.7(k) on the output

ŷ(k) is slow and ˆ̄F10.7(k) alone cannot counteract the effect of all other drivers in

GITM, RCUIO will yield an oscillatory ˆ̄F10.7(k) in an attempt to minimize z(k). For

some values of H1, this can cause ˆ̄F10.7(k) to alternate between the saturation limits.

To prevent this, we apply another low-pass filter to the signal z(k). A schematic for

estimating states and input in the ionosphere-thermosphere using GITM and RCUIO

is shown in Figure 5.2. Note that in Figure 5.2, the input to (2.28) is zf(k), and the

output from (2.28) is ˆ̄F10.7,f(k).

In this work, we consider the case where m = 1, p = 1, g = 1 and s = 1, for which
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the computational complexity of RCUIO is O(n2
c). An implementation of RCUIO

on a four-processor GITM simulation with low resolution (16,200 grid points) from

2002-11-24 to 2002-12-28 with nc = 100 completes in four hours, 3 minutes of which

are devoted to RCUIO equations (2.28), (2.44), (2.46), and (2.47).
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Figure 5.2: RCUIO setup for GITM. The known input v(k) is used in GITM, whereas

the unknown input u(k) must be estimated. The objective is to construct an esti-

mate of ˆ̄F10.7(k) that, when used in the EUVAC model, yields an estimate û(k) that

minimizes the retrospective cost function.

The frequency of computing RCUIO update equations and updating ˆ̄F10.7(k) de-
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pends on the frequency of available measurements. For the purposes of this work,

GITM has a fixed time step of Ts = 2 sec, but we use a measurement to update

ˆ̄F10.7(k) only every 60 sec.

Due to the low computational burden of RCUIO compared to GITM, we imple-

ment RCUIO on one processor, and send all information needed by RCUIO from

other processors to this processor. A flowchart summarizing the implementation of

RCUIO with GITM on four processors is shown in Figure 5.3.

5.4 State and Input Estimation Results For GITM

We divide the numerical examples into two main setups. The first setup uses sim-

ulated satellite data. In this setup, we run GITM with a specified “true” F̄10.7(k),

and record neutral mass density at CHAMP satellite locations, which we call “truth

data” and label it y(k). Furthermore, we record the neutral particle temperature at

an altitude of 400 km above Ann Arbor, MI, which is at 42.3◦ N latitude, 83.7◦ W

longitude, and label it xAA(k). We use xAA(k) as a metric for assessing the accu-

racy of state estimates, and do not use it in RCUIO. Next, we combine RCUIO with

GITM, and use y(k) to estimate F̄10.7(k) and states.

The second setup is the real satellite data case. In this setup, the neutral mass

density data measured by CHAMP (the “truth data”) is labeled y(k), while the

neutral mass density data measured by GRACE is labeled yG(k). First, we run

GITM with the measured F̄10.7(k) and record the neutral mass density at CHAMP

locations and GRACE locations, which are labeled ŷm(k) and ŷG,m(k), respectively.

Next, we combine RCUIO and GITM, and use y(k) to estimate F̄10.7(k) and states.

The neutral mass density output from GITM with RCUIO at CHAMP and GRACE

locations are labeled ŷ(k) and ŷG(k), respectively. Note that data from GRACE are

used only as a metric for assessing the accuracy of state estimates, and are not used
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by RCUIO. We further divide this setup into two cases. First, in RCUIO, we use

GITM with photoelectron heating. When photoelectron heating is used in GITM,

then the neutral density output from GITM at CHAMP locations using measured

F̄10.7(k) closely matches CHAMP neutral density measurements. However, it should

be noted that the photoelectron heating efficiency coefficient that yields low error

between GITM and CHAMP is obtained by trial and error, and cannot be calculated

or measured. In the second case, in RCUIO, we use GITM without photoelectron

heating. In this case, GITM with measured F̄10.7(k) yields a large error between the

outputs from GITM at CHAMP locations and CHAMP measurements. In this case,

RCUIO will use ˆ̄F10.7(k) as an input to GITM in order to correct the errors between

CHAMP measurements and the output from GITM at CHAMP locations, and thus

account for the inaccuracies incurred by removing photoelectron heating from GITM.

Let p(k) ∈ R be an arbitrary signal, and let T be a positive integer. Then, for all

k ≥ T , define the windowed average of the signal p(k) as

µT,p(k)
△
=

1

T

k
∑

i=k−T+1

p(i),

where T is the interval over which the signal is averaged. Similarly, for all k ≥ T ,

define the windowed standard deviation of the signal p(k) as

σT,p(k)
△
=

√

√

√

√

1

T

k
∑

i=k−T+1

(p(i)− µT,p(i))
2.

Next, Let ℓ be the number of data points, and define the root mean square value of

p(k) as

RMS(p)
△
=

√

√

√

√

1

ℓ

ℓ
∑

i=1

p(k)2.
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When GITM is used with RCUIO, we keep ˆ̄F10.7(k) at a constant value of 100

SFU for the first 24 h, after which RCUIO is turned on. This allows the response due

to initial conditions to decay significantly.

We implement GITM on four processors with a resolution of 5◦ latitude and 5◦

longitude. The time step for GITM is set at 2 sec, and RCUIO is used to update

ˆ̄F10.7(k) every 60 sec. In all figures in this section, the vertical black line indicates

when RCUIO is switched on. Finally, the numerical experiments consider the period

from 2002-11-24 to 2002-12-06.

5.4.1 Simulated Satellite Data Case 1: Constant F10.7

We first consider the case where the truth data are generated by setting, for all k ≥ 0,

F̄10.7(k) = 150 SFU. Since truth data are generated from GITM itself and there is

no modeling error, we do not use the filter P2 so that zf(k) = z(k). Next, we set the

filter P1 as

ˆ̄F10.7(k) = 0.922ˆ̄F10.7(k − 1) + 0.0039ˆ̄F10.7, f(k) + 0.0039ˆ̄F10.7, f(k − 1),

which is approximately equal to a 20-min average of ˆ̄F10.7, f(k). Recall that
ˆ̄F10.7, f(k)

is the output from the adaptive subsystem as shown in Figure 5.2. Finally, RCUIO

parameters are chosen as H̃ = H1 = 0.1, γ = 100, and η = 0. Figure 5.4 shows

that ŷ(k) converges to within 0.11×10−12 kg m−3 of y(k) in less than 72 h. The

orbital period of CHAMP is 90 min, during which it traverses from the day side

to the night side of Earth, causing an oscillatory signal in y(k). Therefore, for all

subsequent examples, we show the 90-min windowed mean µ90,y(k) and standard

deviation σ90,y(k) of y(k). The standard deviation indicates the amplitude of the

variation, while the mean indicates the presence of a bias in the result, both of which

RCUIO is attempting to reduce. Figure 5.5 shows µ90,y(k), µ90,ŷ(k), σ90,y(k), and
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σ90,ŷ(k). This plot shows that µ90,y(k) and σ90,y(k) converge to within 0.12×10−12 kg

m−3 of µ90,ŷ(k) and σ90,ŷ(k) in less than 72 h. In other words, RCUIO corrects both

the mean and variance of the output from GITM to match the truth output.

Figure 5.6 shows that ˆ̄F10.7(k) converges to within 10 SFU of F̄10.7 in less than 96

h. Figure 5.7 shows the true temperature xAA(k) and estimated temperature x̂AA(k)

above Ann Arbor, and shows that x̂AA(k) converges to within 10 K of xAA(k) in less

than 96 h.

As noted in Section 4, if one satellite measurement is available, then the solar

zenith angle at the satellite location may become greater than 90◦. When this occurs,

the response of GITM to a change in ˆ̄F10.7(k) is delayed. Figure 5.8 shows the time

periods during which the solar zenith angle at the satellite location is greater than 90◦,

as indicated by the shaded regions. Despite this, RCUIO is able to force the output

from GITM to match the true output. In addition, it may be possible to increase the

rate of convergence of the estimates by using multiple satellites to reduce the time

periods during which the minimum solar zenith angle at all satellites is greater than

90◦.
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Figure 5.3: Implementation of RCUIO on a four-processor GITM simulation. Each
processor simulates the ionosphere-thermosphere dynamics in one quadrant of the
Earth’s atmosphere. If, at the current time step k, rem(kTs, ν) = 0, then the processor
that simulates the quadrant of the atmosphere in which the satellite is located uses
satellite data to obtain y(k), and uses x̂(k) to obtain ŷ(k). These estimates are

then sent to Processor 0 where RCUIO uses them to obtain ˆ̄F10.7(k), which is then
sent to all processors to allow GITM to propagate states to the next time step. If

rem(kTs, ν) 6= 0, then RCUIO is not used and ˆ̄F10.7(k) remains unchanged from its
previous value.
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Figure 5.4: Measured output y(k) and the estimated output ŷ(k) for the case of
simulated CHAMP satellite data with a constant true F̄10.7(k). In this example,
ˆ̄F10.7(k) is kept at a constant value of 100 for the first 24 h, after which RCUIO is
turned on. This plot shows that ŷ(k) converges to within 0.11×10−12 kg m−3 of y(k)
in less than 72 h.
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Figure 5.5: µ90,y(k), µ90,ŷ(k), σ90,y(k), and σ90,ŷ(k) for the case of simulated CHAMP
satellite data with a constant true F̄10.7(k). This plot shows that, after RCUIO is
turned on, µ90,y(k) and σ90,y(k) converge to within 0.12×10−12 kg m−3 of µ90,ŷ(k) and
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Figure 5.6: True F̄10.7(k) and estimated ˆ̄F10.7(k) for the case of simulated CHAMP
satellite data with a constant true F̄10.7(k). This plot shows that, after RCUIO is

turned on, ˆ̄F10.7(k) converges to within 10 SFU of F̄10.7(k) in less than 96 h.
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Figure 5.7: True xAA(k) and estimated x̂AA(k) for the case of simulated CHAMP
satellite data with a constant true F̄10.7(k). This plot shows that, after RCUIO is
turned on, x̂AA(k) converges to within 10 K of xAA(k) in less than 96 h.

5.4.2 Simulated Satellite Data Case 2 : Varying F10.7

In this example, we consider the case where the truth data are generated by using a

time-varying F̄10.7 and recording the neutral mass density at CHAMP locations from

2002-11-24 to 2002-12-06. For this example, we set the filters P1 and P2 as in the

previous example. The RCUIO parameters are chosen to be H̃ = H1 = 0.1, γ = 100,

and η = 0. Figure 5.9 shows µ90,y(k), µ90,ŷ(k), σ90,y(k), and σ90,ŷ(k). This plot

shows that µ90,y(k) and σ90,y(k) converge to within 0.22 × 10−12 kg m−3 of µ90,ŷ(k)

and σ90,ŷ(k), respectively, in less than 96 h. RCUIO is able to track the averaged

CHAMP measurements after 96 h.

Figure 5.10 shows the true and estimated F̄10.7, and shows that ˆ̄F10.7(k) converges
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Figure 5.8: Time periods during which the solar zenith angle at satellite location is
greater than 90◦ for the case of simulated CHAMP satellite data with a constant
F̄10.7(k).

to within 10 SFU of F̄10.7 in less than 96 h. Figure 5.11 shows the true temperature

xAA(k) and estimated temperature x̂AA(k), and shows that x̂AA(k) converges to within

10 K of xAA(k) in less than 96 h.

5.4.3 Real Satellite Data Case 1 : GITM with photoelectron

heating

We now consider the case where the truth data are recorded by CHAMP from 2002-

11-24 to 2002-12-06 and we use GITM with photoelectron heating. For this example,
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Figure 5.9: µ90,y(k), µ90,ŷ(k), σ90,y(k), and σ90,ŷ(k) for the case of simulated CHAMP
satellite data with a time-varying truth F̄10.7(k). This plot shows that, after RCUIO
is turned on, µ90,y(k) and σ90,y(k) converge to within 0.22×10−12 kg m−3 of µ90,ŷ(k)
and σ90,ŷ(k), respectively, in less than 96 h.

P2 is set as

zf(k) = 0.922zf(k − 1) + 0.0039z(k) + 0.0039z(k − 1),

and P1 is set as

ˆ̄F10.7(k) = 0.984ˆ̄F10.7(k − 1) + 0.0078ˆ̄F10.7, f(k) + 0.0078ˆ̄F10.7, f(k − 1).

The filters P1 and P2 approximately average z(k) and ˆ̄F10.7(k) over 90-min windows,

respectively. Finally, the RCUIO parameters are chosen as H̃ = H1 = 0.175, γ = 100,

and η = 0. We calculate the RMS of z(k) after 144 h in order to minimize the effect
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Figure 5.10: True F̄10.7(k) and estimated ˆ̄F10.7(k) for the case of simulated CHAMP
satellite data with a time-varying truth F̄10.7(k). This plot shows that, after RCUIO

is turned on, ˆ̄F10.7(k) converges to within 10 SFU of F̄10.7(k) in less than 96 h.

of transients in ŷ(k) generated during the convergence of the adaptive subsystem

(2.28). First, we consider the measurements from CHAMP. Figure 5.12 shows the

windowed mean and variance of y(k), ŷ(k), and ŷm(k). For this example, GITM

with measured F̄10.7(k) yields RMS(z) = 6.5× 10−13, and GITM with RCUIO yields

RMS(z) = 6.1 × 10−13. In other words, GITM with RCUIO yields 6% reduction in

RMS(z) compared to GITM with measured F̄10.7(k).

Figure 5.13 shows the measured and estimated F̄10.7(k). This plot shows that

µ
1440, ˆ̄F10.7

(k) (the average of ˆ̄F10.7(k) over 1 day) converges to within 6 SFU of the

measured values of F̄10.7(k) in 72 h.

Next, we consider data from GRACE to assess the quality of the state estimates.

Define zG(k)
△
= yG(k) − ŷG(k). Figure 5.14 shows the windowed mean and variance

of yG(k), ŷG(k), and ŷG,m(k). For this example, GITM with measured F̄10.7(k) yields

RMS(zG) = 4 × 10−13, whereas GITM with RCUIO yields RMS(zG) = 3.6 × 10−13.

Therefore, GITM with RCUIO yields 11% reduction in RMS(zG) than GITM with
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Figure 5.11: True xAA(k) and estimated x̂AA(k) for the case of simulated CHAMP
satellite data with a time-varying true F̄10.7(k). This plot shows that, after RCUIO
is turned on, x̂AA(k) converges to within 10 K of xAA(k) in less than 96 h.

measured F̄10.7(k).

5.4.4 Real Satellite Data Case 2 : GITM without photoelec-

tron heating

We now consider the case where the truth data are recorded by CHAMP from 2002-11-

24 to 2002-12-06 and we use GITM without photoelectron heating. For this example,

P2 is set as

zf(k) = 0.922zf(k − 1) + 0.0039z(k) + 0.0039z(k − 1),
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and P1 is set as

ˆ̄F10.7(k) = 0.984ˆ̄F10.7(k − 1) + 0.0078ˆ̄F10.7, f(k) + 0.0078ˆ̄F10.7, f(k − 1).

The filters P1 and P2 approximately average z(k) and ˆ̄F10.7(k) over 90-min windows,

respectively. Finally, the RCUIO parameters are chosen as H̃ = H1 = 0.175, γ = 100,

and η = 0. We calculate the RMS of z(k) after 144 h in order to minimize the effect

of transients in ŷ(k) generated during the convergence of the adaptive subsystem

(2.28). First, we consider the measurements from CHAMP. Figure 5.15 shows the

windowed mean and variance of y(k), ŷ(k), and ŷm(k). For this example, GITM

with measured F̄10.7(k) yields RMS(z) = 2.23×10−12, and GITM with RCUIO yields

RMS(z) = 5.99× 10−13. In other words, GITM with RCUIO yields 74.6% reduction

in RMS(z) compared to GITM with measured F̄10.7(k). In this example, RCUIO uses

ˆ̄F10.7(k) as an input to GITM in order to correct the errors between the measured

output and the output from GITM, and thus account for the intentional modeling

inaccuracies incurred by neglecting photoelectron heating in GITM. In the case where

the model of the ionosphere-thermosphere is the truth model and F̄10.7(k) accurately

specifies the solar EUV and X-ray distribution, we expect ˆ̄F10.7(k) to converge to

F̄10.7(k), as shown in Example 6.5.4.1 and Example 6.5.4.2.

Figure 5.16 shows the measured and estimated F̄10.7(k). This plot and Figure

5.15 show that RCUIO yields ˆ̄F10.7(k) with lower RMS(z) compared to GITM with

measured values of F̄10.7(k). In this example, RCUIO uses ˆ̄F10.7(k) as an input to

GITM in order to correct the errors between CHAMP satellite data and the computed

output from GITM.

Next, we consider data from GRACE to assess the quality of the state estimates.

Define zG(k)
△
= yG(k) − ŷG(k). Figure 5.17 shows the windowed mean and variance

of yG(k), ŷG(k), and ŷG,m(k). For this example, GITM with measured F̄10.7(k) yields
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RMS(zG) = 5.4950× 10−12, whereas GITM with RCUIO yields RMS(zG) = 4.307 ×

10−13. Therefore, GITM with RCUIO yields 21.61% reduction in RMS(zG) than

GITM with measured F̄10.7(k), which shows that GITM with RCUIO yields better

state estimates than GITM with measured F̄10.7(k) by reducing the errors between

the measured output and the output from GITM.

5.5 Conclusions

This chapter considered data assimilation based on the Global Ionosphere-Thermosphere

Model (GITM). For the case of simulated satellite measurements, GITM was used as

both the truth model and the data assimilation model, whereas, for the case of real

satellite measurements, GITM was used as the data assimilation model. The data

assimilation methodology used in this work is Retrospective Cost Unknown Input

Observer (RCUIO), which has the ability to estimate both states and unknown in-

puts. Since RCUIO is based on an adaptive subsystem technique, it does not require

an ensemble, and thus it is less computationally expensive than ensemble-based data

assimilation methods.

For this work, we assumed that the only available measurements are the neutral

density data obtained from the CHAMP satellite. For the case of simulated CHAMP

data based on the GITM truth model, RCUIO was able to estimate F̄10.7 and states

in the constant and time-varying true F̄10.7 scenarios. For the case of real CHAMP

data and using GITM with photoelectron heating, RCUIO was able to estimate F̄10.7

accurately, and, for the case of real CHAMP data and using GITM without photo-

electron heating, the estimates of F̄10.7 provided by RCUIO reduced the RMS error

between the measured output and the output from GITM by 74.6% compared to

GITM using the measured F̄10.7. For all of the GITM state and input estimation ex-

amples, the computational cost of the RCUIO subsystem adaptation was equivalent
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to approximately 1% of the computational cost of GITM.

The specific application of RCUIO in the present chapter, namely, the use of

neutral density measurements to estimate F10.7, is intended as a proof of concept

illustration of RCUIO on a highly nonlinear, physically realistic system. Although

measurements of F10.7 are available from observations, the estimates provided by

RCUIO at a modest computational cost may, for practical purposes, be useful for

validation. In addition, this work provides a first step toward estimating drivers that

cannot easily be measured or estimated by existing techniques. RCUIO may also be

useful for applications that are distinct from the application considered in this work,

which provides the details of the approach to facilitate future investigations.
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Figure 5.12: µ90,y(k), µ90,ŷ(k), µ90,ŷm(k), σ90,y(k), σ90,ŷ(k), and σ90,ŷm(k) for the case of
real CHAMP satellite data and GITM with photoelectron heating. For this example,
GITM with RCUIO yields 6% lower RMS(z) compared to GITM with measured
F̄10.7(k).
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Figure 5.13: Measured and estimated F̄10.7(k) for the case of real CHAMP satellite
data and GITM with photoelectron heating. This plot shows that µ

1440, ˆ̄F10.7
(k) (the

average of ˆ̄F10.7(k) over 1 day) converges to within 6 SFU of the measured values of
F̄10.7(k) in 72 h.
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(k)

µ90,ŷG,m
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Figure 5.14: This plot shows µ90,yG(k), µ90,ŷG(k), µ90,ŷG,m
(k), σ90,yG(k), σ90,ŷG(k), and

σ90,ŷG,m
(k) for real GRACE satellite data and the case of real CHAMP satellite data

and GITM with photoelectron heating. For this example, GITM with RCUIO yields
11% reduction in RMS(zG) compared to GITM with measured F̄10.7(k).
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Figure 5.15: µ90,y(k), µ90,ŷ(k), µ90,ŷm(k), σ90,y(k), σ90,ŷ(k), and σ90,ŷm(k) for the case
of real CHAMP satellite data and GITM without photoelectron heating. For this
example, GITM with RCUIO yields 74.6% lower RMS(z) compared to GITM with
measured F̄10.7(k), which shows that, despite the intentional model error, RCUIO
reduces the errors between CHAMP satellite data and the computed output from
GITM.
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Figure 5.16: Measured and estimated F̄10.7(k) for the case of real CHAMP satellite
data and GITM without photoelectron heating. This plot and Figure 5.15 show that

RCUIO yields ˆ̄F10.7(k) with lower RMS(z) compared to GITM with measured values

of F̄10.7(k). In this example, RCUIO uses ˆ̄F10.7(k) as an input to GITM in order
to correct the errors between CHAMP satellite data and the computed output from
GITM.
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Figure 5.17: This plot shows µ90,yG(k), µ90,ŷG(k), µ90,ŷG,m
(k), σ90,yG(k), σ90,ŷG(k), and

σ90,ŷG,m
(k) for real GRACE satellite data and the case of real CHAMP satellite data

and GITM without photoelectron heating. For this example, GITM with RCUIO
yields 21.61% reduction in RMS(zG) compared to GITM with measured F̄10.7(k),
which shows that RCUIO yields better state estimates than GITM with measured
F̄10.7(k) by reducing the errors between the CHAMP satellite data and the computed
output from GITM.
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Figure 5.18: ˆ̄F10.7(k) for the case of real CHAMP satellite data and GITM without
photoelectron heating using four different values of H̃. The parameter H̃−1 acts as
an effective gain of the adaptive subsystem.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

In this work, we considered the problem of estimating unknown states and inputs

using a retrospective cost unknown input observer, which is inspired by retrospective

cost adaptive control. RCAC has several desirable features, such as applicability to

nonminimum-phase systems and the requirement of limited plant modeling informa-

tion. In Chapter 2, we developed the architecture of RCUIO starting from the case

where the first Markov parameter is nonzero and only one past measurement is used.

In this case, RCUIO was linked to the direct input reconstruction approach. Next,

RCUIO was derived for the general case where the first Markov parameter can be

non-zero and multiple past measurements can be used to update the adaptive feed-

back system. We then concluded Chapter 2 by numerically demonstrating RCUIO

on linear and nonlinear systems.

A major contribution of this work is the development of a new sliding window,

variable regularization recursive least squares algorithm. RCUIO depends on recur-

sive least squares to update the adaptive feedback system. However, recursive least

squares has one major disadvantage that, if the data are persistently exciting, then

its ability to adapt diminishes every ℓ steps, where ℓ is a positive integer. In the

case of RCUIO, this means that, after a certain number of steps, the adaptive feed-
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back system will no longer adapt to changes in the input signal or the plant itself.

Although this disadvantage can be mitigated by the use of a forgetting factor, the

forgetting factor itself can cause instability of the recursive least squares algorithm in

the case of nonpersistent data. The SW-VR-RLS algorithm developed in this work

does not suffer from these disadvantages. In Chapter 3, we develop the SW-VR-RLS

algorithm, analyze its computational complexity, convergence properties, and its nu-

merical stability. We also provide numerical comparisons to other adaptive filtering

algorithms, and illustrate the effect of the various parameters of SW-VR-RLS. Finally,

we provide an example where we compare RCUIO with standard RLS, and RCUIO

with SW-VR-RLS.

In Chapter 4, we developed a growing window, variable regularization recursive

least squares algorithm. In this chapter, we analyzed the convergence properties of

GW-VR-RLS, and performed an extensive numerical analysis of the algorithm in and

without the presence of noise.

In Chapter 5, we considered the problem of estimating states and input in the

ionosphere-thermosphere using RCUIO and the Global Ionosphere Thermosphere

Model. More specifically, we used real neutral density measurements from CHAMP

satellite and simulated neutral density measurements from GITM at CHAMP loca-

tions to estimate the unknown input F10.7 and states in the ionosphere and thermo-

sphere. For the case of simulated CHAMP data based on the GITM truth model,

RCUIO was able to estimate F10.7 and states in the constant and time-varying true

F10.7 scenarios. For the case of real CHAMP data and using GITM with photoelec-

tron heating, RCUIO was able to estimate F10.7 accurately, and, for the case of real

CHAMP data and using GITM without photoelectron heating, the estimates of F10.7

provided by RCUIO reduced the RMS error between the measured output and the

output from GITM by 74.6% compared to GITM using the ground measured F10.7.
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6.2 Future Work

This dissertation showed that RCUIO is a viable approach for unknown state and

input estimation for nonminimum-phase systems or nonlinear systems. However, one

of the biggest hurdles for RCUIO is the lack of sufficient conditions under which it is

guaranteed to work. This has been explored to some extent in [31, 85], and remains

an active area of research.

This work also explored SW-VR-RLS in detail, and analyzed its convergence prop-

erties rigorously. However, this analysis was done in a system identification frame-

work, where the identification method does not interact with the system. However,

when SW-VR-RLS is used with RCUIO, then SW-VR-RLS interacts with the system

itself, as it is used to update the adaptive feedback system. Furthermore, in the

analysis of SW-VR-RLS, we assumed that the data are generated by a truth system,

where the true unknown parameters are labeled x∗. Then, we showed that under cer-

tain conditions, the estimated parameters converge to the true unknown parameters.

For RCUIO, these parameters are the coefficients of the adaptive feedback system,

and it is not obvious what these parameters should converge to. In [86] and [87], this

is addressed by assuming that there exists an ideal feedback system, and the adaptive

feedback system converges to the behavior of the ideal feedback system.

Finally, this work applied RCUIO to estimate an unknown input and states in the

ionosphere-thermosphere. As mentioned in Chapter 5, the ultimate goal is to estimate

the solar EUV and X-ray inputs in multiple wavelengths instead of identifying F10.7,

which is only a proxy for the EUV and X-ray inputs. However, to estimate the

EUV and X-ray inputs there are two main hurdles. First, multiple measurements are

required, and it is unclear how the delay in measurements due to the delayed effect

of the inputs on the far side of the sun will affect RCUIO. One option is to use total

electron content measurements, which are more widely available than neutral density

measurements, and also at more locations in the Earth’s atmosphere. The second
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hurdle is the selection of H̃, which is not a scalar for MIMO systems, and must be

chosen by trial and error. An approach to address this issue is to first take a SISO

case and assume that the measurement is at the subsolar point, and tune H̃ to obtain

the desired response from RCUIO. Then, when other measurements are added, their

value in H̃ is defined as a function of the distance of that measurement location from

the subsolar point.
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