Show simple item record

Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments

dc.contributor.authorKwon, Sae Yunen_US
dc.contributor.authorBlum, Joel Den_US
dc.contributor.authorChirby, Michelle A.en_US
dc.contributor.authorChesney, Edward J.en_US
dc.date.accessioned2013-10-02T15:13:22Z
dc.date.available2014-11-03T16:20:37Zen_US
dc.date.issued2013-10en_US
dc.identifier.citationKwon, Sae Yun; Blum, Joel D.; Chirby, Michelle A.; Chesney, Edward J. (2013). "Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments." Environmental Toxicology and Chemistry 32(10): 2322-2330. <http://hdl.handle.net/2027.42/100149>en_US
dc.identifier.issn0730-7268en_US
dc.identifier.issn1552-8618en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100149
dc.description.abstractFeeding experiments were performed to investigate mercury (Hg) isotope fractionation during trophic transfer and internal distribution of total Hg (THg) in marine fish on exposure to natural seafood. Young‐of‐the‐year amberjack ( Seriola dumerili ) were fed with either blackfin tuna ( Thunnus atlanticus ; 2647 ng/g THg) or brown shrimp ( Farfantepenaeus aztecus ; 25.1 ng/g THg) for 80 d or 50 d, respectively, and dissected for muscle, liver, kidney, brain, and blood. After 30 d of tuna consumption, Hg isotopes (δ 202 Hg and Δ 199 Hg) of the amberjack organs shifted to the tuna value (δ 202 Hg = 0.55‰, Δ 199 Hg = 1.54‰,), demonstrating the absence of Hg isotope fractionation. When amberjack were fed a shrimp diet, there was an initial mixing of the amberjack organs toward the shrimp value (δ 202 Hg = −0.48‰, Δ 199 Hg = 0.32‰), followed by a cessation of further shifts in Δ 199 Hg and a small shift in δ 202 Hg. The failure of Δ 199 Hg to reach the shrimp value can be attributed to a reduction in Hg bioaccumulation from shrimp resulting from feeding inhibition and the δ 202 Hg shift can be attributed to a small internal fractionation during excretion. Given that the feeding rate and Hg concentration of the diet can influence internal Hg isotope distribution, these parameters must be considered in biosentinel fish studies. Environ Toxicol Chem 2013;32:2322–2330. © 2013 SETACen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFishen_US
dc.subject.otherMethylmercuryen_US
dc.subject.otherInternal Distributionen_US
dc.subject.otherTrophic Transferen_US
dc.subject.otherStable Hg Isotopeen_US
dc.titleApplication of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experimentsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100149/1/etc2313.pdf
dc.identifier.doi10.1002/etc.2313en_US
dc.identifier.sourceEnvironmental Toxicology and Chemistryen_US
dc.identifier.citedreferenceRiisgard HU, Hansen S. 1990. Biomagnification of mercury in a marine grazing food‐chain: Algal cells Phaedodactylum trichornutum, mussels Mytilus edulis and flounder Platichthys flesus studied by means of a stepwise reduction‐CVAA method. Mar Ecol Prog Ser 62: 259 – 270.en_US
dc.identifier.citedreferenceMergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH. 2007. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 36: 3 – 11.en_US
dc.identifier.citedreferenceSunderland EM. 2007. Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ Health Perspect 115: 235 – 242.en_US
dc.identifier.citedreferenceKwon SY, Blum JD, Carvan MJ, Basu N, Head JA, Madenjian CP, David SR. 2012. Absence of fractionation of mercury isotopes during trophic transfer of methylmercury to freshwater fish in captivity. Environ Sci Technol 46: 7527 – 7534.en_US
dc.identifier.citedreferencePerrot V, Pastukhov MV, Epov VN, Husted S, Donard OFX, Amouroux D. 2012. Higher mass‐independent isotope fractionation of methylmercury in the pelagic food web of Lake Baikal (Russia). Environ Sci Technol 46: 5902 – 5911.en_US
dc.identifier.citedreferenceDemers JD, Blum JD, Zak DR. 2013. Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle. Global Biogeochem Cy 27: 1 – 17.en_US
dc.identifier.citedreferenceEstrade N, Carignan J, Donard OFX. 2010. Isotope tracing of atmospheric mercury sources in an urban area of northeastern France. Environ Sci Technol 44: 6062 – 6067.en_US
dc.identifier.citedreferenceYin R, Feng X, Meng B. 2013. Stable mercury isotope variation in rice plants ( Oryza sativa L.) from the Wanshan mercury mining district, SW China. Environ Sci Technol 47: 2238 – 2245.en_US
dc.identifier.citedreferenceBadalamenti F, D'Anna G, Lopiano L, Scilipoti D, Mazzola A. 1995. Feeding habits of young‐of‐the‐year greater amberjack Seriola dumerili (Risso, 1810) along the N/W Sicilian coast. Sci Mar 59: 317 – 323.en_US
dc.identifier.citedreferenceHammerschmidt CR, Fitzgerald WF. 2006. Methylmercury in freshwater fish linked to atmospheric mercury deposition. Environ Sci Technol 40: 7764 – 7770.en_US
dc.identifier.citedreferenceZook EG, Powell JJ, Hackley BM, Emerson JA, Brooker JR, Knobl GM Jr. 1976. National marine fisheries service preliminary survey of selected seafoods for mercury, lead, cadmium, chromium, and arsenic content. J Agric Food Chem 24: 47 – 53.en_US
dc.identifier.citedreferencede Oliveira Ribeiro CA, Rouleau C, Pelletier E, Audet C, Tjalve H. 1999. Distribution kinetics of dietary methylmercury in the Arctic charr ( Salvelinus alpinus ). Environ Sci Technol 33: 902 – 907.en_US
dc.identifier.citedreferenceFoucher D, Ogrinc N, Hintelmann H. 2009. Tracing mercury contamination from the Idrija mining region (Slovenia) to the Gulf of Trieste using Hg isotope ratio measurements. Environ Sci Technol 43: 33 – 39.en_US
dc.identifier.citedreferenceBlum JD, Popp BN, Johnson MW, Drazen JC, Choy A. 2012. Mercury isotope constraints on depth of methylation and degree of photo‐degradation of methylmercury in the Central Pacific Ocean. Abstracts, 2012 Fall Meeting, American Geophysical Union, December, San Francisco, CA, USA, December 3–7.en_US
dc.identifier.citedreferenceLerner JJ, Mason RP. 2004. Methylmercury uptake and distribution kinetics in sheepshead minnows, Cyprinodon variegates, after exposure to CH 3 Hg‐spiked food. Environ Toxicol Chem 23: 2138 – 2146.en_US
dc.identifier.citedreferenceMcCloskey JT, Schultz IR, Newman MC. 1998. Estimating the oral bioavailbility of methylmercury to channel catfish ( Ictalurus punctatus ). Environ Sci Technol 17: 1524 – 1529.en_US
dc.identifier.citedreferenceRudd JW, Furutani A, Turner MA. 1980. Mercury methylation by fish intestinal contents. Appl Environ Microbiol 40: 777 – 782.en_US
dc.identifier.citedreferencePak KR, Bartha R. 1998. Mercury methylmation and demethyation in anoxic lake sediments and by strictly anaerobic bacteria. Appl Environ Microbiol 64: 1013 – 1017.en_US
dc.identifier.citedreferenceTseng YC, Hwang PP. 2008. Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Phys C 148: 419 – 429.en_US
dc.identifier.citedreferenceVan Walleghen JLA, Blanchfield PJ, Hintelmann H. 2007. Elimination of mercury by yellow perch in the wild. Environ Sci Technol 41: 5895 – 5901.en_US
dc.identifier.citedreferenceLaffont L, Sonke JE, Maurice L, Monrroy SL, Chincheros J, Amouroux D, Behra P. 2011. Hg speciation and stable isotope signature in human hair as a tracer for dietary and occupational exposure to mercury. Environ Sci Technol 45: 9910 – 9916.en_US
dc.identifier.citedreferencePickhardt PC, Stepanova M, Fisher NS. 2006. Contrasting uptake routes and tissue distribution of inorganic and methylmercury in mosquitofish ( Gambusia affinis ) and redear sunfish ( Lepomis microlophus ). Environ Toxicol Chem 25: 2132 – 2142.en_US
dc.identifier.citedreferenceWang WX, Wong RSK. 2003. Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus. Mar Ecol Prog Seri 261: 257 – 268.en_US
dc.identifier.citedreferenceHammerschmidt CR, Fitzgerald WF. 2006. Methylmercury cycling in sediments on the continental shelf of southern New England. Geochim Cosmochim Acta 70: 918 – 930.en_US
dc.identifier.citedreferenceChumchal MM, Manbright KD. 2009. Ecological factors regulating mercury contamination of fish from Caddo Lake, Texas, USA. Environ Toxicol Chem 28: 962 – 972.en_US
dc.identifier.citedreferenceSwanson HK, Kidd KA. 2010. Mercury concentrations in arctic food fishes reflect the presence of anadromous arctic charr ( Salvelinus alpinus ), species, and life history. Environ Sci Technol 44: 3286 – 3292.en_US
dc.identifier.citedreferenceGehrke GE, Blum JD, Slotton DG, Greenfield BK. 2011. Mercury isotope link mercury in San Francisco Bay forage fish to surface sediments. Environ Sci Technol 45: 1264 – 1270.en_US
dc.identifier.citedreferencePoint D, Sonke JE, Day RD, Roseneau DG, Hobson KA, Vander Pol SS, Moors AJ, Pugh RS, Donard OFX, Becker PR. 2011. Methylmercury photodegradation influenced by sea‐ice cover in Arctic marine ecosystems. Nature Geosci 4: 188 – 194.en_US
dc.identifier.citedreferenceSenn DB, Chesney EJ, Blum JD, Bank MS, Maage A, Shine JP. 2010. Stable isotope (N, C, Hg) study of methylmercury sources and trophic transfer in the northern Gulf of Mexico. Environ Sci Technol 44: 1630 – 1637.en_US
dc.identifier.citedreferenceSherman LS, Blum JD. 2012. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sci Total Environ 448: 163 – 175.en_US
dc.identifier.citedreferenceBlum JD, Bergquist BA. 2007. Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem 388: 353 – 359.en_US
dc.identifier.citedreferenceRodriguez‐Gonzalez P, Epov VN, Bridou R, Tessier E, Guyoneud R, Monperrus M, Amouroux D. 2009. Species‐specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria ( Desulfobulbus propionicus ) under dark conditions. Envrion Sci Technol 43: 9183 – 9188.en_US
dc.identifier.citedreferenceKritee K, Barkay T, Blum JD. 2009. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury. Geochim Cosmochim Acta 73: 1285 – 1296.en_US
dc.identifier.citedreferenceBergquist BA, Blum JD. 2007. Mass‐dependent and ‐independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318: 417 – 420.en_US
dc.identifier.citedreferenceSchauble EA. 2007. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta 71: 2170 – 2189.en_US
dc.identifier.citedreferenceBuchachenko AL, Ivanov VL, Roznyatovskii VA, Vorob'ev AK, Ustynyuk YA. 2008. Inversion of the sign of the magnetic isotope effect of mercury in photolysis of substituted dibenzylmercury. Dokl Phys Chem 420: 85 – 87.en_US
dc.identifier.citedreferenceZheng W, Hintelmann H. 2009. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio. Geochim Cosmochim Acta 27: 6704 – 6715.en_US
dc.identifier.citedreferenceGantner N, Hintelmann H, Zheng W, Muir DC. 2009. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes. Environ Sci Technol 43: 9148 – 9154.en_US
dc.identifier.citedreferenceChen JB, Hintelmann H, Feng XB, Dimock B. 2013. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim Cosmochim Acta 90: 33 – 46.en_US
dc.identifier.citedreferenceGratz LE, Keeler GJ, Blum JD, Sherman LS. 2010. Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environ Sci Technol 44: 7764 – 7770.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.