Show simple item record

The Effect of the Achilles Tendon on Trabecular Structure in the Primate Calcaneus

dc.contributor.authorKuo, Sharonen_US
dc.contributor.authorDesilva, Jeremy M.en_US
dc.contributor.authorDevlin, Maureen J.en_US
dc.contributor.authorMcdonald, Gabrielen_US
dc.contributor.authorMorgan, Elise F.en_US
dc.date.accessioned2013-10-02T15:13:31Z
dc.date.available2014-11-03T16:20:37Zen_US
dc.date.issued2013-10en_US
dc.identifier.citationKuo, Sharon; Desilva, Jeremy M.; Devlin, Maureen J.; Mcdonald, Gabriel; Morgan, Elise F. (2013). "The Effect of the Achilles Tendon on Trabecular Structure in the Primate Calcaneus." The Anatomical Record 296(10): 1509-1517. <http://hdl.handle.net/2027.42/100175>en_US
dc.identifier.issn1932-8486en_US
dc.identifier.issn1932-8494en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/100175
dc.description.abstractHumans possess the longest Achilles tendon relative to total muscle length of any primate, an anatomy that is beneficial for bipedal locomotion. Reconstructing the evolutionary history of the Achilles tendon has been challenging, in part because soft tissue does not fossilize. The only skeletal evidence for Achilles tendon anatomy in extinct taxa is the insertion site on the calcaneal tuber, which is rarely preserved in the fossil record and, when present, is equivocal for reconstructing tendon morphology. In this study, we used high‐resolution three‐dimensional microcomputed tomography (micro‐CT) to quantify the microstructure of the trabecular bone underlying the Achilles tendon insertion site in baboons, gibbons, chimpanzees, and humans to test the hypothesis that trabecular orientation differs among primates with different tendon morphologies. Surprisingly, despite their very different Achilles tendon lengths, we were unable to find differences between the trabecular properties of chimpanzee and human calcanei in this specific region. There were regional differences within the calcaneus in the degree of anisotropy (DA) in both chimpanzees and humans, though the patterns were similar between the two species (higher DA inferiorly in the calcaneal tuber). Our results suggest that while trabecular bone within the calcaneus varies, it does not respond to the variation of Achilles tendon morphology across taxa in the way we hypothesized. These results imply that internal bone architecture may not be informative for reconstructing Achilles tendon anatomy in early hominins. Anat Rec, 296:1509–1517, 2013. © 2013 Wiley Periodicals, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringeren_US
dc.subject.otherTrabecular Boneen_US
dc.subject.otherCalcaneusen_US
dc.subject.otherAnisotropyen_US
dc.subject.otherAchilles Tendonen_US
dc.titleThe Effect of the Achilles Tendon on Trabecular Structure in the Primate Calcaneusen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/100175/1/ar22739.pdf
dc.identifier.doi10.1002/ar.22739en_US
dc.identifier.sourceThe Anatomical Recorden_US
dc.identifier.citedreferenceRyan T, Walker A. 2010. Trabecular bone structure in the humeral and femoral heads of anthropoid primates. Anat Rec 293: 719 – 729.en_US
dc.identifier.citedreferenceMilz S, Rufai A, Buettner A, Putz R, Ralphs JR, Benjamin M. 2002. Three‐dimensional reconstructions of the Achilles tendon insertion in man. J Anat 200: 145 – 152.en_US
dc.identifier.citedreferenceMyatt J P, Schilling N, Thorpe SKS. 2011. Distribution patterns of fibre types in the triceps surae muscle group of chimpanzees and orangutans. J Anat 218: 402 – 412.en_US
dc.identifier.citedreferenceO'Brien M. 2005. The anatomy of the Achilles tendon. Foot Ankle Clin 10: 225 – 238.en_US
dc.identifier.citedreferencePayne R, Crompton RH, Isler K, Savage R, Vereecke EE, Günther MM, Thorpe SKS, D'Août K. 2006. Morphological analysis of the hindlimb in apes and humans. J Anat 208: 709 – 724.en_US
dc.identifier.citedreferencePontzer H, Lieberman DE, Momin E, Devlin MJ, Polk JD, Hallgrimsson B, Cooper DML. 2006. Trabecular bone in the bird knee responds to high sensitivity to changes in load orientation. J Exp Biol 209: 57 – 65.en_US
dc.identifier.citedreferenceRauwerdink GP. 1991. Muscle fiber and tendon lengths in the distal limb segments of primates. Z Morphol Anthropol 78: 331 – 340.en_US
dc.identifier.citedreferenceReeve J, Meunier PJ, Parsons JA, Bernat M, Bijvoet OLM, Courpron P, Edouard C, Klenerman L, Neer RM, Renier JC, Slovik D, Vismans FJFE, Potts JT. 1980. Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: A multicentre trial. Brit Med J 1340 – 1344.en_US
dc.identifier.citedreferenceRidler S, Calvard TW. 1978. Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8: 630 – 632.en_US
dc.identifier.citedreferenceRose MD. 1977. Positional behaviour of olive baboons ( Papio anubis ) and its relationship to maintenance and social activities. Primates 18: 59 – 116.en_US
dc.identifier.citedreferenceRyan TM, Ketcham RA. 2002. Femoral head trabecular bone structure in two omomyid primates. J Hum Evol 42: 241 – 263.en_US
dc.identifier.citedreferenceSati JP, Alfred JRB. 2002. Locomotion and posture in Hoolock gibbon. Ann For 10: 298 – 306.en_US
dc.identifier.citedreferenceScherf H, Harvati K, Hublin JJ. 2013. A comparison of proximal humeral cancellous bone of great apes and humans. J Hum Evol 65: 29 – 38.en_US
dc.identifier.citedreferenceSellers W, Pataky TC, Caravaggi P, Crompton RH. 2010. Evolutionary robotic approaches in primate gait analysis. Int J Primatol 31: 321 – 338.en_US
dc.identifier.citedreferenceShaw CN, Ryan TM. 2012. Does skeletal anatomy reflect adaptation to locomotor patterns? cortical and trabecular architecture in human and nonhuman anthropoids. Am J Phys Anthropol 147: 187 – 200.en_US
dc.identifier.citedreferenceSwartz SM. 1993. The biomechanics of primate limbs. In: Gebo DL, editor. Postcranial adaptation in nonhuman primates. DeKalb: Northern Illinois University Press.en_US
dc.identifier.citedreferenceThackeray JF, de Ruiter DJ, Berger LR, Van der Merwe NJ. 2001. Hominid fossils from Kromdraai: A revised list of specimens discovered since 1938. Ann Transvaal Mus 38: 43 – 56.en_US
dc.identifier.citedreferenceTrussel HJ. 1979. Comment on “Picture thresholding using an iterative selection method.” IEEE Trans Syst Man Cyb 9: 311.en_US
dc.identifier.citedreferenceUrbanowicz M, Prejzner‐Morawska A. 1972. The triceps surae in chimpanzees. Folio Morphol 31: 485 – 493.en_US
dc.identifier.citedreferenceVereecke EE, D'Aout K, Aerts P. 2006. The dynamics of hylobatid bipedalism: Evidence for an energy‐saving mechanism? J Exp Biol 209: 2829 – 2838.en_US
dc.identifier.citedreferenceVereecke EE, D'Aout K, Payne R, Aerts P. 2005. Functional analysis of the foot and ankle myology of gibbons and bonobos. J Anat 206: 453 – 476.en_US
dc.identifier.citedreferenceWhite TD, Asfaw B, Beyene Y, Haile‐Selassie Y, Lovejoy CO, Suwa G, WoldeGabriel G. 2009. Ardipithecus ramidus and the paleobiology of early hominids. Science 326: 75 – 86.en_US
dc.identifier.citedreferenceWhitehouse WJ. 1974. The quantitative morphology of anisotropic trabecular bone. J Microscopy 101: 153 – 168.en_US
dc.identifier.citedreferenceWolff J. 1892. Das gesetz der transformation der knochen. Springer, Berlin: Hirchwild, Berlin; (Translated as The law of bone re‐modeling).en_US
dc.identifier.citedreferenceZipfel B, DeSilva JM, Kidd RS, Carlson KJ, Churchill SE, Berger LR. 2011. The foot and ankle of Australopithecus sediba. Science 333: 1417 – 1420.en_US
dc.identifier.citedreferenceAlemseged Z, Spoor F, Kimbel WH, Bobe R, Geraads D, Reed D, Wynn JG. 2006. A juvenile early hominin skeleton from Dikika, Ethiopia. Nature 443: 296 – 301.en_US
dc.identifier.citedreferenceAlexander R M. 1984. Walking and Running: Legs and leg movements are subtly adapted to minimize the energy costs of locomotion. Am Sci 72: 348 – 354.en_US
dc.identifier.citedreferenceAlexander RM, Bennet‐Clark HC. 1977. Storage of elastic strain energy in muscle and other tissues. Nature 265: 114 – 117.en_US
dc.identifier.citedreferenceBarak MM, Lieberman DE, Hublin J. 2011. A Wolff in sheep's clothing: Trabecular bone adaptation in response to changes in joint loading orientation. Bone 49: 1141 – 1151.en_US
dc.identifier.citedreferenceBiewener AA, Fazzalari NL, Konieczynski DD, Baudinette RV. 1996. Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse. Bone 19: 1 – 8.en_US
dc.identifier.citedreferenceBouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. 2010. Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J Bone Miner Res 25: 1468 – 1486.en_US
dc.identifier.citedreferenceBramble DM, Lieberman DE. 2004. Endurance running and the evolution of Homo. Science 432: 345 – 352.en_US
dc.identifier.citedreferenceCotter MM, Loomis DA, Simpson SW, Latimer B, Hernandez CJ. 2011. Human evolution and osteoporosis‐related spinal fractures. PLoS One 6: e26658.en_US
dc.identifier.citedreferenceCotter MM, Simpson SW, Latimer BM, Hernandez CJ. 2009. Trabecular microarchitecture of hominoid thoracic vertebrae. Anat Rec 292: 1098 – 1106.en_US
dc.identifier.citedreferenceCrompton RH, Sellers WI, Thorpe SKS. 2010. Arboreality, terrestriality, and bipedalism. Phil Trans R Soc B 365: 3301 – 3314.en_US
dc.identifier.citedreferenceDay MH, Leakey REF, Walker AC, Wood BA. 1976. New hominids from East Turkana, Kenya. Am J Phys Anthropol 45: 369 – 435.en_US
dc.identifier.citedreferenceDay MH, Napier JR. 1964. Hominid fossils from Bed I, Olduvai Gorge, Tanganyika: Fossil foot bones. Nature 201: 969 – 970.en_US
dc.identifier.citedreferenceDeloison Y. 2003. Anatomie des os fossils de pieds des hominids d'Afrique du sud dates entre 2,4 et 3,5 millions d'annés. Interprétation quant à leur mode de locomotion. Biom Hum Anthropol 21: 189 – 230.en_US
dc.identifier.citedreferenceDeSilva JM. 2009. Functional morphology of the ankle joint and the likelihood of climbing in early hominins. Proc Natl Acad Sci 106: 6567 – 6572.en_US
dc.identifier.citedreferenceDeSilva JM, Devlin MJ. 2012. A comparative study of the trabecular bony architecture of the talus in humans, non‐human primates, and Australopithecus. J Hum Evol 63: 536 – 551.en_US
dc.identifier.citedreferenceDevlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML. 2010. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res 25: 2078 – 2088.en_US
dc.identifier.citedreferenceEckstein F, Matsuura M, Kuhn V, Priemel M, Müller R, Link TM, Lochmüller E. 2007. Sex differences of human trabecular bone microstructure in aging are site‐dependent. J Bone Miner Res 22: 817 – 824.en_US
dc.identifier.citedreferenceFajardo R, Müller R. 2001. Three‐dimensional analysis of nonhuman primate trabecular architecture using micro‐computed tomography. Am J Phys Anthropol 115: 327 – 336.en_US
dc.identifier.citedreferenceFajardo R, Müller R, Ketcham R, Colbert M. 2007. Nonhuman anthropoid primate femoral neck trabecular bone and its relationship to locomotor mode. Anat Rec 290: 422 – 436.en_US
dc.identifier.citedreferenceFisk GR, Macho GA. 1992. Evidence of a healed compression fracture in a Plio‐Pleistocene hominid talus from Sterkfontein, South Africa. Int J Osteoarch 2: 325 – 332.en_US
dc.identifier.citedreferenceFrey H. 1913. Der Musculus triceps surae in der Primatenreihe. Morph Jahrb 47: 1 – 192.en_US
dc.identifier.citedreferenceGebo D L, Schwartz GT. 2006. Foot bones from Omo: Implications for hominid evolution. Am J Phys Anthropol 129: 499 – 511.en_US
dc.identifier.citedreferenceGriffin NL, D'Août K, Ryan TM, Richmond BG, Ketcham RA, Postnov A. 2010. Comparative forefoot trabecular bone architecture in extant hominids. J Hum Evol 59: 202 – 213.en_US
dc.identifier.citedreferenceHanna J B, Schmitt D. 2011. Comparative triceps surae morphology in primates: A review. Anat Res Int 2011: 1 – 22.en_US
dc.identifier.citedreferenceHarris CA, Peduto AJ. 2006. Achilles tendon imaging. Aust Radiol 50: 513 – 525.en_US
dc.identifier.citedreferenceHodgkinson A, Aaron JE, Horseman A, McLachlan MSF, Nrodin BE. 1978. Effect of oophorectomy and calcium deprivation on bone mass in the rat. Clin Sci Mol Med 54: 439 – 446.en_US
dc.identifier.citedreferenceHudelmaier M, Kollstedt A, Lochmüller EM, Kuhn V, Eckstein F, Link TM. 2005 Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence. Osteoporos Int 16: 1124 – 33.en_US
dc.identifier.citedreferenceKer RF, Bennett MB, Bibby SR, Kester RC, Alexander RM. 1987. The spring in the arch of the human foot. Nature 325: 147 – 149.en_US
dc.identifier.citedreferenceLatimer BM, Lovejoy CO, Johanson DC, Coppens Y. 1982. Hominid tarsal, metatarsal, and phalangeal bones recovered from the Hadar formation: 1974–1977 collections. Am J Phys Anthropol 57: 701 – 719.en_US
dc.identifier.citedreferenceLazenby RA, Skinner MM, Hublin JJ, Boesch C. 2011. Metacarpal trabecular architecture variation in the chimpanzee ( Pan troglodytes ): Evidence for locomotion and tool‐use? Am J Phys Anthropol 144: 215 – 222.en_US
dc.identifier.citedreferenceLieberman CO, Bramble DM, Raichlen DA, Shea JJ. Brains, brawn, and the evolution of human endurance running capabilities. In: Frederick EG, John GF, Richard EL, editor. The first humans: Origin and early evolution of the genus Homo. New York: Springer, 2009.en_US
dc.identifier.citedreferenceLovejoy CO, Latimer B, Suwa G, Asfaw B, White TD. 2009. Combining prehension and propulsion: The foot of Ardipithecus ramidus. Science 326: 72.en_US
dc.identifier.citedreferenceMaga M, Kappelman J, Ryan TM, Ketcham RA. 2006. Preliminary observations on the calcaneal trabecular microarchitecture of extant large‐bodied hominoids. Am J Phys Anthropol 129: 410 – 417.en_US
dc.identifier.citedreferenceMcCann C. 1933. Notes on the colouration and habits of the white‐browed gibbon or hoolock ( Hylobates hoolock Harl.) J Bombay Nat Hist Soc 36: 395 – 405.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.