Show simple item record

Low‐temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late‐stage orogenesis

dc.contributor.authorDuvall, Alison R.en_US
dc.contributor.authorClark, Marin K.en_US
dc.contributor.authorKirby, Ericen_US
dc.contributor.authorFarley, Kenneth A.en_US
dc.contributor.authorCraddock, William H.en_US
dc.contributor.authorLi, Chuanyouen_US
dc.contributor.authorYuan, Dao‐yangen_US
dc.date.accessioned2013-12-04T18:56:55Z
dc.date.available2014-10-06T19:17:42Zen_US
dc.date.issued2013-09en_US
dc.identifier.citationDuvall, Alison R.; Clark, Marin K.; Kirby, Eric; Farley, Kenneth A.; Craddock, William H.; Li, Chuanyou; Yuan, Dao‐yang (2013). "Lowâ temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during lateâ stage orogenesis." Tectonics 32(5): 1190-1211. <http://hdl.handle.net/2027.42/101777>en_US
dc.identifier.issn0278-7407en_US
dc.identifier.issn1944-9194en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101777
dc.description.abstractThe Tibetan Plateau is a prime example of a collisional orogen with widespread strike‐slip faults whose age and tectonic significance remain controversial. We present new low‐temperature thermochronometry to date periods of exhumation associated with Kunlun and Haiyuan faulting, two major strike‐slip faults within the northeastern margin of Tibet. Apatite and zircon (U‐Th)/He and apatite fission‐track ages, which record exhumation from ~2 to 6 km crustal depths, provide minimum bounds on fault timing. Results from Kunlun samples show increased exhumation rates along the western fault segment at circa 12–8 Ma with a possible earlier phase of motion from ~30–20 Ma, along the central fault segment at circa 20–15 Ma, and along the eastern fault segment at circa 8–5 Ma. Combined with previous studies, our results suggest that motion along the Haiyuan fault may have occurred as early as ~15 Ma along the western/central fault segment before initiating at least by 10–8 Ma along the eastern fault tip. We relate an ~250 km wide zone of transpressional shear to synchronous Kunlun and Haiyuan fault motion and suggest that the present‐day configuration of active faults along the northeastern margin of Tibet was likely established since middle Miocene time. We interpret the onset of transpression to relate to the progressive confinement of Tibet against rigid crustal blocks to the north and expansion of crustal thickening to the east during the later stages of orogen development. Key Points Low‐T thermochronometry dates periods of exhumation along NE Tibet faults Left‐lateral faulting by mid‐to‐late Miocene along the Kunlun and Haiyuan Faults Shift to widespread lateral faulting in late stage of Tibet collisional historyen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMineralogical Society of Americaen_US
dc.subject.otherStrike‐Slip Faultsen_US
dc.subject.otherLow‐Temperature Thermochronometryen_US
dc.subject.otherKunlun Faulten_US
dc.subject.otherTibetan Plateauen_US
dc.titleLow‐temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late‐stage orogenesisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101777/1/FigureS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101777/2/tect20072.pdf
dc.identifier.doi10.1002/tect.20072en_US
dc.identifier.sourceTectonicsen_US
dc.identifier.citedreferenceStirling, M. W., S. G. Wesnousky, and K. Shimazaki ( 1996 ), Fault trace complexity, cumulative slip, and the shape of the magnitude‐frequency distribution for strike‐slip faults: A global survey, Geophys. J. Int., 124, 833 – 868.en_US
dc.identifier.citedreferenceWolf, R. A., K. A. Farley, and L. T. Silver ( 1996 ), Helium diffusion and low‐temperature thermochronometry of apatite, Geochim. Cosmochim. Acta, 60, 4231 – 4240.en_US
dc.identifier.citedreferenceWolf, R. A., K. A. Farley, and D. M. Kass ( 1998 ), Modeling of the temperature sensitivity of the apatite (U‐Th)/He thermochronometer, Chem. Geol., 148, 105 – 114.en_US
dc.identifier.citedreferenceWoodcock, N. H., and M. Fischer ( 1986 ), Strike‐slip duplexes, J. Struct. Geol., 8, 725 – 735.en_US
dc.identifier.citedreferenceWu, Z., P. Ye, B. J. Patrick, D. Hu, W. Zhao, and Z. Wu ( 2009 ), Late Oligocene‐Early Miocene thrusting in southern East Kunlun Mountains, northern Tibetan Plateau, J. Earth Sci., 20 ( 2 ), 381 – 390.en_US
dc.identifier.citedreferenceYan, M., R. VanderVoo, X. Fang, J. M. Parés, and D. K. Rea ( 2006 ), Paleomagnetic evidence for a mid‐Miocene clockwise rotation of about 25 of the Guide Basin area in NE Tibet, Earth Planet. Sci. Lett., 241, 234 – 247.en_US
dc.identifier.citedreferenceYin, A. ( 2010 ), Cenozoic tectonic evolution of Asia, a preliminary synthesis, Tectonophysics, 488, 293 – 325.en_US
dc.identifier.citedreferenceYin, A., T. M. Harrison, F. J. Ryerson, W. Chen, W. S. F. Kidd, and P. Copeland ( 1994 ), Tertiary structural evolution of the Gandese thrust system in southern Tibet, J. Geophys. Res., 99, 18,175 – 18,201.en_US
dc.identifier.citedreferenceYin, A., et al. ( 2002 ), Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation, Geol. Soc. Am. Bull., 114, 1257 – 1295.en_US
dc.identifier.citedreferenceYin, A., Y. Dang, M. Zhang, M. W. McRivette, W. P. Burgess, and X. Chen ( 2007 ), Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range, Geol. Soc. Am. Spec. Pap., 433, 369 – 390.en_US
dc.identifier.citedreferenceYin, A., Y. Q. Dang, L. C. Wang, W. M. Jiang, S. P. Zhou, X. H. Chen, G. E. Gehrels, and M. W. McRivette ( 2008a ), Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan‐Nan Shan thrust belt and northern Qaidam basin, Geol. Soc. Am. Bull., 120, 813 – 846.en_US
dc.identifier.citedreferenceYin, A., Y. Q. Dang, M. Zhang, X. H. Chen, and M. W. McRivette ( 2008b ), Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (part 3): Structural geology, sedimentation, and regional tectonic reconstruction, Geol. Soc. Am. Bull., 120, 847 – 876.en_US
dc.identifier.citedreferenceYuan, W., J. Dong, W. Shicheng, and A. Carter ( 2006 ), Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, north Qinghai‐Tibet Plateau, China, J. Asian Earth Sci., 27, 847 – 856.en_US
dc.identifier.citedreferenceYuan, D. Y., J. D. Champagnac, W. P. Ge, P. Molnar, P. Z. Zhang, W. J. Zheng, H. P. Zhang, and X. W. Liu ( 2011 ), Late Quaternary right‐lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau, Geol. Soc. Am. Bull., doi: 10.1130/B30315.1.en_US
dc.identifier.citedreferenceYue, Y. J., B. D. Ritts, A. D. Hanson, and S. A. Graham ( 2004 ), Sedimentary evidence against large strike‐slip translation on the Northern Altyn Tagh fault, NW China, Earth Planet. Sci. Lett., 228, 311 – 323.en_US
dc.identifier.citedreferenceZeitler, P. K., A. L. Herczeg, I. Mcdougall, and M. Honda ( 1987 ), U‐Th‐He dating of apatite—A potential thermochronometer, Geochim. Cosmochim. Acta, 51, 2865 – 2868.en_US
dc.identifier.citedreferenceZhai, Y., and T. Cai ( 1984 ), The Tertiary system of Gansu province, Gansu Geol., 1984, 1 – 40.en_US
dc.identifier.citedreferenceZhang, P. Z., B. C. Burchfiel, P. Molnar, W. Q. Zhang, D. C. Jiao, Q. D. Deng, Y. P. Wang, L. Royden, and F. M. Song ( 1991 ), Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous region, China, Tectonics, 10, 1111 – 1129.en_US
dc.identifier.citedreferenceZhang, P. Z., Z. Shen, M. Wang, W. J. Gan, R. Burgmann, and P. Molnar ( 2004 ), Continuous deformation of the Tibetan Plateau from global positioning system data, Geology, 32, 809 – 812.en_US
dc.identifier.citedreferenceZhang, P. Z., P. Molnar, and X. Xu ( 2007 ), Late Quaternary and present‐day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau, Tectonics, 26, TC5010, doi: 10.1029/2006TC002014.en_US
dc.identifier.citedreferenceZhang, H. P., W. H. Craddock, R. O. Lease, W. Wang, D. Y. Yuan, P. Z. Zhang, P. Molnar, D. W. Zheng, and W. J. Zheng ( 2011 ), Magnetostratigraphy of the Neogene Chaka basin and its implications for mountain building processes in the north‐eastern Tibetan Plateau, Basin Res., doi: 10.1111/j.1365‐2117.2011.00512.x.en_US
dc.identifier.citedreferenceZheng, D. W., P. Z. Zhang, J. L. Wan, C. Y. Li, and J. X. Cao ( 2003 ), Late Cenozoic deformation subsequence in northeastern margin of Tibet—Detrital AFT records from Linxia Basin, Sci. China Earth Sci., 46, 266 – 275.en_US
dc.identifier.citedreferenceZheng, D. W., P. Z. Zhang, J. L. Wan, D. Y. Yuan, C. Y. Li, G. M. Yin, G. L. Zhang, Z. C. Wang, M. Min, and J. Chen ( 2006 ), Rapid exhumation at similar to 8 Ma on the Liupan Shan thrust fault from apatite fission‐track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin, Earth Planet. Sci. Lett., 248 ( 1–2 ), 198 – 208.en_US
dc.identifier.citedreferenceZheng, D., M. K. Clark, P. Zhang, W. Zheng, and K. A. Farley ( 2010 ), Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau), Geosphere, 6 ( 6 ), 937 – 941.en_US
dc.identifier.citedreferenceZhou, J. X., F. Y. Xu, T. C. Wang, A. F. Cao, and C. M. Yin ( 2006 ), Cenozoic deformation history of the Qaidam Basin, NW China: Results from cross‐section restoration and implications for Qinghai‐Tibet Plateau tectonics, Earth Planet. Sci. Lett., 243, 195 – 210.en_US
dc.identifier.citedreferenceZhu, L., T. J. Owens, and G. E. Randall ( 1995 ), Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functions, Bull. Seismol. Soc. Am., 85, 1531 – 1540.en_US
dc.identifier.citedreferenceAllen, M., J. Jackson, and R. Walker ( 2004 ), Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates, Tectonics, 23, TC2008, doi: 10.1029/2003TC001530.en_US
dc.identifier.citedreferenceArmijo, R., P. Tapponnier, J. L. Mercier, and H. Tong‐Lin ( 1986 ), Quaternary extension in southern Tibet: Field observations and tectonic implications, J. Geophys. Res., 91, 13,803 – 13,813.en_US
dc.identifier.citedreferenceArmijo, R., P. Tapponnier, and H. Tonglin ( 1989 ), Late Cenozoic right‐lateral strike‐slip faulting in southern Tibet, J. Geophys. Res., 94, 2787 – 2838.en_US
dc.identifier.citedreferenceAydin, A., and A. Nur ( 1985 ), The types and role of stepovers in strike‐slip tectonics, in Strike‐Slip Deformation, Basin Formation, and Sedimentation, Spec. Publ. Soc. Econ. Paleontol. Mineral. vol. 37, edited by K. T. Biddle and N. Christie‐Blick, pp. 35 – 44.en_US
dc.identifier.citedreferenceBally, A., T. Ryder, and H. Euster ( 1986 ), Comments on the geology of the Qaidam basin: Notes on sedimentary basins in China—Report of the American Sedimentary Basins Delegation to the People's Republic of China, U.S. Geological Survey Open‐File Report, p. 86–327.en_US
dc.identifier.citedreferenceBatt, G. E., and J. Braun ( 1999 ), The tectonic evolution of the Southern Alps, New Zealand: insights from fully thermally coupled dynamical modeling, Geophys. J. Int., 136, 403 – 420.en_US
dc.identifier.citedreferenceBenowitz, J. P., P. Layer, S. Armstrong, S. Perry, P. Haeussler, P. Fitzgerald, and S. Van Laningham ( 2011 ), Spatial variations in focused exhumation along a continental‐scale strike‐slip fault: The Denali Fault of Eastern Alaska Range, Geosphere, 7, 455 – 467.en_US
dc.identifier.citedreferenceBiddle, K. T., and N. Christie‐Blick (Eds) ( 1985 ), Strike‐Slip Deformation, Basin Formation, and Sedimentation, Spec. Publ. Soc. Econ. Paleontol. Mineral., 37, pp. 356.en_US
dc.identifier.citedreferenceBilham, R., and G. King ( 1989 ), The morphology of strike‐slip faults—Examples from the San Andreas Fault, California, J. Geophys. Res., 94, 10,204 – 10,216.en_US
dc.identifier.citedreferenceBird, P. ( 1991 ), Lateral extrusion of lower crust from under high topography in the isostatic limit, J. Geophys. Res., 96, 10,275 – 10,286.en_US
dc.identifier.citedreferenceBlisniuk, P. M., B. R. Hacker, B. R. Glodny, L. Ratschbacher, S. Bi, Z. Wu, M. O. McWilliams, and A. Calvert ( 2001 ), Normal faulting in central Tibet since at least 13.5 Myr ago, Nature, 412, 628 – 632.en_US
dc.identifier.citedreferenceBovet, P. M., B. D. Ritts, G. Gehrels, A. O. Abbink, B. Darby, and J. Hourigan ( 2009 ), Evidence of Miocene crustal shortening in the north Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China, Am. J. Sci., 309, 290 – 329.en_US
dc.identifier.citedreferenceBurke, K., and C. Sengor ( 1986 ), Tectonic escape in the evolution of the continental crust, Geodynamics Series, 14, 41 – 53.en_US
dc.identifier.citedreferenceCavalié, O., C. Lasserre, M. P. Doin, G. Peltzer, J. Sun, X. Xu, and Z. K. Shen ( 2008 ), Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR, Earth Planet. Sci. Lett., 275, 246 – 257.en_US
dc.identifier.citedreferenceChinnery, M. A. ( 1965 ), The vertical displacements associated with transcurrent faulting, J. Geophys. Res., 70, doi: 10.1029/JZ070;018p04627.en_US
dc.identifier.citedreferenceChristie‐Blick, N., and K. T. Biddle ( 1985 ), Deformation and basin formation along strike‐slip faults, in Strike‐Slip Deformation, Basin Formation, and Sedimentation, Society of Economic Paleontologists and Mineralogists Special Publication No. 37, edited by K. T. Biddle and N. Christie‐Blick, pp. 1 – 34.en_US
dc.identifier.citedreferenceClark, M. K. ( 2012 ), Continental collision slowing due to viscous mantle lithosphere rather than topography, Nature, 483, 74 – 77, doi: 10.1038/nature10848.en_US
dc.identifier.citedreferenceClark, M. K., and L. H. Royden ( 2000 ), Topographic ooze: Building the eastern margin of Tibet by lower crustal flow, Geology, 28 ( 8 ), 703 – 706.en_US
dc.identifier.citedreferenceClark, M. K., M. A. House, L. H. Royden, K. X. Whipple, B. C. Burchfiel, X. Zhang, and W. Tang ( 2005 ), Late Cenozoic uplift of southeastern Tibet, Geology, 33 ( 6 ), 525 – 528, doi: 10.1130/G21265.1.en_US
dc.identifier.citedreferenceClark, M. K., L. H. Royden, K. X. Whipple, B. C. Burchfiel, X. Zhang, and W. Tang ( 2006 ), Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau, J. Geophys. Res., 111, F03002, doi: 10.1029/2005JF000294.en_US
dc.identifier.citedreferenceClark, M. K., K. A. Farley, D. W. Zheng, Z. C. Wang, and A. R. Duvall ( 2010 ), Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U‐Th)/He ages, Earth Planet. Sci. Lett., 296, 78 – 88.en_US
dc.identifier.citedreferenceConey, P. J., and T. A. Harms ( 1984 ), Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression, Geology, 12, 550 – 554.en_US
dc.identifier.citedreferenceCook, K. L., and L. H. Royden ( 2008 ), The role of crustal strength variations in shaping orogenic plateaus, with application to Tibet, J. Geophys. Res., 113, B08407, doi: 10.1029/2007JB005457.en_US
dc.identifier.citedreferenceCopley, A., and J. Jackson ( 2006 ), Active tectonics of the Turkish‐Iranian Plateau, Tectonics, 25, TC6006, doi: 10.1029/2005TC001906.en_US
dc.identifier.citedreferenceCowgill, E. ( 2007 ), Impact of riser reconstructions on estimation of secular variation in rates of strike‐slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China, Earth Planet. Sci. Lett., 254, 239 – 255.en_US
dc.identifier.citedreferenceCraddock, W. H., E. Kirby, and H. Zhang ( 2011 ), Late Miocene‐Pliocene range growth in the interior of the northeastern Tibetan Plateau, Lithosphere, 3 ( 6 ), doi: 10.1130/L159.1.en_US
dc.identifier.citedreferenceCraddock, W. H., E. Kirby, D. Zheng, and J. Liu ( 2012 ), Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin, Basin Res., 24 ( 1 ), 51 – 69, doi: 10.1111/j.1365.2117.2011.00515.x.en_US
dc.identifier.citedreferenceCrowell, J. C. ( 1974 ), Origin of late Cenozoic basins in southern California, in tectonics and sedimentation, Soc. Econ. Paleontologists and Mineralogists Spec. Pub. 22, p. 190 – 204.en_US
dc.identifier.citedreferenceDai, S., X. M. Fang, G. Dupont‐Nivet, C. H. Song, J. P. Gao, W. Krijgsman, C. Langereis, and W. L. Zhang ( 2006 ), Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau, J. Geophys. Res., 111, B11102, doi: 10.1029/2005JB004187.en_US
dc.identifier.citedreferenceDayem, K. E., P. Molnar, M. K. Clark, and G. A. Houseman ( 2009 ), Far‐field lithospheric deformation in Tibet during continental collision, Tectonics, 28, TC6005, doi: 10.1029/2008TC002344.en_US
dc.identifier.citedreferenceDettman, D. L., X. Fang, C. N. Garzione, and J. Li ( 2003 ), Uplift‐driven climate change at 12 Ma: A long δ 18 O record from the NE margin of the Tibetan Plateau, Earth Planet. Sci. Lett., 214, 267 – 277.en_US
dc.identifier.citedreferenceDonelick, R. A., P. B. O'Sullivan, and R. A. Ketcham ( 2005 ), Apatite fission‐track analysis, Rev. Mineral. Geochem., 58, 49 – 94.en_US
dc.identifier.citedreferenceDupont‐Nivet, G., B. K. Horton, R. F. Butler, J. Wang, J. Zhou, and G. L. Waanders ( 2004 ), Paleogene clockwise tectonic rotation of the Xining‐Lanzhou region, northeastern Tibetan Plateau, J. Geophys. Res., 109, B04401, doi: 10.1029/2003JB002620.en_US
dc.identifier.citedreferenceDuvall, A. R., and M. K. Clark ( 2010 ), Dissipation of fast strike‐slip faulting within and beyond northeastern Tibet, Geology, 38, 223 – 226.en_US
dc.identifier.citedreferenceDuvall, A. R., M. K. Clark, B. A. van der Pluijm, and C. Li ( 2011 ), Direct dating of Eocene reverse faulting in northeastern Tibet using Ar‐dating of fault clays and low‐temperature thermochronometry, Earth Planet. Sci. Lett., 304 ( 3–4 ), 520 – 526.en_US
dc.identifier.citedreferenceDuvall, A. R., M. K. Clark, B. Avdeev, K. A. Farley, and Z. Chen ( 2012 ), Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low‐temperature thermochronometry, Tectonics, 31, TC3014, doi: 10.1029/2011TC002969.en_US
dc.identifier.citedreferenceEhlers, T. A. ( 2005 ), Crustal thermal properties and thermchronometer data interpretation, in Low‐Temperature Thermochonology: Techniques, Interpretations, and Applications, Rev. Mineral. Geochem., 58, edited by P. W. Reiners, and T. A. Ehlers, pp. 315 – 350, Mineralogical Society of America, Chantilly, VA.en_US
dc.identifier.citedreferenceEhlers, T. A., and K. A. Farley ( 2003 ), Apatite (U‐Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes, Earth Planet. Sci. Lett., 206, 1 – 14.en_US
dc.identifier.citedreferenceEngland, P., and G. Houseman ( 1989 ), Extension during continental convergence, with application to the Tibetan Plateau, J. Geophys. Res., 94, 17,561 – 17,579.en_US
dc.identifier.citedreferenceNemcok, M. ( 1993 ), Transition from convergent escape: Field evidence from the West Carpathians, Tectonophysics, 217 ( 1–2 ), 117 – 142.en_US
dc.identifier.citedreferenceEnkelmann, E., L. Ratschbacher, R. Jonckheere, R. Nestler, M. Fleischer, R. Gloaguen, B. R. Hacker, Y. Q. Zhang, and Y. S. Ma ( 2006 ), Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?, Geol. Soc. Am. Bull., 118 ( 5–6 ), 651 – 671.en_US
dc.identifier.citedreferenceFan, M., D. L. Dettman, C. Song, X. Fang, and C. N. Garzione ( 2007 ), Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma: The stable isotope record, Palaeogeogr. Palaeoclimatol. Palaeoecol., 247, 313 – 328.en_US
dc.identifier.citedreferenceFang, X., M. Yan, R. Van der Voo, D. K. Rea, C. Song, J. M. Parés, J. Gao, J. Nie, and S. Dai ( 2005 ), Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high‐resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China, Geol. Soc. Am. Bull., 117, 1208 – 1225.en_US
dc.identifier.citedreferenceFarley, K. ( 2000 ), Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite, J. Geophys. Res., 105, 2903 – 2914.en_US
dc.identifier.citedreferenceFarley, K. A., and D. F. Stockli ( 2002 ), (U‐Th)/He dating of phosphates: Apatite, monazite, and xenotime, in Phosphates: Geochemical, Geobiological, and Materials Importance: Reviews in Mineralogy & Geochemistry, edited by M. J. Kohn, J. Rakovan, and J. M. Hughes, pp. 559 – 577, Mineralogical Society of America, Chantilly, VA.en_US
dc.identifier.citedreferenceFarley, K. A., D. A. Shuster, and R. A. Ketcham ( 2011 ), U and Th zonation in apatite observed by laster ablation ICPMS, and implications for the (U‐Th)/He system, Geochim. Cosmochim. Acta, 75, 4515 – 4530.en_US
dc.identifier.citedreferenceFitch, T. J. ( 1972 ), Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific, J. Geophys. Res., 77 ( 23 ), 4432 – 4460.en_US
dc.identifier.citedreferenceFitzgerald, P. G., and A. J. W. Gleadow ( 1990 ), New Approaches in Fission‐Track Geochronology as a Tectonic Tool ‐ Examples from the Transantarctic Mountains, Nucl. Tracks Radiat. Meas., 17, 351 – 357.en_US
dc.identifier.citedreferenceFlowers, R. M., R. A. Ketcham, D. L. Shuster, and K. A. Farley ( 2009 ), Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model, Geochim. Cosmochim. Acta, 73, 2347 – 2365.en_US
dc.identifier.citedreferenceFu, B. H., and Y. Awata ( 2007 ), Displacement and timing of left‐lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features, J. Asian Earth Sci., 29, 253 – 265.en_US
dc.identifier.citedreferenceGalbraith, R. F., and G. M. Laslett ( 1993 ), Statistical models for mixed fission track ages, Nucl. Tracks Radiat. Meas., 21, 459 – 470.en_US
dc.identifier.citedreferenceGallagher, K., R. Brown, and C. Johnson ( 1998 ), Fission track analysis and its applications to geological problems, Ann. Rev. Earth Planet. Sci., 26, 519 – 572.en_US
dc.identifier.citedreferenceGansu Bureau Geological and Mineral Resources (BGMR) Gansu Province ( 1989 ), Regional Geology of Gansu Province, Geological Publishing House, Beijing (in Chinese), 690 p.en_US
dc.identifier.citedreferenceGaudemer, Y., P. Tapponnier, B. Meyer, G. Peltzer, S. M. Guo, Z. T. Chen, H. G. Dai, and I. Cifuentes ( 1995 ), Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the Tianzhu Gap, on the western Haiyuan Fault, Gansu (China), Geophys. J. Int., 120, 599 – 645.en_US
dc.identifier.citedreferenceGemmer, L., and G. A. Houseman ( 2007 ), Convergence and extension driven by lithospheric gravitational instability: Evolution of the Alpine‐Carpathian‐Pannonian system, Geophys. J. Int., 168, 1276 – 1290.en_US
dc.identifier.citedreferenceGleadow, A., and I. Duddy ( 1981 ), A natural long‐term track annealing experiment for apatite, Nucl. Tracks, 5, 169 – 174.en_US
dc.identifier.citedreferenceHarkins, N., E. Kirby, A. Heimsath, R. Robinson, and U. Reiser ( 2007 ), Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China, J. Geophys. Res., 112, F03S04, doi: 10.1029/2006JF000570.en_US
dc.identifier.citedreferenceHarkins, N., and E. Kirby ( 2008 ), Fluvial terrace riser degradation and determination of slip rates on strike-slip faults: An example from the Kunlun fault, China, Geophys. Res. Lett., 35, L05406, doi: 10.1029/2007GL033073.en_US
dc.identifier.citedreferenceHarkins, N., E. Kirby, X. Shi, E. Wang, D. Burbank, and F. Chun ( 2010 ), Millennial slip rates along the eastern Kunlun fault: Implications for the dynamics of intracontinental deformation in Eurasia, Lithosphere, 2, 247 – 266.en_US
dc.identifier.citedreferenceHorton, B. K., G. Dupont‐Nivet, J. Zhou, G. L. Waanders, R. F. Butler, and J. Wang ( 2004 ), Mesozoic‐Cenozoic evolution of the Xining‐Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results, J. Geophys. Res., 109, B04402, doi: 10.1029/2003JB002913.en_US
dc.identifier.citedreferenceHough, B. G., C. N. Garzione, Z. Wang, R. O. Lease, D. W. Burbank, and D. Yuan ( 2011 ), Stable isotope evidence for topographic growth and basin segmentation: Implications for the evolution of the NE Tibetan Plateau, Bull. Geol. Soc. Am., 123, 168 – 185.en_US
dc.identifier.citedreferenceHu, S., L. He, and J. Wang ( 2000 ), Heat flow in the continental area of China: A new data set, Earth Planet. Sci. Lett., 179 ( 2 ), 407 – 419.en_US
dc.identifier.citedreferenceHuang, G., J. K. Hourigan, B. Z. Ritts, and M. L. Kent‐Corson ( 2011 ), Cenozoic multiple‐phase tectonic evolution of the northern Tibetan Plateau: Constaints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, northwest China, Am. J. Sci., 311, 116 – 152.en_US
dc.identifier.citedreferenceJolivet, M., M. Brunel, D. Seward, Z. Xu, J. Yang, F. Roger, P. Tapponnier, J. Malavieille, N. Arnaud, and C. Wu ( 2001 ), Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission‐track constraints, Tectonophysics, 343, 111 – 134.en_US
dc.identifier.citedreferenceJolivet, M., M. Brunel, D. Seward, Z. Xu, J. Yang, J. Malavieille, F. Roger, A. Leyreloup, N. Arnaud, and C. Wu ( 2003 ), Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: New constraints on the age of the Kunlun Fault, Tectonics, 22 ( 5 ), 1052, doi: 10.1029/2002TC001428.en_US
dc.identifier.citedreferenceJones, C. H., J. R. Unruh, and L. J. Songer ( 1996 ), The role of gravitational potential energy in active deformation in the southwestern United States, Nature, 381, 37 – 41.en_US
dc.identifier.citedreferenceKent‐Corson, M. L., B. D. Ritts, G. Zhuang, P. M. Bovet, S. Graham, and C. P. Chamberlain ( 2009 ), Stable isotope constraints on the tectonic, topographic, and climatic‐evolution of the northern margin of the Tibetan Plateau, Earth Planet. Sci. Lett., 282, 158 – 166.en_US
dc.identifier.citedreferenceKetcham, R. A. ( 2005 ), Forward and inverse modeling of low‐temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275 – 314.en_US
dc.identifier.citedreferenceKetcham, R. A., A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford ( 2007 ), Improved modeling of fission‐track annealing in apatite, Am. Mineral., 92, 799 – 810.en_US
dc.identifier.citedreferenceKetcham, R. A., R. A. Donelick, M. L. Balestrieri, and M. Zattin ( 2009 ), Reproducibility of apatite fission‐track length data and thermal history reconstruction, Earth Planet. Sci. Lett., 284, 504 – 515.en_US
dc.identifier.citedreferenceKidd, W. S. F., and P. Molnar ( 1988 ), Quaternary and active faulting observed on the 1985 Academia Sinica–Royal Society Geotraverse of Tibet, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci., 327, 337 – 363.en_US
dc.identifier.citedreferenceKirby, E., P. W. Reiners, M. A. Krol, K. X. Whipple, K. V. Hodges, K. A. Farley, W. Q. Tang, and Z. L. Chen ( 2002 ), Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from Ar‐40/Ar‐39 and (U‐Th)/He thermochronology, Tectonics, 21 ( 1 ), 1001, doi: 10.1029/2000TC001246.en_US
dc.identifier.citedreferenceKirby, E., N. Harkins, E. Q. Wang, X. H. Shi, C. Fan, and D. Burbank ( 2007 ), Slip rate gradients along the eastern Kunlun fault, Tectonics, 26, TC2010, doi: 10.1029/2006TC002033.en_US
dc.identifier.citedreferenceKirby, E., and N. Harkins ( 2013 ), Distributed deformation around the eastern tip of the Kunlun fault, Int. J. Earth Sci., 35, doi: 10.1007/s..531‐013‐0872‐x.en_US
dc.identifier.citedreferenceKong, X., A. Yin, and T. M. Harrison ( 1997 ), Evaluating the role of preexisting weaknesses and topographic distributions in the Indo‐Asian collision by use of a thin‐shell numerical model, Geology, 25 ( 6 ), 527 – 530.en_US
dc.identifier.citedreferenceLasserre, C., et al. ( 1999 ), Postglacial left slip rate and past occurrence of M >= 8 earthquakes on the western Haiyuan fault, Gansu, China, J. Geophys. Res., 104, 17,633 – 17,651.en_US
dc.identifier.citedreferenceLasserre, C., Y. Gaudemer, P. Tapponnier, A. S. Meriaux, J. Van der Woerd, D. Y. Yuan, F. J. Ryerson, R. C. Finkel, and M. W. Caffee ( 2002 ), Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China, J. Geophys. Res., 107 ( B11 ), 2276, doi: 10.1029/2000JB000060.en_US
dc.identifier.citedreferenceLease, R. O., D. W. Burbank, G. E. Gehrels, Z. C. Wang, and D. Y. Yuan ( 2007 ), Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet, Geology, 35, 239 – 242.en_US
dc.identifier.citedreferenceLease, R. O., D. W. Burbank, M. K. Clark, K. A. Farley, D. Zheng, and H. Zhang ( 2011 ), Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau, Geology, 39, 359 – 362.en_US
dc.identifier.citedreferenceLi, C. Y., P. Z. Zhang, J. H. Yin, and W. Min ( 2009 ), Late Quaternary left‐lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau, Tectonics, 28, TC5010, doi: 10.1029/2008TC002302.en_US
dc.identifier.citedreferenceLin, X., H. Chen, K. H. Wyrwoll, G. E. Batt, L. Liao, and J. Xiao ( 2011 ), The Uplift History of the Haiyuan‐Liupan Shan region northeast of the present Tibetan Plateau: Integrated constraint from stratigraphy and thermochronology, J. Geol., 119 ( 4 ), 372 – 393.en_US
dc.identifier.citedreferenceLu, H., E. Wang, X. Shi, and K. Meng ( 2012 ), Cenozoic tectonic evolution of the Elashan range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetism and apatite fission track analyses, Tectonophysics, 580, 150 – 161.en_US
dc.identifier.citedreferenceMcClay, K., and M. Bonora ( 2001 ), Analog models of restraining stepovers in strike‐slip fault systems, AAPG Bulletin, 85 ( 2 ), 233 – 260.en_US
dc.identifier.citedreferenceMercier, J.‐L., R. Armijo, P. Tapponnier, E. Carey‐Gailhardis, and H. Tong Lin ( 1987 ), Change from Late Tertiary compression to Quaternary extension in southern Tibet during the India‐Asia collision, Tectonics, 6, 275 – 304.en_US
dc.identifier.citedreferenceMeyer, B., P. Tapponnier, L. Bourjot, F. Metivier, Y. Gaudemer, G. Peltzer, G. Shunmin, and C. Zhitai ( 1998 ), Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet plateau, Geophys. J. Int., 135, 1 – 47.en_US
dc.identifier.citedreferenceMock, C., N. O. Arnaud, and J. M. Cantagrel ( 1999 ), An early unroofing in northeastern Tibet? Constraints from Ar‐40/Ar‐39 thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China), Earth Planet. Sci. Lett., 171, 107 – 122.en_US
dc.identifier.citedreferenceMolnar, P., and J. M. Stock ( 2009 ), Slowing of India's convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics, Tectonics, 28, TC3001, doi: 10.1029/2008TC002271.en_US
dc.identifier.citedreferenceMolnar, P., and P. Tapponnier ( 1975 ), Cenozoic tectonics of Asia: Effects of a continental collision, Science, 189, 419 – 426.en_US
dc.identifier.citedreferenceMolnar, P., P. England, and J. Martinod ( 1993 ), Mantle dynamics, uplift of the Tibeatan Plateau, and the Indian monsoon, Rev. Geophys., 31, 357 – 396.en_US
dc.identifier.citedreferenceOuimet, W., K. Whipple, L. Royden, P. Reiners, K. Hodges, and M. Pringle ( 2010 ), Regional incision of the eastern margin of the Tibetan Plateau, Lithosphere, 2 ( 1 ), 50 – 63.en_US
dc.identifier.citedreferencePan, G., J. Ding, D. Yao, and L. Wang ( 2004 ), Guidebook of 1:1,500,000 Geologic Map of the Qinghai‐Xizang (Tibet) Plateau and Adjacent Areas, Chengdu Cartographic Publishing House, Chengdu, China, pp. 48.en_US
dc.identifier.citedreferencePincha, F. J. ( 2002 ), Late orogenic strike‐slip faulting and escape tectonics in frontal Dinarides‐Hellenides, Croatia, Yugoslavia, Albania, and Greece, AAPG Bulletin, 86 ( 9 ), 1659 – 1671.en_US
dc.identifier.citedreferencePincha, F. J. ( 2011 ), Late orogenic faulting of the foreland plate: An important component of petroleum systems in orogenic belts and their forelands, AAPG Bulletin, 95 ( 6 ), 957 – 981.en_US
dc.identifier.citedreferencePullen, A., P. Kapp, G. E. Gehrels, J. D. Vervoort, and L. Ding ( 2008 ), Triassic continental subduction in central Tibet and Mediterranean‐style closure of the Paleo‐Tethys Ocean, Geology, 36, 351 – 354.en_US
dc.identifier.citedreferenceQinghai Bureau of Geology and Mineral Resources (QBGMR) ( 1991 ), Regional Geology of Qinghai Province, Geological Publishing House, Beijing.en_US
dc.identifier.citedreferenceRatschbacher, L., B. R. Hacker, L. E. Webb, M. O. McWilliams, T. Ireland, S. Dong, A. Calvert, D. Chateigner, and H.‐R. Wink ( 2000 ), Exhumation of the ultrahigh‐pressure continental crust in east central China cretaceous and Cenozoic unroofing and the Tan‐Lu Fault, J. Geophys. Res., 105 ( B6 ), 13,303 – 13,338.en_US
dc.identifier.citedreferenceRatschbacher, L., B. R. Hacker, A. Calvert, L. E. Webb, J. C. Grimmer, M. O. McWilliams, T. Ireland, S. Dong, and J.‐M. Hu ( 2003 ), Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history, Tectonophysics, 366, 1 – 53.en_US
dc.identifier.citedreferenceReiners, P. W., and T. A. Ehlers ( 2005 ), Low‐Temperature Thermochronology: Techniques, Interpretations, and Applications, Rev. Mineral. Geochem., 58, edited by P. W. Reiners, and T. A. Ehlers, p. 1 – 18, Mineralogical Society of America, Chantilly, VA.en_US
dc.identifier.citedreferenceReiners, P. W., K. A. Farley, and H. J. Hickes ( 2002 ), He diffusion and (U‐Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte, Tectonophysics, 349, 297 – 308.en_US
dc.identifier.citedreferenceReiners, P. W., T. L. Spell, S. Nicolescu, and K. A. Zanetti ( 2004 ), Zircon (U‐Th)/He thermochronometry: He diffusion and comparisons with 40 Ar/ 39 Ar dating, Geochim. Cosmochim. Acta, 68, 1857 – 1887.en_US
dc.identifier.citedreferenceRey, P., O. Vanderhaeghe, and C. Teyssier ( 2001 ), Gravitational collapse of the continental crust: Definition, regimes, and modes, Tectonophysics, 342, 435 – 449.en_US
dc.identifier.citedreferenceRitts, B. D., Y. Yue, S. Graham, E. R. Sobel, O. A. Abbink, and D. Stockli ( 2008 ), From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan, Am. J. Sci., 308, 657 – 678.en_US
dc.identifier.citedreferenceRowley, D. B. ( 1996 ), Age of initiation of collision between India and Eurasia: A review of stratigraphic data, Earth Planet. Sci. Lett., 145, 1 – 13.en_US
dc.identifier.citedreferenceRowley, D. B. ( 1998 ), Minimum age of initiation of collision between India and Eurasia north of Everest based on the subsidence history of the Zhepure Mountain section, J. Geol., 106, 220 – 235.en_US
dc.identifier.citedreferenceRoyden, L. H., B. C. Burchfiel, R. W. King, E. Wang, Z. Chen, F. Shen, and Y. Liu ( 1997 ), Surface deformation and lower crustal flow in Eastern Tibet, Science, 276 ( 5313 ), 788 – 790.en_US
dc.identifier.citedreferenceRoyden, L. H., B. C. Burchfiel, and R. D. van der Hilst ( 2008 ), The geological evolution of the Tibetan Plateau, Science, 321 ( 5892 ), 1054 – 1058.en_US
dc.identifier.citedreferenceSchoenbohm, L. M., B. C. Burchfiel, and C. Liangzhong ( 2006 ), Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau, Geology, 34, 813 – 816, doi: 10.1130/G22679.1.en_US
dc.identifier.citedreferenceSearle, M., J. Elliott, R. Phillips, and S. L. Chung ( 2011 ), Crustal‐lithospheric structure and continental extrusion of Tibet, J. Geologic. Soc., 168, 633 – 672.en_US
dc.identifier.citedreferenceSengor, A. M. C., N. Gorur, and F. Saroglu ( 1985 ), Strike‐slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in Strike‐Slip Faulting and Basin Formation, Spec. Publ. Soc. Econ. Paleontol. Mineral., 37, edited by K. T. Biddke and N. Christie‐Blick, pp. 227 – 264.en_US
dc.identifier.citedreferenceSobel, E. R., N. Arnaud, M. Jolivet, B. D. Ritts, and M. Brunel ( 2001 ), Jurassic to Cenozoic exhumation history of the Altyn Tagh range, northwest China constrained by 40 Ar/ 39 Ar and apatite fission track thermochronology, in Paleozoic and Mesozoic Tectonic Evolution of Central And Eastern Eurasia: From Continental Assembly to Intracontinental Deformation: edited by M. S. Hendrix and G. A. Davis, Mem. Geol. Soc. Am., 194, 247 – 268.en_US
dc.identifier.citedreferenceSonder, L. J., P. C. England, B. P. Wernicke, and R. L. Christiansen ( 1987 ), A physical model for Cenozoic extension of western North America, Geol. Soc. London Spec. Pub., 28, 187 – 201.en_US
dc.identifier.citedreferenceSpotila, J. A., K. A. Farley, and K. Sieh ( 1998 ), Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas Fault, California, as constrained by radiogenic helium thermochronometry, Tectonics, 17, 360 – 378.en_US
dc.identifier.citedreferenceSpotila, J. A., K. A. Farley, J. D. Yule, and P. W. Reiners ( 2001 ), Near‐field transpressive deformation along the San Andreas fault zone in southern California, based on exhumation constrained by (U‐Th)/He dating, J. Geophys. Res., 106 ( B12 ), 30,909 – 30,922, doi: 10.1029/2001JB000348.en_US
dc.identifier.citedreferenceSpotila, J. A., N. Niemi, R. Brady, M. House, J. Buscher, and M. Oskin ( 2007 ), Long‐term continental deformation associated with transpressive plate motion: The San Andreas Fault, Geology, 35, 967 – 970.en_US
dc.identifier.citedreferenceSylvester, A. G. ( 1988 ), Strike‐slip faults, Geol. Soc. Am. Bull., 100 ( 11 ), 1666 – 1703, doi: 10.1130/0016‐7606.en_US
dc.identifier.citedreferenceTapponnier, P., Z. Q. Xu, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, and J. S. Yang ( 2001 ), Geology: Oblique stepwise rise and growth of the Tibet Plateau, Science, 294, 1671 – 1677.en_US
dc.identifier.citedreferenceTaylor, M., and A. Yin ( 2009 ), Active structures of the Himalayan‐Tibetan orogeny and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism, Geosphere, 5, 199 – 214.en_US
dc.identifier.citedreferenceTaylor, M., A. Yin, F. J. Ryerson, P. Kapp, and L. Ding ( 2003 ), Conjugate strike‐slip faulting along the Bangong‐Nujiang suture zone accommodates coeval east‐west extension and north‐south shortening in the interior of the Tibetan Plateau, Tectonics, 22 ( 4 ), 1044, doi: 10.1029/2002TC001361.en_US
dc.identifier.citedreferenceTeyssier, C., B. Tikoff, and M. Markley ( 1995 ), Oblique plate motion and continental tectonics, Geology, 23 ( 5 ), 447 – 450.en_US
dc.identifier.citedreferenceUmhoefer, P. J., D. L. Whitney, C. Teyssier, A. K. Fayon, G. Cesale, and M. T. Heizler ( 2007 ), Yo‐yo tectonics in a wrench zone, Central Anatolian fault zone, Turkey, GSA Spec. Pap., 434, 35 – 57, doi: 10.1130/2007.2434(03).en_US
dc.identifier.citedreferenceVan der Woerd, J., F. J. Ryerson, P. Tapponnier, Y. Gaudemer, R. Finkel, A. S. Meriaux, M. Caffee, G. G. Zhao, and Q. L. He ( 1998 ), Holocene left‐slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China), Geology, 26, 695 – 698.en_US
dc.identifier.citedreferenceVan der Woerd, J., F. J. Ryerson, P. Tapponnier, A. S. Meriaux, Y. Gaudemer, B. Meyer, R. C. Finkel, M. W. Caffee, G. G. Zhao, and Z. Q. Xu ( 2000 ), Uniform Slip‐Rate along the Kunlun Fault: Implications for seismic behaviour and large‐scale tectonics, Geophys. Res. Lett., 27, 2353 – 2356.en_US
dc.identifier.citedreferenceVan Der Woerd, J., P. Tapponnier, F. J. Ryerson, A. S. Meriaux, B. Meyer, Y. Gaudemer, R. C. Finkel, M. W. Caffee, G. G. Zhao, and Z. Q. Xu ( 2002 ), Uniform postglacial slip‐rate along the central 600 km of the Kunlun Fault (Tibet), from Al‐26, Be‐10, and C‐14 dating of riser offsets, and climatic origin of the regional morphology, Geophys. J. Int., 148, 356 – 388.en_US
dc.identifier.citedreferenceVincent, S. J., and M. B. Allen ( 1999 ), Evolution of the Minle and Chaoshui Basins, China: Implications for Mesozoic strike‐slip basin formation in central Asia, Geol. Soc. Am. Bull., 111, 725 – 742.en_US
dc.identifier.citedreferenceWagner, G. A., and G. M. Reimer ( 1972 ), Fission track tectonics: The tectonic interpretation of fission track apatite ages, Earth Planet. Sci. Lett., 14 ( 2 ), 263 – 268.en_US
dc.identifier.citedreferenceWang, E. C., and B. C. Burchfiel ( 2004 ), Late Cenozoic right‐lateral movement along the Wenquan fault and associated deformation: Implications for the kinematic history of the Qaidam Basin Northeastern Tibetan Plateau, Int. Geol. Rev., 46, 861 – 879.en_US
dc.identifier.citedreferenceWang, F., C. H. Lo, Q. Li, M. H. Yeh, J. Wan, D. Zheng, and E. Wang ( 2004 ), Onset timing of significant unroofing around Qaidam basin, northern Tibet, China: Constraints from 40 Ar/ 39 Ar and FT thermochronology on granitoids, J. Asian Earth Sci., 24 ( 1 ), 59 – 69.en_US
dc.identifier.citedreferenceWang, W., P. Z. Zhang, E. Kirby, L. H. Wang, G. L. Zhang, D. W. Zheng, and C. Z. Chai ( 2011a ), A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau, Tectonophysics, 505, 100 – 114.en_US
dc.identifier.citedreferenceWang, X., M. Zattin, J. Li, C. Song, T. Peng, S. Liu, and B. Liu ( 2011b ), Eocene to Pliocene exhumation history of the Tianshui‐Huicheng region determined by apatite fission track thermochronology of the northeastern Tibetan Plateau margin, J. Asian Earth Sci., 42 ( 1–2 ), 97 – 110.en_US
dc.identifier.citedreferenceWilcox, R. E., T. P. Harding, and D. R. Seely ( 1973 ), Basic wrench tectonics, AAPG Bulletin, 57 ( 1 ), 74 – 96.en_US
dc.identifier.citedreferenceWilson, C. J. L., and A. P. Fowler ( 2011 ), Denudational response to surface uplift in east Tibet: Evidence from apatite fission‐track thermochronology, Bull. Geol. Soc. Am., doi: 10.1130/B30331.1.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.