Show simple item record

Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater

dc.contributor.authorGlavin, Daniel P.en_US
dc.contributor.authorFreissinet, Carolineen_US
dc.contributor.authorMiller, Kristen E.en_US
dc.contributor.authorEigenbrode, Jennifer L.en_US
dc.contributor.authorBrunner, Anna E.en_US
dc.contributor.authorBuch, Arnauden_US
dc.contributor.authorSutter, Braden_US
dc.contributor.authorArcher, P. Douglasen_US
dc.contributor.authorAtreya, Sushil K.en_US
dc.contributor.authorBrinckerhoff, William B.en_US
dc.contributor.authorCabane, Michelen_US
dc.contributor.authorColl, Patriceen_US
dc.contributor.authorConrad, Pamela G.en_US
dc.contributor.authorCoscia, Daviden_US
dc.contributor.authorDworkin, Jason P.en_US
dc.contributor.authorFranz, Heather B.en_US
dc.contributor.authorGrotzinger, John P.en_US
dc.contributor.authorLeshin, Laurie A.en_US
dc.contributor.authorMartin, Mildred G.en_US
dc.contributor.authorMcKay, Christopheren_US
dc.contributor.authorMing, Douglas W.en_US
dc.contributor.authorNavarro‐gonzález, Rafaelen_US
dc.contributor.authorPavlov, Alexanderen_US
dc.contributor.authorSteele, Andrewen_US
dc.contributor.authorSummons, Roger E.en_US
dc.contributor.authorSzopa, Cyrilen_US
dc.contributor.authorTeinturier, Samuelen_US
dc.contributor.authorMahaffy, Paul R.en_US
dc.date.accessioned2013-12-04T18:57:23Z
dc.date.available2014-12-01T17:22:24Zen_US
dc.date.issued2013-10en_US
dc.identifier.citationGlavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas; Atreya, Sushil K.; Brinckerhoff, William B.; Cabane, Michel; Coll, Patrice; Conrad, Pamela G.; Coscia, David; Dworkin, Jason P.; Franz, Heather B.; Grotzinger, John P.; Leshin, Laurie A.; Martin, Mildred G.; McKay, Christopher; Ming, Douglas W.; Navarro‐gonzález, Rafael ; Pavlov, Alexander; Steele, Andrew; Summons, Roger E.; Szopa, Cyril; Teinturier, Samuel; Mahaffy, Paul R. (2013). "Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater." Journal of Geophysical Research: Planets 118(10): 1955-1973.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101807
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.subject.otherMTBSTFAen_US
dc.subject.otherPerchloratesen_US
dc.subject.otherMars Science Laboratoryen_US
dc.subject.otherSample Analysis at Marsen_US
dc.subject.otherRocknest Soilen_US
dc.subject.otherChlorohydrocarbonsen_US
dc.titleEvidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crateren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101807/1/jgre20144.pdf
dc.identifier.doi10.1002/jgre.20144en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceMigdal‐Mikuli, A., and J. Hetmanczyk ( 2008 ), Thermal behavior of [Ca(H2O)(4)](ClO4)(2) and [Ca(NH3)(6)](ClO4)(2), J. Therm. Anal. Calorim., 91 ( 2 ), 529 – 534.en_US
dc.identifier.citedreferenceKim, Y. S., Y. K. Wo, S. Maity, S. K. Atreya, and R. I. Kaiser ( 2013 ), Radiation‐induced formation of chlorine oxides and their potential role in the origin of Martian perchlorates, J. Am. Chem. Soc., doi: 10.1021/ja3122922.en_US
dc.identifier.citedreferenceKlein, H. P. ( 1978 ), Viking biological experiments on Mars, Icarus, 34 ( 3 ), 666 – 674.en_US
dc.identifier.citedreferenceKlein, H. P., J. Lederber, and A. Rich ( 1972 ), Biological experiments—Viking Mars Lander, Icarus, 16 ( 1 ), 139 – 146.en_US
dc.identifier.citedreferenceKminek, G., and J. L. Bada ( 2006 ), The effect of ionizing radiation on the preservation of amino acids on Mars, Earth Planet. Sci. Lett., 245 ( 1–2 ), 1 – 5.en_US
dc.identifier.citedreferenceKnapp, D. R. ( 1979 ), Handbook of Analytical Derivatization Reactions, John Wiley & Sons, Inc., New York, pp. 768.en_US
dc.identifier.citedreferenceLampe, F. W., J. L. Franklin, and F. H. Field ( 1957 ), Cross sections for ionization by electrons, J. Am. Chem. Soc., 79 ( 23 ), 6129 – 6132.en_US
dc.identifier.citedreferenceLaniewski, K., H. Boren, A. Grimvall, and M. Ekelund ( 1998 ), Pyrolysis gas chromatography of chloroorganic compounds in precipitation, J. Chrom. A, 826 ( 2 ), 201 – 210.en_US
dc.identifier.citedreferenceLauer, H. V., D. W. Ming, B. Sutter, D. C. Golden, R. V. Morris, and W. V. Boynton ( 2009 ), Thermal and Evolved Gas Analysis of Magnesium Perchlorate: Implications for Perchlorates in Soils at the Mars Phoenix Landing Site, paper presented at Lunar Planet. Sci XL, Abstract #2196.en_US
dc.identifier.citedreferenceLeshin, L. A., et al. ( 2013 ), Volatile, Isotope and Organic Analysis of Martian Fines with the Mars Curiosity Rover, Science, 341 ( 6153 ), doi: 10.1126/science.1238937.en_US
dc.identifier.citedreferenceMahaffy, P. R., et al. ( 2012 ), The Sample Analysis at Mars investigation and instrument suite, Space Sci. Rev., 170 ( 1–4 ), 401 – 478.en_US
dc.identifier.citedreferenceMakochekanwa, C., O. Sueoka, and M. Kimura ( 2003 ), A comparative study of electron and positron scattering from chlorobenzene (C6H5Cl) and chloropentafluorobenzene (C6F5Cl) molecules, J. Chem. Phys., 119 ( 23 ), 12,257 – 12,263.en_US
dc.identifier.citedreferenceMarion, G. M., D. C. Catling, K. J. Zahnle, and M. W. Claire ( 2010 ), Modeling aqueous perchlorate chemistries with applications to Mars, Icarus, 207 ( 2 ), 675 – 685.en_US
dc.identifier.citedreferenceMarkowitz, M. M., and D. A. Boryta ( 1965 ), The differential thermal analysis of perchlorates. VII. Catalytic decompositions of alkali metal perchlorates by manganese dioxide, J. Phys. Chem‐Us, 69 ( 4 ), 1114.en_US
dc.identifier.citedreferenceMcKay, D. S., E. K. Gibson, K. L. Thomas‐Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, and R. N. Zare ( 1996 ), Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001, Science, 273, 924 – 930.en_US
dc.identifier.citedreferenceMiller, G., R. Kempley, G. Awadh, and K. Richman ( 2004 ), Photo‐oxidation of chloride to perchlorate in the presence of titanium dioxide and nitrate, Abstr. Pap. Am. Chem S, 228, U92 – U92.en_US
dc.identifier.citedreferenceMing, D. W., H. V. Lauer, P. D. Archer, B. Sutter, D. C. Golden, R. V. Morris, P. B. Niles, and W. V. Boynton ( 2009 ), Combustion of Organic Molecules by the Thermal Decomposition of Perchlorate Salts: Implications for Organics at the Mars Phoenix Scout Landing Site, paper presented at Lunar Planet. Sci XL, Abstract #2241.en_US
dc.identifier.citedreferenceMoores, J. E., and A. C. Schuerger ( 2012 ), UV degradation of accreted organics on Mars: IDP longevity, surface reservoir of organics, and relevance to the detection of methane in the atmosphere, J. Geophys. Res., 117, E08008, doi: 10.1029/2012JE004060.en_US
dc.identifier.citedreferenceNavarro‐González, R., and C. P. Mckay ( 2011 ), Reply to comment by Biemann and Bada on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars”, J. Geophys. Res., 116, E12002, doi: 10.1029/2011JE003880.en_US
dc.identifier.citedreferenceNavarro‐González, R., E. Vargas, J. de la Rosa, A. C. Raga, and C. P. McKay ( 2010 ), Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars, J. Geophys. Res., 115, E12010, doi: 10.1029/2010JE003599.en_US
dc.identifier.citedreferenceNewsom, H. E., M. J. Nelson, C. K. Shearer, and D. S. Draper ( 2005 ), The Martian Soil as a Geochemical Sink for Hydrothermally Altered Crustal Rocks and Mobile Elements: Implications of Early MER Results, paper presented at Lunar Planet. Sci XXXVI, Abstract #1142.en_US
dc.identifier.citedreferenceNussinov, M. D., Y. B. Chernyak, and J. L. Ettinger ( 1978 ), Model of fine‐grain component of Martian soil based on Viking Lander data, Nature, 274 ( 5674 ), 859 – 861.en_US
dc.identifier.citedreferenceOró, J., and G. Holzer ( 1979 ), The photolytic degradation and oxidation of organic compounds under simulated Martian conditions, J. Mol. Evol., 14, 153 – 160.en_US
dc.identifier.citedreferenceOyama, V. I., B. J. Berdahl, and G. C. Carle ( 1977 ), Preliminary findings of Viking gas‐exchange experiment and a model for Martian surface‐chemistry, Nature, 265 ( 5590 ), 110 – 114.en_US
dc.identifier.citedreferenceOze, C., and M. Sharma ( 2005 ), Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars, Geophys. Res. Lett., 32, L10203, doi: 10.1029/2005GL022691.en_US
dc.identifier.citedreferencePavlov, A. A., G. Vasilyev, V. M. Ostryakov, A. K. Pavlov, and P. Mahaffy ( 2012 ), Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys. Res. Lett., 39, doi: 10.1029/2012GL052166.en_US
dc.identifier.citedreferencePlumb, R. C., R. Tantayanon, M. Libby, and W. W. Xu ( 1989 ), Chemical‐model for Viking biology experiments—Implications for the composition of the Martian regolith, Nature, 338 ( 6217 ), 633 – 635.en_US
dc.identifier.citedreferenceQuinn, R. C., and D. J. Pacheco ( 2013 ), Production of Chlorinated Hydrocarbons During the Thermal Decomposition of Metal Carbonates and Perchlorate Salts, paper presented at Lunar Planet. Sci XLIV, Abstract #2664.en_US
dc.identifier.citedreferenceQuinn, R. C., and A. P. Zent ( 1999 ), Peroxide‐modified titanium dioxide: A chemical analog of putative Martian soil oxidants, Orig. Life Evol. Biosph., 29 ( 1 ), 59 – 72.en_US
dc.identifier.citedreferenceQuinn, R. C., P. J. Grunthaner, C. L. Taylor, C. E. Bryson, and F. J. Grunthaner ( 2011 ), The Radiolytic Decomposition of Soil Perchlorates on Mars, paper presented at Lunar Planet. Sci XLII, Abstract #2003.en_US
dc.identifier.citedreferenceQuinn, R. C., H. F. H. Martucci, S. R. Miller, C. E. Bryson, F. J. Grunthaner, and P. J. Grunthaner ( 2013 ), Perchlorate radiolysis on Mars and the origin of the Martian soil reactivity, Astrobiology, 13 ( 6 ), 515 – 520.en_US
dc.identifier.citedreferenceRao, M. N., S. R. Sutton, D. S. McKay, and G. Dreibus ( 2005 ), Clues to Martian brines based on halogens in salts from nakhlites and MER samples, J. Geophys. Res., 110, E12S06, doi: 10.1029/2005JE002470.en_US
dc.identifier.citedreferenceRobertson, K., and D. Bish ( 2011 ), Stability of phases in the Mg(ClO4)(2)center dot nH(2)O system and implications for perchlorate occurrences on Mars, J. Geophys. Res., 116, E07006, doi: 10.1029/2010JE003754.en_US
dc.identifier.citedreferenceSchuttlefield, J. D., J. B. Sambur, M. Gelwicks, C. M. Eggleston, and B. A. Parkinson ( 2011 ), Photooxidation of chloride by oxide minerals: Implications for perchlorate on Mars, J. Am. Chem. Soc., 133 ( 44 ), 17,521 – 17,523.en_US
dc.identifier.citedreferenceStalport, F., P. Coll, C. Szopa, H. Cottin, and F. Raulin ( 2009 ), Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions, Astrobiology, 9 ( 6 ), 543 – 549.en_US
dc.identifier.citedreferenceStalport, F., et al. ( 2012 ), The influence of mineralogy on recovering organic acids from Mars analogue materials using the “one‐pot” derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite, Planet. Space Sci., 67 ( 1 ), 1 – 13.en_US
dc.identifier.citedreferenceSteele, A., F. M. McCubbin, M. D. Fries, D. C. Golden, D. W. Ming, and L. G. Benning ( 2012a ), Graphite in the Martian meteorite Allan Hills 84001, Am. Mineral., 97 ( 7 ), 1256 – 1259.en_US
dc.identifier.citedreferenceSteele, A., et al. ( 2012b ), A reduced organic carbon component in Martian basalts, Science, 337 ( 6091 ), 212 – 215.en_US
dc.identifier.citedreferenceSteele, A., et al. ( 2013 ), Organic Carbon Inventory of the Tissint Meteorite, paper presented at Lunar Planet. Sci. XLIV, Abstract #2854.en_US
dc.identifier.citedreferenceSteininger, H., F. Goesmann, and W. Goetz ( 2012 ), Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils, Planet. Space Sci., 71 ( 1 ), 9 – 17.en_US
dc.identifier.citedreferenceStephan, T., E. K. Jessberger, C. H. Heiss, and D. Rost ( 2003 ), TOF‐SIMS analysis of polycyclic aromatic hydrocarbons in Allan Hills 84001, Meteorit. Planet. Sci., 38 ( 1 ), 109 – 116.en_US
dc.identifier.citedreferenceTreger, Y. A., and V. N. Rozanov ( 1989 ), The synthesis of organochlorine compounds from one‐carbon molecules, Russ. Chem. Rev. Engl. Transl., 58, 84 – 99.en_US
dc.identifier.citedreferenceVillaneuva, G. L., M. J. Mumma, R. E. Novak, Y. L. Radeva, H. U. Kaufl, A. Smette, A. Tokunaga, A. Khayat, T. Encrenaz, and P. Hartogh ( 2013 ), A sensitive search for organics (CH 4, CH 3 OH, H 2 CO, C 2 H6, C 2 H 4 ), hydroperoxyl (HO 2 ), nitrogen compounds (N 2 O, NH 3, HCN) and chlorine (HCl, CH 3 Cl) on Mars using ground‐based high‐resolution infrared spectroscopy, Icarus, 222, 11 – 27.en_US
dc.identifier.citedreferenceYen, A. S., S. S. Kim, M. H. Hecht, M. S. Frant, and B. Murray ( 2000 ), Evidence that the reactivity of the Martian soil is due to superoxide ions, Science, 289 ( 5486 ), 1909 – 1912.en_US
dc.identifier.citedreferenceYen, A. S., et al. ( 2006 ), Nickel on Mars: Constraints on meteoritic material at the surface, J. Geophys. Res., 111, E12S11, doi: 10.1029/2006JE002797.en_US
dc.identifier.citedreferenceZent, A. P., and C. P. Mckay ( 1994 ), The chemical‐reactivity of the Martian soil and implications for future missions, Icarus, 108 ( 1 ), 146 – 157.en_US
dc.identifier.citedreferenceZent, A. P., A. S. Ichimura, R. C. Quinn, and H. K. Harding ( 2008 ), The formation and stability of the superoxide radical (O(2)(−)) on rock‐forming minerals: Band gaps, hydroxylation state, and implications for Mars oxidant chemistry, J. Geophys. Res., 113, E09001, doi: 10.1029/2007JE003001.en_US
dc.identifier.citedreferenceAcheson, R. J., and P. W. M. Jacobs ( 1970 ), Thermal decomposition of magnesium perchlorate and of ammonium perchlorate and magnesium perchlorate mixtures, J. Phys. Chem‐Us, 74 ( 2 ), 281 – 288.en_US
dc.identifier.citedreferenceAgee, C. B., et al. ( 2013 ), Unique meteorite from early Amazonian Mars: Water‐rich basaltic breccia Northwest Africa 7034, Science, 339 ( 6121 ), 780 – 785.en_US
dc.identifier.citedreferenceAnders, E. ( 1989 ), Prebiotic organic matter from comets and asteroids, Nature, 342, 255 – 257.en_US
dc.identifier.citedreferenceAnderson, M. S., I. Katz, M. Petkov, B. Blakkolb, J. Mennella, S. D'Agostino, J. Crisp, J. Evans, J. Feldman, and D. Limonadi ( 2012a ), In situ cleaning of instruments for the sensitive detection of organics on Mars, Rev. Sci. Instrum., 83 ( 10 ), 105,109.en_US
dc.identifier.citedreferenceAnderson, R. C., et al. ( 2012b ), Collecting samples in Gale Crater, Mars; an overview of the Mars Science Laboratory sample acquisition, sample processing and handling system, Space Sci. Rev., 170 ( 1–4 ), 57 – 75.en_US
dc.identifier.citedreferenceArcher Jr., P. D., et al. ( 2013 ), Abundances and implications of volatile‐bearing species from evolved gas analysis of the Rocknest aeolian bedform, Gale Crater, Mars, J. Geophys. Res. Planets.en_US
dc.identifier.citedreferenceBecker, L., D. P. Glavin, and J. L. Bada ( 1997 ), Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice, Geochimica Et Cosmochimica Acta, 61 ( 2 ), 475 – 481.en_US
dc.identifier.citedreferenceBenner, S. A., K. G. Devine, L. N. Matveeva, and D. H. Powell ( 2000 ), The missing organic molecules on Mars, Proc. Natl. Acad. Sci. USA, 97 ( 6 ), 2425 – 2430.en_US
dc.identifier.citedreferenceBiemann, K., and J. L. Bada ( 2011 ), Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro‐González et al., J. Geophys. Res., 116, E12001, doi: 10.1029/2011JE003869.en_US
dc.identifier.citedreferenceBiemann, K., et al. ( 1976 ), Search for organic and volatile inorganic‐compounds in 2 surface samples from Chryse‐Planitia Region of Mars, Science, 194 ( 4260 ), 72 – 76.en_US
dc.identifier.citedreferenceBiemann, K., et al. ( 1977 ), The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res., 82 ( 28 ), 4641 – 4658.en_US
dc.identifier.citedreferenceBish, D. L., et al. ( 2013 ), X‐ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest aeolian bedform at Gale Crater, Science, 341 ( 6153 ), doi: 10.1126/science.1238932.en_US
dc.identifier.citedreferenceBlake, D. F., et al. ( 2013 ), Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341 ( 6153 ), doi: 10.1126/science.1239505.en_US
dc.identifier.citedreferenceBonner, W. A., H. Hall, G. Chow, Y. Liang, and R. M. Lemmon ( 1985 ), The radiolysis and radioracemization of amino‐acids on clays, Orig. Life Evol. Biosph., 15 ( 2 ), 103 – 114.en_US
dc.identifier.citedreferenceBoynton, W. V., et al. ( 2009 ), Evidence for calcium carbonate at the Mars Phoenix Landing Site, Science, 325 ( 5936 ), 61 – 64.en_US
dc.identifier.citedreferenceBrinckerhoff, W. B., et al. ( 2013 ), Mars Organic Molecule Analyzer (MOMA) Mass Spectrometer for ExoMars 2018 and Beyond, paper presented at IEEE Aerospace Conference.en_US
dc.identifier.citedreferenceBruckner, J., G. Dreibus, R. Rieder, and H. Wanke ( 2003 ), Refined data of Alpha Proton X‐ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry, J. Geophys. Res., 108 ( E12 ), 8094, doi: 10.1029/2003JE002060.en_US
dc.identifier.citedreferenceBuch, A., D. P. Glavin, R. Sternberg, C. Szopa, C. Rodier, R. Navarro‐González, F. Raulin, M. Cabane, and P. R. Mahaffy ( 2006 ), A new extraction technique for in situ analyses of amino and carboxylic acids on Mars by gas chromatography mass spectrometry, Planet. Space Sci., 54 ( 15 ), 1592 – 1599.en_US
dc.identifier.citedreferenceCallahan, M. P., A. S. Burton, J. E. Elsila, E. M. Baker, K. E. Smith, D. P. Glavin, and J. P. Dworkin ( 2013 ), A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography‐mass spectrometry, Meteoritics Planet. Sci., 48 ( 5 ), 786 – 795.en_US
dc.identifier.citedreferenceCannon, K. M., B. Sutter, D. W. Ming, W. V. Boynton, and R. Quinn ( 2012 ), Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA), Geophys. Res. Lett., 39, L13203, doi: 10.1029/2012GL051952.en_US
dc.identifier.citedreferenceCatling, D. C., M. W. Claire, K. J. Zahnle, R. C. Quinn, B. C. Clark, M. H. Hecht, and S. Kounaves ( 2010 ), Atmospheric origins of perchlorate on Mars and in the Atacama, J. Geophys. Res., 115, E00E11, doi: 10.1029/2009JE003425.en_US
dc.identifier.citedreferenceChun, S. F. S., K. D. Pang, J. A. Cutts, and J. M. Ajello ( 1978 ), Photocatalytic oxidation of organic‐compounds on Mars, Nature, 274 ( 5674 ), 875 – 876.en_US
dc.identifier.citedreferenceClark, B. C., A. K. Baird, R. J. Weldon, D. M. Tsusaki, L. Schnabel, and M. P. Candelaria ( 1982 ), Chemical‐composition of Martian fines, J. Geophys. Res., 87 ( Nb12 ), 59 – 67.en_US
dc.identifier.citedreferenceCockell, C. S., and J. A. Raven ( 2004 ), Zones of photosynthetic potential on Mars and the early Earth, Icarus, 169 ( 2 ), 300 – 310.en_US
dc.identifier.citedreferenceDartnell, L. R., L. Desorgher, J. M. Ward, and A. J. Coates ( 2007 ), Martian sub‐surface ionising radiation: Biosignatures and geology, Biogeosciences, 4 ( 4 ), 545 – 558.en_US
dc.identifier.citedreferenceDevlin, D. J., and P. J. Herley ( 1986 ), Thermal‐decomposition and dehydration of magnesium perchlorate hexahydrate, Thermochim. Acta, 104, 159 – 178.en_US
dc.identifier.citedreferenceEigenbrode, J. L., et al. ( 2013 ), Fluorocarbon contamination from the drill on the Mars Science Laboratory: Potential science impact on detecting Martian organics by Sample Analysis at Mars (SAM), in Lunar Planet. Sci XLIV, edited, Abstract #1652.en_US
dc.identifier.citedreferenceEncrenaz, T., B. Bezard, T. K. Greathouse, M. J. Richter, J. H. Lacy, S. K. Atreya, A. S. Wong, S. Lebonnois, F. Lefevre, and F. Forget ( 2004 ), Hydrogen peroxide on Mars: Evidence for spatial and seasonal variations, Icarus, 170 ( 2 ), 424 – 429.en_US
dc.identifier.citedreferenceEricksen, G. E. ( 1983 ), The Chilean nitrate deposits, Am. Sci., 71 ( 4 ), 366 – 374.en_US
dc.identifier.citedreferenceFlynn, G. J. ( 1996 ), The delivery of organic matter from asteroids and comets to the early surface of Mars, Earth Moon Planets, 72 ( 1–3 ), 469 – 474.en_US
dc.identifier.citedreferenceMcAdam, A. C., et al. ( 2013 ), Evidence for sulfur‐bearing phases in Martian soil fines from SAM volatile analyses at Rocknest, J. Geophys. Res. Planets.en_US
dc.identifier.citedreferenceFlynn, G. J., and D. S. Mckay ( 1990 ), An assessment of the meteoritic contribution to the Martian soil, J. Geophys. Res., 95 ( B9 ), 14,497 – 14,509.en_US
dc.identifier.citedreferenceFuruichi, R., T. Ishii, and K. Kobayash ( 1974 ), Phenomenological study of catalytic thermal‐decomposition of potassium perchlorate by iron(II) oxides with different preparing histories, J. Therm. Anal., 6 ( 3 ), 305 – 320.en_US
dc.identifier.citedreferenceGaneff, J. M., and J. C. Jungers ( 1948 ), Tensions de Vapeur du Systeme CH 3 Cl‐CH 2 Cl 2, Bull. Soc. Chim. Belg., 57, 82 – 87.en_US
dc.identifier.citedreferenceGorocs, N., D. Mudri, J. Matyasi, and J. Balla ( 2013 ), The determination of GC‐MS relative molar responses of some n‐alkanes and their halogenated analogs, J. Chromatogr. Sci., 51 ( 2 ), 138 – 145.en_US
dc.identifier.citedreferenceGrady, M. M., A. B. Verchovsky, and I. P. Wright ( 2004 ), Magmatic carbon in Martian meteorites: Attempts to constrain the carbon cycle on Mars, Int. J. Astrobiol., 3, 117 – 124.en_US
dc.identifier.citedreferenceGrotzinger, J. P., et al. ( 2012 ), Mars Science Laboratory Mission and Science Investigation, Space Sci. Rev., 170 ( 1–4 ), 5 – 56.en_US
dc.identifier.citedreferenceHecht, M. H., et al. ( 2009 ), Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site, Science, 325 ( 5936 ), 64 – 67.en_US
dc.identifier.citedreferenceHsu, C. C., and J. J. McKetta ( 1964 ), Pressure‐volume‐temperature properties of methyl chloride, J. Chem. Eng. Data, 9 ( 1 ), 45 – 51.en_US
dc.identifier.citedreferenceJagadeesan, D., M. Eswaramoorthy, and C. N. R. Rao ( 2009 ), Investigations of the conversion of inorganic carbonates to methane, Chemsuschem, 2 ( 9 ), 878 – 882.en_US
dc.identifier.citedreferenceJull, A. J. T., C. Courtney, D. A. Jeffrey, and J. W. Beck ( 1998 ), Isotopic evidence for a terrestrial source of organic compounds found in Martian meteorites Allan Hills 84001 and Elephant Moraine 79001, Science, 279 ( 5349 ), 366 – 369.en_US
dc.identifier.citedreferenceKarwasz, G. P., R. S. Brusa, A. Piazza, and A. Zecca ( 1999 ), Total cross sections for electron scattering on chloromethanes: Formulation of the additivity rule, Phys. Rev. A, 59 ( 2 ), 1341 – 1347.en_US
dc.identifier.citedreferenceten Kate, I. L., J. R. C. Garry, Z. Peeters, R. Quinn, B. Foing, and P. Ehrenfreund ( 2005 ), Amino acid photostability on the Martian surface, Meteorit. Planet. Sci., 40 ( 8 ), 1185 – 1193.en_US
dc.identifier.citedreferenceKeller, J. M., et al. ( 2006 ), Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res., 111, E03S08, doi: 10.1029/2006JE002679.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.