Show simple item record

Paclitaxel resistance by random mutagenesis of α‐tubulin

dc.contributor.authorYin, Shanghuaen_US
dc.contributor.authorZeng, Changqingen_US
dc.contributor.authorHari, Malathien_US
dc.contributor.authorCabral, Fernandoen_US
dc.date.accessioned2014-01-08T20:34:26Z
dc.date.available2015-02-03T16:14:39Zen_US
dc.date.issued2013-12en_US
dc.identifier.citationYin, Shanghua; Zeng, Changqing; Hari, Malathi; Cabral, Fernando (2013). "Paclitaxel resistance by random mutagenesis of α‐tubulin." Cytoskeleton 70(12): 849-862.en_US
dc.identifier.issn1949-3584en_US
dc.identifier.issn1949-3592en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102075
dc.publisherHumana Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNeurological Defectsen_US
dc.subject.otherDrug Resistanceen_US
dc.subject.otherMicrotubulesen_US
dc.subject.otherCanceren_US
dc.subject.otherVinblastineen_US
dc.subject.otherTaxanesen_US
dc.subject.otherMitosisen_US
dc.subject.otherMultinucleationen_US
dc.titlePaclitaxel resistance by random mutagenesis of α‐tubulinen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102075/1/cm21154-sup-0001-suppfig1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102075/2/cm21154-sup-0002-suppfig2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102075/3/cm21154.pdf
dc.identifier.doi10.1002/cm.21154en_US
dc.identifier.sourceCytoskeletonen_US
dc.identifier.citedreferenceMitchison T, Kirschner MW. 1984. Dynamic instability of microtubules. Nature 312: 237 – 242.en_US
dc.identifier.citedreferenceKumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M, Yates L, Robb S, Uyanik G, Mancini GMS, et al. 2010. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Gen 19: 2817 – 2827.en_US
dc.identifier.citedreferenceKung AL, Sherwood SW, Schimke RT. 1990. Cell line‐specific differences in the control of cell cycle progression in the absence of mitosis. Proc Natl Acad Sci USA 87: 9553 – 9557.en_US
dc.identifier.citedreferenceLecourtois M, Poirier K, Friocourt G, Jaglin X, Goldenberg A, Saugier‐Veber P, Chelly J, Laquerriere A. 2010. Human lissencephaly with cerebellar hypoplasia due to mutations in TUBA1A: Expansion of the foetal neuropathological phenotype. Acta Neuropathol 119: 779 – 789.en_US
dc.identifier.citedreferenceLeDizet M, Piperno G. 1987. Identification of an acetylation site of Chlamydomonas α‐tubulin. Proc Natl Acad Sci USA 84: 5720 – 5724.en_US
dc.identifier.citedreferenceLi H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH. 2002. Microtubule structure at 8 Å resolution. Structure 10: 1317 – 1328.en_US
dc.identifier.citedreferenceLoganzo F, Hari M, Annable T, Tan X, Morilla DB, Musto S, Zask A, Kaplan J, Minnick AAJ, May MK, et al. 2004. Cells resistant to HTI‐286 do not overexpress P‐glycoprotein but have reduced drug accumulation and a point mutation in alpha‐tubulin. Mol Cancer Ther 3: 1319 – 1327.en_US
dc.identifier.citedreferenceMartello LA, Verdier‐Pinard P, Shen H‐J, He L, Torres K, Orr GA, Horwitz SB. 2003. Elevated levels of microtubule destabilizing factors in a taxol‐resistant/dependent A549 cell line with an α‐tubulin mutation. Cancer Res 63: 1207 – 1213.en_US
dc.identifier.citedreferenceMinotti AM, Barlow SB, Cabral F. 1991. Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem 266: 3987 – 3994.en_US
dc.identifier.citedreferenceMorris‐Rosendahl DJ, Najm J, Lachmeijer AM, Sztriha L, Martins M, Kuechler A, Haug V, Zeschnigk C, Martin P, Santos M. 2008. Refining the phenotype of alpha‐1 α‐tubulin (TUB1A) mutation in patients with classical lissencephaly. Clin Genet 74: 425 – 433.en_US
dc.identifier.citedreferenceNogales E, Wolf SG, Downing KH. 1998. Structure of the αβ tubulin dimer by electron crystallography. Nature 391: 199 – 203.en_US
dc.identifier.citedreferenceNogales E, Whittaker M, Milligan RA, Downing KH. 1999. High‐resolution model of the microtubule. Cell 96: 79 – 88.en_US
dc.identifier.citedreferencePiperno G, LeDizet M, Chang X. 1987. Microtubules containing acetylated alpha tubulin in mammalian cells in culture. J Cell Biol 104: 289 – 302.en_US
dc.identifier.citedreferencePoirier K, Keays DA, Francis F, Saillour Y, Bahi N, Manouvrier S, Fallet‐Bianco C, Pasquier L, Toutain A, Tuy FP, et al. 2007. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat 28: 1055 – 1064.en_US
dc.identifier.citedreferencePoirier K, Saillour Y, Fourniol F, Francis F, Souville I, Valence S, Desguerre I, Marie Lepage J, Boddaert N, Line Jacquemont M, et al. 2013. Expanding the spectrum of TUBA1A‐related cortical dysgenesis to polymicrogyria. Eur J Hum Genet 21: 381 – 385.en_US
dc.identifier.citedreferencePoruchynsky MS, Kim JH, Nogales E, Annable T, Loganzo F, Greenberger LM, Sackett DL, Fojo T. 2004. Tumor cells resistant to a microtubule‐depolymerizing hemiasterlin analogue, HTI‐286, have mutations in alpha‐ or beta‐tubulin and increased microtubule stability. Biochemistry 43: 13944 – 13954.en_US
dc.identifier.citedreferenceSchibler M, Cabral F. 1986. Taxol‐dependent mutants of Chinese hamster ovary cells with alterations in α‐ and β‐tubulin. J Cell Biol 102: 1522 – 1531.en_US
dc.identifier.citedreferenceSheir‐Neiss G, Lai MH, Morris NR. 1978. Identification of a gene for β‐tubulin in Aspergillus nidulans. Cell 15: 639 – 647.en_US
dc.identifier.citedreferenceThomas JH, Neff NF, Botstein D. 1985. Isolation and characterization of mutations in the beta‐tubulin gene of Saccharomyces cerevisiae. Genetics 112: 715 – 734.en_US
dc.identifier.citedreferenceTischfield MA, Cederquist GY, Gupta MLJ, Engle EC. 2011. Phenotypic spectrum of the tubulin‐related disorders and functional implications of disease‐causing mutations. Curr Opin Genet Dev 21: 286 – 294.en_US
dc.identifier.citedreferenceWang Y, Yin S, Blade K, Cooper G, Menick DR, Cabral F. 2006. Mutations at Leucine 215 of β‐tubulin affect paclitaxel sensitivity by two distinct mechanisms. Biochemistry 45: 185 – 194.en_US
dc.identifier.citedreferenceWestermann S, Weber K. 2003. Post‐translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4: 938 – 947.en_US
dc.identifier.citedreferenceYang H, Ganguly A, Cabral F. 2010. Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs. J Biol Chem 285: 32242 – 32250.en_US
dc.identifier.citedreferenceYin S, Bhattacharya R, Cabral F. 2010. Human mutations that confer paclitaxel resistance. Mol Cancer Ther 9: 327 – 335.en_US
dc.identifier.citedreferenceYin S, Zeng C, Hari M, Cabral F. 2012. Random mutagenesis of β‐tubulin defines a set of dispersed mutations that confer paclitaxel resistance. Pharm Res 29: 2994 – 3006.en_US
dc.identifier.citedreferenceAbraham I, Marcus M, Cabral F, Gottesman MM. 1983. Mutations in α‐ and β‐tubulin affect spindle formation in Chinese hamster ovary cells. J Cell Biol 97: 1055 – 1061.en_US
dc.identifier.citedreferenceBahi‐Buisson N, Poirier K, Boddaert N, Saillour Y, Castelnau L, Philip N, Buyse G, Villard L, Joriot S, Marret S, et al. 2008. Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet 45: 647 – 653.en_US
dc.identifier.citedreferenceBegaye A, Trostel S, Zhao Z, Taylor RE, Schriemer DC, Sackett DL. 2011. Mutations in the beta‐tubulin binding site for peloruside A confer resistance by targeting a cleft significant in side chain binding. Cell Cycle 10: 3387 – 3396.en_US
dc.identifier.citedreferenceBhattacharya R, Cabral F. 2004. A ubiquitous β‐tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol Biol Cell 15: 3123 – 3131.en_US
dc.identifier.citedreferenceBoggs B, Cabral F. 1987. Mutations affecting assembly and stability of tubulin: Evidence for a non‐essential β‐tubulin in CHO cells. Mol Cell Biol 7: 2700 – 2707.en_US
dc.identifier.citedreferenceCabral F. 1983. Isolation of Chinese hamster ovary cell mutants requiring the continuous presence of taxol for cell division. J Cell Biol 97: 22 – 29.en_US
dc.identifier.citedreferenceCabral F. 2001. Factors determining cellular mechanisms of resistance to antimitotic drugs. Drug Resistance Updates 3: 1 – 6.en_US
dc.identifier.citedreferenceCabral F. 2008. Mechanisms of resistance to drugs that interfere with microtubule assembly. In: Fojo AT, editor. Cancer Drug Discovery and Development: The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Totowa, NJ: Humana Press. pp 337 – 356.en_US
dc.identifier.citedreferenceCabral F, Gottesman MM. 1978. The determination of similarities in amino acid composition among proteins separated by two‐dimensional gel electrophoresis. Anal Biochem 91: 548 – 556.en_US
dc.identifier.citedreferenceCabral F, Schatz G. 1979. High resoultion one‐ and two‐dimensional electrophoretic analysis of mitochondrial membrane proteins. Methods Enzymol 56: 602 – 613.en_US
dc.identifier.citedreferenceCabral F, Sobel ME, Gottesman MM. 1980. CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered β‐tubulin. Cell 20: 29 – 36.en_US
dc.identifier.citedreferenceCabral F, Wible L, Brenner S, Brinkley BR. 1983. Taxol‐requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly. J Cell Biol 97: 30 – 39.en_US
dc.identifier.citedreferenceCabral F, Brady RC, Schibler MJ. 1986. A mechanism of cellular resistance to drugs that interfere with microtubule assembly. Ann N Y Acad Sci 466: 745 – 756.en_US
dc.identifier.citedreferenceDeLano WL. 2005. Macpymol: A Pymol‐Based Molecular Graphics Application for Mac OSX. South San Francisco, CA: DeLano Scientific LLC.en_US
dc.identifier.citedreferenceDumontet C, Jordan MA. 2010. Microtubule‐binding agents: A dynamic field of cancer therapeutics. Nat Rev Drug Discov 9: 790 – 803.en_US
dc.identifier.citedreferenceElliott EM, Okayama H, Sarangi F, Henderson G, Ling V. 1985. Differential expression of three α‐tubulin genes in Chinese hamster ovary cells. Mol Cell Biol 5: 236 – 241.en_US
dc.identifier.citedreferenceElliott EM, Henderson G, Sarangi F, Ling V. 1986. Complete sequence of three α‐tubulin cDNAs in Chinese hamster ovary cells: Each encodes a distinct α‐tubulin isoprotein. Mol Cell Biol 6: 906 – 913.en_US
dc.identifier.citedreferenceFallet‐Bianco C, Loeuillet L, Poirier K, Loget P, Chapon F, Pasquier L, Saillour Y, Beldjord C, Chelly J, Francis F. 2008. Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A. Brain 131: 2304 – 2320.en_US
dc.identifier.citedreferenceGanguly A, Cabral F. 2011. New insights into mechanisms of resistance to microtubule inhibitors. Biochim Biophys Acta 1816: 164 – 171.en_US
dc.identifier.citedreferenceGanguly A, Yang H, Cabral F. 2010. Paclitaxel dependent cell lines reveal a novel drug activity. Mol Cancer Ther 9: 2914 – 2923.en_US
dc.identifier.citedreferenceGanguly A, Yang H, Cabral F. 2011. Overexpression of mitotic centromere‐associated kinesin stimulates microtubule detachment and confers resistance to paclitaxel. Mol Cancer Ther 10: 929 – 937.en_US
dc.identifier.citedreferenceGiannakakou P, Sackett DL, Kang Y‐K, Zhan Z, Buters JTM, Fojo T, Poruchynsky MS. 1997. Paclitaxel‐resistant human ovarian cancer cells have mutant β‐tubulins that exhibit impaired paclitaxel‐driven polymerization. J Biol Chem 272: 17118 – 17125.en_US
dc.identifier.citedreferenceGiannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T. 2000. A common pharmacophore for epothilone and taxanes: Molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 97: 2904 – 2909.en_US
dc.identifier.citedreferenceGonzalez‐Garay ML, Chang L, Blade K, Menick DR, Cabral F. 1999. A β‐tubulin leucine cluster involved in microtubule assembly and paclitaxel resistance. J Biol Chem 274: 23875 – 23882.en_US
dc.identifier.citedreferenceGossen M, Bujard H. 1992. Tight control of gene expression in mammalian cells by tetracycline‐responsive promoters. Proc Natl Acad Sci USA 89: 5547 – 5551.en_US
dc.identifier.citedreferenceHari M, Wang Y, Veeraraghavan S, Cabral F. 2003. Mutations in α‐ and β‐tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine. Mol Cancer Ther 2: 597 – 605.en_US
dc.identifier.citedreferenceHuzil JT, Chen K, Kurgan L, Tuszynski JA. 2007. The roles of beta‐tubulin mutations and isotype expression in acquired drug resistance. Cancer Inform 3: 159 – 181.en_US
dc.identifier.citedreferenceJanke C, Bulinski JC. 2011. Post‐translational regulation of the microtubule cytoskeleton: Mechanisms and functions. Nat Rev Mol Cell Biol 12: 773 – 786.en_US
dc.identifier.citedreferenceJansen AC, Oostra A, Desprechins B, De Vlaeminck Y, Verhelst H, Regal L, Verloo P, Bockaert N, Keymolen K, Seneca S, et al. 2011. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Neurology 76: 988 – 992.en_US
dc.identifier.citedreferenceJordan MA, Wilson L. 2004. Microtubules as a target for anticancer drugs. Nat Rev 4: 253 – 265.en_US
dc.identifier.citedreferenceKanakkanthara A, Wilmes A, O'Brate A, Escuin D, Chan A, Gjyrezi A, Crawford J, Rawson P, Kivell B, Northcote PT, et al. 2011. Peloruside‐ and laulimalide‐resistant human ovarian carcinoma cells have betaI‐tubulin mutations and altered expression of betaII‐ and betaIII‐tubulin isotypes. Mol Cancer Ther 10: 1419 – 1429.en_US
dc.identifier.citedreferenceKeating TJ, Peloquin JG, Rodionov VI, Momcilovic D, Borisy GG. 1997. Microtubule release from the centrosome. Proc Natl Acad Sci USA 94: 5078 – 5083.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.