Show simple item record

The transcription activation domains of Fos and Jun induce DNA bending through electrostatic interactions

dc.contributor.authorKerppola, Tom K.en_US
dc.contributor.authorCurran, Tomen_US
dc.date.accessioned2014-01-08T20:34:28Z
dc.date.available2014-01-08T20:34:28Z
dc.date.issued1997-05-15en_US
dc.identifier.citationKerppola, Tom K.; Curran, Tom (1997). "The transcription activation domains of Fos and Jun induce DNA bending through electrostatic interactions." The EMBO Journal 16(10): 2907-2916. <http://hdl.handle.net/2027.42/102081>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102081
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherDNA Curvatureen_US
dc.subject.otherLeucine Zipperen_US
dc.subject.otherPhasing Analysisen_US
dc.subject.otherCharge Effecten_US
dc.subject.otherBasic Regionen_US
dc.titleThe transcription activation domains of Fos and Jun induce DNA bending through electrostatic interactionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid9184234en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102081/1/emboj7590272.pdf
dc.identifier.doi10.1093/emboj/16.10.2907en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferencePérez‐Mart'n J and Espinosa M ( 1993 ) Protein‐induced bending as a transcriptional switch. Science, 260, 805 – 807.en_US
dc.identifier.citedreferenceNatesan S and Gilman MZ ( 1993 ) DNA bending and orientation‐dependent function of YY1 in the c‐ fos promoter. Genes Dev, 7, 2497 – 2509.en_US
dc.identifier.citedreferenceO'Neil KT, Hoess RH and DeGrado WF ( 1990 ) Design of DNA‐binding peptides based on the leucine zipper motif. Science, 249, 774 – 778.en_US
dc.identifier.citedreferenceO'Shea EK, Klemm JD, Kim PS and Alber T ( 1991 ) X‐ray structure of the GCN4 leucine zipper, a two‐stranded, parallel coiled coil. Science, 254, 539 – 544.en_US
dc.identifier.citedreferenceOakley MG and Dervan PB ( 1990 ) Structural motif of the GCN4 DNA binding domain characterized by affinity cleaving. Science, 248, 847 – 850.en_US
dc.identifier.citedreferencePhillips K and Phillips SEV ( 1994 ) Electrostatic activation of Escherichia coli methionine repressor. Structure, 2, 309 – 316.en_US
dc.identifier.citedreferencePil PM, Chow CS and Lippard SJ ( 1993 ) High‐mobility‐group 1 protein mediates DNA bending as determined by ring closures. Proc Natl Acad Sci USA, 90, 9465 – 9469.en_US
dc.identifier.citedreferenceRajaram N and Kerppola TK ( 1997 ) DNA bending by Fos–Jun and the orientation of heterodimer binding depend on the sequence of the AP–1 site. EMBO J, 16, 2907 – 2916.en_US
dc.identifier.citedreferenceRobertson LM, Kerppola TK, Vendrell M, Luk D, Smeyne RJ, Bocchiaro C, Morgan JI and Curran T ( 1995 ) Regulation of c–fos expression in transgenic mice requires multiple interdependent transcription control elements. Neuron, 14, 241 – 252.en_US
dc.identifier.citedreferenceSchultz SC, Shields GC and Steitz TA ( 1991 ) Crystal structure of a CAP–DNA complex: the DNA is bent by 90 degrees. Science, 253, 1001 – 1007.en_US
dc.identifier.citedreferenceSprous D, Zacharias W, Wood ZA and Harvey SC ( 1995 ) Dehydrating agents sharply reduce curvature in DNAs containing A tracts. Nucleic Acids Res, 23, 1816 – 1821.en_US
dc.identifier.citedreferenceStrauss JK and Maher LJ, III ( 1994 ) DNA bending by asymmetric phosphate neutralization. Science, 266, 1829 – 1834.en_US
dc.identifier.citedreferenceStrauss JK, Roberts C, Nelson MG, Switzer C and Maher LJ, III ( 1996 ) DNA bending by hexamethylene‐tethered ammonium ions. Proc Natl Acad Sci USA, 93, 9515 – 9520.en_US
dc.identifier.citedreferenceSutherland JA, Cook A, Bannister AJ and Kouzarides T ( 1992 ) Conserved motifs in Fos and Jun define a new class of activation domain. Genes Dev, 6, 1810 – 1819.en_US
dc.identifier.citedreferenceTalanian RV, McKnight CJ and Kim PS ( 1990 ) Sequence‐specific DNA binding by a short peptide dimer. Science, 249, 769 – 771.en_US
dc.identifier.citedreferenceThomas PG, Russell AJ and Fersht AR ( 1985 ) Tailoring the pH dependence of enzyme catalysis using protein engineering. Nature, 318, 375 – 376.en_US
dc.identifier.citedreferenceThompson JF and Landy A ( 1988 ) Empirical estimation of protein‐induced DNA bending angles: applications to lambda site‐specific recombination complexes. Nucleic Acids Res, 16, 9687 – 9705.en_US
dc.identifier.citedreferenceZacharias M, Luty BA, Davis ME and McCammon JA ( 1992 ) Poisson–Boltzmann analysis of the lambda repressor–operator interaction. Biophys J, 63, 1280 – 1285.en_US
dc.identifier.citedreferenceZinkel SS and Crothers DM ( 1987 ) DNA bend direction by phase sensitive detection. Nature, 328, 178 – 181.en_US
dc.identifier.citedreferenceAbate C, Luk D and Curran T ( 1991 ) Transcriptional regulation by Fos and Jun in vitro: interaction among multiple activator and regulatory domains. Mol Cell Biol, 11, 3624 – 3632.en_US
dc.identifier.citedreferenceAnsari AZ, Bradner JE and O'Halloran TV ( 1995 ) DNA‐bend modulation in a repressor‐to‐activator switching mechanism. Nature, 374, 371 – 375.en_US
dc.identifier.citedreferenceBecker JC, Nikroo A, Brabletz T and Reisfeld RA ( 1995 ) DNA loops induced by cooperative binding of transcriptional activator proteins and preinitiation complexes. Proc Natl Acad Sci USA, 92, 9727 – 9731.en_US
dc.identifier.citedreferenceBrennan RG, Roderick SL, Takeda Y and Matthews BW ( 1990 ) Protein–DNA conformational changes in the crystal structure of a lambda Cro–operator complex. Proc Natl Acad Sci USA, 87, 8165 – 8169.en_US
dc.identifier.citedreferenceCrothers DM and Drak J ( 1992 ) Global features of DNA structure by comparative gel electrophoresis. Methods Enzymol, 212, 46 – 71.en_US
dc.identifier.citedreferenceCrothers DM, Haran TE and Nadeau JG ( 1990 ) Intrinsically bent DNA. J Biol Chem, 265, 7093 – 7096.en_US
dc.identifier.citedreferenceDickerson RE, Goodsell DS and Neidle S ( 1994 ) ‘… the tyranny of the lattice …’. Proc Natl Acad Sci USA, 91, 3579 – 3583.en_US
dc.identifier.citedreferenceDiGabriele AD, Sanderson MR and Steitz TA ( 1989 ) Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. Proc Natl Acad Sci USA, 86, 1816 – 1820.en_US
dc.identifier.citedreferenceFalvo JV, Thanos D and Maniatis T ( 1995 ) Reversal of intrinsic DNA bends in the IFNβ gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell, 83, 1101 – 1111.en_US
dc.identifier.citedreferenceGao J, Mammen M and Whitesides GM ( 1996 ) Evaluating electrostatic contributions to binding with the use of protein charge ladders. Science, 272, 535 – 537.en_US
dc.identifier.citedreferenceGiese K, Kingsley C, Kirshner JR and Grosschedl R ( 1995 ) Assembly and function of a TCR alpha enhancer complex is dependent on LEF‐1‐induced DNA bending and multiple protein–protein interactions. Genes Dev, 9, 995 – 1008.en_US
dc.identifier.citedreferenceGlover JN and Harrison SC ( 1995 ) Crystal structure of the heterodimeric bZIP transcription factor c‐Fos–c‐Jun bound to DNA. Nature, 373, 257 – 261.en_US
dc.identifier.citedreferenceGoodrich JA, Cutler G and Tjian R ( 1996 ) Contacts in context: promoter specificity and macromolecular interactions in transcription. Cell, 84, 825 – 830.en_US
dc.identifier.citedreferenceGriffith JD, Wang YH, Kerppola T, Curran T, Zawel L and Reinberg D ( 1994 ) Electron microscopic visualization of active transcription complexes. J Cell Biochem, S18C, 12en_US
dc.identifier.citedreferenceGrigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA and Wagner EF ( 1994 ) c‐Fos: a key regulator of osteoclast–macrophage lineage determination and bone remodeling. Science, 266, 443 – 448.en_US
dc.identifier.citedreferenceHilberg F, Aguzzi A, Howells N and Wagner EF ( 1993 ) c‐jun is essential for normal mouse development and hepatogenesis. Nature, 365, 179 – 181.en_US
dc.identifier.citedreferenceHoover TR, Santero E, Porter S and Kustu S ( 1990 ) The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell, 63, 11 – 22.en_US
dc.identifier.citedreferenceIto K et al. ( 1996 ) c‐Jun stimulates origin‐dependent DNA unwinding by polyomavirus large T antigen. EMBO J, 15, 5636 – 5646.en_US
dc.identifier.citedreferenceJin Y, Mead J, Li T, Wolberger C and Vershon AK ( 1995 ) Altered DNA recognition and bending by insertions in the α2 tail of the yeast a1/α2 homeodomain heterodimer. Science, 270, 290 – 293.en_US
dc.identifier.citedreferenceKahn JD and Crothers DM ( 1992 ) Protein‐induced bending and DNA cyclization. Proc Natl Acad Sci USA, 89, 6343 – 6347.en_US
dc.identifier.citedreferenceKerppola TK ( 1996 ) Fos and Jun bend the AP‐1 site: effects of probe geometry on the detection of protein induced DNA bending. Proc Natl Acad Sci USA, 93, 10117 – 10122.en_US
dc.identifier.citedreferenceKerppola TK and Curran T ( 1991a ) Fos–Jun heterodimers and Jun homodimers bend DNA in opposite orientations: implications for transcription factor cooperativity. Cell, 66, 317 – 326.en_US
dc.identifier.citedreferenceKerppola TK and Curran T ( 1991b ) GDNA bending by Fos and Jun: the flexible hinge model. Science, 254, 1210 – 1214.en_US
dc.identifier.citedreferenceKim JL, Nikolov DB and Burley SK ( 1993a ) Co‐crystal structure of TBP recognizing the minor groove of a TATA element. Nature, 365, 520 – 527.en_US
dc.identifier.citedreferenceKim Y, Geiger JH, Hahn S and Sigler PB ( 1993b ) Crystal structure of a yeast TBP/TATA‐box complex. Nature, 365, 512 – 520.en_US
dc.identifier.citedreferenceKonig P and Richmond TJ ( 1993 ) The X‐ray structure of the GCN4‐bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J Mol Biol, 233, 139 – 154.en_US
dc.identifier.citedreferenceLeonard DA, Rajaram N and Kerppola TK ( 1997 ) Structural basis of DNA bending and oriented heterodimer binding by the bZIP domains of Fos and Jun. Proc Natl Acad Sci USA, 94, 4913 – 4918.en_US
dc.identifier.citedreferenceLi T, Stark MR, Johnson AD and Wolberger C ( 1995 ) Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA. Science, 270, 262 – 269.en_US
dc.identifier.citedreferenceLobell RB and Schleif RF ( 1990 ) DNA looping and unlooping by AraC protein. Science, 250, 528 – 532.en_US
dc.identifier.citedreferenceLove JJ, Li X, Case DA, Giese K, Grosschedl R and Wright PE ( 1995 ) Structural basis for DNA bending by the architectural transcription factor LEF‐1. Nature, 376, 791 – 795.en_US
dc.identifier.citedreferenceMandal N, Su W, Haber R, Adhya S and Echols H ( 1990 ) DNA looping in cellular repression of transcription of the galactose operon. Genes Dev, 4, 410 – 418.en_US
dc.identifier.citedreferenceManning GS ( 1978 ) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys, 11, 179 – 246.en_US
dc.identifier.citedreferenceMartin ML, Lieberman PM and Curran T ( 1996 ) Fos–Jun dimerization promotes interaction of the basic region with TFIIE‐34 and TFIIF. Mol Cell Biol, 16, 2110 – 2118.en_US
dc.identifier.citedreferenceMetz R, Bannister AJ, Sutherland JA, Hagemeier C, O'Rourke EC, Cook A, Bravo R and Kouzarides T ( 1994 ) c‐Fos‐induced activation of a TATA‐box‐containing promoter involves direct contact with TATA‐box‐binding protein. Mol Cell Biol, 14, 6021 – 6029.en_US
dc.identifier.citedreferenceMirzabekov AD and Rich A ( 1979 ) Asymmetric lateral distribution of unshielded phosphate groups in nucleosomal DNA and its role in DNA bending. Proc Natl Acad Sci USA, 76, 1118 – 1121.en_US
dc.identifier.citedreferenceMisra VK, Hecht JL, Sharp KA, Friedman RA and Honig B ( 1994 ) Salt effects on protein–DNA interactions. The lambda cI repressor and Eco RI endonuclease. J Mol Biol, 238, 264 – 280.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.