Show simple item record

Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney

dc.contributor.authorSelf, Michelleen_US
dc.contributor.authorLagutin, Oleg Ven_US
dc.contributor.authorBowling, Bethen_US
dc.contributor.authorHendrix, Jaimeen_US
dc.contributor.authorCai, Yien_US
dc.contributor.authorDressler, Gregory Ren_US
dc.contributor.authorOliver, Guillermoen_US
dc.date.accessioned2014-01-08T20:34:29Z
dc.date.available2014-01-08T20:34:29Z
dc.date.issued2006-11-01en_US
dc.identifier.citationSelf, Michelle; Lagutin, Oleg V; Bowling, Beth; Hendrix, Jaime; Cai, Yi; Dressler, Gregory R; Oliver, Guillermo (2006). "Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney." The EMBO Journal 25(21): 5214-5228. <http://hdl.handle.net/2027.42/102083>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102083
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherHomeoboxen_US
dc.subject.otherMouseen_US
dc.subject.otherNephrogenesisen_US
dc.subject.otherSix2en_US
dc.subject.otherKidneyen_US
dc.titleSix2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidneyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid17036046en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102083/1/emboj7601381-sup-0006.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102083/2/emboj7601381-sup-0002.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102083/3/emboj7601381-sup-0007.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102083/4/emboj7601381-sup-0003.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102083/5/emboj7601381.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102083/6/emboj7601381-sup-0004.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102083/7/emboj7601381-sup-0005.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102083/8/emboj7601381-sup-0001.pdf
dc.identifier.doi10.1038/sj.emboj.7601381en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceSanchez MP, Silos‐Santiago I, Frisen J, He B, Lira SA, Barbacid M ( 1996 ) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382: 70 – 73en_US
dc.identifier.citedreferencePlachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P ( 1990 ) Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110: 643 – 651en_US
dc.identifier.citedreferenceQian J, Jiang Z, Li M, Heaphy P, Liu YH, Shackleford GM ( 2003 ) Mouse Wnt9b transforming activity, tissue‐specific expression, and evolution. Genomics 81: 34 – 46en_US
dc.identifier.citedreferenceQiao J, Cohen D, Herzlinger D ( 1995 ) The metanephric blastema differentiates into collecting system and nephron epithelia in vitro. Development 121: 3207 – 3214en_US
dc.identifier.citedreferenceSariola H, Saarma M ( 1999 ) GDNF and its receptors in the regulation of the ureteric branching. Int J Dev Biol 43: 413 – 418en_US
dc.identifier.citedreferenceSaxen L ( 1987 ) Organogenesis of the kidney. In Developmental and Cell Biology Series 19, Bard JBL, Barlow PW, Kirk DL (eds) Cambridge: Cambridge University Pressen_US
dc.identifier.citedreferenceSaxen L, Sariola H ( 1987 ) Early organogenesis of the kidney. Pediatr Nephrol 1: 385 – 392en_US
dc.identifier.citedreferenceSchaeren‐Wiemers N, Gerfin‐Moser A ( 1993 ) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin‐labelled cRNA probes. Histochemistry 100: 431 – 440en_US
dc.identifier.citedreferenceSchuchardt A, D'Agati V, Pachnis V, Costantini F ( 1996 ) Renal agenesis and hypodysplasia in ret‐k‐ mutant mice result from defects in ureteric bud development. Development 122: 1919 – 1929en_US
dc.identifier.citedreferenceShamley DR, Opperman LA, Buffenstein R, Ross FP ( 1992 ) Ontogeny of calbindin‐D28K and calbindin‐D9K in the mouse kidney, duodenum, cerebellum and placenta. Development 116: 491 – 496en_US
dc.identifier.citedreferenceShawlot W, Behringer RR ( 1995 ) Requirement for Lim1 in head‐organizer function. Nature 374: 425 – 430en_US
dc.identifier.citedreferenceStark K, Vainio S, Vassileva G, McMahon AP ( 1994 ) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt‐4. Nature 372: 679 – 683en_US
dc.identifier.citedreferenceTorres M, Gomez‐Pardo E, Dressler GR, Gruss P ( 1995 ) Pax‐2 controls multiple steps of urogenital development. Development 121: 4057 – 4065en_US
dc.identifier.citedreferenceTrupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar‐Grueso E, Pachnis V, Arumae U ( 1996 ) Functional receptor for GDNF encoded by the c‐ret proto‐oncogene. Nature 381: 785 – 789en_US
dc.identifier.citedreferenceTsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP ( 2000 ) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223: 77 – 90en_US
dc.identifier.citedreferenceVainio S, Lin Y ( 2002 ) Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3: 533 – 543en_US
dc.identifier.citedreferenceVainio SJ, Uusitalo MS ( 2000 ) A road to kidney tubules via the Wnt pathway. Pediatr Nephrol 15: 151 – 156en_US
dc.identifier.citedreferenceVega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR ( 1996 ) Glial cell line‐derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93: 10657 – 10661en_US
dc.identifier.citedreferenceVize PD, Woolf AS, Bard JBL ( 2003 ) The Kidney, from Normal Development to Congenital Disease. London: Academic Pressen_US
dc.identifier.citedreferenceWilkinson DG ( 1995 ) RNA detection using non‐radioactive in situ hybridization. Curr Opin Biotechnol 6: 20 – 23en_US
dc.identifier.citedreferenceXu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R ( 1999 ) Eya1‐deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23: 113 – 117en_US
dc.identifier.citedreferenceXu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D ( 2003 ) Six1 is required for the early organogenesis of mammalian kidney. Development 130: 3085 – 3094en_US
dc.identifier.citedreferenceYoshino K, Rubin JS, Higinbotham KG, Uren A, Anest V, Plisov SY, Perantoni AO ( 2001 ) Secreted Frizzled‐related proteins can regulate metanephric development. Mech Dev 102: 45 – 55en_US
dc.identifier.citedreferenceYu J, McMahon AP, Valerius MT ( 2004 ) Recent genetic studies of mouse kidney development. Curr Opin Genet Dev 14: 550 – 557en_US
dc.identifier.citedreferenceArmstrong JF, Pritchard‐Jones K, Bickmore WA, Hastie ND, Bard JB ( 1993 ) The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40: 85 – 97en_US
dc.identifier.citedreferenceBouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M ( 2002 ) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16: 2958 – 2970en_US
dc.identifier.citedreferenceBuckler AJ, Pelletier J, Haber DA, Glaser T, Housman DE ( 1991 ) Isolation, characterization, and expression of the murine Wilms' tumor gene (WT1) during kidney development. Mol Cell Biol 11: 1707 – 1712en_US
dc.identifier.citedreferenceCarroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP ( 2005 ) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9: 283 – 292en_US
dc.identifier.citedreferenceCho EA, Patterson LT, Brookhiser WT, Mah S, Kintner C, Dressler GR ( 1998 ) Differential expression and function of cadherin‐6 during renal epithelium development. Development 125: 803 – 812en_US
dc.identifier.citedreferenceCollins JF, Ghishan FK ( 1994 ) Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate (Na+/P(i)) transporter in the control and hypophosphatemic mouse. FASEB J 8: 862 – 868en_US
dc.identifier.citedreferenceCrossley PH, Martin GR ( 1995 ) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121: 439 – 451en_US
dc.identifier.citedreferenceDonovan MJ, Natoli TA, Sainio K, Amstutz A, Jaenisch R, Sariola H, Kreidberg JA ( 1999 ) Initial differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev Genet 24: 252 – 262en_US
dc.identifier.citedreferenceDressler GR ( 2002 ) Development of the excretory system. In Mouse Development: Patterning, Morphogenesis, and Organogenesis, Rossant J, Tam PPL (eds) pp 395 – 420. San Diego, CA: Academic Pressen_US
dc.identifier.citedreferenceDressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P ( 1990 ) Pax2, a new murine paired‐box‐containing gene and its expression in the developing excretory system. Development 109: 787 – 795en_US
dc.identifier.citedreferenceDressler GR, Douglass EC ( 1992 ) Pax‐2 is a DNA‐binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci USA 89: 1179 – 1183en_US
dc.identifier.citedreferenceDudley AT, Lyons KM, Robertson EJ ( 1995 ) A requirement for bone morphogenetic protein‐7 during development of the mammalian kidney and eye. Genes Dev 9: 2795 – 2807en_US
dc.identifier.citedreferenceDudley AT, Robertson EJ ( 1997 ) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208: 349 – 362en_US
dc.identifier.citedreferenceDurbec P, Marcos‐Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M, Sariola H, Pachnis V ( 1996 ) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381: 789 – 793en_US
dc.identifier.citedreferenceEkblom P, Alitalo K, Vaheri A, Timpl R, Saxen L ( 1980 ) Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci USA 77: 485 – 489en_US
dc.identifier.citedreferenceEkblom P, Klein G, Ekblom M, Sorokin L ( 1991 ) Laminin isoforms and their receptors in the developing kidney. Am J Kidney Dis 17: 603 – 605en_US
dc.identifier.citedreferenceFavor J, Sandulache R, Neuhauser‐Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, Schughart K ( 1996 ) The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal‐coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci USA 93: 13870 – 13875en_US
dc.identifier.citedreferenceFleming S, Symes CE ( 1987 ) The distribution of cytokeratin antigens in the kidney and in renal tumours. Histopathology 11: 157 – 170en_US
dc.identifier.citedreferenceFujii T, Pichel JG, Taira M, Toyama R, Dawid IB, Westphal H ( 1994 ) Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev Dyn 199: 73 – 83en_US
dc.identifier.citedreferenceGamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC ( 1994 ) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium–(potassium)–chloride cotransporter family expressed in kidney. J Biol Chem 269: 17713 – 17722en_US
dc.identifier.citedreferenceGao X, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA ( 2005 ) Angioblast‐mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development 132: 5437 – 5449en_US
dc.identifier.citedreferenceGrieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR ( 2005 ) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132: 3847 – 3857en_US
dc.identifier.citedreferenceGrobstein C ( 1955 ) Inductive interactions in the development of the mouse metanephros. J Exp Zool 130: 319 – 340en_US
dc.identifier.citedreferenceGruenwald P ( 1943 ) Stimulations of nephrogenic tissues by normal and abnormal inductors. Anat Rec 86: 321 – 335en_US
dc.identifier.citedreferenceHatini V, Huh SO, Herzlinger D, Soares VC, Lai E ( 1996 ) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF‐2. Genes Dev 10: 1467 – 1478en_US
dc.identifier.citedreferenceHebert SC, Mount DB, Gamba G ( 2004 ) Molecular physiology of cation‐coupled Cl − cotransport: the SLC12 family. Pflugers Arch 447: 580 – 593en_US
dc.identifier.citedreferenceHellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A ( 1996 ) Embryonic expression of glial cell‐line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial–mesenchymal interactions. Mech Dev 54: 95 – 105en_US
dc.identifier.citedreferenceHerzlinger D, Koseki C, Mikawa T, al‐Awqati Q ( 1992 ) Metanephric mesenchyme contains multipotent stem cells whose fate is restricted after induction. Development 114: 565 – 572en_US
dc.identifier.citedreferenceKalatzis V, Sahly I, El‐Amraoui A, Petit C ( 1998 ) Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio‐Oto‐Renal (BOR) syndrome. Dev Dyn 213: 486 – 499en_US
dc.identifier.citedreferenceKispert A, Vainio S, McMahon AP ( 1998 ) Wnt‐4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125: 4225 – 4234en_US
dc.identifier.citedreferenceKispert A, Vainio S, Shen L, Rowitch DH, McMahon AP ( 1996 ) Proteoglycans are required for maintenance of Wnt‐11 expression in the ureter tips. Development 122: 3627 – 3637en_US
dc.identifier.citedreferenceKreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R ( 1993 ) WT‐1 is required for early kidney development. Cell 74: 679 – 691en_US
dc.identifier.citedreferenceLaclef C, Souil E, Demignon J, Maire P ( 2003 ) Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech Dev 120: 669 – 679en_US
dc.identifier.citedreferenceLeimeister C, Bach A, Gessler M ( 1998 ) Developmental expression patterns of mouse sFRP genes encoding members of the secreted frizzled related protein family. Mech Dev 75: 29 – 42en_US
dc.identifier.citedreferenceLescher B, Haenig B, Kispert A ( 1998 ) sFRP‐2 is a target of the Wnt‐4 signaling pathway in the developing metanephric kidney. Dev Dyn 213: 440 – 451en_US
dc.identifier.citedreferenceLi X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG ( 2003 ) Eya protein phosphatase activity regulates Six1–Dach–Eya transcriptional effects in mammalian organogenesis. Nature 426: 247 – 254en_US
dc.identifier.citedreferenceLuo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G ( 1995 ) BMP‐7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9: 2808 – 2820en_US
dc.identifier.citedreferenceLyons KM, Hogan BL, Robertson EJ ( 1995 ) Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev 50: 71 – 83en_US
dc.identifier.citedreferenceMajumdar A, Vainio S, Kispert A, McMahon J, McMahon AP ( 2003 ) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130: 3175 – 3185en_US
dc.identifier.citedreferenceMansouri A, Chowdhury K, Gruss P ( 1998 ) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19: 87 – 90en_US
dc.identifier.citedreferenceMiner JH, Li C ( 2000 ) Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217: 278 – 289en_US
dc.identifier.citedreferenceMoore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A ( 1999 ) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126: 1845 – 1857en_US
dc.identifier.citedreferenceMoore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver‐Moore K, Rosenthal A ( 1996 ) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382: 76 – 79en_US
dc.identifier.citedreferenceMurer H, Forster I, Biber J ( 2004 ) The sodium phosphate cotransporter family SLC34. Pflugers Arch 447: 763 – 767en_US
dc.identifier.citedreferenceNishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T ( 2001 ) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128: 3105 – 3115en_US
dc.identifier.citedreferenceNishinakamura R, Osafune K ( 2006 ) Essential roles of sall family genes in kidney development. J Physiol Sci 56: 131 – 136en_US
dc.identifier.citedreferenceNishinakamura R, Takasato M ( 2005 ) Essential roles of Sall1 in kidney development. Kidney Int 68: 1948 – 1950en_US
dc.identifier.citedreferenceOliver G, Wehr R, Jenkins NA, Copeland NG, Cheyette BN, Hartenstein V, Zipursky SL, Gruss P ( 1995 ) Homeobox genes and connective tissue patterning. Development 121: 693 – 705en_US
dc.identifier.citedreferencePachnis V, Mankoo B, Costantini F ( 1993 ) Expression of the c‐ret proto‐oncogene during mouse embryogenesis. Development 119: 1005 – 1017en_US
dc.identifier.citedreferencePerantoni AO, Timofeeva O, Naillat F, Richman C, Pajni‐Underwood S, Wilson C, Vainio S, Dove LF, Lewandoski M ( 2005 ) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132: 3859 – 3871en_US
dc.identifier.citedreferencePichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H ( 1996 ) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382: 73 – 76en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.