Show simple item record

Impact of translational error‐induced and error‐free misfolding on the rate of protein evolution

dc.contributor.authorYang, Jian‐rongen_US
dc.contributor.authorZhuang, Shi‐meien_US
dc.contributor.authorZhang, Jianzhien_US
dc.date.accessioned2014-01-08T20:34:31Z
dc.date.available2014-01-08T20:34:31Z
dc.date.issued2010-12-21en_US
dc.identifier.citationYang, Jian‐rong ; Zhuang, Shi‐mei ; Zhang, Jianzhi (2010). "Impact of translational errorâ induced and errorâ free misfolding on the rate of protein evolution." Molecular Systems Biology 6(1): n/a-n/a. <http://hdl.handle.net/2027.42/102090>en_US
dc.identifier.issn1744-4292en_US
dc.identifier.issn1744-4292en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102090
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherProtein Misfoldingen_US
dc.subject.otherEvolutionary Rateen_US
dc.subject.otherExpression Levelen_US
dc.subject.otherMistranslationen_US
dc.titleImpact of translational error‐induced and error‐free misfolding on the rate of protein evolutionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102090/1/msb201078.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102090/2/msb201078-sup-0001.pdf
dc.identifier.doi10.1038/msb.2010.78en_US
dc.identifier.sourceMolecular Systems Biologyen_US
dc.identifier.citedreferenceTaverna DM, Goldstein RA ( 2002b ) Why are proteins so robust to site mutations? J Mol Biol 315: 479 – 484en_US
dc.identifier.citedreferenceTartaglia GG, Pechmann S, Dobson CM, Vendruscolo M ( 2007 ) Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem Sci 32: 204 – 206en_US
dc.identifier.citedreferenceTaverna DM, Goldstein RA ( 2002a ) Why are proteins marginally stable? Proteins 46: 105 – 109en_US
dc.identifier.citedreferenceTokuriki N, Tawfik DS ( 2009 ) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459: 668 – 673en_US
dc.identifier.citedreferenceWagner A ( 2005 ) Energy constraints on the evolution of gene expression. Mol Biol Evol 22: 1365 – 1374en_US
dc.identifier.citedreferenceWall DP, Hirsh AE, Fraser HB, Kumm J, Giaever G, Eisen MB, Feldman MW ( 2005 ) Functional genomic analysis of the rates of protein evolution. Proc Natl Acad Sci USA 102: 5483 – 5488en_US
dc.identifier.citedreferenceWang Z, Zhang J ( 2009 ) Why is the correlation between gene importance and gene evolutionary rate so weak? PLoS Genet 5: e1000329en_US
dc.identifier.citedreferenceWapinski I, Pfeffer A, Friedman N, Regev A ( 2007 ) Natural history and evolutionary principles of gene duplication in fungi. Nature 449: 54 – 61en_US
dc.identifier.citedreferenceWarnecke T, Hurst LD ( 2010 ) GroEL dependency affects codon usage‐‐support for a critical role of misfolding in gene evolution. Mol Syst Biol 6: 340en_US
dc.identifier.citedreferenceWilke CO ( 2004 ) Molecular clock in neutral protein evolution. BMC Genet 5: 25en_US
dc.identifier.citedreferenceWolf MY, Wolf YI, Koonin EV ( 2008 ) Comparable contributions of structural‐functional constraints and expression level to the rate of protein sequence evolution. Biol Direct 3: 40en_US
dc.identifier.citedreferenceWolf YI, Carmel L, Koonin EV ( 2006 ) Unifying measures of gene function and evolution. Proc Biol Sci 273: 1507 – 1515en_US
dc.identifier.citedreferenceWolf YI, Gopich IV, Lipman DJ, Koonin EV ( 2010 ) Relative contributions of intrinsic structural‐functional constraints and translation rate to the evolution of protein‐coding genes. Genome Biol Evol 2: 190 – 199en_US
dc.identifier.citedreferenceXia K, Manning M, Hesham H, Lin Q, Bystroff C, Colon W ( 2007 ) Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. Proc Natl Acad Sci USA 104: 17329 – 17334en_US
dc.identifier.citedreferenceYang Z ( 2007 ) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586 – 1591en_US
dc.identifier.citedreferenceZhang J ( 2003 ) Evolution by gene duplication: an update. Trends Ecol Evol 18: 292 – 298en_US
dc.identifier.citedreferenceZhang J, He X ( 2005 ) Significant impact of protein dispensability on the instantaneous rate of protein evolution. Mol Biol Evol 22: 1147 – 1155en_US
dc.identifier.citedreferenceZhang L, Li WH ( 2004 ) Mammalian housekeeping genes evolve more slowly than tissue‐specific genes. Mol Biol Evol 21: 236 – 239en_US
dc.identifier.citedreferenceZhou T, Weems M, Wilke CO ( 2009 ) Translationally optimal codons associate with structurally sensitive sites in proteins. Mol Biol Evol 26: 1571 – 1580en_US
dc.identifier.citedreferenceZukerkandl E, Pauling L ( 1965 ) Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins, Bryson V, Vogel HJ (eds), pp 97 – 166. New York: Academic Pressen_US
dc.identifier.citedreferenceAkashi H ( 1994 ) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136: 927 – 935en_US
dc.identifier.citedreferenceAkashi H, Gojobori T ( 2002 ) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99: 3695 – 3700en_US
dc.identifier.citedreferenceBava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A ( 2004 ) ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res 32: D120 – D121en_US
dc.identifier.citedreferenceBerman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE ( 2000 ) The protein data bank. Nucleic Acids Res 28: 235 – 242en_US
dc.identifier.citedreferenceBoas FE, Harbury PB ( 2007 ) Potential energy functions for protein design. Curr Opin Struct Biol 17: 199 – 204en_US
dc.identifier.citedreferenceBucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M ( 2002 ) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416: 507 – 511en_US
dc.identifier.citedreferenceCapriotti E, Fariselli P, Casadio R ( 2005 ) I‐Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33: W306 – W310en_US
dc.identifier.citedreferenceChen Y, Dokholyan NV ( 2008 ) Natural selection against protein aggregation on self‐interacting and essential proteins in yeast, fly, and worm. Mol Biol Evol 25: 1530 – 1533en_US
dc.identifier.citedreferenceCherry JL ( 2010 ) Highly expressed and slowly evolving proteins share compositional properties with thermophilic proteins. Mol Biol Evol 27: 735 – 741en_US
dc.identifier.citedreferenceConchillo‐Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, Ventura S ( 2007 ) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8: 65en_US
dc.identifier.citedreferencede Groot NS, Ventura S ( 2010 ) Protein aggregation profile of the bacterial cytosol. PLoS One 5: e9383en_US
dc.identifier.citedreferenceDill KA, Ozkan SB, Shell MS, Weikl TR ( 2008 ) The protein folding problem. Annu Rev Biophys 37: 289 – 316en_US
dc.identifier.citedreferenceDobson CM ( 2003 ) Protein folding and misfolding. Nature 426: 884 – 890en_US
dc.identifier.citedreferenceDrummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH ( 2005 ) Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 102: 14338 – 14343en_US
dc.identifier.citedreferenceDrummond DA, Raval A, Wilke CO ( 2006 ) A single determinant dominates the rate of yeast protein evolution. Mol Biol Evol 23: 327 – 337en_US
dc.identifier.citedreferenceDrummond DA, Wilke CO ( 2008 ) Mistranslation‐induced protein misfolding as a dominant constraint on coding‐sequence evolution. Cell 134: 341 – 352en_US
dc.identifier.citedreferenceDrummond DA, Wilke CO ( 2009 ) The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10: 715 – 724en_US
dc.identifier.citedreferenceEngel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS, Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED, Dolinski K et al ( 2010 ) Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res 38: D433 – D436en_US
dc.identifier.citedreferenceFernandez‐Escamilla AM, Rousseau F, Schymkowitz J, Serrano L ( 2004 ) Prediction of sequence‐dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22: 1302 – 1306en_US
dc.identifier.citedreferenceFraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW ( 2002 ) Evolutionary rate in the protein interaction network. Science 296: 750 – 752en_US
dc.identifier.citedreferenceFreeland SJ, Hurst LD ( 1998 ) The genetic code is one in a million. J Mol Evol 47: 238 – 248en_US
dc.identifier.citedreferenceGhaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O‧Shea EK, Weissman JS ( 2003 ) Global analysis of protein expression in yeast. Nature 425: 737 – 741en_US
dc.identifier.citedreferenceHershberg R, Petrov DA ( 2008 ) Selection on codon bias. Annu Rev Genet 42: 287 – 299en_US
dc.identifier.citedreferenceHirsh AE, Fraser HB ( 2001 ) Protein dispensability and rate of evolution. Nature 411: 1046 – 1049en_US
dc.identifier.citedreferenceHolstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA ( 1998 ) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95: 717 – 728en_US
dc.identifier.citedreferenceHurst LD, Smith NG ( 1999 ) Do essential genes evolve slowly? Curr Biol 9: 747 – 750en_US
dc.identifier.citedreferenceJordan IK, Wolf YI, Koonin EV ( 2003 ) No simple dependence between protein evolution rate and the number of protein‐protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3: 1en_US
dc.identifier.citedreferenceKimura M ( 1968 ) Evolutionary rate at the molecular level. Nature 217: 624 – 626en_US
dc.identifier.citedreferenceKimura M ( 1983 ) The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Pressen_US
dc.identifier.citedreferenceKimura M, Ohta T ( 1974 ) On some principles governing molecular evolution. Proc Natl Acad Sci USA 71: 2848 – 2852en_US
dc.identifier.citedreferenceKing JL, Jukes TH ( 1969 ) Non‐Darwinian evolution. Science 164: 788 – 798en_US
dc.identifier.citedreferenceKing MC, Wilson AC ( 1975 ) Evolution at two levels in humans and chimpanzees. Science 188: 107 – 116en_US
dc.identifier.citedreferenceKoonin E, Galperin M ( 2003 ) Sequence—Evolution—Function: Computational Approaches in Comparative Genomics. Boston: Kluwer Academic Publishersen_US
dc.identifier.citedreferenceKoonin EV ( 2005 ) Systemic determinants of gene evolution and function. Mol Syst Biol 1: 2005.0021en_US
dc.identifier.citedreferenceKudla G, Murray AW, Tollervey D, Plotkin JB ( 2009 ) Coding‐sequence determinants of gene expression in Escherichia coli. Science 324: 255 – 258en_US
dc.identifier.citedreferenceLi W ( 1997 ) Molecular Evolution. Sunderland, Mass: Sinaueren_US
dc.identifier.citedreferenceLiao BY, Scott NM, Zhang J ( 2006 ) Impacts of gene essentiality, expression pattern, and gene compactness on the evolutionary rate of mammalian proteins. Mol Biol Evol 23: 2072 – 2080en_US
dc.identifier.citedreferenceLiao BY, Weng MP, Zhang J ( 2010 ) Impact of extracellularity on the evolutionary rate of Mammalian proteins. Genome Biol Evol 2010: 39 – 43en_US
dc.identifier.citedreferenceLobkovsky AE, Wolf YI, Koonin EV ( 2010 ) Universal distribution of protein evolution rates as a consequence of protein folding physics. Proc Natl Acad Sci USA 107: 2983 – 2988en_US
dc.identifier.citedreferenceLu P, Vogel C, Wang R, Yao X, Marcotte EM ( 2007 ) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25: 117 – 124en_US
dc.identifier.citedreferenceMiyazawa S, Jernigan R ( 1985 ) Estimation of effective interresidue contact energies from protein crystal structures: quasi‐chemical approximation. Macromolecules 18: 534 – 552en_US
dc.identifier.citedreferenceNei M ( 1987 ) Molecular Evolutionary Genetics. New York: Columbia University Pressen_US
dc.identifier.citedreferenceNei M, Kumar S ( 2000 ) Molecular Evolution and Phylogenetics. New York: Oxford University Pressen_US
dc.identifier.citedreferencePage R, Holmes E ( 1998 ) Molecular Evolution: A Phylogenetic Approach. Oxford, UK: Blackwell Science Ltden_US
dc.identifier.citedreferencePakula AA, Sauer RT ( 1989 ) Genetic analysis of protein stability and function. Annu Rev Genet 23: 289 – 310en_US
dc.identifier.citedreferencePal C, Papp B, Hurst LD ( 2001 ) Highly expressed genes in yeast evolve slowly. Genetics 158: 927 – 931en_US
dc.identifier.citedreferenceParsell DA, Sauer RT ( 1989 ) The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J Biol Chem 264: 7590 – 7595en_US
dc.identifier.citedreferenceRocha EP, Danchin A ( 2004 ) An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21: 108 – 116en_US
dc.identifier.citedreferenceSanchez‐Ruiz JM ( 2010 ) Protein kinetic stability. Biophys Chem 148: 1 – 15en_US
dc.identifier.citedreferenceSchroder M, Kaufman RJ ( 2005 ) The mammalian unfolded protein response. Annu Rev Biochem 74: 739 – 789en_US
dc.identifier.citedreferenceStoletzki N, Eyre‐Walker A ( 2007 ) Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol 24: 374 – 381en_US
dc.identifier.citedreferenceSubramanian S, Kumar S ( 2004 ) Gene expression intensity shapes evolutionary rates of the proteins encoded by the vertebrate genome. Genetics 168: 373 – 381en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.