Show simple item record

36° step size of proton‐driven c ‐ring rotation in F o F 1 ‐ATP synthase

dc.contributor.authorDüser, Monika Gen_US
dc.contributor.authorZarrabi, Nawiden_US
dc.contributor.authorCipriano, Daniel Jen_US
dc.contributor.authorErnst, Stefanen_US
dc.contributor.authorGlick, Gary Den_US
dc.contributor.authorDunn, Stanley Den_US
dc.contributor.authorBörsch, Michaelen_US
dc.date.accessioned2014-01-08T20:34:36Z
dc.date.available2014-01-08T20:34:36Z
dc.date.issued2009-09-16en_US
dc.identifier.citationDüser, Monika G ; Zarrabi, Nawid; Cipriano, Daniel J; Ernst, Stefan; Glick, Gary D; Dunn, Stanley D; Börsch, Michael (2009). "36° step size of protonâ driven c â ring rotation in F o F 1 â ATP synthase." The EMBO Journal 28(18): 2689-2696. <http://hdl.handle.net/2027.42/102105>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102105
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherC ‐Ring Rotationen_US
dc.subject.otherFRETen_US
dc.subject.otherSingle‐Moleculeen_US
dc.subject.otherF O F 1 ‐ATP Synthaseen_US
dc.title36° step size of proton‐driven c ‐ring rotation in F o F 1 ‐ATP synthaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid19644443en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102105/1/embj2009213-sup-0001.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102105/2/embj2009213.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102105/3/embj2009213-sup-0002.pdf
dc.identifier.doi10.1038/emboj.2009.213en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceSatre M, Klein G, Vignais PV ( 1978 ) Isolation of Escherichia coli mutants with an adenosine triphosphatase insensitive to aurovertin. J Bacteriol 134: 17 – 23en_US
dc.identifier.citedreferenceJohnson KM, Swenson L, Opipari Jr AW, Reuter R, Zarrabi N, Fierke CA, Borsch M, Glick GD ( 2009 ) Mechanistic basis for differential inhibition of the F(1)F(o)‐ATPase by aurovertin. Biopolymers; doi:10.1002/bip.21262en_US
dc.identifier.citedreferenceJun Q, Ping X, Dou SX, Wang PY ( 2005 ) Numerical study of the coupling between F‐0 with varied numbers of c‐subunits and F‐1 in an ATP synthase. Chinese Phys 14: 2214 – 2221en_US
dc.identifier.citedreferenceJunge W, Sielaff H, Engelbrecht S ( 2009 ) Torque generation and elastic power transmission in the rotary FOF1‐ATPase. Nature 459: 364 – 370en_US
dc.identifier.citedreferenceKaim G, Prummer M, Sick B, Zumofen G, Renn A, Wild UP, Dimroth P ( 2002 ) Coupled rotation within single F0F1 enzyme complexes during ATP synthesis or hydrolysis. FEBS Lett 525: 156 – 163en_US
dc.identifier.citedreferenceKapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S ( 2004 ) Fluorescence‐aided molecule sorting: analysis of structure and interactions by alternating‐laser excitation of single molecules. Proc Natl Acad Sci USA 101: 8936 – 8941en_US
dc.identifier.citedreferenceKuo PH, Ketchum CJ, Nakamoto RK ( 1998 ) Stability and functionality of cysteine‐less F(0)F1 ATP synthase from Escherichia coli. FEBS Lett 426: 217 – 220en_US
dc.identifier.citedreferenceMargittai M, Widengren J, Schweinberger E, Schroder GF, Felekyan S, Haustein E, Konig M, Fasshauer D, Grubmuller H, Jahn R, Seidel CAM ( 2003 ) Single‐molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc Natl Acad Sci USA 100: 15516 – 15521en_US
dc.identifier.citedreferenceMcKinney SA, Joo C, Ha T ( 2006 ) Analysis of single‐molecule FRET trajectories using hidden Markov modeling. Biophys J 91: 1941 – 1951en_US
dc.identifier.citedreferenceMitchell P ( 1961 ) Coupling of phosphorylation to electron and hydrogen transfer by a chemi‐osmotic type of mechanism. Nature 191: 144 – 148en_US
dc.identifier.citedreferenceMuller BK, Zaychikov E, Brauchle C, Lamb DC ( 2005 ) Pulsed interleaved excitation. Biophys J 89: 3508 – 3522en_US
dc.identifier.citedreferenceNishio K, Iwamoto‐Kihara A, Yamamoto A, Wada Y, Futai M ( 2002 ) Subunit rotation of ATP synthase embedded in membranes: a or beta subunit rotation relative to the c subunit ring. Proc Natl Acad Sci USA 99: 13448 – 13452en_US
dc.identifier.citedreferenceSambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto‐Kihara A, Ueda I, Yanagida T, Wada Y, Futai M ( 1999 ) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286: 1722 – 1724en_US
dc.identifier.citedreferenceSielaff H, Rennekamp H, Wachter A, Xie H, Hilbers F, Feldbauer K, Dunn SD, Engelbrecht S, Junge W ( 2008 ) Domain compliance and elastic power transmission in rotary F(O)F(1)‐ATPase. Proc Natl Acad Sci USA 105: 17760 – 17765en_US
dc.identifier.citedreferenceSteigmiller S, Turina P, Graber P ( 2008 ) The thermodynamic H+/ATP ratios of the H+‐ATPsynthases from chloroplasts and Escherichia coli. Proc Natl Acad Sci USA 105: 3745 – 3750en_US
dc.identifier.citedreferenceUeno H, Suzuki T, Kinosita Jr K, Yoshida M ( 2005 ) ATP‐driven stepwise rotation of FoF1‐ATP synthase. Proc Natl Acad Sci USA 102: 1333 – 1338en_US
dc.identifier.citedreferenceValiyaveetil FI, Fillingame RH ( 1998 ) Transmembrane topography of subunit a in the Escherichia coli F1F0 ATP synthase. J Biol Chem 273: 16241 – 16247en_US
dc.identifier.citedreferencevan Raaij MJ, Abrahams JP, Leslie AG, Walker JE ( 1996 ) The structure of bovine F1‐ATPase complexed with the antibiotic inhibitor aurovertin B. Proc Natl Acad Sci USA 93: 6913 – 6917en_US
dc.identifier.citedreferenceYasuda R, Noji H, Yoshida M, Kinosita Jr K, Itoh H ( 2001 ) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1‐ATPase. Nature 410: 898 – 904en_US
dc.identifier.citedreferenceZarrabi N, Duser MG, Ernst E, Reuter R, Glick GD, Dunn SD, Wrachtrup J, Borsch M ( 2007 ) Monitoring the rotary motors of single F 0 F 1 ‐ATP synthase by synchronized multi channel TCSPC. Proc SPIE 6771: 67710F; doi:10.1117/12.734301en_US
dc.identifier.citedreferenceZarrabi N, Ernst S, Duser MG, Golovina‐Leiker A, Becker W, Erdmann R, Dunn SD, Borsch M ( 2009 ) Simultaneous monitoring of the two coupled motors of a single F[sub o]F[sub 1]‐ATP synthase by three‐color FRET using duty cycle‐optimized triple‐ALEX. Proc SPIE 7185: 718505; doi:10.1117/12.809610en_US
dc.identifier.citedreferenceZimmermann B, Diez M, Borsch M, Graber P ( 2006 ) Subunit movements in membrane‐integrated EF0F1 during ATP synthesis detected by single‐molecule spectroscopy. Biochimica et Biophysica Acta 1757: 311 – 319en_US
dc.identifier.citedreferenceZimmermann B, Diez M, Zarrabi N, Graber P, Borsch M ( 2005 ) Movements of the epsilon‐subunit during catalysis and activation in single membrane‐bound H(+)‐ATP synthase. EMBO J 24: 2053 – 2063en_US
dc.identifier.citedreferenceAggeler R, Ogilvie I, Capaldi RA ( 1997 ) Rotation of a gamma‐epsilon subunit domain in the Escherichia coli F1F0‐ATP synthase complex. The gamma‐epsilon subunits are essentially randomly distributed relative to the alpha3beta3delta domain in the intact complex. J Biol Chem 272: 19621 – 19624en_US
dc.identifier.citedreferenceAksimentiev A, Balabin IA, Fillingame RH, Schulten K ( 2004 ) Insights into the molecular mechanism of rotation in the F‐o sector of ATP synthase. Biophys J 86: 1332 – 1344en_US
dc.identifier.citedreferenceAntonik M, Felekyan S, Gaiduk A, Seidel CA ( 2006 ) Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J Phys Chem B 110: 6970 – 6978en_US
dc.identifier.citedreferenceBallhausen B, Altendorf K, Deckers‐Hebestreit G ( 2009 ) Constant c(10) ring stoichiometry in the Escherichia coli ATP synthase analyzed by cross‐linking. J Bacteriol 191: 2400 – 2404en_US
dc.identifier.citedreferenceBorsch M, Diez M, Zimmermann B, Reuter R, Graber P ( 2002 ) Stepwise rotation of the gamma‐subunit of EF(0)F(1)‐ATP synthase observed by intramolecular single‐molecule fluorescence resonance energy transfer. FEBS Lett 527: 147 – 152en_US
dc.identifier.citedreferenceBoyer PD ( 1997 ) The ATP synthase—a splendid molecular machine. Annu Rev Biochem 66: 717 – 749en_US
dc.identifier.citedreferenceDale RE, Eisinger J, Blumberg WE ( 1979 ) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26: 161 – 193en_US
dc.identifier.citedreferenceDiez M, Zimmermann B, Borsch M, Konig M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CA, Graber P ( 2004 ) Proton‐powered subunit rotation in single membrane‐bound F0F1‐ATP synthase. Nat Struct Mol Biol 11: 135 – 141en_US
dc.identifier.citedreferenceDunn SD, Futai M ( 1980 ) Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase. J Biol Chem 255: 113 – 118en_US
dc.identifier.citedreferenceDuser MG, Bi Y, Zarrabi N, Dunn SD, Borsch M ( 2008 ) The proton‐translocating a subunit of F0F1‐ATP synthase is allocated asymmetrically to the peripheral stalk. J Biol Chem 283: 33602 – 33610en_US
dc.identifier.citedreferenceDuser MG, Zarrabi N, Bi Y, Zimmermann B, Dunn SD, Borsch M ( 2006 ) 3D‐localization of the a‐subunit in FoF1‐ATP synthase by time resolved single‐molecule FRET. Proc of SPIE 6092: 60920H; doi:10.1117/12.647988en_US
dc.identifier.citedreferenceElston T, Wang H, Oster G ( 1998 ) Energy transduction in ATP synthase. Nature 391: 510 – 513en_US
dc.identifier.citedreferenceForster T ( 1948 ) Zwischenmolekulare Energiewanderung Und Fluoreszenz. Annalen Der Physik 2: 55 – 75en_US
dc.identifier.citedreferenceJiang W, Hermolin J, Fillingame RH ( 2001 ) The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proc Natl Acad Sci USA 98: 4966 – 4971en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.