Show simple item record

Heat shock response relieves ER stress

dc.contributor.authorLiu, Yuen_US
dc.contributor.authorChang, Amyen_US
dc.date.accessioned2014-01-08T20:34:41Z
dc.date.available2014-01-08T20:34:41Z
dc.date.issued2008-04-09en_US
dc.identifier.citationLiu, Yu; Chang, Amy (2008). "Heat shock response relieves ER stress." The EMBO Journal 27(7): 1049-1059. <http://hdl.handle.net/2027.42/102124>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102124
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherUnfolded Protein Responseen_US
dc.subject.otherVesicle Transporten_US
dc.subject.otherHeat Shock Responseen_US
dc.subject.otherER Stressen_US
dc.titleHeat shock response relieves ER stressen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid18323774en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102124/1/emboj200842.pdf
dc.identifier.doi10.1038/emboj.2008.42en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceRaschke WC, Kern KA, Antalis C, Ballou CE ( 1973 ) Genetic control of yeast mannan structure. Isolation and characterization of mannan mutants. J Biol Chem 248: 4660 – 4666en_US
dc.identifier.citedreferenceNuoffer C, Jeno P, Conzelmann A, Riezman H ( 1991 ) Determinants for glycophospholipid anchoring of the Saccharomyces cerevisiae GAS1 protein to the plasma membrane. Mol Cell Biol 11: 27 – 37en_US
dc.identifier.citedreferenceParsell DA, Taulien J, Lindquist S ( 1993 ) The role of heat‐shock proteins in thermotolerance. Philos Trans R Soc London B 339: 279 – 285; discussion 285–276en_US
dc.identifier.citedreferencePlemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH ( 1997 ) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388: 891 – 895en_US
dc.identifier.citedreferenceRomisch K ( 2004 ) A cure for traffic jams: small molecule chaperones in the endoplasmic reticulum. Traffic 5: 815 – 820en_US
dc.identifier.citedreferenceRon D, Walter P ( 2007 ) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519 – 529en_US
dc.identifier.citedreferenceRusso P, Kalkkinen N, Sareneva H, Paakkola J, Makarow M ( 1992 ) A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein. Proc Natl Acad Sci USA 89: 8857en_US
dc.identifier.citedreferenceSewell AK, Yokoya F, Yu W, Miyagawa T, Murayama T, Winge DR ( 1995 ) Mutated yeast heat shock transcription factor exhibits elevated basal transcriptional activation and confers metal resistance. J Biol Chem 270: 25079en_US
dc.identifier.citedreferenceSikorski RS, Hieter P ( 1989 ) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19 – 27en_US
dc.identifier.citedreferenceSorger PK, Lewis MJ, Pelham HR ( 1987 ) Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329: 81 – 84en_US
dc.identifier.citedreferenceSpatuzza C, Renna M, Faraonio R, Cardinali G, Martire G, Bonatti S, Remondelli P ( 2004 ) Heat shock induces preferential translation of ERGIC‐53 and affects its recycling pathway. J Biol Chem 279: 42535 – 42544en_US
dc.identifier.citedreferenceSpear ED, Ng DT ( 2003 ) Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. Mol Biol Cell 14: 2756 – 2767en_US
dc.identifier.citedreferenceTaxis C, Vogel F, Wolf DH ( 2002 ) ER–Golgi traffic is a prerequisite for efficient ER degradation. Mol Biol Cell 13: 1806 – 1818en_US
dc.identifier.citedreferenceTravers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P ( 2000 ) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER‐associated degradation. Cell 101: 249 – 258en_US
dc.identifier.citedreferenceWang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates III JR, Balch WE ( 2006 ) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127: 803 – 815en_US
dc.identifier.citedreferenceWesterheide SD, Morimoto RI ( 2005 ) Heat shock response modulators as therapeutic tools for disease of protein conformation. J Biol Chem 280: 33097 – 33100en_US
dc.identifier.citedreferenceYamamoto A, Mizukami Y, Sakurai H ( 2005 ) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280: 11911 – 11919en_US
dc.identifier.citedreferenceZimmermann R ( 1998 ) The role of molecular chaperones in protein transport into the mammalian endoplasmic reticulum. Biol Chem 379: 275 – 282en_US
dc.identifier.citedreferenceArvan P, Zhao X, Ramos‐Castaneda J, Chang A ( 2002 ) Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 3: 771 – 780en_US
dc.identifier.citedreferenceBelden WJ, Barlowe C ( 2001 ) Role of Erv29p in collecting soluble secretory proteins into ER‐derived transport vesicles. Science 294: 1528 – 1531en_US
dc.identifier.citedreferenceBordallo J, Plemper RK, Finger A, Wolf DH ( 1998 ) Der3p/Hrd1p is required for endoplasmic reticulum‐associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 9: 209 – 222en_US
dc.identifier.citedreferenceBue CA, Bentivoglio CM, Barlowe C ( 2006 ) Erv26p directs pro‐alkaline phosphatase into endoplasmic reticulum‐derived coat protein complex II transport vesicles. Mol Biol Cell 17: 4780en_US
dc.identifier.citedreferenceCaldwell SR, Hill KJ, Cooper AA ( 2001 ) Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J Biol Chem 276: 23296 – 23303en_US
dc.identifier.citedreferenceChang A, Slayman CW ( 1991 ) Maturation of the yeast plasma membrane [H + ]ATPase involves phosphorylation during intracellular transport. J Cell Biol 115: 289 – 295en_US
dc.identifier.citedreferenceCooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S ( 2006 ) Alpha‐synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313: 324 – 328en_US
dc.identifier.citedreferenceCox JS, Shamu CE, Walter P ( 1993 ) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197 – 1206en_US
dc.identifier.citedreferenceCross FR ( 1997 ) ‘Marker swap’ plasmids: convenient tools for budding yeast molecular genetics. Yeast 13: 647 – 653en_US
dc.identifier.citedreferenceDeshaies RJ, Koch BD, Werner‐Washburne M, Craig EA, Schekman R ( 1988 ) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800 – 805en_US
dc.identifier.citedreferenceDoering TL, Schekman R ( 1996 ) GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. EMBO J 15: 182 – 191en_US
dc.identifier.citedreferenceEastmond DL, Nelson HC ( 2006 ) Genome‐wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem 281: 32909 – 32921en_US
dc.identifier.citedreferenceFinley D, Ozkaynak E, Varshavsky A ( 1987 ) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48: 1035 – 1046en_US
dc.identifier.citedreferenceGasch AP, Spellman PT, Kao CM, Carmel‐Harel O, Eisen MB, Storz G, Botstein D, Brown PO ( 2000 ) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11: 4241 – 4257en_US
dc.identifier.citedreferenceGoldstein AL, McCusker JH ( 1999 ) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541 – 1553en_US
dc.identifier.citedreferenceHahn JS, Hu Z, Thiele DJ, Iyer VR ( 2004 ) Genome‐wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24: 5249 – 5256en_US
dc.identifier.citedreferenceHan S, Liu Y, Chang A ( 2007 ) Cytoplasmic Hsp70 promotes ubiquitination for endoplasmic reticulum‐associated degradation of a misfolded mutant of the yeast plasma membrane ATPase, PMA1. J Biol Chem 282: 26140 – 26149en_US
dc.identifier.citedreferenceHeinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C, Wolf DH ( 1991 ) Proteinase yscE, the yeast proteasome/multicatalytic‐multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10: 555 – 562en_US
dc.identifier.citedreferenceHermosilla R, Oueslati M, Donalies U, Schonenberger E, Krause E, Oksche A, Rosenthal W, Schulein R ( 2004 ) Disease‐causing V(2) vasopressin receptors are retained in different compartments of the early secretory pathway. Traffic 5: 993 – 1005en_US
dc.identifier.citedreferenceHuh W‐K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O‧Shea EK ( 2003 ) Global analysis of protein localization in budding yeast. Nature 425: 686 – 691en_US
dc.identifier.citedreferenceIsmail N, Ng DT ( 2006 ) Have you HRD? Understanding ERAD is DOAble!. Cell 126: 237 – 239en_US
dc.identifier.citedreferenceKaufman RJ ( 2002 ) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110: 1389 – 1398en_US
dc.identifier.citedreferenceKlionsky DJ, Banta LM, Emr SD ( 1988 ) Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Mol Cell Biol 8: 2105 – 2116en_US
dc.identifier.citedreferenceKlionsky DJ, Emr SD ( 1989 ) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8: 2241 – 2250en_US
dc.identifier.citedreferenceKohno K, Normington K, Sambrook J, Gething MJ, Mori K ( 1993 ) The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol 13: 877 – 890en_US
dc.identifier.citedreferenceLee TI, Rinaldi NJ, Robert F, Odom DT, Bar‐Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK et al ( 2002 ) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799 – 804en_US
dc.identifier.citedreferenceLiu XD, Morano KA, Thiele DJ ( 1999 ) The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone. J Biol Chem 274: 26654 – 26660en_US
dc.identifier.citedreferenceLiu Y, Sitaraman S, Chang A ( 2006 ) Multiple degradation pathways for misfolded mutants of the yeast plasma membrane ATPase, PMA1. J Biol Chem 281: 31457 – 31466en_US
dc.identifier.citedreferenceLuo W, Chang A ( 1997 ) Novel genes involved in endosomal traffic in yeast revealed by suppression of a targeting‐defective plasma membrane ATPase mutant. J Cell Biol 138: 731 – 746en_US
dc.identifier.citedreferenceLuo W, Chang A ( 2000 ) An endosome‐to‐plasma membrane pathway involved in trafficking of a mutant plasma membrane ATPase in yeast. Mol Biol Cell 11: 579 – 592en_US
dc.identifier.citedreferenceMager WH, Ferreira PM ( 1993 ) Stress response of yeast. Biochem J 290 (Part 1): 1 – 13en_US
dc.identifier.citedreferenceMatsumoto R, Akama K, Rakwal R, Iwahashi H ( 2005 ) The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat‐shock response in Saccharomyces cerevisiae. BMC Genomics 6: 141en_US
dc.identifier.citedreferenceMcClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J ( 2007 ) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131: 121 – 135en_US
dc.identifier.citedreferenceMori K, Ma W, Gething MJ, Sambrook J ( 1993 ) A transmembrane protein with a cdc2+/CDC28‐related kinase activity is required for signaling from the ER to the nucleus. Cell 74: 743 – 756en_US
dc.identifier.citedreferenceMorimoto RI ( 1998 ) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12: 3788 – 3796en_US
dc.identifier.citedreferenceMuniz M, Nuoffer C, Hauri HP, Riezman H ( 2000 ) The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum‐derived vesicles. J Cell Biol 148: 925 – 930en_US
dc.identifier.citedreferenceNg DT, Spear ED, Walter P ( 2000 ) The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 150: 77 – 88en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.