Show simple item record

Effect of increased quadriceps tensile stiffness on peak anterior cruciate ligament strain during a simulated pivot landing

dc.contributor.authorLipps, David B.en_US
dc.contributor.authorOh, Youkeun K.en_US
dc.contributor.authorAshton‐miller, James A.en_US
dc.contributor.authorWojtys, Edward M.en_US
dc.date.accessioned2014-02-11T17:57:04Z
dc.date.available2015-04-16T14:24:20Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationLipps, David B.; Oh, Youkeun K.; Ashton‐miller, James A. ; Wojtys, Edward M. (2014). "Effect of increased quadriceps tensile stiffness on peak anterior cruciate ligament strain during a simulated pivot landing." Journal of Orthopaedic Research 32(3): 423-430.en_US
dc.identifier.issn0736-0266en_US
dc.identifier.issn1554-527Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102663
dc.description.abstractACL injury prevention programs often involve strengthening the knee muscles. We posit that an unrecognized benefit of such training is the associated increase in the tensile stiffness of the hypertrophied muscle. We tested the hypothesis that an increased quadriceps tensile stiffness would reduce peak anteromedial bundle (AM‐)ACL relative strain in female knees. Twelve female cadaver knees were subjected to compound impulsive two‐times body weight loads in compression, flexion, and internal tibial torque beginning at 15° flexion. Knees were equipped with modifiable custom springs to represent the nonlinear rapid stretch behavior of a normal and increased stiffness female quadriceps (i.e., 33% greater stiffness). Peak AM‐ACL relative strain was measured using an in situ transducer while muscle forces and tibiofemoral kinematics and kinetics were recorded. A 3D ADAMS™ dynamic biomechanical knee model was used in silico to interpret the experimental results which were analyzed using a repeated‐measures Wilcoxon test. Female knees exhibited a 16% reduction in peak AM‐ACL relative strain and 21% reduction in change in flexion when quadriceps tensile stiffness was increased by 33% (mean (SD) difference: 0.97% (0.65%), p  = 0.003). We conclude that increased quadriceps tensile stiffness reduces peak ACL strain during a controlled study simulating a pivot landing. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:423–430, 2014.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherComputational Modelen_US
dc.subject.otherTrainingen_US
dc.subject.otherMuscle Stiffnessen_US
dc.subject.otherQuadricepsen_US
dc.subject.otherAnterior Cruciate Ligamenten_US
dc.titleEffect of increased quadriceps tensile stiffness on peak anterior cruciate ligament strain during a simulated pivot landingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102663/1/jor22531.pdf
dc.identifier.doi10.1002/jor.22531en_US
dc.identifier.sourceJournal of Orthopaedic Researchen_US
dc.identifier.citedreferenceCerulli G, Benoit DL, Lamontagne M, et al. 2003. In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg Sports Traumatol Arthrosc 11: 307 – 311.en_US
dc.identifier.citedreferenceGrood ES, Suntay WJ. 1983. A joint coordinate system for the clinical description of three‐dimensional motions: application to the knee. J Biomech Eng 105: 136 – 144.en_US
dc.identifier.citedreferenceIshikawa M, Niemela E, Komi PV. 2005. Interaction between fascicle and tendinous tissues in short‐contact stretch‐shortening cycle exercise with varying eccentric intensities. J Appl Physiol 99: 217 – 223.en_US
dc.identifier.citedreferenceTillin NA, Pain MT, Folland JP. 2012. Short‐term training for explosive strength causes neural and mechanical adaptations. Exp Physiol 97: 630 – 641.en_US
dc.identifier.citedreferenceAmis AA, Dawkins GP. 1991. Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br 73: 260 – 267.en_US
dc.identifier.citedreferenceBeynnon BD, Johnson RJ, Fleming BC, et al. 1997. The strain behavior of the anterior cruciate ligament during squatting and active flexion‐extension. A comparison of an open and a closed kinetic chain exercise. Am J Sports Med 25: 823 – 829.en_US
dc.identifier.citedreferenceTaylor KA, Terry ME, Utturkar GM, et al. 2011. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech 44: 365 – 371.en_US
dc.identifier.citedreferenceMyers CA, Torry MR, Shelburne KB, et al. 2012. In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy. Am J Sports Med 40: 170 – 178.en_US
dc.identifier.citedreferenceTorry MR, Shelburne KB, Myers C, et al. 2013. High knee valgus in female subjects does not yield higher knee translations during drop landings: a biplane fluoroscopic study. J Orthop Res 31: 257 – 267.en_US
dc.identifier.citedreferenceIwaki H, Pinskerova V, Freeman MA. 2000. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82: 1189 – 1195.en_US
dc.identifier.citedreferenceLee KM, Guo J. 2010. Kinematic and dynamic analysis of an anatomically based knee joint. J Biomech 43: 1231 – 1236.en_US
dc.identifier.citedreferenceNagerl H, Walters J, Frosch KH, et al. 2009. Knee motion analysis of the non‐loaded and loaded knee: a re‐look at rolling and sliding. J Physiol Pharmacol 60: 69 – 72.en_US
dc.identifier.citedreferenceHollman JH, Deusinger RH, Van Dillen LR, et al. 2003. Tibiofemoral joint‐surface motions in weight‐bearing and non‐weight‐bearing movement. J Sport Rehabil 12: 143 – 161.en_US
dc.identifier.citedreferenceKosel J, Giouroudi I, Scheffer C, et al. 2010. Anatomical study of the radius and center of curvature of the distal femoral condyle. J Biomech Eng 132: 091002.en_US
dc.identifier.citedreferenceWall SJ, Rose DM, Sutter EG, et al. 2012. The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study. Am J Sports Med 40: 568 – 573.en_US
dc.identifier.citedreferenceDomire ZJ, Boros RL, Hashemi J. 2011. An examination of possible quadriceps force at the time of anterior cruciate ligament injury during landing: a simulation study. J Biomech 44: 1630 – 1632.en_US
dc.identifier.citedreferenceYeow CH, Lee PV, Goh JC. 2010. Sagittal knee joint kinematics and energetics in response to different landing heights and techniques. Knee 17: 127 – 131.en_US
dc.identifier.citedreferenceHuberti HH, Hayes WC, Stone JL, et al. 1984. Force ratios in the quadriceps tendon and ligamentum patellae. J Orthop Res 2: 49 – 54.en_US
dc.identifier.citedreferenceWithrow TJ, Huston LJ, Wojtys EM, et al. 2008. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Joint Surg Am 90: 815 – 823.en_US
dc.identifier.citedreferenceMarkolf KL, Willems MJ, Jackson SR, et al. 1998. In situ calibration of miniature sensors implanted into the anterior cruciate ligament part I: strain measurements. J Orthop Res 16: 455 – 463.en_US
dc.identifier.citedreferenceKlinge K, Magnusson SP, Simonsen EB, et al. 1997. The effect of strength and flexibility training on skeletal muscle electromyographic activity, stiffness, and viscoelastic stress relaxation response. Am J Sports Med 25: 710 – 716.en_US
dc.identifier.citedreferenceGriffin LY, Albohm MJ, Arendt EA, et al. 2006. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34: 1512 – 1532.en_US
dc.identifier.citedreferenceAgel J, Arendt EA, Bershadsky B. 2005. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13‐year review. Am J Sports Med 33: 524 – 530.en_US
dc.identifier.citedreferenceArendt E, Dick R. 1995. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23: 694 – 701.en_US
dc.identifier.citedreferenceLohmander LS, Englund PM, Dahl LL, Roos EM. 2007. The long‐term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35: 1756 – 1769.en_US
dc.identifier.citedreferenceHerman DC, Weinhold PS, Guskiewicz KM, et al. 2008. The effects of strength training on the lower extremity biomechanics of female recreational athletes during a stop‐jump task. Am J Sports Med 36: 733 – 740.en_US
dc.identifier.citedreferenceLephart SM, Abt JP, Ferris CM, et al. 2005. Neuromuscular and biomechanical characteristic changes in high school athletes: a plyometric versus basic resistance program. Br J Sports Med 39: 932 – 938.en_US
dc.identifier.citedreferenceMyer GD, Ford KR, Palumbo JP, et al. 2005. Neuromuscular training improves performance and lower‐extremity biomechanics in female athletes. J Strength Cond Res 19: 51 – 60.en_US
dc.identifier.citedreferenceHewett TE, Lindenfeld TN, Riccobene JV, et al. 1999. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med 27: 699 – 706.en_US
dc.identifier.citedreferenceMandelbaum BR, Silvers HJ, Watanabe DS, et al. 2005. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2‐year follow‐up. Am J Sports Med 33: 1003 – 1010.en_US
dc.identifier.citedreferenceSadoghi P, von Keudell A, Vavken P. 2012. Effectiveness of anterior cruciate ligament injury prevention training programs. J Bone Joint Surg Am 94: 769 – 776.en_US
dc.identifier.citedreferenceWojtys EM, Ashton‐Miller JA, Huston LJ. 2002. A gender‐related difference in the contribution of the knee musculature to sagittal‐plane shear stiffness in subjects with similar knee laxity. J Bone Joint Surg Am 84‐A: 10 – 16.en_US
dc.identifier.citedreferenceWojtys EM, Huston LJ, Schock HJ, et al. 2003. Gender differences in muscular protection of the knee in torsion in size‐matched athletes. J Bone Joint Surg Am 85‐A: 782 – 789.en_US
dc.identifier.citedreferenceGranata KP, Wilson SE, Padua DA. 2002. Gender differences in active musculoskeletal stiffness. Part I. Quantification in controlled measurements of knee joint dynamics. J Electromyogr Kinesiol 12: 119 – 126.en_US
dc.identifier.citedreferenceLipps DB, Oh YK, Ashton‐Miller JA, et al. 2012. Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med 40: 32 – 40.en_US
dc.identifier.citedreferenceKubo K, Ikebukuro T, Yata H, et al. 2010. Effects of training on muscle and tendon in knee extensors and plantar flexors in vivo. J Appl Biomech 26: 316 – 323.en_US
dc.identifier.citedreferenceBlanpied P, Smidt GL. 1993. The difference in stiffness of the active plantarflexors between young and elderly human females. J Gerontol 48: M58 – M63.en_US
dc.identifier.citedreferenceBodine SC, Stitt TN, Gonzalez M, et al. 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014 – 1019.en_US
dc.identifier.citedreferenceLee SJ. 2007. Quadrupling muscle mass in mice by targeting TGF‐beta signaling pathways. PLoS ONE 2: e789.en_US
dc.identifier.citedreferenceClaflin DR, Larkin LM, Cederna PS, et al. 2011. Effects of high‐ and low‐velocity resistance training on the contractile properties of skeletal muscle fibers from young and older humans. J Appl Physiol 111: 1021 – 1030.en_US
dc.identifier.citedreferenceKosek DJ, Kim JS, Petrella JK, et al. 2006. Efficacy of 3 days/wk resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101: 531 – 544.en_US
dc.identifier.citedreferenceIvey FM, Tracy BL, Lemmer JT, et al. 2000. Effects of strength training and detraining on muscle quality: age and gender comparisons. J Gerontol A Biol Sci Med Sci 55: B152 – B159.en_US
dc.identifier.citedreferenceTracy BL, Ivey FM, Jeffrey Metter E, et al. 2003. A more efficient magnetic resonance imaging‐based strategy for measuring quadriceps muscle volume. Med Sci Sports Exerc 35: 425 – 433.en_US
dc.identifier.citedreferenceKubo K, Kanehisa H, Ito M, et al. 2001. Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol 91: 26 – 32.en_US
dc.identifier.citedreferenceKubo K, Yata H, Kanehisa H, et al. 2006. Effects of isometric squat training on the tendon stiffness and jump performance. Eur J Appl Physiol 96: 305 – 314.en_US
dc.identifier.citedreferenceDeMorat G, Weinhold P, Blackburn T, et al. 2004. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32: 477 – 483.en_US
dc.identifier.citedreferenceOh YK, Kreinbrink JL, Wojtys EM, et al. 2012. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. J Orthop Res 30: 528 – 534.en_US
dc.identifier.citedreferenceWithrow TJ, Huston LJ, Wojtys EM, et al. 2006. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 34: 269 – 274.en_US
dc.identifier.citedreferenceOh YK, Lipps DB, Ashton‐Miller JA, et al. 2012. What strains the anterior cruciate ligament during a pivot landing ? Am J Sports Med 40: 574 – 583.en_US
dc.identifier.citedreferenceOlsen OE, Myklebust G, Engebretsen L, et al. 2004. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32: 1002 – 1012.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.