Show simple item record

Bayesian random threshold estimation in a Cox proportional hazards cure model

dc.contributor.authorZhao, Lilien_US
dc.contributor.authorFeng, Daien_US
dc.contributor.authorBellile, Emily L.en_US
dc.contributor.authorTaylor, Jeremy M. G.en_US
dc.date.accessioned2014-02-11T17:57:18Z
dc.date.available2015-04-01T19:59:07Zen_US
dc.date.issued2014-02-20en_US
dc.identifier.citationZhao, Lili; Feng, Dai; Bellile, Emily L.; Taylor, Jeremy M. G. (2014). "Bayesian random threshold estimation in a Cox proportional hazards cure model." Statistics in Medicine 33(4): 650-661.en_US
dc.identifier.issn0277-6715en_US
dc.identifier.issn1097-0258en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102705
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMarkov Chain Monte Carloen_US
dc.subject.otherMixture Modelen_US
dc.subject.otherCure Modelen_US
dc.subject.otherCox Modelen_US
dc.subject.otherThresholden_US
dc.titleBayesian random threshold estimation in a Cox proportional hazards cure modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102705/1/sim5964.pdf
dc.identifier.doi10.1002/sim.5964en_US
dc.identifier.sourceStatistics in Medicineen_US
dc.identifier.citedreferenceAndrews DWK. Testing when a parameter is on the boundary of the maintained hypothesis. Econometrica 2001; 69: 683 – 773. DOI: 10.1111/1468‐0262.00210.en_US
dc.identifier.citedreferenceSkates SJ, Pauler DK, Jacobs IJ. Screening based on the risk of cancer calculation from Bayesian hierarchical changepoint and mixture models of longitudinal markers. Journal of the American Statistical Association 2001; 96: 429 – 439. DOI: 10.1198/016214501753168145.en_US
dc.identifier.citedreferenceHaario H, Saksman S, Tamminen J. An adaptive Metropolis algorithm. Bernoulli 2001; 7: 223 – 242. DOI: 10.2307/3318737.en_US
dc.identifier.citedreferenceGreen PJ. Reversible‐jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 1995; 82: 711 – 732. DOI: 10.2307/2337340.en_US
dc.identifier.citedreferenceTsodikov A, Ibrahim JG, Yakovlev AY. Estimating cure rates from survival data: an alternative to two‐component mixture models. Journal of the American Statistical Association 2003; 98: 1063 – 1078. DOI: 10.1198/01622145030000001007.en_US
dc.identifier.citedreferenceTighiouart M. Modeling correlated time‐varying covariate effects in a Cox‐type regression model. Journal of Modern Applied Statistics Methods 2003; 2: 161 – 167.en_US
dc.identifier.citedreferenceKim S, Chen MH, Dey DK, Gamerman D. Bayesian dynamic models for survival data with a cure fraction. Lifetime Data Analysis 2007; 13: 17 – 35. DOI: 10.1007/s10985‐006‐9028‐7.en_US
dc.identifier.citedreferenceChen M, Ibrahim J, Sinha D. A new Bayesian model for survival data with a surviving fraction. Journal of the American Statistical Association 1999; 94: 909 – 910. DOI: 10.2307/2670006.en_US
dc.identifier.citedreferenceSigurdsson H, Baldetorp B, Borg A, Dalberg M, Ferno MM, Killander D, Olsson H. Flow cytometry in primary breast cancer: improving the prognostic value of the fraction of cells in the s‐phase by optimal categorisation of cut‐off levels. Br. Journal of Cancer 1990; 62: 786.en_US
dc.identifier.citedreferenceClark GM, Dressler LG, Owens MA, Pound G, Oldaker T, McGuire W. Prediction of relapse or survival in patients with node‐negative breast cancer by DNA flow cytometry. New England Journal of Medicine 1989; 320: 627.en_US
dc.identifier.citedreferenceHanson TE. Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association 2006; 101: 1548 – 1565. DOI: 10.1198/016214506000000384.en_US
dc.identifier.citedreferenceIbrahim JG, Chen MH, MacEachern SN. Bayesian variable selection for proportional hazards models. The Canadian Journal of Statistics 1999; 27: 701 – 717. DOI: 10.2307/3316126.en_US
dc.identifier.citedreferenceTaylor JMG. Semi‐parametric estimation in failure time mixture models. Biometrics 1995; 51: 899 – 907. DOI: 10.2307/2532991.en_US
dc.identifier.citedreferenceChen MH, Shao Q, Ibrahim JG. Monte Carlo Methods in Bayesian Computation. Springer: New York, 2000.en_US
dc.identifier.citedreferenceIbrahim JG, Chen MH, Sinha D. Bayesian Survival Analysis. Springer: New York, 2001.en_US
dc.identifier.citedreferenceCeleux G, Forbes F, Robert C, Titterington D. Deviance information criteria for missing data models. Bayesian Analysis 2006; 1: 651 – 674. DOI: 10.1214/06‐BA122.en_US
dc.identifier.citedreferenceSpiegelhalter DJ, Best NG, Carlin B, de Linde AV. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society 2002; 64: 583 – 639. DOI: 10.1111/1467‐9868.00353.en_US
dc.identifier.citedreferenceAlbert J, Chib S. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 1993; 88: 669 – 679. DOI: 10.2307/2290350.en_US
dc.identifier.citedreferenceLiang K, Self S, Liu X. The Cox proportional hazards model with change point an epidemiologic application. Biometrics 1990; 79: 783 – 793. DOI: 10.2307/2532096.en_US
dc.identifier.citedreferencePons O. Estimation in a Cox regression model with a change‐point according to a threshold in a covariate. Annals of Statistics 2003; 56: 442Ű – 463. DOI: 10.1214/aos/1051027876.en_US
dc.identifier.citedreferenceLuo X, Boyett J. Estimation of a threshold parameter in Cox regression. Communication of Statistical Theory Methods 1997; 26: 2329 – 2346. DOI: 10.1093/biomet/79.3.531.en_US
dc.identifier.citedreferenceJensen U, Lutkebohmert C. A Cox‐type regression model with change‐points in the covariates. Lifetime Data Analysis 2008; 14: 276 – 285. DOI: 10.1007/s10985‐008‐9083‐3.en_US
dc.identifier.citedreferenceKosorok M, Song R. Inference under right censoring for transformation models with a change‐point based on a covariate threshold. Annals of Statistics 2007; 35: 957 – 989. DOI: 10.1214/009053606000001244.en_US
dc.identifier.citedreferenceOthus M, Li Y, Tiwari R. Change‐point cure models with application to estimating the changepoint effect of age of diagnosis among prostate cancer patients. Journal of Applied Statistics 2012; 39: 901 – 911.en_US
dc.identifier.citedreferenceKuk A, Chen C. A mixture model combining logistic regression with proportional hazards regression. Biometrika 1992; 79: 531 – 541. DOI: 10.1093/biomet/79.3.531.en_US
dc.identifier.citedreferencePeng Y, Dear K. A nonparametric mixture model for cure rate estimation. Biometrics 2000; 56: 237 – 243. DOI: 10.1111/j.0006‐341X.2000.00237.x.en_US
dc.identifier.citedreferenceSy J, Taylor J. Estimation in a Cox proportional hazards cure model. Biometrics 2000; 56: 227 – 236. DOI: 10.1111/j.0006‐341X.2000.00227.x.en_US
dc.identifier.citedreferenceSmith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society. Series B 1993; 55: 3 – 23.en_US
dc.identifier.citedreferenceDiebolt J, Roberts CP. Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society. Series B 1994; 56: 363 – 375.en_US
dc.identifier.citedreferenceAndersen PK, Gill RD. Cox's regression model for counting processes: a large sample study. Annals of Statistics 1982; 10: 1100 – 1120.en_US
dc.identifier.citedreferenceKalbfleisch J. Non‐parametric Bayesian analysis of survival time data. Journal of the Royal Statistical Society. Series B 1978; 40: 214 – 221.en_US
dc.identifier.citedreferenceCarlin BP, Gelfand AE, Smith AFM. Hierarchical Bayesian analysis of changepoint problems. Journal of the Royal Statistical Society. Series C‐Applied Statistics 1992; 41: 389 – 405. DOI: 10.2307/2347570.en_US
dc.identifier.citedreferenceLange N, Carlin BP, Gelfand AE. Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T‐cell numbers. Journal of the American Statistical Association 1992; 87: 615 – 626. DOI: 10.2307/2290197.en_US
dc.identifier.citedreferenceRoberts GO, Rosenthal JS. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 2009; 18: 349 – 367. DOI: 10.1198/jcgs.2009.06134.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.