Show simple item record

Reaction and aggregation dynamics of cell surface receptors.

dc.contributor.authorWang, Michelle Dongen_US
dc.contributor.advisorAxelrod, Danielen_US
dc.date.accessioned2014-02-24T16:17:49Z
dc.date.available2014-02-24T16:17:49Z
dc.date.issued1993en_US
dc.identifier.other(UMI)AAI9409833en_US
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9409833en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/103871
dc.description.abstractThis dissertation is composed of both theoretical and experimental studies of cell surface receptor reaction and aggregation. Project I studies the reaction rate enhancement due to surface diffusion of a bulk dissolved ligand with its membrane embedded target, using numerical calculations. The results show that the reaction rate enhancement is determined by ligand surface adsorption and desorption kinetic rates, surface and bulk diffusion coefficients, and geometry. In particular, we demonstrate that the ligand surface adsorption and desorption kinetic rates, rather than their ratio (the equilibrium constant), are important in rate enhancement. The second and third projects are studies of acetylcholine receptor clusters on cultured rat myotubes using fluorescence techniques after labeling the receptors with tetramethylrhodamine-alpha-bungarotoxin. The second project studies when and where the clusters form by making time-lapse movies. The movies are made from overlay of the pseudocolored total internal reflection fluorescence (TIRF) images of the cluster, and the schlieren images of the cell cultures. These movies are the first movies made using TIRF, and they clearly show the cluster formation from the myoblast fusion, the first appearance of clusters, and the eventual disappearance of clusters. The third project studies the fine structural features of individual clusters observed under TIRF. The features were characterized with six parameters by developing a novel fluorescence technique: spatial fluorescence autocorrelation. These parameters were then used to study the feature variations with age, and with treatments of drugs (oligomycin and carbachol). The results show little variation with age. However, drug treatment induced significant changes in some parameters. These changes were different for oligomycin and carbachol, which indicates that the two drugs may eliminate clusters through different mechanisms.en_US
dc.format.extent168 p.en_US
dc.subjectChemistry, Physicalen_US
dc.subjectPhysics, Opticsen_US
dc.subjectBiophysics, Generalen_US
dc.titleReaction and aggregation dynamics of cell surface receptors.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiophysicsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/103871/1/9409833.pdf
dc.description.filedescriptionDescription of 9409833.pdf : Restricted to UM users only.en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.