Show simple item record

Sulfur‐bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

dc.contributor.authorMcAdam, Amy C.en_US
dc.contributor.authorFranz, Heather B.en_US
dc.contributor.authorSutter, Braden_US
dc.contributor.authorArcher, Paul D.en_US
dc.contributor.authorFreissinet, Carolineen_US
dc.contributor.authorEigenbrode, Jennifer L.en_US
dc.contributor.authorMing, Douglas W.en_US
dc.contributor.authorAtreya, Sushil K.en_US
dc.contributor.authorBish, David L.en_US
dc.contributor.authorBlake, David F.en_US
dc.contributor.authorBower, Hannah E.en_US
dc.contributor.authorBrunner, Annaen_US
dc.contributor.authorBuch, Arnauden_US
dc.contributor.authorGlavin, Daniel P.en_US
dc.contributor.authorGrotzinger, John P.en_US
dc.contributor.authorMahaffy, Paul R.en_US
dc.contributor.authorMcLennan, Scott M.en_US
dc.contributor.authorMorris, Richard V.en_US
dc.contributor.authorNavarro‐gonzález, Rafaelen_US
dc.contributor.authorRampe, Elizabeth B.en_US
dc.contributor.authorSquyres, Steven W.en_US
dc.contributor.authorSteele, Andrewen_US
dc.contributor.authorStern, Jennifer C.en_US
dc.contributor.authorSumner, Dawn Y.en_US
dc.contributor.authorWray, James J.en_US
dc.date.accessioned2014-05-21T18:02:59Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-02en_US
dc.identifier.citationMcAdam, Amy C.; Franz, Heather B.; Sutter, Brad; Archer, Paul D.; Freissinet, Caroline; Eigenbrode, Jennifer L.; Ming, Douglas W.; Atreya, Sushil K.; Bish, David L.; Blake, David F.; Bower, Hannah E.; Brunner, Anna; Buch, Arnaud; Glavin, Daniel P.; Grotzinger, John P.; Mahaffy, Paul R.; McLennan, Scott M.; Morris, Richard V.; Navarro‐gonzález, Rafael ; Rampe, Elizabeth B.; Squyres, Steven W.; Steele, Andrew; Stern, Jennifer C.; Sumner, Dawn Y.; Wray, James J. (2014). "Sulfurâ bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars." Journal of Geophysical Research: Planets 119(2): 373-393.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106720
dc.description.abstractThe Sample Analysis at Mars (SAM) instrument suite detected SO 2 , H 2 S, OCS, and CS 2 from ~450 to 800°C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO 2 (~3–22 µmol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur‐bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O 2 or H 2 O in the SAM oven are another candidate SO 2 source. H 2 S (~41–109 nmol) is consistent with interactions of H 2 O, H 2 and/or HCl with reduced sulfur phases and/or SO 2 in the SAM oven. OCS (~1–5 nmol) and CS 2 (~0.2–1 nmol) are likely derived from reactions between carbon‐bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near‐neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials. Key Points Evidence for minor sulfides, sulfates/sulfites and S‐bearing amorphous phases S‐bearing volatiles detected include SO 2 , H 2 S, OCS, and CS 2 First detection of sulfur species from in situ evolved gas analysisen_US
dc.publisherLunar and Planetary Instituteen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherEvolved Gas Analysisen_US
dc.subject.otherSAMen_US
dc.subject.otherMSLen_US
dc.subject.otherMarsen_US
dc.subject.otherSulfuren_US
dc.subject.otherMineralogyen_US
dc.titleSulfur‐bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Marsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106720/1/jgre20208.pdf
dc.identifier.doi10.1002/2013JE004518en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceMorgan, D. J., S. B. Warrington, and S. S. J. Warne ( 1988 ), Earth sciences applications of evolved gas‐analysis—A review, Thermochim. Acta, 135, 207 – 212.en_US
dc.identifier.citedreferenceMilliken, R. E., et al. ( 2008 ), Opaline silica in young deposits on Mars, Geology, 36 ( 11 ), 847 – 850, doi: 10.1130/g24967a.1.en_US
dc.identifier.citedreferenceMilliken, R. E., J. P. Grotzinger, and B. J. Thomson ( 2010 ), Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater, Geophys. Res. Lett., 37, L04201, doi: 10.1029/2009GL041870.en_US
dc.identifier.citedreferenceMilodowski, A. E., and D. J. Morgan ( 1980 ), Identification and estimation of carbonate minerals at low‐levels by evolved CO 2 analysis, Nature, 286 ( 5770 ), 248 – 249.en_US
dc.identifier.citedreferenceMing, D. W., et al. ( 2006 ), Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res., 111, E02S12, doi: 10.1029/2005JE002560.en_US
dc.identifier.citedreferenceMorris, R. V., et al. ( 2000 ), Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res., 105 ( E1 ), 1757 – 1817.en_US
dc.identifier.citedreferenceMorris, R. V., et al. ( 2006 ), Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate‐rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res., 111, E12S15, doi: 10.1029/2006JE002791.en_US
dc.identifier.citedreferenceMorris, R. V., et al. ( 2008 ), Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover, J. Geophys. Res., 113, E12S42, doi: 10.1029/2008JE003201.en_US
dc.identifier.citedreferenceMorris, R. V., et al. ( 2013 ), The amorphous component in Martian basaltic soil in global perspective from MSL and MER missions, in LPI Contribution No. 1719, pp. 1653, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceNewsom, H. E., J. J. Hagerty, and F. Goff ( 1999 ), Mixed hydrothermal fluids and the origin of the Martian soil, J. Geophys. Res., 104 ( E4 ), 8717 – 8728.en_US
dc.identifier.citedreferenceNiles, P. B., and J. Michalski ( 2009 ), Meridiani Planum sediments on Mars formed through weathering in massive ice deposits, Nat. Geosci., 2 ( 3 ), 215 – 220, doi: 10.1038/ngeo438.en_US
dc.identifier.citedreferenceParfitt, R. L., and R. S. C. Smart ( 1978 ), Mechanism of sulfate adsorption on iron‐oxides, Soil Sci. Soc. Am. J., 42 ( 1 ), 48 – 50.en_US
dc.identifier.citedreferenceRieder, R., T. Economou, H. Wanke, A. Turkevich, J. Crisp, J. Bruckner, G. Dreibus, and H. Y. McSween ( 1997 ), The chemical composition of Martian soil and rocks returned by the mobile alpha proton x‐ray spectrometer: Preliminary results from the X‐ray mode, Science, 278 ( 5344 ), 1771 – 1774.en_US
dc.identifier.citedreferenceSephton, M. A. ( 2012 ), Pyrolysis and mass spectrometry studies of meteoritic organic matter, Mass Spectrom. Rev., 31 ( 5 ), 560 – 569, doi: 10.1002/mas.20354.en_US
dc.identifier.citedreferenceSephton, M. A., I. P. Wright, I. Gilmour, J. W. de Leeuw, M. M. Grady, and C. T. Pillinger ( 2002 ), High molecular weight organic matter in Martian meteorites, Planet. Space Sci., 50 ( 7‐8 ), 711 – 716, doi: 10.1016/s0032‐0633(02)00053‐3.en_US
dc.identifier.citedreferenceSettle, M. ( 1979 ), Formation and deposition of volcanic sulfate aerosols on Mars, J. Geophys. Res., 84 ( B14 ), 8343 – 8354, doi: 10.1029/JB084iB14p08343.en_US
dc.identifier.citedreferenceShao, D. K., E. J. Hutchinson, J. Heidbrink, W. P. Pan, and C. L. Chou ( 1994 ), Behavior of sulfur during coal pyrolysis, J. Anal. Appl. Pyrolysis, 30 ( 1 ), 91 – 100, doi: 10.1016/0165‐2370(94)00807‐8.en_US
dc.identifier.citedreferenceSquyres, S. W., and A. H. Knoll ( 2005 ), Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett., 240 ( 1 ), 1 – 10.en_US
dc.identifier.citedreferenceSquyres, S. W., et al. ( 2012 ), Ancient impact and aqueous processes at Endeavour crater, Mars, Science, 336 ( 6081 ), 570 – 576, doi: 10.1126/science.1220476.en_US
dc.identifier.citedreferenceSteele, A., et al. ( 2012 ), A reduced organic carbon component in Martian basalts, Science, 337 ( 6091 ), 212 – 215, doi: 10.1126/science.1220715.en_US
dc.identifier.citedreferenceSteele, A., et al. ( 2013 ), Organic carbon inventory of the Tissint meteorite, in LPI Contribution No. 1719, pp. 2854, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceSteininger, H., F. Goesmann, and W. Goetz ( 2012 ), Influence of magnesium perchlorate on the pyrolysis of organic compounds in Mars analogue soils, Planet. Space Sci., 71 ( 1 ), 9 – 17, doi: 10.1016/j.pss.2012.06.015.en_US
dc.identifier.citedreferenceSummons, R. E., J. P. Amend, D. Bish, R. Buick, G. D. Cody, D. J. Des Marais, G. Dromart, J. L. Eigenbrode, A. H. Knoll, and D. Y. Sumner ( 2011 ), Preservation of Martian organic and environmental records: Final report of the Mars Biosignature Working Group, Astrobiology, 11 ( 2 ), 157 – 181, doi: 10.1089/ast.2010.0506.en_US
dc.identifier.citedreferenceSutter, B., W. V. Boynton, D. W. Ming, A. B. Niles, R. V. Morris, D. C. Golden, H. V. Lauer, C. Fellows, D. K. Hamara, and S. A. Mertzman ( 2012 ), The detection of carbonate in the Martian soil at the Phoenix Landing site: A laboratory investigation and comparison with the Thermal and Evolved Gas Analyzer (TEGA) data, Icarus, 218 ( 1 ), 290 – 296, doi: 10.1016/j.icarus.2011.12.002.en_US
dc.identifier.citedreferenceTani, A., N. Hasegawa, K. Norizawa, T. Yada, and M. Ikeya ( 2012 ), Radiation‐induced radicals in hydrated magnesium sulfate, Radiat. Meas., 47 ( 9 ), 890 – 893, doi: 10.1016/j.radmeas.2012.03.006.en_US
dc.identifier.citedreferenceTosca, N. J., S. M. McLennan, D. H. Lindsley, and M. A. A. Schoonen ( 2004 ), Acid‐sulfate weathering of synthetic Martian basalt: The acid fog model revisited, J. Geophys. Res., 109, E05003, doi: 10.1029/2003JE002218.en_US
dc.identifier.citedreferenceTosca, N. J., S. M. McLennan, M. D. Dyar, E. C. Sklute, and F. M. Michel ( 2008 ), Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars, J. Geophys. Res., 113, E05005, doi: 10.1029/2007JE003019.en_US
dc.identifier.citedreferenceUno, T. ( 1951 ), Equilbrium between FeS and mixed gas of H 2 and H 2 O, Mem. Faculty Eng. Hokkaido Univ., 9 ( 1 ), 84 ‐ 90, http://hdl.handle.net/2115/37768.en_US
dc.identifier.citedreferenceVaniman, D. T., D. L. Bish, S. J. Chipera, C. I. Fialips, J. W. Carey, and W. C. Feldman ( 2004 ), Magnesium sulphate salts and the history of water on Mars, Nature, 431 ( 7009 ), 663 – 665, doi: 10.1038/nature02973.en_US
dc.identifier.citedreferenceVinodkumar, M., C. Limbachiya, and H. Bhutadia ( 2010 ), Electron impact calculations of total ionization cross sections for environmentally sensitive diatomic and triatomic molecules from threshold to 5 keV, J. Phys. B‐At. Mol. Opt. Phys., 43 ( 1 ), doi: 10.1088/0953‐4075/43/1/015203.en_US
dc.identifier.citedreferenceWang, A., and Z. C. Ling ( 2011 ), Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations, J. Geophys. Res., 116, E00F17, doi: 10.1029/2010JE003665.en_US
dc.identifier.citedreferenceWang, A., et al. ( 2006 ), Sulfate deposition in subsurface regolith in Gusev crater, Mars, J. Geophys. Res., 111, E02S17, doi: 10.1029/2005JE002513.en_US
dc.identifier.citedreferenceWiseman, S. M., R. E. Arvidson, R. V. Morris, F. Poulet, J. C. Andrews‐Hanna, J. L. Bishop, S. L. Murchie, F. P. Seelos, D. Des Marais, and J. L. Griffes ( 2010 ), Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate‐bearing deposits in northern Sinus Meridiani, Mars, J. Geophys. Res., 115, E00D18, doi: 10.1029/2009JE003354.en_US
dc.identifier.citedreferenceWray, J. J., S. L. Murchie, S. W. Squyres, F. P. Seelos, and L. L. Tornabene ( 2009 ), Diverse aqueous environments on ancient Mars revealed in the southern highlands, Geology, 37 ( 11 ), 1043 – 1046, doi: 10.1130/g30331a.1.en_US
dc.identifier.citedreferenceWray, J. J., S. W. Squyres, L. H. Roach, J. L. Bishop, J. F. Mustard, and E. Z. N. Dobrea ( 2010 ), Identification of the Ca‐sulfate bassanite in Mawrth Vallis, Mars, Icarus, 209 ( 2 ), 416 – 421, doi: 10.1016/j.icarus.2010.06.001.en_US
dc.identifier.citedreferenceWray, J. J., et al. ( 2011 ), Columbus crater and other possible groundwater‐fed paleolakes of Terra Sirenum, Mars, J. Geophys. Res., 116, E01001, doi: 10.1029/2010JE003694.en_US
dc.identifier.citedreferenceXu, L., J. L. Yang, Y. M. Li, and Z. Y. Liu ( 2004 ), Behavior of organic sulfur model compounds in pyrolysis under coal‐like environment, Fuel Process. Technol., 85 ( 8–10 ), 1013 – 1024, doi: 10.1016/j.fuproc.2003.11.036.en_US
dc.identifier.citedreferenceYen, A. S., et al. ( 2005 ), An integrated view of the chemistry and mineralogy of Martian soils, Nature, 436 ( 7047 ), 49 – 54, doi: 10.1038/nature03637.en_US
dc.identifier.citedreferenceYen, A. S., et al. ( 2008 ), Hydrothermal processes at Gusev Crater: An evaluation of Paso Robles class soils, J. Geophys. Res., 113, E06S10, doi: 10.1029/2007JE002978.en_US
dc.identifier.citedreferenceYen, A. S., et al. ( 2013 ), Evidence for a global Martian soil composition extends to Gale crater, in LPI Contribution No. 1719, pp. 2495, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceZega, T. J., C. M. O. Alexander, H. Busemann, L. R. Nittler, P. Hoppe, R. M. Stroud, and A. F. Young ( 2010 ), Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite, Geochim. Cosmochim. Acta, 74 ( 20 ), 5966 – 5983, doi: 10.1016/j.gca.2010.07.018.en_US
dc.identifier.citedreferenceZhang, T. W., G. S. Ellis, K. S. Wang, C. C. Walters, S. R. Kelemen, B. Gillaizeau, and Y. C. Tang ( 2007 ), Effect of hydrocarbon type on thermochemical sulfate reduction, Org. Geochem., 38 ( 6 ), 897 – 910, doi: 10.1016/j.orggeochem.2007.02.004.en_US
dc.identifier.citedreferenceZhang, T. W., G. S. Ellis, C. C. Walters, S. R. Kelemen, K. S. Wang, and Y. C. Tang ( 2008 ), Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments, Org. Geochem., 39 ( 3 ), 308 – 328, doi: 10.1016/j.orggeochem.2007.12.007.en_US
dc.identifier.citedreferenceZhang, T. W., G. S. Ellis, Q. S. Ma, A. Amrani, and Y. C. Tang ( 2012 ), Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur‐free paraffin, Geochim. Cosmochim. Acta, 96, 1 – 17, doi: 10.1016/j.gca.2012.08.010.en_US
dc.identifier.citedreferenceZolotov, M. Y., and E. L. Shock ( 2005 ), Formation of jarosite‐bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars, Geophys. Res. Lett., 32, L21203, doi: 10.1029/2005GL024253.en_US
dc.identifier.citedreferenceAnderson, R. C., et al. ( 2012 ), Collecting samples in Gale Crater, Mars; an overview of the Mars Science Laboratory sample acquisition, sample processing and handling system, Space Sci. Rev., 170 ( 1–4 ), 57 – 75, doi: 10.1007/s11214‐012‐9898‐9.en_US
dc.identifier.citedreferenceArcher, P. D., et al. ( 2013a ), Abundances and implications of volatile‐bearing species from evolved gas analysis of the Rocknest aeolian bed form, Gale Crater, Mars, J. Geophys. Res. Planets, 119, 237 – 254, doi: 10.1002/2013JE004493.en_US
dc.identifier.citedreferenceArcher, P. D., D. W. Ming, and B. Sutter ( 2013b ), The effects of instrument parameters and sample properties on thermal decomposition: Interpreting thermal analysis data from Mars, Planet. Sci., 2 ( 21 ), doi: 10.1186/2191‐2521‐1182‐1182.en_US
dc.identifier.citedreferenceArutyunov, V. S., V. Y. Basevich, V. I. Vedeneev, O. V. Sokolov, V. A. Ushakov, and A. V. Chernysheva ( 1991 ), Kinetics of the reduction of sulfur‐dioxide. 3. Formation of hydrogen‐sulfide in the reaction of sulfur‐dioxide with hydrogen, Kinet. Catal., 32 ( 5 ), 1112 – 1115.en_US
dc.identifier.citedreferenceArvidson, R. E., et al. ( 2010 ), Spirit Mars Rover mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater, J. Geophys. Res., 115, E00F03, doi: 10.1029/2010JE003633.en_US
dc.identifier.citedreferenceAylmore, L. A. G., M. Karim, and J. P. Quirk ( 1967 ), Adsorption and desorption of sulfate ions by soil constituents, Soil Sci., 103 ( 1 ), 10 – 15.en_US
dc.identifier.citedreferenceBaba, A. A., F. A. Adekola, O. O. Opaleye, and R. B. Bale ( 2011 ), Dissolution kinetics of pyrite ore by hydrochloric acid, J. Appl. Sci. Technol., 16, 104 – 110.en_US
dc.identifier.citedreferenceBaker, L. L., D. J. Agenbroad, and S. A. Wood ( 2000 ), Experimental hydrothermal alteration of a Martian analog basalt: Implications for Martian meteorites, Meteorit. Planet. Sci., 35 ( 1 ), 31 – 38.en_US
dc.identifier.citedreferenceBaldridge, A. M., M. D. Lane, and C. S. Edwards ( 2013 ), Searching at the right time of day: Evidence for aqueous minerals in Columbus crater with TES and THEMIS data, J. Geophys. Res. Planets, 118, 179 – 189, doi: 10.1029/2012JE004225.en_US
dc.identifier.citedreferenceBandfield, J. L., T. D. Glotch, and P. R. Christensen ( 2003 ), Spectroscopic identification of carbonate minerals in the Martian dust, Science, 301 ( 5636 ), 1084 – 1087.en_US
dc.identifier.citedreferenceBanin, A., F. X. Han, I. Kan, and A. Cicelsky ( 1997 ), Acidic volatiles and the Mars soil, J. Geophys. Res., 102 ( E6 ), 13,341 – 13,356.en_US
dc.identifier.citedreferenceBenison, K. C., and D. A. Laclair ( 2003 ), Modern and ancient extremely acid saline deposits: Terrestrial analogs for Martian environments?, Astrobiology, 3 ( 3 ), 609 – 618, doi: 10.1089/153110703322610690.en_US
dc.identifier.citedreferenceBerger, J. A., P. L. King, R. Gellert, J. L. Campbell, N. Boyd, I. Pradler, G. M. Perrett, APXS, and MSL Teams ( 2013 ), MSL titanium observation tray measurements with APXS, in LPI Contribution No. 1719, pp. 1321, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceBhargava, S. K., A. Garg, and N. D. Subasinghe ( 2009 ), In situ high‐temperature phase transformation studies on pyrite, Fuel, 88 ( 6 ), 988 – 993, doi: 10.1016/j.fuel.2008.12.005.en_US
dc.identifier.citedreferenceBibring, J. P., et al. ( 2006 ), Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data, Science, 312 ( 5772 ), 400 – 404, doi: 10.1126/science.1122659.en_US
dc.identifier.citedreferenceBibring, J. P., et al. ( 2007 ), Coupled ferric oxides and sulfates on the Martian surface, Science, 317 ( 5842 ), 1206 – 1210, doi: 10.1126/science.1144174.en_US
dc.identifier.citedreferenceBiemann, K., et al. ( 1976 ), Search for organic and volatile inorganic‐compounds in 2 surface samples from Chryse‐Planitia region of Mars, Science, 194 ( 4260 ), 72 – 76, doi: 10.1126/science.194.4260.72.en_US
dc.identifier.citedreferenceBigham, J. M., and D. K. Nordstrom ( 2000 ), Iron and aluminum hydroxysulfates from acid sulfate waters in Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, edited by C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, pp. 351 ‐ 403, The Mineralogical Society of America, Washington, D. C.en_US
dc.identifier.citedreferenceBinns, D., and P. Marshall ( 1991 ), An ab initio study of the reaction of atomic‐hydrogen with sulfur‐dioxide, J. Chem. Phys., 95 ( 7 ), 4940 – 4947, doi: 10.1063/1.461710.en_US
dc.identifier.citedreferenceBish, D. L., and C. J. Duffy ( 1990 ), Thermogravimetric analysis of minerals, in Thermal Analysis in Clay Science, edited by J. W. Stucki, D. L. Bish, and F. A. Mumpton, The Clay Minerals Society, Boulder, Colo.en_US
dc.identifier.citedreferenceBish, D. L., et al. ( 2013 ), X‐ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater, Science, 341 ( 6153 ), doi: 10.1126/science.1238932.en_US
dc.identifier.citedreferenceBishop, J. L., et al. ( 2009 ), Mineralogy of Juventae Chasma: Sulfates in the light‐toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau, J. Geophys. Res., 114, E00D09, doi: 10.1029/2009JE003352.en_US
dc.identifier.citedreferenceBlake, D. F., et al. ( 2013 ), Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341 ( 6153 ), doi: 10.1126/science.1239505.en_US
dc.identifier.citedreferenceBridges, J. C., D. C. Catling, J. M. Saxton, T. D. Swindle, I. C. Lyon, and M. M. Grady ( 2001 ), Alteration assemblages in Martian meteorites: Implications for near‐surface processes, Space Sci. Rev., 96 ( 1–4 ), 365 – 392.en_US
dc.identifier.citedreferenceBruckner, J., G. Dreibus, R. Rieder, and H. Wanke ( 2003 ), Refined data of Alpha Proton X‐ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: Implications for surface chemistry, J. Geophys. Res., 108 ( E12 ), 8094, doi: 10.1029/2003JE002060.en_US
dc.identifier.citedreferenceBrydon, J. E., and S. S. Singh ( 1969 ), The nature of the synthetic crystalline basic aluminum sulfates as compared with basaluminite, Can. Mineral., 9, 644 – 654.en_US
dc.identifier.citedreferenceBurns, R. G., and D. S. Fisher ( 1990 ), Iron‐sulfur mineralogy of Mars—Magmatic evolution and chemical‐weathering products, J. Geophys. Res., 95 ( B9 ), 14,415 – 14,421, doi: 10.1029/JB095iB09p14415.en_US
dc.identifier.citedreferenceCannon, K. M., B. Sutter, D. W. Ming, W. V. Boynton, and R. Quinn ( 2012 ), Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA), Geophys. Res. Lett., 39, L13203, doi: 10.1029/2012GL051952.en_US
dc.identifier.citedreferenceCarr, M. H. ( 1987 ), Water on Mars, Nature, 326 ( 6108 ), 30 – 35, doi: 10.1038/326030a0.en_US
dc.identifier.citedreferenceCharsley, E. L., N. J. Manning, and S. B. Warrington ( 1987 ), A new integrated system for simultaneous TG‐DTA‐mass spectrometry, Thermochim. Acta, 114 ( 1 ), 47 – 52, doi: 10.1016/0040‐6031(87)80239‐3.en_US
dc.identifier.citedreferenceChevrier, V., and P. E. Mathe ( 2007 ), Mineralogy and evolution of the surface of Mars: A review, Planet. Space Sci., 55 ( 3 ), 289 – 314.en_US
dc.identifier.citedreferenceChevrier, V., J. P. Lorand, and V. Sautter ( 2011 ), Sulfide petrology of four nakhlites: Northwest Africa 817, Northwest Africa 998, Nakhla, and Governador Valadares, Meteorit. Planet. Sci., 46 ( 6 ), 769 – 784, doi: 10.1111/j.1945‐5100.2011.01189.x.en_US
dc.identifier.citedreferenceChevrier, V. F., E. Dehouck, C. G. Lozano, and T. S. Altheide ( 2012 ), Mineral parageneses resulting from weathering on early Mars and the effect of CO 2 vs SO 2 atmospheres, in LPI Contribution No. 1680, 7080 pp., Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceClark, B. C., and A. K. Baird ( 1979 ), Is the Martian lithosphere sulfur rich, J. Geophys. Res., 84 ( B14 ), 8395 – 8403, doi: 10.1029/JB084iB14p08395.en_US
dc.identifier.citedreferenceClark, B. C., and D. C. Vanhart ( 1981 ), The salts of Mars, Icarus, 45 ( 2 ), 370 – 378.en_US
dc.identifier.citedreferenceClark, B. C., A. K. Baird, H. J. Rose, P. Toulmin, K. Keil, A. J. Castro, W. C. Kelliher, C. D. Rowe, and P. H. Evans ( 1976 ), Inorganic analyses of Martian surface samples at Viking landing sites, Science, 194 ( 4271 ), 1283 – 1288.en_US
dc.identifier.citedreferenceClark, B. C., A. K. Baird, R. J. Weldon, D. M. Tsusaki, L. Schnabel, and M. P. Candelaria ( 1982 ), Chemical‐composition of Martian fines, J. Geophys. Res., 87 ( NB12 ), 59 – 67.en_US
dc.identifier.citedreferenceDyar, M. D., et al. ( 2013 ), Mössbauer parameters of iron in sulfate minerals, Am. Mineral., 98, 1943 – 1965, doi: 10.2138/am.2013.4604.en_US
dc.identifier.citedreferenceFarrand, W. H., T. D. Glotch, J. W. Rice, J. A. Hurowitz, and G. A. Swayze ( 2009 ), Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region, Icarus, 204 ( 2 ), 478 – 488, doi: 10.1016/j.icarus.2009.07.014.en_US
dc.identifier.citedreferenceFranz, H. B., P. R. Mahaffy, W. Kasprzak, E. Lyness, and E. Raaen ( 2011 ), Measuring sulfur isotope ratios from solid samples with the sample analysis at Mars instrument and the effects of dead time corrections, in Contribution No. 1608, pp. 2800, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceGaillard, F., J. Michalski, G. Berger, S. M. McLennan, and B. Scaillet ( 2013 ), Geochemical reservoirs and timing of sulfur cycling on Mars, Space Sci. Rev., 174 ( 1–4 ), 251 – 300, doi: 10.1007/s11214‐012‐9947‐4.en_US
dc.identifier.citedreferenceGargurevich, I. A. ( 2005 ), Hydrogen sulfide combustion: Relevant issues under Claus furnace conditions, Ind. Eng. Chem. Res., 44 ( 20 ), 7706 – 7729, doi: 10.1021/ie0492956.en_US
dc.identifier.citedreferenceGellert, R., et al. ( 2006 ), Alpha particle X‐ray spectrometer (APXS): Results from Gusev crater and calibration report, J. Geophys. Res., 111, E02S05, doi: 10.1029/2005JE002555.en_US
dc.identifier.citedreferenceGendrin, A., et al. ( 2005 ), Sulfates in Martian layered terrains: The OMEGA/Mars Express view, Science, 307 ( 5715 ), 1587 – 1591.en_US
dc.identifier.citedreferenceGibson, E. K. ( 1992 ), Volatiles in interplanetary dust particles—A review, J. Geophys. Res., 97 ( E3 ), 3865 – 3875.en_US
dc.identifier.citedreferenceGlavin, D. P., et al. ( 2013 ), Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit, J. Geophys. Res. Planets, 118, 1955 – 1973, doi: 10.1002/jgre.20144.en_US
dc.identifier.citedreferenceGolden, D. C., D. W. Ming, B. Sutter, B. C. Clark, R. V. Morris, W. V. Boynton, M. H. Hecht, and S. P. Kounaves ( 2009 ), Sulfur mineralogy at the Mars Phoenix landing site, in LPI Contribution No. 1468, pp. 2319, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceGooding, J. L. ( 1978 ), Chemical weathering on Mars—Thermodynamic stabilities of primary minerals (and their alteration products) from mafic igneous rocks, Icarus, 33 ( 3 ), 483 – 513.en_US
dc.identifier.citedreferenceGooding, J. L. ( 1992 ), Soil mineralogy and chemistry on Mars—Possible clues from salts and clays in SNC meteorites, Icarus, 99 ( 1 ), 28 – 41.en_US
dc.identifier.citedreferenceGooding, J. L., and D. W. Muenow ( 1986 ), Martian volatiles in Shergottite EETA 79001—New evidence from oxidized sulfur and sulfur‐rich aluminosilicates, Geochim. Cosmochim. Acta, 50 ( 6 ), 1049 – 1059, doi: 10.1016/0016‐7037(86)90387‐x.en_US
dc.identifier.citedreferenceGrady, M. M., A. B. Verchovsky, and I. P. Wright ( 2004 ), Magmatic carbon in Martian meteorites: Attempts to constrain the carbon cycle on Mars, Int. J. Astrobiol., 3 ( 2 ), 117 – 124.en_US
dc.identifier.citedreferenceGreenwood, J. P., L. R. Riciputi, and H. Y. McSween ( 1997 ), Sulfide isotopic compositions in shergottites and ALH84001, and possible implications for life on Mars, Geochim. Cosmochim. Acta., 61 ( 20 ), 4449 – 4453.en_US
dc.identifier.citedreferenceHalevy, I., and D. P. Schrag ( 2009 ), Sulfur dioxide inhibits calcium carbonate precipitation: Implications for early Mars and Earth, Geophys. Res. Lett., 36, L23201, doi: 10.1029/2009GL040792.en_US
dc.identifier.citedreferenceHalevy, I., M. T. Zuber, and D. P. Schrag ( 2007 ), A sulfur dioxide climate feedback on early Mars, Science, 318 ( 5858 ), 1903 – 1907, doi: 10.1126/science.1147039.en_US
dc.identifier.citedreferenceHoare, I. C., and J. H. Levy ( 1990 ), The nonisothermal reaction‐kinetics of pyrite with water‐vapor, Thermochim. Acta, 164, 153 – 160, doi: 10.1016/0040‐6031(90)80432‐x.en_US
dc.identifier.citedreferenceHoffman, J. H., R. C. Chaney, and H. Hammack ( 2008 ), Phoenix Mars mission—The Thermal Evolved Gas Analyzer, J. Am. Soc. Mass Spectrom., 19 ( 10 ), 1377 – 1383, doi: 10.1016/j.jasms.2008.07.015.en_US
dc.identifier.citedreferenceHong, Y., and B. Fegley ( 1997a ), Formation of carbonyl sulfide (OCS) from carbon monoxide and sulfur vapor and applications to Venus, Icarus, 130 ( 2 ), 495 – 504, doi: 10.1006/icar.1997.5824.en_US
dc.identifier.citedreferenceHong, Y., and B. Fegley ( 1997b ), The kinetics and mechanism of pyrite thermal decomposition, Ber. Bunsen‐Ges‐Phys. Chem. Chem. Phys., 101 ( 12 ), 1870 – 1881.en_US
dc.identifier.citedreferenceHu, G. L., K. Dam‐Johansen, W. Stig, and J. P. Hansen ( 2006 ), Decomposition and oxidation of pyrite, Prog. Energy Combust. Sci., 32 ( 3 ), 295 – 314, doi: 10.1016/j.pecs.2005.11.004.en_US
dc.identifier.citedreferenceHurowitz, J. A., S. M. McLennan, N. J. Tosca, R. E. Arvidson, J. R. Michalski, D. W. Ming, C. Schroder, and S. W. Squyres ( 2006 ), In situ and experimental evidence for acidic weathering of rocks and soils on Mars, J. Geophys. Res., 111, E02S19, doi: 10.1029/2005JE002515.en_US
dc.identifier.citedreferenceIngraham, T. R., H. W. Parsons, and L. J. Cabri ( 1972 ), Leaching of pyrrhotite with hydrochloric‐acid, Can. Metall. Q., 11 ( 2 ), 407.en_US
dc.identifier.citedreferenceJakosky, B. M., and E. L. Shock ( 1998 ), The biological potential of Mars, the early Earth, and Europa, J. Geophys. Res., 103 ( E8 ), 19,359 – 19,364, doi: 10.1029/98JE01892.en_US
dc.identifier.citedreferenceJambor, J. L., D. K. Nordstrom, and C. N. Alpers ( 2000 ), Metal‐sulfate salts from sulfide mineral oxidation, in Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance, edited by C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, pp. 303 – 350, The Mineralogical Society of America, Washington, D. C.en_US
dc.identifier.citedreferenceJohnson, S. S., M. A. Mischna, T. L. Grove, and M. T. Zuber ( 2008 ), Sulfur‐induced greenhouse warming on early Mars, J. Geophys. Res., 113, E08005, doi: 10.1029/2007JE002962.en_US
dc.identifier.citedreferenceJull, A. J. T., J. W. Beck, and G. S. Burr ( 2000 ), Isotopic evidence for extraterrestrial organic material in the Martian meteorite, Nakhla, Geochim. Cosmochim. Acta., 64 ( 21 ), 3763 – 3772, doi: 10.1016/s0016‐7037(00)00458‐0.en_US
dc.identifier.citedreferenceKarunatillake, S., J. J. Wray, S. W. Squyres, G. J. Taylor, O. Gasnault, S. M. McLennan, W. Boynton, M. R. El Maarry, and J. M. Dohm ( 2009 ), Chemically striking regions on Mars and Stealth revisited, J. Geophys. Res., 114, E12001, doi: 10.1029/2008JE003303.en_US
dc.identifier.citedreferenceKarunatillake, S., O. Gasnault, S. M. McLennan, A. D. Rogers, J. J. Wray, S. W. Squyres, and W. V. Boynton ( 2012 ), The hydration state of sulfates on Mars, in LPI Contribution No. 1659, pp. 2940, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceKillops, S., and V. Killops ( 2005 ), Introduction to Organic Geochemistry, 2nd ed., pp. 393, Blackwell Science Ltd., Malden, MA.en_US
dc.identifier.citedreferenceKing, P. L., and S. M. McLennan ( 2010 ), Sulfur on Mars, Elements, 6 ( 2 ), 107 – 112, doi: 10.2113/gselements.6.2.107.en_US
dc.identifier.citedreferenceKing, P. L., and H. Y. McSween ( 2005 ), Effects of H 2 O, pH, and oxidation state on the stability of Fe minerals on Mars, J. Geophys. Res., 110, E12S10, doi: 10.1029/2005JE002482.en_US
dc.identifier.citedreferenceKlingelhofer, G., et al. ( 2004 ), Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science, 306 ( 5702 ), 1740 – 1745.en_US
dc.identifier.citedreferenceKotra, R. K., E. K. Gibson, and M. A. Urbancic ( 1982 ), Release of volatiles from possible Martian analogs, Icarus, 51 ( 3 ), 593 – 605.en_US
dc.identifier.citedreferenceKounaves, S. P., et al. ( 2010 ), Soluble sulfate in the Martian soil at the Phoenix landing site, Geophys. Res. Lett., 37, L09201, doi: 10.1029/2010GL042613.en_US
dc.identifier.citedreferenceKraft, M. D., J. R. Michalski, and T. G. Sharp ( 2003 ), Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy, Geophys. Res. Lett., 30 ( 24 ), 2288, doi: 10.1029/2003GL018848.en_US
dc.identifier.citedreferenceLane, M. D., J. L. Bishop, M. D. Dyar, P. L. King, M. Parente, and B. C. Hyde ( 2008 ), Mineralogy of the Paso Robles soils on Mars, Am. Mineral., 93 ( 5‐6 ), 728 – 739, doi: 10.2138/am.2008.2757.en_US
dc.identifier.citedreferenceLangevin, Y., F. Poulet, J. P. Bibring, and B. Gondet ( 2005 ), Sulfates in the north polar region of Mars detected by OMEGA/Mars express, Science, 307 ( 5715 ), 1584 – 1586.en_US
dc.identifier.citedreferenceLauer, H. V. J., P. D. Archer, B. Sutter, P. B. Niles, and D. W. Ming ( 2012 ), Thermal and evolved Gas analysis of nanophase carbonates: Implications for thermal and evolved Gas analysis on Mars missions, in LPI Contribution No. 1659, pp. 2299, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceLeshin, L. A., et al. ( 2013 ), Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover, Science, 341 ( 6153 ), doi: 10.1126/science.1238937.en_US
dc.identifier.citedreferenceLindsay, W. L. ( 1979 ), Chemical Equilibria in Soils, 449 pp., Blackburn Press, Caldwell, NJ.en_US
dc.identifier.citedreferenceLorand, J. P., V. Chevrier, and V. Sautter ( 2005 ), Sulfide mineralogy and redox conditions in some shergottites, Meteorit. Planet. Sci., 40 ( 8 ), 1257 – 1272.en_US
dc.identifier.citedreferenceLuo, D. L., C. X. Zhang, P. L. Leung, Z. L. Deng, and M. J. Stokes ( 1998 ), Investigation of ESR, TL and positron annihilation in gamma‐ray irradiated magnesium sulphate, J. Phys. D‐Appl. Phys., 31 ( 7 ), 906 – 912.en_US
dc.identifier.citedreferenceMahaffy, P. R., et al. ( 2012 ), The Sample Analysis at Mars Investigation and Instrument Suite, Space Sci. Rev., 170 ( 1–4 ), 401 – 478, doi: 10.1007/s11214‐012‐9879‐z.en_US
dc.identifier.citedreferenceMangold, N., L. Roach, R. Milliken, S. Le Mouelic, V. Ansan, J. P. Bibring, P. Masson, J. F. Mustard, S. Murchie, and G. Neukum ( 2010 ), A Late Amazonian alteration layer related to local volcanism on Mars, Icarus, 207 ( 1 ), 265 – 276, doi: 10.1016/j.icarus.2009.10.015.en_US
dc.identifier.citedreferenceMarion, G. M., J. S. Kargel, J. K. Crowley, and D. C. Catling ( 2013 ), Sulfite–sulfide–sulfate–carbonate equilibria with applications to Mars, Icarus, 225, 342 – 351.en_US
dc.identifier.citedreferenceMcCoy, T. J., G. J. Taylor, and K. Keil ( 1992 ), Zagami—Product of a 2‐stage magmatic history, Geochim. Cosmochim. Acta., 56 ( 9 ), 3571 – 3582, doi: 10.1016/0016‐7037(92)90400‐d.en_US
dc.identifier.citedreferenceMcCubbin, F. M., N. J. Tosca, A. Smirnov, H. Nekvasil, A. Steele, M. Fries, and D. H. Lindsley ( 2009 ), Hydrothermal jarosite and hematite in a pyroxene‐hosted melt inclusion in Martian meteorite Miller Range (MIL) 03346: Implications for magmatic‐hydrothermal fluids on Mars, Geochim. Cosmochim. Acta., 73 ( 16 ), 4907 – 4917, doi: 10.1016/j.gca.2009.05.031.en_US
dc.identifier.citedreferenceMcLennan, S. M. ( 2012 ), Geochemistry of sedimentary processes on Mars, in Mars Sedimentology, edited by J. P. Grotzinger and R. E. Milliken, pp. 119 – 138, SEPM Spec. Publ, New York.en_US
dc.identifier.citedreferenceMcLennan, S. M., and J. P. Grotzinger ( 2008 ), The sedimentary rock cycle of Mars, in The Martian Surface: Composition, Mineralogy, and Physical Properties, edited by J. F. Bell, pp. 541 – 577, Cambridge Univ. Press, Cambridge.en_US
dc.identifier.citedreferenceMcLennan, S. M., W. V. Boynton, S. Karunatillake, B. C. Hahn, G. J. Taylor, and M. O. G. Team ( 2010 ), Distribution of sulfur on the surface of Mars determined by the 2001 Mars Odyssey gamma ray spectrometer, in LPI Contribution No. 1533, pp. 2174, Lunar and Planetary Institute, Houston.en_US
dc.identifier.citedreferenceMcSween, H. Y., and K. Keil ( 2000 ), Mixing relationships in the Martian regolith and the composition of globally homogeneous dust, Geochim. Cosmochim. Acta., 64 ( 12 ), 2155 – 2166.en_US
dc.identifier.citedreferenceMichalski, J. R., M. D. Kraft, T. G. Sharp, L. B. Williams, and P. R. Christensen ( 2006 ), Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data, J. Geophys. Res., 111, E03004, doi: 10.1029/2005JE002438.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.