Show simple item record

Estimated likelihood of observing a large earthquake on a continental low‐angle normal fault and implications for low‐angle normal fault activity

dc.contributor.authorStyron, Richard H.en_US
dc.contributor.authorHetland, Eric A.en_US
dc.date.accessioned2014-05-23T15:58:48Z
dc.date.available2015-06-01T15:48:45Zen_US
dc.date.issued2014-04-16en_US
dc.identifier.citationStyron, Richard H.; Hetland, Eric A. (2014). "Estimated likelihood of observing a large earthquake on a continental low‐angle normal fault and implications for low‐angle normal fault activity." Geophysical Research Letters 41(7): 2342-2350.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106807
dc.publisherUniversity Science Booksen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBayesen_US
dc.subject.otherLow‐Angle Normal Faulten_US
dc.subject.otherEarthquake Likelihooden_US
dc.titleEstimated likelihood of observing a large earthquake on a continental low‐angle normal fault and implications for low‐angle normal fault activityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106807/1/grl51557.pdf
dc.identifier.doi10.1002/2014GL059335en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferencePérez, F., and B. E. Granger ( 2007 ), IPython: A system for interactive scientific computing, Comput. Sci. Eng., 9 ( 3 ), 21 – 29.en_US
dc.identifier.citedreferenceMcKinney, W. ( 2010 ), Data structures for statistical computing in Python, in Proceedings of the 9th Python in Science Conference, edited by S. van der Walt and J. Millman, pp. 51 – 56, SciPy, Austin, Tex.en_US
dc.identifier.citedreferenceMonigle, P. W., J. Nabelek, J. Braunmiller, and N. S. Carpenter ( 2012 ), Evidence for low‐angle normal faulting in the Pumqu‐Xianza Rift, Tibet, Geophys. J. Int., 190 ( 3 ), 1335 – 1340.en_US
dc.identifier.citedreferenceMorley, C. K. ( 2009 ), Geometry and evolution of low‐angle normal faults (LANF) within a Cenozoic high‐angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF development, Tectonics, 28 ( 5 ), 1 – 30, doi: 10.1029/2007TC002202.en_US
dc.identifier.citedreferenceNicol, A., J. Walsh, T. Manzocchi, and N. Morewood ( 2005 ), Displacement rates and average earthquake recurrence intervals on normal faults, J. Struct. Geol., 27 ( 3 ), 541 – 551.en_US
dc.identifier.citedreferenceOliphant, T. E. ( 2007 ), Python for scientific computing, Comput. Sci. Eng., 9 ( 3 ), 10 – 20.en_US
dc.identifier.citedreferencePrante, M. R., J. P. Evans, S. U. Janecke, and A. Steely ( 2014 ), Evidence for paleoseismic slip on a continental low‐angle normal fault: Tectonic pseudotachylyte from the West Salton detachment fault, CA, U.S.A., Earth Planet. Sci. Lett., 387, 170 – 183.en_US
dc.identifier.citedreferenceSelverstone, J., G. J. Axen, and A. Luther ( 2012 ), Fault localization controlled by fluid infiltration into mylonites: Formation and strength of low‐angle normal faults in the midcrustal brittle‐plastic transition, J. Geophys. Res., 117, B06210, doi: 10.1029/2012JB009171.en_US
dc.identifier.citedreferenceSibson, R. H. ( 1985 ), A note on fault reactivation, J. Struct. Geol., 7 ( 6 ), 751 – 754.en_US
dc.identifier.citedreferenceStyron, R. H., M. H. Taylor, K. E. Sundell, D. F. Stockli, J. A. Oalmann, A. Möller, A. T. McCallister, D. Liu, and L. Ding ( 2013 ), Miocene initiation and acceleration of extension in the South Lunggar rift, western Tibet: Evolution of an active detachment system from structural mapping and (U‐Th)/He thermochronology, Tectonics, 32 ( 4 ), 880 – 907, doi: 10.1002/tect.20053.en_US
dc.identifier.citedreferenceSundell, K. E., M. H. Taylor, R. H. Styron, D. F. Stockli, P. Kapp, C. Hager, D. Liu, and L. Ding ( 2013 ), Evidence for constriction and Pliocene acceleration of east‐west extension in the North Lunggar rift region of west central Tibet, Tectonics, 32 ( 5 ), 1454 – 1479, doi: 10.1002/tect.20086.en_US
dc.identifier.citedreferenceU.S. Geological Survey ( 2006 ), Quaternary fault and fold database for the United States. [Available at http://earthquake.usgs.gov/hazards/qfaults /.]en_US
dc.identifier.citedreferenceVaroquaux, G., and O. Grisel ( 2009 ), Joblib: Running Python function as pipeline jobs. [Available at https://pythonhosted.org/joblib /.]en_US
dc.identifier.citedreferenceWernicke, B. ( 1995 ), Low‐angle normal faults and seismicity: A review, J. Geophys. Res., 100 ( B10 ), 20,159 – 20,174.en_US
dc.identifier.citedreferenceWernicke, B. ( 2009 ), The detachment era (1977–1982) and its role in revolutionizing continental tectonics, Geol. Soc. London Spec. Publ., 321 ( 1 ), 1 – 8.en_US
dc.identifier.citedreferenceWernicke, B., and G. J. Axen ( 1988 ), On the role of isostasy in the evolution of normal fault systems, Geology, 16 ( 9 ), 848 – 851.en_US
dc.identifier.citedreferenceWesnousky, S. G. ( 2008 ), Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic‐hazard analysis and the process of earthquake rupture, Bull. Seismol. Soc. Am., 98 ( 4 ), 1609 – 1632, doi: 10.1785/0120070111.en_US
dc.identifier.citedreferenceYin, A. ( 1989 ), Origin of regional, rooted low‐angle normal faults: A mechanical model and its tectonic implications, Tectonics, 8 ( 3 ), 469 – 482.en_US
dc.identifier.citedreferenceAbers, G. A. ( 2001 ), Evidence for seismogenic normal faults at shallow dips in continental rifts, Geol. Soc. London Spec. Publ., 187 ( 1 ), 305 – 318.en_US
dc.identifier.citedreferenceAki, K., and P. G. Richards ( 2002 ), Quantitative Seismology: Theory and Methods, University Science Books, Sausalito, Calif.en_US
dc.identifier.citedreferenceAxen, G. J. ( 2004 ), Mechanics of low‐angle normal faults, in Rheology and Deformation of the Lithosphere at Continental Margins, edited by G. D. Karner et al., pp. 46 – 91, Columbia Univ. Press, New York.en_US
dc.identifier.citedreferenceAxen, G. J., and J. M. Bartley ( 1997 ), Field tests of rolling hinges: Existence, mechanical types, and implications for extensional tectonics, J. Geophys. Res., 102 ( B9 ), 20,515 – 20537.en_US
dc.identifier.citedreferenceAxen, G. J., and J. Selverstone ( 1994 ), Stress state and fluid‐pressure level along the Whipple detachment fault, California, Geology, 22 ( 9 ), 835 – 838.en_US
dc.identifier.citedreferenceAxen, G. J., J. M. Fletcher, E. Cowgill, M. Murphy, P. Kapp, I. MacMillan, E. Ramos‐Velázquez, and J. Aranda‐Gómez ( 1999 ), Range‐front fault scarps of the Sierra El Mayor, Baja California: Formed above an active low‐angle normal fault?, Geology, 27 ( 3 ), 247 – 250.en_US
dc.identifier.citedreferenceBernard, P., et al. ( 1997 ), The ms = 6.2, June 15, 1995 aigion earthquake (greece): Evidence for low angle normal faulting in the corinth rift, J. Seismolog., 1 ( 2 ), 131 – 150.en_US
dc.identifier.citedreferenceBird, P., and Y. Y. Kagan ( 2004 ), Plate‐tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings, Bull. Seismol. Soc. Am., 94 ( 6 ), 2380 – 2399.en_US
dc.identifier.citedreferenceBuck, W. R. ( 1991 ), Modes of continental lithospheric extension, J. Geophys. Res., 96 ( B12 ), 20,161 – 20,178.en_US
dc.identifier.citedreferenceCollettini, C. ( 2011 ), The mechanical paradox of low‐angle normal faults: Current understanding and open questions, Tectonophysics, 510 ( 3 ), 253 – 268.en_US
dc.identifier.citedreferenceCollettini, C., and R. Holdsworth ( 2004 ), Fault zone weakening and character of slip along low‐angle normal faults: Insights from the Zuccale fault, Elba, Italy, J. Geol. Soc., 161 ( 6 ), 1039 – 1051.en_US
dc.identifier.citedreferenceCollettini, C., and R. H. Sibson ( 2001 ), Normal faults, normal friction?, Geology, 29 ( 10 ), 927 – 930.en_US
dc.identifier.citedreferenceDalmayrac, B., and P. Molnar ( 1981 ), Parallel thrust and normal faulting in Peru and constraints on the state of stress, Earth Planet. Sci. Lett., 55 ( 3 ), 473 – 481.en_US
dc.identifier.citedreferenceDoser, D. I. ( 1987 ), The Ancash, Peru, earthquake of 1946 November 10: Evidence for low‐angle normal faulting in the high Andes of northern Peru, Geophys. J. R. Astron. Soc., 91 ( 1 ), 57 – 71.en_US
dc.identifier.citedreferenceFletcher, J. M., and R. M. Spelz ( 2009 ), Patterns of Quaternary deformation and rupture propagation associated with an active low‐angle normal fault, Laguna Salada, Mexico: Evidence of a rolling hinge?, Geosphere, 5 ( 4 ), 385 – 407.en_US
dc.identifier.citedreferenceHarrison, T. M., P. Copeland, W. Kidd, and A. Yin ( 1992 ), Raising Tibet, Science, 255 ( 5052 ), 1663 – 1670.en_US
dc.identifier.citedreferenceHayman, N. W., J. R. Knott, D. S. Cowan, E. Nemser, and A. M. Sarna‐Wojcicki ( 2003 ), Quaternary low‐angle slip on detachment faults in Death Valley, California, Geology, 31 ( 4 ), 343 – 346.en_US
dc.identifier.citedreferenceHecker, S., N. Abrahamson, and K. Wooddell ( 2013 ), Variability of displacement at a point: Implications for earthquake‐size distribution and rupture hazard on faults, Bull. Seismol. Soc. Am., 103 ( 2A ), 651 – 674.en_US
dc.identifier.citedreferenceHoward, K. A., and B. E. John ( 1987 ), Crustal extension along a rooted system of imbricate low‐angle faults: Colorado River extensional corridor, California and Arizona, Geol. Soc. London Spec. Publ., 28 ( 1 ), 299 – 311.en_US
dc.identifier.citedreferenceHreinsdóttir, S., and R. A. Bennett ( 2009 ), Active aseismic creep on the Alto Tiberina low‐angle normal fault, Italy, Geology, 37 ( 8 ), 683 – 686.en_US
dc.identifier.citedreferenceJackson, J. ( 1987 ), Active normal faulting and crustal extension, Geol. Soc. London Spec. Publ., 28 ( 1 ), 3 – 17.en_US
dc.identifier.citedreferenceJones, C. H., J. R. Unruh, and L. J. Sonder ( 1996 ), The role of gravitational potential energy in active deformation in the southwestern United States, Nature, 381, 37 – 41.en_US
dc.identifier.citedreferenceKagan, Y. Y. ( 2003 ), Accuracy of modern global earthquake catalogs, Phys. Earth Planet. Inter., 135 ( 2 ), 173 – 209.en_US
dc.identifier.citedreferenceKapp, J. L., T. M. Harrison, P. Kapp, M. Grove, O. M. Lovera, and D. Lin ( 2005 ), Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet, J. Geophys. Res., 110, B08413, doi: 10.1029/2004JB003330.en_US
dc.identifier.citedreferenceLeonard, M. ( 2010 ), Earthquake fault scaling: Self‐consistent relating of rupture length, width, average displacement, and moment release, Bull. Seismol. Soc. Am., 100 ( 5A ), 1971 – 1988.en_US
dc.identifier.citedreferenceLister, G., M. Etheridge, and P. Symonds ( 1986 ), Detachment faulting and the evolution of passive continental margins, Geology, 14 ( 3 ), 246 – 250.en_US
dc.identifier.citedreferenceLister, G. S., and G. A. Davis ( 1989 ), The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U.S.A., J. Struct. Geol., 11 ( 1 ), 65 – 94.en_US
dc.identifier.citedreferenceMcGrew, A. J. ( 1993 ), The origin and evolution of the southern Snake Range decollement, east central Nevada, Tectonics, 12 ( 1 ), 21 – 34.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.