Show simple item record

Clinical application of genetics to guide prevention and treatment of oral diseases

dc.contributor.authorKornman, K.S.en_US
dc.contributor.authorPolverini, P.J.en_US
dc.date.accessioned2014-06-04T14:56:59Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-06-04T14:56:59Z
dc.date.issued2014-07en_US
dc.identifier.citationKornman, K.S.; Polverini, P.J. (2014). "Clinical application of genetics to guide prevention and treatment of oral diseases." Clinical Genetics 86(1): 44-49.en_US
dc.identifier.issn0009-9163en_US
dc.identifier.issn1399-0004en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107353
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPeriodontitisen_US
dc.subject.otherOral Canceren_US
dc.subject.otherCariesen_US
dc.subject.otherGeneticsen_US
dc.titleClinical application of genetics to guide prevention and treatment of oral diseasesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107353/1/cge12396.pdf
dc.identifier.doi10.1111/cge.12396en_US
dc.identifier.sourceClinical Geneticsen_US
dc.identifier.citedreferenceMatta A, Ralhan R. Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol 2009: 1: 1 – 6.en_US
dc.identifier.citedreferenceAng KK, Andratschke NH, Milas L. Epidermal growth factor receptor and response of head‐and‐neck carcinoma to therapy. Int J Radiat Oncol Biol Phys 2004: 58: 959 – 965.en_US
dc.identifier.citedreferenceRodemann HP, Dittmann K, Toulany M. Radiation‐induced EGFR‐signaling and control of DNA‐damage repair. Int J Radiat Biol 2007: 83: 781 – 791.en_US
dc.identifier.citedreferenceMachiels JP, Schmitz S. Molecular‐targeted therapy of head and neck squamous cell carcinoma: beyond cetuximab‐based therapy. Curr Opin Oncol 2011: 23: 241 – 248.en_US
dc.identifier.citedreferenceMorgillo F, Bareschino MA, Bianco R, Tortora G, Ciardiello F. Primary and acquired resistance to anti‐EGFR targeted drugs in cancer therapy. Differentiation 2007: 75: 788 – 799.en_US
dc.identifier.citedreferenceStransky N, Egloff AM, Tward AD et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011: 333: 1157 – 1160.en_US
dc.identifier.citedreferenceAgrawal N, Frederick MJ, Pickering CR et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011: 333: 1154 – 1157.en_US
dc.identifier.citedreferenceJimeno A, Kulesza P, Wheelhouse J et al. Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy. Br J Cancer 2007: 96: 952 – 959.en_US
dc.identifier.citedreferenceFolkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990: 82: 4 – 6.en_US
dc.identifier.citedreferenceOlsson AK, Dimberg A, Kreuger J, Claesson‐Welsh L. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol 2006: 7: 359 – 371.en_US
dc.identifier.citedreferenceMineta H, Miura K, Ogino T et al. Prognostic value of vascular endothelial growth factor (VEGF) in head and neck squamous cell carcinomas. Br J Cancer 2000: 83: 775 – 781.en_US
dc.identifier.citedreferenceWang Y, Alam GN, Ning Y et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res 2012: 72: 5396 – 5406.en_US
dc.identifier.citedreferenceSalama JK, Haraf DJ, Stenson KM et al. A randomized phase II study of 5‐fluorouracil, hydroxyurea, and twice‐daily radiotherapy compared with bevacizumab plus 5‐fluorouracil, hydroxyurea, and twice‐daily radiotherapy for intermediate‐stage and T4N0‐1 head and neck cancers. Ann Oncol 2011: 22: 2304 – 2309.en_US
dc.identifier.citedreferenceMachiels JP, Henry S, Zanetta S et al. Phase II study of sunitinib in recurrent or metastatic squamous cell carcinoma of the head and neck: GORTEC 2006‐01. J Clin Oncol 2010: 28: 21 – 28.en_US
dc.identifier.citedreferenceWilliamson SK, Moon J, Huang CH et al. Phase II evaluation of sorafenib in advanced and metastatic squamous cell carcinoma of the head and neck: Southwest Oncology Group Study S0420. J Clin Oncol 2010: 28: 3330 – 3335.en_US
dc.identifier.citedreferenceChai RL, Grandis JR. Advances in molecular diagnostics and therapeutics in head and neck cancer. Curr Treat Options Oncol 2006: 7: 3 – 11.en_US
dc.identifier.citedreferenceHu S, Arellano M, Boontheung P et al. Salivary proteomics for oral cancer biomarker discovery. Clin Cancer Res 2008: 14: 6246 – 6252.en_US
dc.identifier.citedreferenceElser C, Siu LL, Winquist E et al. Phase II trial of sorafenib in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or nasopharyngeal carcinoma. J Clin Oncol 2007: 25: 3766 – 3773.en_US
dc.identifier.citedreferenceMazumdar A, Henderson YC, El‐Naggar AK, Sen S, Clayman GL. Aurora kinase A inhibition and paclitaxel as targeted combination therapy for head and neck squamous cell carcinoma. Head Neck 2009: 31: 625 – 634.en_US
dc.identifier.citedreferenceMoon C, Oh Y, Roth JA. Current status of gene therapy for lung cancer and head and neck cancer. Clin Cancer Res 2003: 9: 5055 – 5067.en_US
dc.identifier.citedreferenceChronic Disease Prevention and Health Promotion. 2012, from: http://www.cdc.gov/chronicdisease/resources/publications/AAG/doh.htm. Accessed on November 23, 2012.en_US
dc.identifier.citedreferenceChaturvedi AK, Anderson WF, Lortet‐Tieulent J et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol 2013: 31: 4550 – 4559.en_US
dc.identifier.citedreferenceEke PI, Dye BA, Wei L, Thornton‐Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res 2012: 91: 914 – 920.en_US
dc.identifier.citedreferenceParaskevas S, Huizinga JD, Loos BG. A systematic review and meta‐analyses on C‐reactive protein in relation to periodontitis. J Clin Periodontol 2008: 35: 277 – 290.en_US
dc.identifier.citedreferenceScher JU, Ubeda C, Equinda M et al. Periodontal disease and the oral microbiota in new‐onset rheumatoid arthritis. Arthritis Rheum 2012: 64: 3083 – 3094.en_US
dc.identifier.citedreferenceWall TP, Brown LJ. Recent trends in dental visits and private dental insurance, 1989 and 1999. J Am Dent Assoc 2003: 134: 621 – 627.en_US
dc.identifier.citedreferenceGraves DT, Oates T, Garlet GP. Review of osteoimmunology and the host response in endodontic and periodontal lesions. J Oral Microbiol 2011: 3.en_US
dc.identifier.citedreferenceMichalowicz BS, Diehl SR, Gunsolley JC et al. Evidence of a substantial genetic basis for risk of adult periodontitis. J Periodontol 2000: 71: 1699 – 1707.en_US
dc.identifier.citedreferenceDivaris K, Monda KL, North KE et al. Exploring the genetic basis of chronic periodontitis: a genome‐wide association study. Hum Mol Genet 2012: 22: 2312 – 2324.en_US
dc.identifier.citedreferenceTeumer A, Holtfreter B, Volker U et al. Genome‐wide association study of chronic periodontitis in a general German population. J Clin Periodontol 2013: 40: 977 – 985.en_US
dc.identifier.citedreferenceMeisel P, Siegemund A, Grimm R et al. The interleukin‐1 polymorphism, smoking, and the risk of periodontal disease in the population‐based SHIP study. J Dent Res 2003: 82: 189 – 193.en_US
dc.identifier.citedreferenceWu X, Offenbacher S, Lopez NJ et al. Association of Functional functional IL‐1 gene variations are associated with moderate to severe chronic periodontitis in multiple ethnicities. J Periodontal Res 2014.en_US
dc.identifier.citedreferenceSchaefer AS, Bochenek G, Manke T et al. Validation of reported genetic risk factors for periodontitis in a large‐scale replication study. J Clin Periodontol 2013: 40: 563 – 572.en_US
dc.identifier.citedreferenceKornman KS, Crane A, Wang HY et al. The interleukin‐1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol 1997: 24: 72 – 77.en_US
dc.identifier.citedreferenceChen H, Wilkins LM, Aziz N et al. Single nucleotide polymorphisms in the human interleukin‐1B gene affect transcription according to haplotype context. Hum Mol Genet 2006: 15: 519 – 529.en_US
dc.identifier.citedreferenceIacoviello L, Di Castelnuovo A, Gattone M et al. Polymorphisms of the interleukin‐1beta gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. Arterioscler Thromb Vasc Biol 2005: 25: 222 – 227.en_US
dc.identifier.citedreferenceRogus J, Beck JD, Offenbacher S et al. IL1B gene promoter haplotype pairs predict clinical levels of interleukin‐1beta and C‐reactive protein. Hum Genet 2008: 123: 387 – 398.en_US
dc.identifier.citedreferenceEngebretson SP, Grbic JT, Singer R, Lamster IB. GCF IL‐1beta profiles in periodontal disease. J Clin Periodontol 2002: 29: 48 – 53.en_US
dc.identifier.citedreferenceDelima AJ, Karatzas S, Amar S, Graves DT. Inflammation and tissue loss caused by periodontal pathogens is reduced by interleukin‐1 antagonists. J Infect Dis 2002: 186: 511 – 516.en_US
dc.identifier.citedreferenceLindhe J, Nyman S. Long‐term maintenance of patients treated for advanced periodontal disease. J Clin Periodontol 1984: 11: 504 – 514.en_US
dc.identifier.citedreferenceBeirne P, Clarkson JE, Worthington HV. Recall intervals for oral health in primary care patients. Cochrane Database Syst Rev 2007: 4: CD004346.en_US
dc.identifier.citedreferenceGiannobile WV, Braun TM, Caplis AK, Doucette‐Stamm L, Duff GW, Kornman KS. Patient stratification for preventive care in dentistry. J Dental Res 2013: 8: 694 – 701.en_US
dc.identifier.citedreferenceAxelsson P. Role of genetic and hereditary factors. In: Diagnosis and risk prediction of periodontal diseases, Vol. 3. Carol Stream: Quintessence, 2002: 146 – 163.en_US
dc.identifier.citedreferenceEickholz P, Kaltschmitt J, Berbig J, Reitmeir P, Pretzl B. Tooth loss after active periodontal therapy. 1: patient‐related factors for risk, prognosis, and quality of outcome. J Clin Periodontol 2008: 35: 165 – 174.en_US
dc.identifier.citedreferenceCattabriga M, Rotundo R, Muzzi L et al. Retrospective evaluation of the influence of the interleukin‐1 genotype on radiographic bone levels in treated periodontal patients over 10 years. J Periodontol 2001: 72: 767 – 773.en_US
dc.identifier.citedreferenceMcGuire MK, Nunn ME. Prognosis versus actual outcome. IV. The effectiveness of clinical parameters and IL‐1 genotype in accurately predicting prognoses and tooth survival. J Periodontol 1999: 70: 49 – 56.en_US
dc.identifier.citedreferenceCorella D, Carrasco P, Sorli JV et al. Mediterranean diet reduces the adverse effect of the TCF7L2‐rs7903146 polymorphism on cardiovascular risk factors and stroke incidence: a randomized controlled trial in a high‐cardiovascular‐risk population. Diabetes Care 2013: 36: 3803 – 3811.en_US
dc.identifier.citedreferenceCui J, Stahl EA, Saevarsdottir S et al. Genome‐wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis. PLoS Genet 2013: 9: e1003394.en_US
dc.identifier.citedreferenceArmitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999: 4: 1 – 6.en_US
dc.identifier.citedreferenceLoe H, Brown LJ. Early onset periodontitis in the United States of America. J Periodontol 1991: 62: 608 – 616.en_US
dc.identifier.citedreferenceAlbandar JM, Muranga MB, Rams TE. Prevalence of aggressive periodontitis in school attendees in Uganda. J Clin Periodontol 2002: 29: 823 – 831.en_US
dc.identifier.citedreferenceSchaefer AS, Richter GM, Nothnagel M et al. A genome‐wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum Mol Genet 2010: 19: 553 – 562.en_US
dc.identifier.citedreferenceSchaefer AS, Richter GM, Groessner‐Schreiber B et al. Identification of a shared genetic susceptibility locus for coronary heart disease and periodontitis. PLoS Genet 2009: 5: e1000378.en_US
dc.identifier.citedreferenceBochenek G, Hasler R, El Mokhtari NE et al. The large non‐coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet 2013: 22: 4516 – 4527.en_US
dc.identifier.citedreferenceSchaefer AS, Richter GM, Dommisch H et al. CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection. J Med Genet 2011: 48: 38 – 47.en_US
dc.identifier.citedreferenceSchaefer AS, Richter GM, Nothnagel M et al. COX‐2 is associated with periodontitis in Europeans. J Dent Res 2010: 89: 384 – 388.en_US
dc.identifier.citedreferencePeterson SN, Snesrud E, Schork NJ, Bretz WA. Dental caries pathogenicity: a genomic and metagenomic perspective. Int Dent J 2011: 61 ( Suppl. 1 ): 11 – 22.en_US
dc.identifier.citedreferenceal‐Shalan TA, Erickson PR, Hardie NA. Primary incisor decay before age 4 as a risk factor for future dental caries. Pediatr Dent 1997: 19: 37 – 41.en_US
dc.identifier.citedreferenceKanellis MJ, Damiano PC, Momany ET. Medicaid costs associated with the hospitalization of young children for restorative dental treatment under general anesthesia. J Public Health Dent 2000: 60: 28 – 32.en_US
dc.identifier.citedreferenceAyhan H, Suskan E, Yildirim S. The effect of nursing or rampant caries on height, body weight and head circumference. J Clin Pediatr Dent 1996: 20: 209 – 212.en_US
dc.identifier.citedreferenceBlumenshine SL, Vann WF Jr, Gizlice Z, Lee JY. Children's school performance: impact of general and oral health. J Public Health Dent 2008: 68: 82 – 87.en_US
dc.identifier.citedreferenceBissar A, Schiller P, Wolff A, Niekusch U, Schulte AG. Factors contributing to severe early childhood caries in south‐west Germany. Clinical oral investigations 2013.en_US
dc.identifier.citedreferenceShuler CF. Inherited risks for susceptibility to dental caries. J Dent Educ 2001: 65: 1038 – 1045.en_US
dc.identifier.citedreferenceBretz WA, Corby PM, Schork NJ et al. Longitudinal analysis of heritability for dental caries traits. J Dent Res 2005: 84: 1047 – 1051.en_US
dc.identifier.citedreferenceWang X, Shaffer JR, Weyant RJ et al. Genes and their effects on dental caries may differ between primary and permanent dentitions. Caries Res 2010: 44: 277 – 284.en_US
dc.identifier.citedreferenceWang X, Shaffer JR, Zeng Z et al. Genome‐wide association scan of dental caries in the permanent dentition. BMC Oral Health 2012: 12: 57.en_US
dc.identifier.citedreferenceKang SW, Yoon I, Lee HW, Cho J. Association between AMELX polymorphisms and dental caries in Koreans. Oral Dis 2011: 17: 399 – 406.en_US
dc.identifier.citedreferenceTannure PN, Kuchler EC, Falagan‐Lotsch P et al. MMP13 polymorphism decreases risk for dental caries. Caries Res 2012: 46: 401 – 407.en_US
dc.identifier.citedreferenceShaffer JR, Feingold E, Wang X et al. GWAS of dental caries patterns in the permanent dentition. J Dent Res 2013: 92: 38 – 44.en_US
dc.identifier.citedreferenceShaffer JR, Wang X, Feingold E et al. Genome‐wide association scan for childhood caries implicates novel genes. J Dent Res 2011: 90: 1457 – 1462.en_US
dc.identifier.citedreferenceZeng Z, Feingold E, Wang X et al. Genome‐wide association study of primary dentition pit‐and‐fissure and smooth surface caries. Caries Res 2014: 48: 330 – 338.en_US
dc.identifier.citedreferenceParkinson DR, Johnson BE, Sledge GW. Making personalized cancer medicine a reality: challenges and opportunities in the development of biomarkers and companion diagnostics. Clin Cancer Res 2012: 18: 619 – 624.en_US
dc.identifier.citedreferenceKalia M. Personalized oncology: recent advances and future challenges. Metabolism 2013: 62 ( Suppl. 1 ): S11 – S14.en_US
dc.identifier.citedreferenceRoss JS. Cancer biomarkers, companion diagnostics and personalized oncology. Biomark Med 2011: 5: 277 – 279.en_US
dc.identifier.citedreferenceJorgensen JT. Companion diagnostics in oncology – current status and future aspects. Oncology 2013: 85: 59 – 68.en_US
dc.identifier.citedreferenceSiegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013: 63: 11 – 30.en_US
dc.identifier.citedreferenceScully C, Bagan JV. Recent advances in Oral Oncology 2007: imaging, treatment and treatment outcomes. Oral Oncol 2008: 44: 211 – 215.en_US
dc.identifier.citedreferenceKundu SK, Nestor M. Targeted therapy in head and neck cancer. Tumour Biol 2012: 33: 707 – 721.en_US
dc.identifier.citedreferenceZhao SF, Yang XD, Lu MX et al. GSTM1 null polymorphisms and oral cancer risk: a meta‐analysis. Tumour Biol 2014: 35: 287 – 293.en_US
dc.identifier.citedreferenceMandal RK, Yadav SS, Panda AK, Khattri S. Vascular endothelial growth factor 936 c > T polymorphism increased oral cancer risk: evidence from a meta‐analysis. Genet Test Mol Biomarkers 2013: 17: 543 – 547.en_US
dc.identifier.citedreferenceSotiriou C, Pusztai L. Gene‐expression signatures in breast cancer. N Engl J Med 2009: 360: 790 – 800.en_US
dc.identifier.citedreferenceFlaherty KT, Puzanov I, Kim KB et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010: 363: 809 – 819.en_US
dc.identifier.citedreferenceDruker BJ, Talpaz M, Resta DJ et al. Efficacy and safety of a specific inhibitor of the BCR‐ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001: 344: 1031 – 1037.en_US
dc.identifier.citedreferenceShirai K, O'Brien PE. Molecular targets in squamous cell carcinoma of the head and neck. Curr Treat Options Oncol 2007: 8: 239 – 251.en_US
dc.identifier.citedreferenceGlazer CA, Chang SS, Ha PK, Califano JA. Applying the molecular biology and epigenetics of head and neck cancer in everyday clinical practice. Oral Oncol 2009: 45: 440 – 446.en_US
dc.identifier.citedreferenceKumar P, Benedict R, Urzua F, Fischbach C, Mooney D, Polverini P. Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab Invest 2005: 85: 756 – 767.en_US
dc.identifier.citedreferenceBernier J. Drug insight: cetuximab in the treatment of recurrent and metastatic squamous cell carcinoma of the head and neck. Nat Clin Pract Oncol 2008: 5: 705 – 713.en_US
dc.identifier.citedreferenceVermorken JB, Mesia R, Rivera F et al. Platinum‐based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008: 359: 1116 – 1127.en_US
dc.identifier.citedreferencePfister DG, Su YB, Kraus DH et al. Concurrent cetuximab, cisplatin, and concomitant boost radiotherapy for locoregionally advanced, squamous cell head and neck cancer: a pilot phase II study of a new combined‐modality paradigm. J Clin Oncol 2006: 24: 1072 – 1078.en_US
dc.identifier.citedreferenceNational Cancer Institute Clinical Trials. In, 2014. www.cancer.gov/clinicaltrials/search/.en_US
dc.identifier.citedreferenceWilliams MD. Integration of biomarkers including molecular targeted therapies in head and neck cancer. Head Neck Pathol 2010: 4: 62 – 69.en_US
dc.identifier.citedreferenceErjala K, Sundvall M, Junttila TT et al. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res 2006: 12: 4103 – 4111.en_US
dc.identifier.citedreferenceNathan CO, Amirghahari N, Rong X et al. Mammalian target of rapamycin inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer. Cancer Res 2007: 67: 2160 – 2168.en_US
dc.identifier.citedreferenceDorsey K, Agulnik M. Promising new molecular targeted therapies in head and neck cancer. Drugs 2013: 73: 315 – 325.en_US
dc.identifier.citedreferenceMartins F, de Oliveira MA, Wang Q et al. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol 2013: 49: 293 – 298.en_US
dc.identifier.citedreferenceMorgan MA, Parsels LA, Maybaum J, Lawrence TS. Improving the efficacy of chemoradiation with targeted agents. Cancer Discov 2014: 4: 280 – 291.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.