Show simple item record

G ‐scores: A method for identifying disease‐causing pathogens with application to lower respiratory tract infections

dc.contributor.authorZhang, Pengen_US
dc.contributor.authorPeng, Peichaoen_US
dc.contributor.authorWang, Luen_US
dc.contributor.authorKang, Yuen_US
dc.date.accessioned2014-07-03T14:41:28Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-07-03T14:41:28Z
dc.date.issued2014-07-20en_US
dc.identifier.citationZhang, Peng; Peng, Peichao; Wang, Lu; Kang, Yu (2014). " G ‐scores: A method for identifying disease‐causing pathogens with application to lower respiratory tract infections." Statistics in Medicine 33(16): 2814-2829.en_US
dc.identifier.issn0277-6715en_US
dc.identifier.issn1097-0258en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107530
dc.description.abstractLower respiratory tract infections (LRTIs) are well known for the lack of a good diagnostic method. The main difficulty lies in the fact that there are a variety of pathogens causing LRTIs, and their management and treatment are quite different. The development of quantitative real‐time loop‐mediated isothermal amplification (qrt‐LAMP) made it possible to rapidly amplify and quantify multiple pathogens simultaneously. The question that remains to be answered is how accurate and reliable is this method? More importantly, how are qrt‐LAMP measurements utilized to inform/suggest medical decisions? When does a pathogen start to grow out of control and cause infection? Answers to these questions are crucial to advise treatment guidance for LRTIs and also helpful to design phase I/II trials or adaptive treatment strategies. In this article, our main contributions include the following two aspects. First, we utilize zero‐inflated mixture models to provide statistical evidence for the validity of qrt‐LAMP being used in detecting pathogens for LRTIs without the presence of a gold standard test. Our results on qrt‐LAMP suggest that it provides reliable measurements on pathogens of interest. Second, we propose a novel statistical approach to identify disease‐causing pathogens, that is, distinguish the pathogens that colonize without causing problems from those that rapidly grow and cause infection. We achieve this by combining information from absolute quantities of pathogens and their symbiosis information to form G ‐scores. Change‐point detection methods are utilized on these G ‐scores to detect the three phases of bacterial growth—lag phase, log phase, and stationary phase. Copyright © 2014 John Wiley & Sons, Ltd.en_US
dc.publisherSpringer Verlagen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherChange Pointen_US
dc.subject.otherZero‐Inflated Modelsen_US
dc.subject.otherTobit Modelen_US
dc.subject.otherMarkov Chain Monte Carloen_US
dc.subject.otherLoop‐Mediated Isothermal Amplificationen_US
dc.subject.otherGibbs Samplingen_US
dc.titleG ‐scores: A method for identifying disease‐causing pathogens with application to lower respiratory tract infectionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107530/1/sim6129-sup-0001-supplemental_new.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107530/2/sim6129.pdf
dc.identifier.doi10.1002/sim.6129en_US
dc.identifier.sourceStatistics in Medicineen_US
dc.identifier.citedreferenceKang Y, Deng R, Wang C, Deng T, Peng P, Cheng X, Wang G, Qian M, Gao H, Han B, Chen Y, Hu Y, Geng R, Hu C, Zhang W, Yang J, Wan H, Yu Q, Wei L, Li J, Tian G, Wang Q, Hu K, Wang S, Wang R, Du J, He B, Ma J, Zhong X, Mu L, Cai S, Zhu X, Xing W, Yu J, Deng M, Gao Z. Etiologic diagnosis of lower respiratory tract bacterial infections using sputum samples and quantitative loop‐mediated isothermal amplification. PLoS ONE 2012; 7 ( 6 ): e38743. DOI: 10.1371/journal.pone.0038743.en_US
dc.identifier.citedreferencePoon L, Wong B, Ma E, Chan K, Chow L, Abeyewickreme W, Tangpukdee N, Yuen K, Guan Y, Looareesuwan S. et al. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat‐treated blood by loop‐mediated isothermal amplification. Clinical Chemistry 2006; 52 ( 2 ): 303 – 306.en_US
dc.identifier.citedreferenceChu C, Stinchcombe M, White H. Monitoring structural change. Econometrica: Journal of the Econometric Society 1996; 64 ( 5 ): 1045 – 1065.en_US
dc.identifier.citedreferenceChu C, Hornik K, Kaun C. MOSUM tests for parameter constancy. Biometrika 1995; 82 ( 3 ): 603 – 617.en_US
dc.identifier.citedreferenceMacNeill I. Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times. The Annals of Statistics 1978: 422 – 433.en_US
dc.identifier.citedreferenceMacNeill I. Limit processes for sequences of partial sums of regression residuals. The Annals of Probability 1978; 6 ( 4 ): 695 – 698.en_US
dc.identifier.citedreferenceWelsh A, Cunningham R, Donnelly C, Lindenmayer D. Modelling the abundance of rare species: statistical models for counts with extra zeros. Ecological Modelling 1996; 88 ( 1–3 ): 297 – 308.en_US
dc.identifier.citedreferenceLambert D. Zero‐inflated Poisson regression, with an application to defects in manufacturing. Technometrics 1992; 34 ( 1 ): 1 – 14.en_US
dc.identifier.citedreferenceHawkins D, Garrett J, Stephenson B. Some issues in resolution of diagnostic tests using an imperfect gold standard. Statistics in Medicine 2001; 20 ( 13 ): 1987 – 2001.en_US
dc.identifier.citedreferenceGeojith G, Dhanasekaran S, Chandran S, Kenneth J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. Journal of Microbiological Methods 2011; 84 ( 1 ): 71 – 73.en_US
dc.identifier.citedreferenceNjiru Z, Mikosza A, Matovu E, Enyaru J, Ouma J, Kibona S, Thompson R, Ndung'u J. African trypanosomiasis: sensitive and rapid detection of the sub‐genus trypanozoon by loop‐mediated isothermal amplification (lamp) of parasite DNA. International Journal for Parasitology 2008; 38 ( 5 ): 589 – 599.en_US
dc.identifier.citedreferenceMori Y, Kitao M, Tomita N, Notomi T. Real‐time turbidimetry of lamp reaction for quantifying template dna. Journal of Biochemical and Biophysical Methods 2004; 59 ( 2 ): 145 – 157.en_US
dc.identifier.citedreferenceMuggeo V. Estimating regression models with unknown break‐points. Statistics in Medicine 2003; 22 ( 19 ): 3055 – 3071.en_US
dc.identifier.citedreferenceGelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis, 2 edn. Chapman and Hall/CRC: Boca Raton, 2004.en_US
dc.identifier.citedreferenceVan der Vaart A. Asymptotic Statistics, Cambridge Univ Pr: Cambridge, 2000.en_US
dc.identifier.citedreferenceSigelman L, Zeng L. Analyzing censored and sample‐selected data with Tobit and Heckit models. Political Analysis 1999; 8 ( 2 ): 167 – 182.en_US
dc.identifier.citedreferenceMoulton L, Halsey N. A mixture model with detection limits for regression analyses of antibody response to vaccine. Biometrics 1995; 51 ( 4 ): 1570 – 1578.en_US
dc.identifier.citedreferenceLiu J. Monte Carlo Strategies in Scientific Computing, Springer Verlag: Cambridge, 2008.en_US
dc.identifier.citedreferenceAmemiya T. Tobit models: a survey. Journal of Econometrics 1984; 24 ( 1‐2 ): 3 – 61.en_US
dc.identifier.citedreferenceCunningham R, Lindenmayer D. Modeling count data of rare species: some statistical issues. Ecology 2005; 86 ( 5 ): 1135 – 1142.en_US
dc.identifier.citedreferenceAgarwal D, Gelfand A, Citron‐Pousty S. Zero‐inflated models with application to spatial count data. Environmental and Ecological Statistics 2002; 9 ( 4 ): 341 – 355.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.