Show simple item record

Efficient Generalized Least Squares Method for Mixed Population and Family‐based Samples in Genome‐wide Association Studies

dc.contributor.authorLi, Jiaen_US
dc.contributor.authorYang, Jamesen_US
dc.contributor.authorLevin, Albert M.en_US
dc.contributor.authorMontgomery, Courtney G.en_US
dc.contributor.authorDatta, Indranien_US
dc.contributor.authorTrudeau, Sherien_US
dc.contributor.authorAdrianto, Indraen_US
dc.contributor.authorMcKeigue, Paulen_US
dc.contributor.authorIannuzzi, Michael C.en_US
dc.contributor.authorRybicki, Benjamin A.en_US
dc.date.accessioned2014-07-03T14:41:37Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-07-03T14:41:37Z
dc.date.issued2014-07en_US
dc.identifier.citationLi, Jia; Yang, James; Levin, Albert M.; Montgomery, Courtney G.; Datta, Indrani; Trudeau, Sheri; Adrianto, Indra; McKeigue, Paul; Iannuzzi, Michael C.; Rybicki, Benjamin A. (2014). "Efficient Generalized Least Squares Method for Mixed Population and Family‐based Samples in Genome‐wide Association Studies." Genetic Epidemiology 38(5): 430-438.en_US
dc.identifier.issn0741-0395en_US
dc.identifier.issn1098-2272en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107571
dc.description.abstractGenome‐wide association studies (GWAS) that draw samples from multiple studies with a mixture of relationship structures are becoming more common. Analytical methods exist for using mixed‐sample data, but few methods have been proposed for the analysis of genotype‐by‐environment (G×E) interactions. Using GWAS data from a study of sarcoidosis susceptibility genes in related and unrelated African Americans, we explored the current analytic options for genotype association testing in studies using both unrelated and family‐based designs. We propose a novel method—generalized least squares (GLX)—to estimate both SNP and G×E interaction effects for categorical environmental covariates and compared this method to generalized estimating equations (GEE), logistic regression, the Cochran–Armitage trend test, and the W QLS and M QLS methods. We used simulation to demonstrate that the GLX method reduces type I error under a variety of pedigree structures. We also demonstrate its superior power to detect SNP effects while offering computational advantages and comparable power to detect G×E interactions versus GEE. Using this method, we found two novel SNPs that demonstrate a significant genome‐wide interaction with insecticide exposure—rs10499003 and rs7745248, located in the intronic and 3' UTR regions of the FUT9 gene on chromosome 6q16.1.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherG×Een_US
dc.subject.otherGene‐By‐Environmenten_US
dc.subject.otherGeneralized Least Squaresen_US
dc.subject.otherMixed Samplesen_US
dc.subject.otherSarcoidosisen_US
dc.subject.otherGWASen_US
dc.titleEfficient Generalized Least Squares Method for Mixed Population and Family‐based Samples in Genome‐wide Association Studiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107571/1/gepi21811.pdf
dc.identifier.doi10.1002/gepi.21811en_US
dc.identifier.sourceGenetic Epidemiologyen_US
dc.identifier.citedreferenceHamblin AS, Shakoor Z, Kapahi P, Haskard D. 1994. Circulating adhesion molecules in sarcoidosis. Clin Exp Immunol 96 ( 2 ): 335 – 338.en_US
dc.identifier.citedreferenceAbecasis GR, Cherny SS, Cookson WO, Cardon LR. 2002. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30 ( 1 ): 97 – 101.en_US
dc.identifier.citedreferenceAdrianto I, Lin CP, Hale JJ, Levin AM, Datta I, Parker R, Adler A, Kelly JA, Kaufman KM, Lessard CJ and others. 2012. Genome‐wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS One 7: e43907.en_US
dc.identifier.citedreferenceAmoli MM, Llorca J, Gomez‐Gigirey A, Garcia‐Porrua C, Lueiro M, El‐Magadmi M, Fernandez ML, Ollier WE, Gonzalez‐Gay MA. 2004. E‐selectin polymorphism in erythema nodosum secondary to sarcoidosis. Clin Exp Rheumatol 22 ( 2 ): 230 – 232.en_US
dc.identifier.citedreferenceBerlin M, Lundahl J, Sköld CM, Grunewald J, Eklund A. 1998. The lymphocytic alveolitis in sarcoidosis is associated with increased amounts of soluble and cell‐bound adhesion molecules in bronchoalveolar lavage fluid and serum. J Intern Med 244 ( 4 ): 333 – 340.en_US
dc.identifier.citedreferenceBild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr, Kronmal R, Liu K and others. 2002. Multi‐ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156 ( 9 ): 871 – 881.en_US
dc.identifier.citedreferenceBourgain C, Hoffjan S, Nicolae R, Newman D, Steiner L, Walker K, Reynolds R, Ober C, McPeek MS. 2003. Novel case‐control test in a founder population identifies P‐selectin as an atopy‐susceptibility locus. Am J Hum Genet 73 ( 3 ): 612 – 626.en_US
dc.identifier.citedreferenceBrito C, Kandzia S, Graça T, Conradt HS, Costa J. 2008. Human fucosyltransferase IX: specificity towards N‐linked glycoproteins and relevance of the cytoplasmic domain in intra‐Golgi localization. Biochimie 90 ( 9 ): 1279 – 1290.en_US
dc.identifier.citedreferenceBuffone A Jr, Mondal N, Gupta R, McHugh KP, Lau JT, Neelamegham S. 2013. Silencing α1,3‐fucosyltransferases in human leukocytes reveals a role for FUT9 enzyme during E‐selectin‐mediated cell adhesion. J Biol Chem 288 ( 3 ): 1620 – 1633.en_US
dc.identifier.citedreferenceChen MH, Yang Q. 2010. GWAF: an R package for genome‐wide association analyses with family data. Bioinformatics 26 ( 4 ): 580 – 581.en_US
dc.identifier.citedreferenceCochran WG. 1954. The combination of estimates from different experiments. Biometrics 10: 101 – 129.en_US
dc.identifier.citedreferenceEdenberg HJ, Bierut LJ, Boyce P, Cao M, Caulwey S, Chiles R, Doheny KF, Hansen M, Hinriches T, Jones K and others. 2005. Description of the data from the Collabroative Study on the Genetics of Alcoholism (COGA) and single‐nucleotide polymorphism genotyping for Genetic Analysis Workshop 14. BMC Genet 6 ( Suppl 1 ): S2.en_US
dc.identifier.citedreferenceEpstein MP, Lin X, Boehnke M. 2002. Ascertainment‐adjusted parameter estimates revisited. Am J Hum Genet 70 ( 4 ): 886 – 895.en_US
dc.identifier.citedreferenceFeng Zeny, Wong WL, Gao X, Schenkel F. 2011. Generalized genetic association study with samples of related individuals. Ann Appl Stat 5 ( 3 ): 2109 – 2130.en_US
dc.identifier.citedreferenceGovindaraju DR, Cupples LA, Kannel WB, O′Donnell CJ, Atwood LD, D′Agostino RB Sr, Fox CS, Larson M, Levy D, Murabito J and others. 2008. Genetics of the Framingham Heart Study population. Adv Genet 62: 33 – 65.en_US
dc.identifier.citedreferenceGray‐McGuire C, Bochud M, Goodloe R, Elston RC. 2009. Genetic association tests: a method for the joint analysis of family and case‐control data. Hum Genomics 4 ( 1 ): 2 – 20.en_US
dc.identifier.citedreferenceGrizzle JE, Starmer CF, Koch GG. 1969. Analysis of categorical data by linear models. Biometrics 25: 489 – 504.en_US
dc.identifier.citedreferenceKamata M, Tada Y, Mitsui A, Shibata S, Miyagaki T, Asano Y, Sugaya M, Kadono T, Sato S. 2013. ICAM‐1 deficiency exacerbates sarcoid‐like granulomatosis induced by propionibacterium acnes through impaired IL‐10 production by regulatory T cells. Am J Pathol 183 ( 6 ): 1731 – 1739.en_US
dc.identifier.citedreferenceKang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. 2010. Variance component model to account for sample structure in genome‐wide association studies. Nat Genet 42 ( 4 ): 348 – 354.en_US
dc.identifier.citedreferenceKatayama Y, Hidalgo A, Chang J, Peired A, Frenette PS. 2005. CD44 is a physiological E‐selectin ligand on neutrophils. J Exp Med 201 ( 8 ): 1183 – 1189.en_US
dc.identifier.citedreferenceManichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. 2010. Robust relationship inference in genome‐wide association studies. Bioinformatics 26 ( 22 ): 2867 – 2873.en_US
dc.identifier.citedreferenceManichaikul A, Chen WM, Williams K, Wong Q, Sale MM, Pankow JS, Tsai MY, Rotter JI, Rich SS, Mychaleckyj JC. 2012. Analysis of family‐ and population‐based samples in cohort genome‐wide association studies. Hum Genet 131 ( 2 ): 275 – 287.en_US
dc.identifier.citedreferenceMcPeek MS, Wu X, Ober C. 2004. Best linear unbiased allele‐frequency estimation in complex pedigrees. Biometrics 60 ( 2 ): 359 – 367.en_US
dc.identifier.citedreferenceNewman LS, Rose CS, Bresnitz EA, Rossman MD, Barnard J, Frederick M, Terrin ML, Weinberger SE, Moller DR, ACCESS Research Group and others. 2004. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med 170 ( 12 ): 1324 – 1330.en_US
dc.identifier.citedreferenceNoh M, Lee Y, Pawitan Y. 2005. Robust ascertainment‐adjusted parameter estimation. Genet Epidemiol 29 ( 1 ): 68 – 75.en_US
dc.identifier.citedreferenceOttman R. 1996. Gene–environment interaction: definitions and study designs. Prev Med 25 ( 6 ) 764 – 770.en_US
dc.identifier.citedreferenceRossman MD, Thompson B, Frederick M, Iannuzzi MC, Rybicki BA, Pander JP, Newman LS, Rose C, Magira E, Monos D and others. 2008. HLA and environmental interactions in sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis 25 ( 2 ): 125 – 132.en_US
dc.identifier.citedreferenceRybicki BA, Levin AM, McKeigue P, Datta I, Gray‐McGuire C, Colombo M, Reich D, Burke RR, Iannuzzi MC. 2011. A genome‐wide admixture scan for ancestry‐linked genes predisposing to sarcoidosis in African‐Americans. Genes Immun 12: 67 – 77.en_US
dc.identifier.citedreferenceSchaid DJ, McDonnell SK, Riska SM, Carlson EE, Thibodeau SN. 2010. Estimation of genotype relative risks from pedigree data by retrospective likelihoods. Genet Epidemiol 34 ( 4 ): 287 – 298.en_US
dc.identifier.citedreferenceThornton T, McPeek MS. 2010. ROADTRIPS: case‐control association testing with partially or completely unknown population and pedigree structure. Am J Hum Genet 86 ( 2 ): 172 – 184.en_US
dc.identifier.citedreferenceThornton T, McPeek MS. 2007. Case‐control association testing with related individuals: a more powerful quasi‐likelihood score test. Am J Hum Genet 81 ( 2 ): 321 – 337.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.