Show simple item record

Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming

dc.contributor.authorIgel, Matthew R.en_US
dc.contributor.authorvan den Heever, Susan C.en_US
dc.contributor.authorStephens, Graeme L.en_US
dc.contributor.authorPosselt, Derek J.en_US
dc.date.accessioned2014-07-03T14:41:40Z
dc.date.available2015-05-04T14:37:25Zen_US
dc.date.issued2014-04en_US
dc.identifier.citationIgel, Matthew R.; van den Heever, Susan C.; Stephens, Graeme L.; Posselt, Derek J. (2014). "Convective‐scale responses of a large‐domain, modelled tropical environment to surface warming." Quarterly Journal of the Royal Meteorological Society 140(681): 1333-1343.en_US
dc.identifier.issn0035-9009en_US
dc.identifier.issn1477-870Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/107584
dc.description.abstractThis article explores the response of convective‐scale atmospheric characteristics to surface temperature through the lens of large‐domain, cloud‐system‐resolving model experiments run at radiative convective equilibrium. We note several features reminiscent of the response to surface warming in atmospheric general circulation models. These include an increase in the rain rate that is smaller than the modelled increase in precipitable water, a systematic decrease in sensible heating and an increase in clear‐sky cooling. However, in contrast to climate models, we note that tropospheric relative humidity increases and column‐integrated water vapour increases at the rate anticipated from the Clausius–Clapeyron relationship, but only when compared with the troposphere mean temperature rather than surface temperature. Also shown are results elucidating the changes in the vertically integrated water budget and the distribution of high precipitation rates shifting toward higher rates. Moist static energy distributions are analyzed and, from these, clouds are implicated in effecting the final equilibrium state of the atmosphere. The results indicate that, while there are aspects of the tropical equilibrium that are represented realistically in current general circulation model climate‐change experiments, there are potentially influential local interactions that are sufficiently important as to alter the mean response of the tropical water and energy balance to changes in sea‐surface temperature. Convection is shown to dictate the equilibrium state across all scales, including those unresolved in climate models, rather than only responding to surface‐induced changes.en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherConvectionen_US
dc.subject.otherClimateen_US
dc.subject.otherCloud‐Resolving Modelsen_US
dc.titleConvective‐scale responses of a large‐domain, modelled tropical environment to surface warmingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric, Oceanic and Space Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/107584/1/qj2230.pdf
dc.identifier.doi10.1002/qj.2230en_US
dc.identifier.sourceQuarterly Journal of the Royal Meteorological Societyen_US
dc.identifier.citedreferenceSmagorinsky J. 1963. General circulation experiments with the primitive equations. Part I, the basic experiment. Mon. Weather Rev. 91: 99 – 164.en_US
dc.identifier.citedreferenceSeager R, Naomi N, Vecchi GA. 2010. Thermodynamic and dynamic mechanisms for large‐scale changes in the hydrological cycle in response to global warming. J. Climate 23: 4651 – 4668.en_US
dc.identifier.citedreferenceSherwood SC, Ingram W, Tsushima Y, Satoh M, Roberts M, Vidale PL, O'Gorman PA. 2010. Relative humidity changes in a warmer climate. J. Geophys. Res. 115: D16119, DOI: 10.1029/2009JD012585.en_US
dc.identifier.citedreferenceSoden BJ, Fu R. 1995. A satellite analysis of deep convection, upper‐tropospheric humidity, and the greenhouse‐effect. J. Climate 8: 2333 – 2351.en_US
dc.identifier.citedreferenceSoden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang XL. 2005. The radiative signature of upper tropospheric moistening. Science 310: 841 – 844.en_US
dc.identifier.citedreferenceStephens GL, Ellis TD. 2008. Controls of global‐mean precipitation increases in global warming GCM experiments. J. Climate. 21: 6141 – 6155.en_US
dc.identifier.citedreferenceStephens GL, Hu YX. 2010. Are climate‐related changes to the character of global‐mean precipitation predictable? Environ. Res. Lett. 5: 025209, DOI: 10.1088/1748‐9326/5/2/025209.en_US
dc.identifier.citedreferenceStephens GL, L'Ecuyer T, Forbes R, Gettlemen A, Golaz JC, Bodas‐Salcedo A, Suzuki K, Gabriel P, Haynes J. 2010. Dreary state of precipitation in models. J. Geophys. Res. 115: D24211, DOI: 10.1029/2010JD014532.en_US
dc.identifier.citedreferenceStorer RL, van den Heever SC. 2013. Microphysical processes evident in aerosol forcing of tropical deep convection. J. Atmos. Sci. 70: 430 – 446.en_US
dc.identifier.citedreferenceSugi M, Yoshimura J. 2004. A mechanism of tropical precipitation change due to CO 2 increase. J. Climate 17: 238 – 243.en_US
dc.identifier.citedreferenceSugiyama M, Shiogama H, Emori S. 2010. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA 107: 571 – 575.en_US
dc.identifier.citedreferenceTompkins AM. 2000. The impact of dimensionality on long‐term cloud‐resolving model simulations. Mon. Weather Rev. 128: 1521 – 1535.en_US
dc.identifier.citedreferenceTompkins AM. 2001. Organization of tropical convection in low vertical wind shears: the role of water vapour. J. Atmos. Sci. 58: 529 – 545.en_US
dc.identifier.citedreferenceTrenberth KE, Fasullo J, Smith L. 2005. Trends and variability in column‐integrated atmospheric water vapour. Clim. Dyn. 24: 741 – 758.en_US
dc.identifier.citedreferenceTurner AG, Slingo JM. 2009. Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos. Sci. Lett. 10: 152 – 158, DOI: 10.1002/asl.223.en_US
dc.identifier.citedreferenceVecchi GA, Soden BJ. 2007. Global warming and the weakening of the tropical circulation. J. Climate 20: 4316 – 4340.en_US
dc.identifier.citedreferenceWalko RL, Band LE, Baron J, Kittel TGF, Lammers R, Lee TJ, Ojima D, Pielke RA, Taylor C, Tague C, Tremback CJ, Vidale PL. 2000. Coupled atmosphere–biophysics–hydrology models for environmental modelling. J. Appl. Meteorol. 39: 931 – 944.en_US
dc.identifier.citedreferenceWentz FJ, Ricciardulli L, Hilburn K, Mears C. 2007. How much more rain will global warming bring? Science 317: 233 – 235.en_US
dc.identifier.citedreferenceWillett KM, Gillett NP, Jones PD, Thorne PW. 2007. Attribution of observed surface humidity changes to human influence. Nature 449: 710 – 713.en_US
dc.identifier.citedreferenceYano J‐I, Guichard F, Lafore J‐P, Redelsperger J‐L, Bechtold P. 2004. Estimations of mass fluxes for cumulus parameterizations from high‐resolution spatial data. J. Atmos. Sci. 61: 829 – 842.en_US
dc.identifier.citedreferenceZhang X, Zwiers FW, Hergel GC, Lambert FH, Gillet NP, Solomon S, Stott PA, Nozawa T. 2007. Detection of human influence on twentieth‐century precipitation trends. Nature 448: 461 – 465.en_US
dc.identifier.citedreferenceBretherton CS, Blossey PN, Khairoutdinov M. 2005. An energy‐balance analysis of deep convective self‐aggregation above uniform SST. J. Atmos. Sci. 62: 4273 – 4292.en_US
dc.identifier.citedreferenceChou C, Neelin JD. 2004. Mechanism of global warming impacts on regional tropical precipitation. J. Climate 17: 2688 – 2701.en_US
dc.identifier.citedreferenceRichter I, Xie SP. 2008. Muted precipitation increase in global warming simulations: a surface evaporation perspective. J. Geophys. Res. 113: D24118, DOI: 10.1029/2008JD010561.en_US
dc.identifier.citedreferenceRiehl H, Malkus JS. 1958. On the heat balance in the equatorial trough zone. Geophysica 6: 505 – 535.en_US
dc.identifier.citedreferenceAllen MR, Ingram WJ. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature 419: 224 – 232.en_US
dc.identifier.citedreferenceBretherton CS, Peters ME, Back LE. 2004. Relationships between water vapour path and precipitation over the tropical oceans. J. Climate 17: 1517 – 1528.en_US
dc.identifier.citedreferenceCotton WR, Pielke RA Sr, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP. 2003. RAMS 2001: current status and future directions. Meteorol. Atmos. Phys. 82: 5 – 29.en_US
dc.identifier.citedreferenceGrabowski WW, Moncrieff MW. 2001. Large‐scale organization of tropical convection in two‐dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc. 127: 445 – 468.en_US
dc.identifier.citedreferenceGroisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VAN. 2005. Trends in intense precipitation in the climate record. J. Climate 18: 1326 – 1350.en_US
dc.identifier.citedreferenceHarrington JY. 1997. The effects of radiative and Microphysical processes on simulated warm and transition season arctic Stratus, Ph.D. Thesis, 298pp. Colorado State University: Fort Collins, CO.en_US
dc.identifier.citedreferenceHartmann DL, Larson K. 2002. An important constraint on tropical cloud‐climate feedback. Geophys. Res. Lett. 29: 1951, DOI: 10.1029/2002GL015835.en_US
dc.identifier.citedreferencevan den Heever SC. 2011. The impacts of aerosol indirect forcing on dynamical aspects of deep convection. Fall Meeting. American Geophysical Union: San Francisco, CA.en_US
dc.identifier.citedreferencevan den Heever SC, Stephens GL, Wood NB. 2011. Aerosol indirect effects on tropical convections characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci. 68: 699 – 718.en_US
dc.identifier.citedreferencevan den Heever SC. 2011. Aerosol indirect forcing on the precipitable water budget of the Tropics. The 91 st American Meteorological Society Annual Meeting, AMS, J14.2. 23‐27 January 2011, Seattle, WA.en_US
dc.identifier.citedreferenceHeld IM, Hemler RS, Ramaswamy V. 1993. Radiative‐convective equilibrium with explicit two‐dimensional moist convection. J. Atmos. Sci. 50: 3909 – 3927.en_US
dc.identifier.citedreferenceHeld IM, Soden BJ. 2000. Water‐vapour feedback and global warming. Ann. Rev. Energy Environ. 25: 441 – 475.en_US
dc.identifier.citedreferenceHeld IM, Soden BJ. 2006. Robust responses of the hydrological cycle to global warming. J. Climate 19: 5686 – 5699.en_US
dc.identifier.citedreferenceHeld IM, Zhao M. 2011. The response of tropical cyclone statistics to an increase in CO 2 with fixed sea surface temperature. J. Climate 24: 5353 – 5364.en_US
dc.identifier.citedreferenceHill GE. 1974. Factors controlling the size and spacing of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci. 31: 646.en_US
dc.identifier.citedreferenceIgel MR. 2011. ‘ A tropical radiation and cloud system feedback modulated by sea surface temperatures', Master's thesis, 79pp. Colorado State University: Fort Collins, CO.en_US
dc.identifier.citedreferenceJohnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH. 1999. Trimodal characteristics of tropical convection. J. Climate 12: 2397 – 2418.en_US
dc.identifier.citedreferenceKhairoutdinov M, Randall D, DeMott C. 2005. Simulations of the atmospheric general circulation using a cloud‐resolving model as a superparameterization of physical processes. J. Atmos. Sci. 62: 2136 – 2154.en_US
dc.identifier.citedreferenceLilly DK. 1962. On the numerical simulation of buoyant convection. Tellus XIV: 148 – 172.en_US
dc.identifier.citedreferenceLiu CR, Allan P, Huffman GJ. 2012. Co‐variation of temperature and precipitation and CMIP5 models and satellite observations. Geophys. Res. Lett. 39: L13803, DOI: 10.1029/2012GL052093.en_US
dc.identifier.citedreferenceLuo ZJ, Kley D, Johnson RH, Liu GY, Nawrath S, Smit HGJ. 2012. Influence of sea surface temperature on humidity and temperature in the outflow of tropical deep convection. J. Climate 25: 1340 – 1348.en_US
dc.identifier.citedreferenceMeehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye T, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC. 2007. Global climate projections. In Climate Change 2007: The Physical Scientific Basis, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. (eds): 747–845. Cambridge University Press: Cambridge.en_US
dc.identifier.citedreferenceMuller CJ, O'Gorman PA. 2011. Intensification of precipitation extremes with warming in a cloud‐resolving model. J. Climate 24: 2784 – 2800.en_US
dc.identifier.citedreferenceNeelin JD, Peters O, Hales K. 2009. The transition to strong convection. J. Atmos. Sci. 66: 2367 – 2384.en_US
dc.identifier.citedreferenceO'Gorman PA, Muller CJ. 2010. How closely do changes in surface and column water vapour follow Clausius–Clapeyron scaling in climate change simulation? Environ. Res. Lett. 5: 025207, DOI: 10.1088/1748‐9326/5/2/025207.en_US
dc.identifier.citedreferencePakula L, Stephens GL. 2009. The role of radiation in influencing tropical cloud distributions in a radiative–convective equilibrium cloud‐resolving model. J. Atmos. Sci. 66: 62 – 76.en_US
dc.identifier.citedreferencePall P, Allen MR, Stone DA. 2007. Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO 2 warming. Clim. Dyn. 28: 351 – 363.en_US
dc.identifier.citedreferencePaltridge G, Arking A, Pook M. 2009. Trends in middle‐ and upper‐level tropospheric humidity from NCEP reanalysis data. Theor. Appl. Climatol. 98: 351 – 359.en_US
dc.identifier.citedreferencePosselt DJ, van den Heever SC, Stephens GL. 2008. Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium. Geophys. Res. Lett. 35: L08802, DOI: 10.1029/2007GL033029.en_US
dc.identifier.citedreferencePosselt DJ, van den Heever SC, Stephens GL, Igel MR. 2012. Changes in the interaction between tropical convection, radiation and the large scale circulation in a warming environment. J. Climate 25: 557 – 571.en_US
dc.identifier.citedreferenceRamanathan V, Collins W. 1991. Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino. Nature 351: 27 – 32.en_US
dc.identifier.citedreferenceRondanelli R, Lindzen RS. 2008. Observed variations in convective precipitation fraction and stratiform area with sea surface temperature. J. Geophys. Res. 113: D16119, DOI: 10.1029/2008JD010064.en_US
dc.identifier.citedreferenceSaleeby SM, Cotton WR. 2004. A large‐droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modelling System (RAMS). Part I: module descriptions and supercell test simulations. J. Appl. Meteorol. Climatol. 43: 182 – 195.en_US
dc.identifier.citedreferenceSaleeby SM, van den Heever SC. 2013. Developments in the CSU–RAMS aerosol model: emissions, nucleation, regeneration, deposition, and radiation. J. Appl. Meteorol. Climatol., DOI: 10.1175/JAS‐D‐12‐076.1.en_US
dc.identifier.citedreferenceSanter BD, Mears C, Wentz FJ, Taylor KE, Gleckler PJ, Wigley TML, Barnett TP, Boyle JS, Brueggemann W, Gillett NP, Klein SA, Meehl GA, Nozawa T, Pierce DW, Stott PA, Washington WM, Wehner MF. 2007. Identification of human‐induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA 104: 15248 – 15253.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.