Show simple item record

Identification of Stage‐Specific Genes Associated With Lupus Nephritis and Response to Remission Induction in (NZB × NZW)F1 and NZM2410 Mice

dc.contributor.authorBethunaickan, Ramalingamen_US
dc.contributor.authorBerthier, Celine C.en_US
dc.contributor.authorZhang, Weijiaen_US
dc.contributor.authorEksi, Ridvanen_US
dc.contributor.authorLi, Hong‐dongen_US
dc.contributor.authorGuan, Yuanfangen_US
dc.contributor.authorKretzler, Matthiasen_US
dc.contributor.authorDavidson, Anneen_US
dc.date.accessioned2014-08-06T16:49:40Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-08-06T16:49:40Z
dc.date.issued2014-08en_US
dc.identifier.citationBethunaickan, Ramalingam; Berthier, Celine C.; Zhang, Weijia; Eksi, Ridvan; Li, Hong‐dong ; Guan, Yuanfang; Kretzler, Matthias; Davidson, Anne (2014). "Identification of Stageâ Specific Genes Associated With Lupus Nephritis and Response to Remission Induction in (NZB Ã NZW)F1 and NZM2410 Mice." Arthritis & Rheumatology 66(8): 2246-2258.en_US
dc.identifier.issn2326-5191en_US
dc.identifier.issn2326-5205en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108024
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherKluwer Academic Publishersen_US
dc.titleIdentification of Stage‐Specific Genes Associated With Lupus Nephritis and Response to Remission Induction in (NZB × NZW)F1 and NZM2410 Miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelRheumatologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108024/1/art38679.pdf
dc.identifier.doi10.1002/art.38679en_US
dc.identifier.sourceArthritis & Rheumatologyen_US
dc.identifier.citedreferenceSasaki S, Nagai Y, Yanagibashi T, Watanabe Y, Ikutani M, Kariyone A, et al. Serum soluble MD‐1 levels increase with disease progression in autoimmune prone MRL lpr/lpr mice. Mol Immunol 2012; 49: 611 – 20.en_US
dc.identifier.citedreferenceDavidson A, Berthier C, Kretzler M. Pathogenetic mechanisms in lupus nephritis. In: Wallace DJ, Hahn BH, editors. Dubois' Lupus Erythematosus and related syndromes. 8th ed. Philadelphia: Saunders; 2012. p. 237 – 55.en_US
dc.identifier.citedreferenceReddy PS, Legault HM, Sypek JP, Collins MJ, Goad E, Goldman SJ, et al. Mapping similarities in mTOR pathway perturbations in mouse lupus nephritis models and human lupus nephritis. Arthritis Res Ther 2008; 10: R127.en_US
dc.identifier.citedreferenceTeramoto K, Negoro N, Kitamoto K, Iwai T, Iwao H, Okamura M, et al. Microarray analysis of glomerular gene expression in murine lupus nephritis. J Pharmacol Sci 2008; 106: 56 – 67.en_US
dc.identifier.citedreferenceGe Y, Jiang C, Sung SS, Bagavant H, Dai C, Wang H, et al. Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex‐mediated acute lupus glomerulonephritis. J Exp Med 2013; 210: 2387 – 401.en_US
dc.identifier.citedreferenceBrunner HI, Bennett MR, Mina R, Suzuki M, Petri M, Kiani AN, et al. Association of noninvasively measured renal protein biomarkers with histologic features of lupus nephritis. Arthritis Rheum 2012; 64: 2687 – 97.en_US
dc.identifier.citedreferenceRovin BH, Song H, Birmingham DJ, Hebert LA, Yu CY, Nagaraja HN. Urine chemokines as biomarkers of human systemic lupus erythematosus activity. J Am Soc Nephrol 2005; 16: 467 – 73.en_US
dc.identifier.citedreferenceTian S, Li J, Wang L, Liu T, Liu H, Cheng G, et al. Urinary levels of RANTES and M‐CSF are predictors of lupus nephritis flare. Inflamm Res 2007; 56: 304 – 10.en_US
dc.identifier.citedreferenceMichaelson JS, Wisniacki N, Burkly LC, Putterman C. Role of TWEAK in lupus nephritis: a bench‐to‐bedside review. J Autoimmun 2012; 39: 130 – 42.en_US
dc.identifier.citedreferenceTsirogianni A, Pipi E, Soufleros K. Relevance of anti‐C1q autoantibodies to lupus nephritis. Ann N Y Acad Sci 2009; 1173: 243 – 51.en_US
dc.identifier.citedreferenceJohnson RM, Kerr MS, Slaven JE. Plac8‐dependent and inducible NO synthase‐dependent mechanisms clear Chlamydia muridarum infections from the genital tract. J Immunol 2012; 188: 1896 – 904.en_US
dc.identifier.citedreferenceReyes‐Thomas J, Blanco I, Putterman C. Urinary biomarkers in lupus nephritis. Clin Rev Allergy Immunol 2011; 40: 138 – 50.en_US
dc.identifier.citedreferenceAvihingsanon Y, Benjachat T, Tassanarong A, Sodsai P, Kittikovit V, Hirankarn N. Decreased renal expression of vascular endothelial growth factor in lupus nephritis is associated with worse prognosis. Kidney Int 2009; 75: 1340 – 8.en_US
dc.identifier.citedreferenceImaizumi T, Aizawa‐Yashiro T, Tsuruga K, Tanaka H, Matsumiya T, Yoshida H, et al. Melanoma differentiation‐associated gene 5 regulates the expression of a chemokine CXCL10 in human mesangial cells: implications for chronic inflammatory renal diseases. Tohoku J Exp Med 2012; 228: 17 – 26.en_US
dc.identifier.citedreferenceRubinstein T, Pitashny M, Levine B, Schwartz N, Schwartzman J, Weinstein E, et al. Urinary neutrophil gelatinase‐associated lipocalin as a novel biomarker for disease activity in lupus nephritis. Rheumatology (Oxford) 2010; 49: 960 – 71.en_US
dc.identifier.citedreferenceHinze CH, Suzuki M, Klein‐Gitelman M, Passo MH, Olson J, Singer NG, et al. Neutrophil gelatinase–associated lipocalin is a predictor of the course of global and renal childhood‐onset systemic lupus erythematosus disease activity. Arthritis Rheum 2009; 60: 2772 – 81.en_US
dc.identifier.citedreferenceKiani AN, Wu T, Fang H, Zhou XJ, Ahn CW, Magder LS, et al. Urinary vascular cell adhesion molecule, but not neutrophil gelatinase‐associated lipocalin, is associated with lupus nephritis. J Rheumatol 2012; 39: 1231 – 7.en_US
dc.identifier.citedreferenceSmall DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti‐oxidant therapies and chronic kidney disease. Nephrology (Carlton) 2012; 17: 311 – 21.en_US
dc.identifier.citedreferenceTabas I, Glass CK. Anti‐inflammatory therapy in chronic disease: challenges and opportunities. Science 2013; 339: 166 – 72.en_US
dc.identifier.citedreferenceGlowacka WK, Alberts P, Ouchida R, Wang JY, Rotin D. LAPTM5 protein is a positive regulator of proinflammatory signaling pathways in macrophages. J Biol Chem 2012; 287: 27691 – 702.en_US
dc.identifier.citedreferenceGong P, Canaan A, Wang B, Leventhal J, Snyder A, Nair V, et al. The ubiquitin‐like protein FAT10 mediates NF‐κB activation. J Am Soc Nephrol 2010; 21: 316 – 26.en_US
dc.identifier.citedreferenceRen J, Wang Y, Gao Y, Mehta SB, Lee CG. FAT10 mediates the effect of TNF‐α in inducing chromosomal instability. J Cell Sci 2011; 124: 3665 – 75.en_US
dc.identifier.citedreferenceDavidson A, Aranow C. Lupus nephritis: lessons from murine models. Nat Rev Rheumatol 2010; 6: 13 – 20.en_US
dc.identifier.citedreferenceSprangers B, Monahan M, Appel GB. Diagnosis and treatment of lupus nephritis flares—an update. Nat Rev Nephrol 2012; 8: 709 – 17.en_US
dc.identifier.citedreferenceCostenbader KH, Solomon DH, Winkelmayer W, Brookhart MA. Incidence of end‐stage renal disease due to lupus nephritis in the US, 1995–2004 [abstract]. Arthritis Rheum 2008; 58 Suppl: S873.en_US
dc.identifier.citedreferenceWard MM. Changes in the incidence of endstage renal disease due to lupus nephritis in the United States, 1996–2004. J Rheumatol 2009; 36: 63 – 7.en_US
dc.identifier.citedreferenceMok CC. Biomarkers for lupus nephritis: a critical appraisal. J Biomed Biotechnol 2010; 2010: 638413.en_US
dc.identifier.citedreferenceLi Y, Fang X, Li QZ. Biomarker profiling for lupus nephritis. Genomics Proteomics Bioinformatics 2013; 11: 158 – 65.en_US
dc.identifier.citedreferencePerry D, Sang A, Yin Y, Zheng YY, Morel L. Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011: 271694.en_US
dc.identifier.citedreferenceTheofilopoulos AN, Dixon FJ. Murine models of systemic lupus erythematosus. Adv Immunol 1985; 37: 269 – 390.en_US
dc.identifier.citedreferenceSchiffer L, Sinha J, Wang X, Huang W, von Gersdorff G, Schiffer M, et al. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol 2003; 171: 489 – 97.en_US
dc.identifier.citedreferenceRamanujam M, Wang X, Huang W, Schiffer L, Grimaldi C, Akkerman A, et al. Mechanism of action of transmembrane activator and calcium modulator ligand interactor‐Ig in murine systemic lupus erythematosus. J Immunol 2004; 173: 3524 – 34.en_US
dc.identifier.citedreferenceRamanujam M, Bethunaickan R, Huang W, Tao H, Madaio MP, Davidson A. Selective blockade of BAFF for the prevention and treatment of systemic lupus erythematosus nephritis in NZM2410 mice. Arthritis Rheum 2010; 62: 1457 – 68.en_US
dc.identifier.citedreferenceSchiffer L, Bethunaickan R, Ramanujam M, Huang W, Schiffer M, Tao H, et al. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol 2008; 180: 1938 – 47.en_US
dc.identifier.citedreferenceClynes R, Dumitru C, Ravetch JV. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 1998; 279: 1052 – 4.en_US
dc.identifier.citedreferenceBagavant H, Fu SM. New insights from murine lupus: disassociation of autoimmunity and end organ damage and the role of T cells. Curr Opin Rheumatol 2005; 17: 523 – 8.en_US
dc.identifier.citedreferenceJacob CO, Pricop L, Putterman C, Koss MN, Liu Y, Kollaros M, et al. Paucity of clinical disease despite serological autoimmunity and kidney pathology in lupus‐prone New Zealand mixed 2328 mice deficient in BAFF. J Immunol 2006; 177: 2671 – 80.en_US
dc.identifier.citedreferenceBethunaickan R, Berthier CC, Ramanujam M, Sahu R, Zhang W, Sun Y, et al. A unique hybrid renal mononuclear phagocyte activation phenotype in murine systemic lupus erythematosus nephritis. J Immunol 2011; 186: 4994 – 5003.en_US
dc.identifier.citedreferenceBerthier CC, Bethunaickan R, Gonzalez‐Rivera T, Nair V, Ramanujam M, Zhang W, et al. Cross‐species transcriptional network analysis defines shared inflammatory responses in murine and human lupus nephritis. J Immunol 2012; 189: 988 – 1001.en_US
dc.identifier.citedreferenceChan O, Madaio MP, Shlomchik MJ. The roles of B cells in MRL/lpr murine lupus. Ann N Y Acad Sci 1997; 815: 75 – 87.en_US
dc.identifier.citedreferenceTamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, et al. Interpreting patterns of gene expression with self‐organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A 1999; 96: 2907 – 12.en_US
dc.identifier.citedreferenceWall ME, Rechtsteiner A, Rocha L. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis. Norwell (MA): Kluwer Academic Publishers; 2003. p. 91 – 109.en_US
dc.identifier.citedreferenceAlter O, Brown PO, Botstein D. Generalized singular value decomposition for comparative analysis of genome‐scale expression data sets of two different organisms. Proc Natl Acad Sci U S A 2003; 100: 3351 – 6.en_US
dc.identifier.citedreferenceHolter NS, Mitra M, Maritan A, Cieplak M, Banavar JR, Fedoroff NV. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc Natl Acad Sci U S A 2000; 97: 8409 – 14.en_US
dc.identifier.citedreferenceBethunaickan R, Berthier CC, Zhang W, Kretzler M, Davidson A. Comparative transcriptional profiling of 3 murine models of SLE nephritis reveals both unique and shared regulatory networks. PLoS One 2013; 8: e77489.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.