Show simple item record

Radiation environment at the Moon: Comparisons of transport code modeling and measurements from the CRaTER instrument

dc.contributor.authorPorter, Jamie A.en_US
dc.contributor.authorTownsend, Lawrence W.en_US
dc.contributor.authorSpence, Harlanen_US
dc.contributor.authorGolightly, Michaelen_US
dc.contributor.authorSchwadron, Nathanen_US
dc.contributor.authorKasper, Justinen_US
dc.contributor.authorCase, Anthony W.en_US
dc.contributor.authorBlake, John B.en_US
dc.contributor.authorZeitlin, Caryen_US
dc.date.accessioned2014-08-06T16:49:59Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:49:59Z
dc.date.issued2014-06en_US
dc.identifier.citationPorter, Jamie A.; Townsend, Lawrence W.; Spence, Harlan; Golightly, Michael; Schwadron, Nathan; Kasper, Justin; Case, Anthony W.; Blake, John B.; Zeitlin, Cary (2014). "Radiation environment at the Moon: Comparisons of transport code modeling and measurements from the CRaTER instrument." Space Weather 12(6): 329-336.en_US
dc.identifier.issn1542-7390en_US
dc.identifier.issn1542-7390en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108081
dc.description.abstractThe Cosmic Ray Telescope for the Effects of Radiation (CRaTER), an instrument carried on the Lunar Reconnaissance Orbiter spacecraft, directly measures the energy depositions by solar and galactic cosmic radiations in its silicon wafer detectors. These energy depositions are converted to linear energy transfer (LET) spectra. High LET particles, which are mainly high‐energy heavy ions found in the incident cosmic ray spectrum, or target fragments and recoils produced by protons and heavier ions, are of particular importance because of their potential to cause significant damage to human tissue and electronic components. Aside from providing LET data useful for space radiation risk analyses for lunar missions, the observed LET spectra can also be used to help validate space radiation transport codes, used for shielding design and risk assessment applications, which is a major thrust of this work. In this work the Monte Carlo transport code HETC‐HEDS (High‐Energy Transport Code‐Human Exploration and Development in Space) is used to estimate LET contributions from the incident primary ions and their charged secondaries produced by nuclear collisions as they pass through the three pairs of silicon detectors. Also in this work, the contributions to the LET of the primary ions and their charged secondaries are analyzed and compared with estimates obtained using the deterministic space radiation code HZETRN 2010, developed at NASA Langley Research Center. LET estimates obtained from the two transport codes are compared with measurements of LET from the CRaTER instrument during the mission. Overall, a comparison of the LET predictions of the HETC‐HEDS code to the predictions of the HZETRN code displays good agreement. The code predictions are also in good agreement with the CRaTER LET measurements above 15 keV/µm but differ from the measurements for smaller values of LET. A possible reason for this disagreement between measured and calculated spectra below 15 keV/µm is an inadequate representation of the light ion spectra in HETC‐HEDS and HZETRN code calculations. It is also clear from the results of this work that Vavilov distributions need to be incorporated into the HETC‐HJEDS code before it will be able to recreate the observed LET spectra measured by the CRaTER instrument. Key Points Vavilov corrections should be incorporated into simulated results The predictions of the transport codes reasonably agree with the CRaTER LET The observed LET can be used to help validate space radiation transport codesen_US
dc.publisherWiley‐VCHen_US
dc.subject.otherLETen_US
dc.subject.otherCRaTERen_US
dc.titleRadiation environment at the Moon: Comparisons of transport code modeling and measurements from the CRaTER instrumenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108081/1/swe20145.pdf
dc.identifier.doi10.1002/2013SW000994en_US
dc.identifier.sourceSpace Weatheren_US
dc.identifier.citedreferenceSlaba, T. C., S. R. Blattnig, and F. F. Badavi ( 2010 ), Faster and more accurate transport procedures for HZETRN, J. Comput. Phys., 229 ( 24 ), 9397 – 9417.en_US
dc.identifier.citedreferenceAnderson, J. A., and L. W. Townsend ( 2011b ), Dose estimates for the CRaTER instrument on LRO using HETC‐HEDS, 56th Annual Meeting of Health Physics Society, West Palm Beach, FL, June 26–30, 2011b.en_US
dc.identifier.citedreferenceBichsel, H. ( 1988 ), Straggling in thin silicon detectors, Rev. Mod. Phys., 60, 663 – 699, doi: 10.1103/RevModPhys.60.663.en_US
dc.identifier.citedreferenceCase, A. W., J. C. Kasper, H. E. Spence, C. J. Zeitlin, M. D. Looper, M. J. Golightly, N. A. Schwadron, L. W. Townsend, J. E. Mazur, and J. B. Blake ( 2013 ), The deep‐space galactic cosmic ray lineal energy spectrum at solar minimum, Space Weather Int. J. Res. Appl., doi: 10.1002/swe.20051.en_US
dc.identifier.citedreferenceCharara, Y. M. ( 2008 ), Characterization of the cosmic ray telescope for the effects, PhD Dissertation, Department of Nuclear Engineering, University of Tennessee, Knoxville.en_US
dc.identifier.citedreferenceCharara, Y. M., L. W. Townsend, T. A. Gabriel, C. J. Zeitlin, L. H. Heilbronn, and J. Miller ( 2008 ), HETC‐HEDS code validation using laboratory beam energy loss spectra data, IEEE Trans. Nucl. Sci., 55, 3164 – 3168.en_US
dc.identifier.citedreferenceEmmett, M. B. ( 1985 ), MORSE‐CGA: A Monte Carlo radiation transport code with array geometry capability, ORNL‐6174 (April 1985).en_US
dc.identifier.citedreferenceFarmer, C. M., Y. M. Charara, and L. W. Townsend ( 2007 ), LET spectra of iron particles on A‐150: Model predictions for the CRaTER detector, 37th International Conference on Environmental Systems (ICES), Chicago, IL, July 9–12, 2007. SAE Paper No. 2007‐01‐3113.en_US
dc.identifier.citedreferenceHeinbockel, J. H., et al. ( 2011a ), Comparison of the transport codes HZETRN, HETC, and FLUKA for a solar particle event, Adv. Space Res., 47, 1079 – 1088.en_US
dc.identifier.citedreferenceHeinbockel, J. H., et al. ( 2011b ), Comparison of the transport codes HZETRN, HETC, and FLUKA for galactic cosmic rays, Adv. Space Res., 47, 1089 – 1105.en_US
dc.identifier.citedreferenceInternational Commission on Radiation Units and Measurements (ICRU) ( 1993 ), International Commission on Radiation Units and Measurements, Quantities and Units in Radiation Protection Dosimetry, ICRU Report 51 (International Commission on Radiation Units and Measurements, Bethesda, MD).en_US
dc.identifier.citedreferenceMiller, T. M., and L. W. Townsend ( 2004 ), Double differential heavy ion production cross sections, Radiat. Prot. Dosim., 110, 53 – 60.en_US
dc.identifier.citedreferenceMiller, T. M., and L. W. Townsend ( 2005 ), Comprehensive cross section database development for generalized three dimensional radiation transport codes, Nucl. Sci. Eng., 149, 65 – 73.en_US
dc.identifier.citedreferenceO'Neill, P. M. ( 2010 ), Badhwar‐O'Neill 2010 galactic cosmic ray flux model—Revised, IEEE Trans. Nucl. Sci., 57 ( 6 ), 3148 – 3153, doi: 10.1109/TNS.2010.2083688.en_US
dc.identifier.citedreferencePourArsalan, M., and L. W. Townsend ( 2013 ), Emitted high energy light particle database development using a thermodynamic coalescence model, J. Phys. Conf. Ser., 420, 012063, doi: 10.1088/1742‐6596/420/1/012063.en_US
dc.identifier.citedreferenceSpence, H. E., et al. ( 2010 ), CRaTER: The cosmic ray telescope for the effects of radiation experiment on the lunar reconnaissance orbiter mission, Space Sci. Rev., 150 ( 1–4 ), 243 – 284, doi: 10.1007/s11214‐009‐9584‐8.en_US
dc.identifier.citedreferenceTownsend, L. W., T. M. Miller, and T. A. Gabriel ( 2005 ), HETC radiation transport code development for cosmic ray shielding applications in space, Radiat. Prot. Dosim., 116, 135 – 139.en_US
dc.identifier.citedreferenceTownsend, L. W., H. M. Moussa, and Y. M. Charara ( 2009 ), Monte Carlo simulations of energy losses by space protons in the CRaTER detector, Acta Astronaut., doi: 10.1016/j.actaastro.2009.08.007.en_US
dc.identifier.citedreferenceTurner, J. T. ( 2004 ), Atoms, Radiation, and Radiation Protection, 2nd ed., pp. 576, ISBN 0‐471‐59581‐0, Wiley‐VCH, Weinheim.en_US
dc.identifier.citedreferenceVondrak, R. R., J. W. Keller, and C. T. Russell (Eds.) ( 2010 ), Lunar Reconnaissance Orbiter Mission, Space Sci. Rev., vol. 150, Nos. 1–4, Springer, New York.en_US
dc.identifier.citedreferenceWalker, S. A., L. W. Townsend, and J. W. Norbury ( 2013 ), Heavy ion contributions to the organ dose equivalent for the 1977 galactic cosmic ray spectrum, Adv. Space Res., 51, 1792.en_US
dc.identifier.citedreferenceWilson, J. W., L. W. Townsend, W. Schimmerling, J. E. Nealy, G. S. Khandelwal, F. A. Cucinotta, L. C. Simonsen, F. Khan, J. L. Shinn, and J. W. Norbury ( 1991 ), Transport methods and interactions for space radiations, NASA RP 1257, December 1991.en_US
dc.identifier.citedreferenceWilson, J. W., J. L. Shinn, L. W. Townsend, R. K. Tripathi, F. F. Badavi, and S. Y. Chun ( 1994 ), NUCFRG2: A semiempirical nuclear fragmentation model, Nucl. Instrum. Methods Phys. Res., Sect. B, 94, 95 – 102.en_US
dc.identifier.citedreferenceWilson, J. W., F. F. Badavi, F. A. Cucinotta, J. L. Shinn, G. D. Badhwar, R. Silberberg, C. H. Tsao, L. W. Townsend, and R. K. Tripathi ( 1995 ), HZETRN: Description of a free‐space ion and nucleon transport and shielding computer program, NASA TP 3495.en_US
dc.identifier.citedreferenceX‐5 Data Team ( 2003 ), CCC‐710/MCNP: Data libraries for MCNP, [file CCC‐710_DATA.pdf].en_US
dc.identifier.citedreferenceAdamczyk, A. M., R. B. Norman, S. I. Sriprisan, L. W. Townsend, J. W. Norbury, S. R. Blattnig, and T. C. Slaba ( 2012 ), NUCFRG3: Physics improvements to the nuclear fragmentation model, Nucl. Instrum. Methods Phys. Res., Sect. A, 678, 21 – 32, doi: 10.1016/j.nima.2012.02.021.en_US
dc.identifier.citedreferenceAnderson, J. A., and L. W. Townsend ( 2011a ), LET comparisons for the CRaTER instrument on LRO and HETC‐HEDS, 2011 IEEE Aerospace Conference, Big Sky, MT, March 5–12, 2011a.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.