Show simple item record

Mutational landscape of candidate genes in familial prostate cancer

dc.contributor.authorJohnson, Anna M.en_US
dc.contributor.authorZuhlke, Kimberly A.en_US
dc.contributor.authorPlotts, Chrisen_US
dc.contributor.authorMcDonnell, Shannon K.en_US
dc.contributor.authorMiddha, Sumiten_US
dc.contributor.authorRiska, Shaun M.en_US
dc.contributor.authorSchaid, Daniel J.en_US
dc.contributor.authorThibodeau, Stephen N.en_US
dc.contributor.authorDouglas, Julie A.en_US
dc.contributor.authorCooney, Kathleen A.en_US
dc.date.accessioned2014-09-03T16:51:22Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-09-03T16:51:22Z
dc.date.issued2014-10en_US
dc.identifier.citationJohnson, Anna M.; Zuhlke, Kimberly A.; Plotts, Chris; McDonnell, Shannon K.; Middha, Sumit; Riska, Shaun M.; Schaid, Daniel J.; Thibodeau, Stephen N.; Douglas, Julie A.; Cooney, Kathleen A. (2014). "Mutational landscape of candidate genes in familial prostate cancer." The Prostate 74(14): 1371-1378.en_US
dc.identifier.issn0270-4137en_US
dc.identifier.issn1097-0045en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108266
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSusceptibilityen_US
dc.subject.otherFamilial Canceren_US
dc.subject.otherExome Sequencingen_US
dc.titleMutational landscape of candidate genes in familial prostate canceren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108266/1/pros22849-sm-0001-SupTab-S1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108266/2/pros22849.pdf
dc.identifier.doi10.1002/pros.22849en_US
dc.identifier.sourceThe Prostateen_US
dc.identifier.citedreferenceStone A, Ratnasinghe LD, Emerson GL, Modali R, Lehman T, Runnells G, Carroll A, Carter W, Barnhart S, Rasheed AA, Greene G, Johnson DE, Ambrosone CB, Kadlubar FF, Lang NP. CYP3A43 Pro(340)Ala polymorphism and prostate cancer risk in African Americans and Caucasians. Cancer Epidemiol Biomarkers Prev 2005; 14 ( 5 ): 1257 – 1261.en_US
dc.identifier.citedreferenceAgalliu I, Kwon EM, Zadory D, McIntosh L, Thompson J, Stanford JL, Ostrander EA. Germline mutations in the BRCA2 gene and susceptibility to hereditary prostate cancer. Clin Cancer Res 2007; 13 ( 3 ): 839 – 843.en_US
dc.identifier.citedreferenceEdwards SM, Kote‐Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P, Jackson R, Southgate C, Singh R, Falconer A, Dearnaley DP, Ardern‐Jones A, Murkin A, Dowe A, Kelly J, Williams S, Oram R, Stevens M, Teare DM, Ponder BA, Gayther SA, Easton DF, Eeles RA. Two percent of men with early‐onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 2003; 72 ( 1 ): 1 – 12.en_US
dc.identifier.citedreferenceKirchhoff T, Kauff ND, Mitra N, Nafa K, Huang H, Palmer C, Gulati T, Wadsworth E, Donat S, Robson ME, Ellis NA, Offit K. BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 2004; 10 ( 9 ): 2918 – 2921.en_US
dc.identifier.citedreferenceRisch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Kwan E, Jack E, Vesprini DJ, Kuperstein G, Abrahamson JL, Fan I, Wong B, Narod SA. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet 2001; 68 ( 3 ): 700 – 710.en_US
dc.identifier.citedreferenceBauer CM, Ray AM, Halstead‐Nussloch BA, Dekker RG, Raymond VM, Gruber SB, Cooney KA. Hereditary prostate cancer as a feature of Lynch syndrome. Fam Cancer 2011; 10 ( 1 ): 37 – 42.en_US
dc.identifier.citedreferenceRaymond VM, Mukherjee B, Wang F, Huang SC, Stoffel EM, Kastrinos F, Syngal S, Cooney KA, Gruber SB. Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 2013; 31 ( 14 ): 1713 – 1718.en_US
dc.identifier.citedreferenceRyan S, Jenkins MA, Win AK. Risk of prostate cancer in Lynch syndrome: A systematic review and meta‐analysis. Cancer Epidemiol Biomarkers Prev 2014; 23 ( 3 ): 437 – 449.en_US
dc.identifier.citedreferenceXu J, Dimitrov L, Chang BL, Adams TS, Turner AR, Meyers DA, Eeles RA, Easton DF, Foulkes WD, Simard J, Giles GG, Hooper JL, Mahle L, Moller P, Bishop T. A combined genomewide linkage scan of 1233 families for prostate cancer‐susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 2005; 77 ( 2 ): 219 – 229.en_US
dc.identifier.citedreferenceExome Variant Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (URL: http://evs.gs.washington.edu/EVS/ ).en_US
dc.identifier.citedreferenceDomanski TL, Finta C, Halpert JR, Zaphiropoulos PG. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 2001; 59 ( 2 ): 386 – 392.en_US
dc.identifier.citedreferenceSiemes C, Visser LE, de Jong FH, Coebergh JW, Uitterlinden AG, Hofman A, Stricker BH, van Schaik RH. Cytochrome P450 3A gene variation, steroid hormone serum levels and prostate cancer—The Rotterdam study. Steroids 2010; 75 ( 12 ): 1024 – 1032.en_US
dc.identifier.citedreferenceRebbeck TR, Rennert H, Walker AH, Panossian S, Tran T, Walker K, Spangler E, Patacsil‐Coomes M, Sachdeva R, Wein AJ, Malkowicz SB, Zeigler‐Johnson C. Joint effects of inflammation and androgen metabolism on prostate cancer severity. Int J Cancer 2008; 123 ( 6 ): 1385 – 1389.en_US
dc.identifier.citedreferenceZeigler‐Johnson C, Friebel T, Walker AH, Wang Y, Spangler E, Panossian S, Patacsil M, Aplenc R, Wein AJ, Malkowicz SB, Rebbeck TR. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res 2004; 64 ( 22 ): 8461 – 8467.en_US
dc.identifier.citedreferenceZeigler‐Johnson CM, Walker AH, Mancke B, Spangler E, Jalloh M, McBride S, Deitz A, Malkowicz SB, Ofori‐Adjei D, Gueye SM, Rebbeck TR. Ethnic differences in the frequency of prostate cancer susceptibility alleles at SRD5A2 and CYP3A4. Hum Hered 2002; 54 ( 1 ): 13 – 21.en_US
dc.identifier.citedreferencePabalan N, Francisco‐Pabalan O, Jarjanazi H, Li H, Sung L, Ozcelik H. Racial and tissue‐specific cancer risk associated with PARP1 (ADPRT) Val762Ala polymorphism: A meta‐analysis. Mol Biol Rep 2012; 39 ( 12 ): 11061 – 11072.en_US
dc.identifier.citedreferenceLi Y, Li S, Wu Z, Hu F, Zhu L, Zhao X, Cui B, Dong X, Tian S, Wang F, Zhao Y. Polymorphisms in genes of APE1, PARP1, and XRCC1: Risk and prognosis of colorectal cancer in a Northeast Chinese population. Med Oncol 2013; 30 ( 2 ): 505.en_US
dc.identifier.citedreferencePopanda O, Seibold P, Nikolov I, Oakes CC, Burwinkel B, Hausmann S, Flesch‐Janys D, Plass C, Chang‐Claude J, Schmezer P. Germline variants of base excision repair genes and breast cancer: A polymorphism in DNA polymerase gamma modifies gene expression and breast cancer risk. Int J Cancer 2013; 132 ( 1 ): 55 – 62.en_US
dc.identifier.citedreferenceLi C, Hu Z, Lu J, Liu Z, Wang L‐E, El‐Naggar AK, Sturgis EM, Spitz MR, Wei Q. Genetic polymorphisms in DNA base‐excision repair genesADPRT, XRCC1, and APE1 and the risk of squamous cell carcinoma of the head and neck. Cancer 2007; 110 ( 4 ): 867 – 875.en_US
dc.identifier.citedreferenceFong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui‐Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS. Inhibition of poly(ADP‐ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361 ( 2 ): 123 – 134.en_US
dc.identifier.citedreferenceSandhu SK, Yap TA, de Bono JS. Poly(ADP‐ribose) polymerase inhibitors in cancer treatment: A clinical perspective. Eur J Cancer 2010; 46 ( 1 ): 9 – 20.en_US
dc.identifier.citedreferenceFong PC, Yap TA, Boss DS, Carden CP, Mergui‐Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C, A'Hern R, Tutt A, Ashworth A, Stone J, Carmichael J, Schellens JH, de Bono JS, Kaye SB. Poly(ADP)‐ribose polymerase inhibition: Frequent durable responses in BRCA carrier ovarian cancer correlating with platinum‐free interval. J Clin Oncol 2010; 28 ( 15 ): 2512 – 2519.en_US
dc.identifier.citedreferenceGerman J, Roe AM, Leppert MF, Ellis NA. Bloom syndrome: An analysis of consanguineous families assigns the locus mutated to chromosome band 15q26.1. Proc Natl Acad Sci USA 1994; 91 ( 14 ): 6669 – 6673.en_US
dc.identifier.citedreferenceGerman J, Sanz MM, Ciocci S, Ye TZ, Ellis NA. Syndrome‐causing mutations of the BLM gene in persons in the Bloom's Syndrome Registry. Hum Mutat 2007; 28 ( 8 ): 743 – 753.en_US
dc.identifier.citedreferenceHorwitz MS, Thompson ER, Doyle MA, Ryland GL, Rowley SM, Choong DYH, Tothill RW, Thorne H, Barnes DR, Li J, Ellul J, Philip GK, Antill YC, James PA, Trainer AH, Mitchell G, Campbell IG. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet 2012; 8 ( 9 ): e1002894.en_US
dc.identifier.citedreferenceSiegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63 ( 1 ): 11 – 30.en_US
dc.identifier.citedreferenceLangeberg WJ, Isaacs WB, Stanford JL. Genetic etiology of hereditary prostate cancer. Front Biosci 2007; 12: 4101 – 4110.en_US
dc.identifier.citedreferenceKim ST, Cheng Y, Hsu FC, Jin T, Kader AK, Zheng SL, Isaacs WB, Xu J, Sun J. Prostate cancer risk‐associated variants reported from genome‐wide association studies: Meta‐analysis and their contribution to genetic variation. Prostate 2010; 70 ( 16 ): 1729 – 1738.en_US
dc.identifier.citedreferenceKote‐Jarai Z, Olama AA, Giles GG, Severi G, Schleutker J, Weischer M, Campa D, Riboli E, Key T, Gronberg H, Hunter DJ, Kraft P, Thun MJ, Ingles S, Chanock S, Albanes D, Hayes RB, Neal DE, Hamdy FC, Donovan JL, Pharoah P, Schumacher F, Henderson BE, Stanford JL, Ostrander EA, Sorensen KD, Dork T, Andriole G, Dickinson JL, Cybulski C, Lubinski J, Spurdle A, Clements JA, Chambers S, Aitken J, Gardiner RA, Thibodeau SN, Schaid D, John EM, Maier C, Vogel W, Cooney KA, Park JY, Cannon‐Albright L, Brenner H, Habuchi T, Zhang HW, Lu YJ, Kaneva R, Muir K, Benlloch S, Leongamornlert DA, Saunders EJ, Tymrakiewicz M, Mahmud N, Guy M, O'Brien LT, Wilkinson RA, Hall AL, Sawyer EJ, Dadaev T, Morrison J, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As N, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper CS, Lophatonanon A, Southey MC, Hopper JL, English DR, Wahlfors T, Tammela TL, Klarskov P, Nordestgaard BG, Roder MA, Tybjaerg‐Hansen A, Bojesen SE, Travis R, Canzian F, Kaaks R, Wiklund F, Aly M, Lindstrom S, Diver WR, Gapstur S, Stern MC, Corral R, Virtamo J, Cox A, Haiman CA, Le Marchand L, Fitzgerald L, Kolb S, Kwon EM, Karyadi DM, Orntoft TF, Borre M, Meyer A, Serth J, Yeager M, Berndt SI, Marthick JR, Patterson B, Wokolorczyk D, Batra J, Lose F, McDonnell SK, Joshi AD, Shahabi A, Rinckleb AE, Ray A, Sellers TA, Lin HY, Stephenson RA, Farnham J, Muller H, Rothenbacher D, Tsuchiya N, Narita S, Cao GW, Slavov C, Mitev V, Easton DF, Eeles RA. Seven prostate cancer susceptibility loci identified by a multi‐stage genome‐wide association study. Nat Genet 2011; 43 ( 8 ): 785 – 791.en_US
dc.identifier.citedreferenceEwing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, Wiley KE, Isaacs SD, Johng D, Wang Y, Bizon C, Yan G, Gielzak M, Partin AW, Shanmugam V, Izatt T, Sinari S, Craig DW, Zheng SL, Walsh PC, Montie JE, Xu J, Carpten JD, Isaacs WB, Cooney KA. Germline mutations in HOXB13 and prostate‐cancer risk. N Engl J Med 2012; 366 ( 2 ): 141 – 149.en_US
dc.identifier.citedreferenceLi H, Durbin R. Fast and accurate short read alignment with Burrows‐Wheeler transform. Bioinformatics 2009; 25 ( 14 ): 1754 – 1760.en_US
dc.identifier.citedreferenceDePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakies A. A framework for variation discovery and genotyping using next‐generation DNA sequencing data. Nat Genet 2011; 43: 491 – 498.en_US
dc.identifier.citedreferenceWang K, Mingyao L, Hakonarson H, ANNOVAR: Functional annotation of genetic variants from high‐throughput sequencing data. Nucleic Acids Res 2010; 38 ( 16 ): e164.en_US
dc.identifier.citedreferenceLange EM, Gillanders EM, Davis CC, Brown WM, Campbell JK, Jones M, Gildea D, Riedesel E, Albertus J, Freas‐Lutz D, Markey C, Giri V, Dimmer JB, Montie JE, Trent JM, Cooney KA. Genome‐wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 2003; 57 ( 4 ): 326 – 334.en_US
dc.identifier.citedreferenceLange EM, Robbins CM, Gillanders EM, Zheng SL, Xu J, Wang Y, White KA, Chang BL, Ho LA, Trent JM, Carpten JD, Isaacs WB, Cooney KA. Fine‐mapping the putative chromosome 17q 21‐22 prostate cancer susceptibility gene to a 10 cM region based on linkage analysis. Hum Genet 2007; 121 ( 1 ): 49 – 55.en_US
dc.identifier.citedreferenceFord D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1‐mutation carriers. Breast Cancer Linkage Consortium. Lancet 1994; 343 ( 8899 ): 692 – 695.en_US
dc.identifier.citedreferenceStruewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, Timmerman MM, Brody LC, Tucker MA. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997; 336 ( 20 ): 1401 – 1408.en_US
dc.identifier.citedreferenceThompson D, Easton DF. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 2002; 94 ( 18 ): 1358 – 1365.en_US
dc.identifier.citedreferenceDouglas JA, Levin AM, Zuhlke KA, Ray AM, Johnson GR, Lange EM, Wood DP, Cooney KA. Common variation in the BRCA1 gene and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2007; 16 ( 7 ): 1510 – 1516.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.