Show simple item record

The chromatin remodeling protein CHD7, mutated in CHARGE syndrome, is necessary for proper craniofacial and tracheal development

dc.contributor.authorSperry, Ethan D.en_US
dc.contributor.authorHurd, Elizabeth A.en_US
dc.contributor.authorDurham, Mark A.en_US
dc.contributor.authorReamer, Elyse N.en_US
dc.contributor.authorStein, Adam B.en_US
dc.contributor.authorMartin, Donna M.en_US
dc.date.accessioned2014-09-03T16:51:30Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-09-03T16:51:30Z
dc.date.issued2014-09en_US
dc.identifier.citationSperry, Ethan D.; Hurd, Elizabeth A.; Durham, Mark A.; Reamer, Elyse N.; Stein, Adam B.; Martin, Donna M. (2014). "The chromatin remodeling protein CHD7, mutated in CHARGE syndrome, is necessary for proper craniofacial and tracheal development." Developmental Dynamics 243(9): 1055-1066.en_US
dc.identifier.issn1058-8388en_US
dc.identifier.issn1097-0177en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108278
dc.description.abstractBackground: Heterozygous mutations in the chromatin remodeling gene CHD7 cause CHARGE syndrome, a developmental disorder with variable craniofacial dysmorphisms and respiratory difficulties. The molecular etiologies of these malformations are not well understood. Homozygous Chd7 null mice die by E11, whereas Chd7 Gt/+ heterozygous null mice are a viable and excellent model of CHARGE. We explored skeletal phenotypes in Chd7 Gt/+ and Chd7 conditional knockout mice, using Foxg1‐Cre to delete Chd7 ( Foxg1 ‐CKO) in the developing eye, ear, nose, pharyngeal pouch, forebrain, and gut and Wnt1‐Cre ( Wnt1 ‐CKO) to delete Chd7 in migrating neural crest cells. Results: Foxg1 ‐CKO mice exhibited postnatal respiratory distress and death, dysplasia of the eye, concha, and frontal bone, hypoplastic maxillary shelves and nasal epithelia, and reduced tracheal rings. Wnt1‐ CKO mice exhibited frontal and occipital bone dysplasia, hypoplasia of the maxillary shelves and mandible, and cleft palate. In contrast, heterozygous Chd7 Gt/+ mice had apparently normal skeletal development. Conclusions: Conditional deletion of Chd7 in ectodermal and endodermal derivatives ( Foxg1‐Cre ) or migrating neural crest cells ( Wnt1‐Cre ) results in varied and more severe craniofacial defects than in Chd7 Gt/+ mice. These studies indicate that CHD7 has an important, dosage‐dependent role in development of several different craniofacial tissues. Developmental Dynamics 243:1055–1066, 2014 . © 2014 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. Key findings: Chd7 is necessary in craniofacial ectodermal, endodermal, and neural crest cells. Loss of Chd7 in mice results in upper and lower respiratory tract anomalies which mimic human CHARGE syndrome. Chd7 is important for proper development of neural crest‐derived mesenchymal tissues contributing to bone and cartilage. Loss of Wnt1Cre‐mediated Chd7 in neural crest cells does not result in heart defects. Foxg1Cre‐mediated deletion of Chd7 leads to severe microphthalmia.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSkeletal Dysplasiaen_US
dc.subject.otherCleft Palateen_US
dc.subject.otherCraniofacial Disordersen_US
dc.subject.otherTracheaen_US
dc.titleThe chromatin remodeling protein CHD7, mutated in CHARGE syndrome, is necessary for proper craniofacial and tracheal developmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPediatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108278/1/dvdy24156.pdf
dc.identifier.doi10.1002/dvdy.24156en_US
dc.identifier.sourceDevelopmental Dynamicsen_US
dc.identifier.citedreferenceMinoux M, Rijli FM. 2010. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 137: 2605 – 2621.en_US
dc.identifier.citedreferenceKim KS, Choi YS, Kim HJ, Yoon JH. 2003. The risk of olfactory disturbance from conchal plate injury during ethmoidectomy. Am J Rhinol 17: 307 – 310.en_US
dc.identifier.citedreferenceLayman WS, Hurd EA, Martin DM. 2011. Reproductive dysfunction and decreased GnRH neurogenesis in a mouse model of CHARGE syndrome. Hum Mol Genet 20: 3138 – 3150.en_US
dc.identifier.citedreferenceLayman WS, McEwen DP, Beyer LA, Lalani SR, Fernbach SD, Oh E, Swaroop A, Hegg CC, Raphael Y, Martens JR, Martin DM. 2009. Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum Mol Genet 18: 1909 – 1923.en_US
dc.identifier.citedreferenceLegendre M, Gonzales M, Goudefroye G, Bilan F, Parisot P, Perez MJ, Bonniere M, Bessieres B, Martinovic J, Delezoide AL, Jossic F, Fallet‐Bianco C, Bucourt M, Tantau J, Loget P, Loeuillet L, Laurent N, Leroy B, Salhi H, Bigi N, Rouleau C, Guimiot F, Quelin C, Bazin A, Alby C, Ichkou A, Gesny R, Kitzis A, Ville Y, Lyonnet S, Razavi F, Gilbert‐Dussardier B, Vekemans M, Attie‐Bitach T. 2012. Antenatal spectrum of CHARGE syndrome in 40 fetuses with CHD7 mutations. J Med Genet 49: 698 – 707.en_US
dc.identifier.citedreferenceLi L, Lin M, Wang Y, Cserjesi P, Chen Z, Chen Y. 2011. BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development. Dev Biol 349: 451 – 461.en_US
dc.identifier.citedreferenceMadisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H. 2010. A robust and high‐throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13: 133 – 140.en_US
dc.identifier.citedreferenceNichols DH. 1986. Formation and distribution of neural crest mesenchyme to the first pharyngeal arch region of the mouse embryo. Am J Anat 176: 221 – 231.en_US
dc.identifier.citedreferencePatten SA, Jacobs‐McDaniels NL, Zaouter C, Drapeau P, Albertson RC, Moldovan F. 2012. Role of Chd7 in zebrafish: a model for CHARGE syndrome. PLoS One 7: e31650.en_US
dc.identifier.citedreferencePerl AK, Wert SE, Nagy A, Lobe CG, Whitsett JA. 2002. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci U S A 99: 10482 – 10487.en_US
dc.identifier.citedreferencePrasad C, Quackenbush EJ, Whiteman D, Korf B. 1997. Limb anomalies in DiGeorge and CHARGE syndromes. Am J Med Genet 68: 179 – 181.en_US
dc.identifier.citedreferenceRandall V, McCue K, Roberts C, Kyriakopoulou V, Beddow S, Barrett AN, Vitelli F, Prescott K, Shaw‐Smith C, Devriendt K, Bosman E, Steffes G, Steel KP, Simrick S, Basson MA, Illingworth E, Scambler PJ. 2009. Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 119: 3301 – 3310.en_US
dc.identifier.citedreferenceSchnetz MP, Bartels CF, Shastri K, Balasubramanian D, Zentner GE, Balaji R, Zhang X, Song L, Wang Z, Laframboise T, Crawford GE, Scacheri PC. 2009. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res 19: 590 – 601.en_US
dc.identifier.citedreferenceSinn R, Wittbrodt J. 2013. An eye on eye development. Mech Dev 130: 347 – 358.en_US
dc.identifier.citedreferenceSperber GH. 1989. Craniofacial embryology. Great Britain: Wright.en_US
dc.identifier.citedreferenceTakada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, Youn MY, Takeyama K, Nakamura T, Mezaki Y, Takezawa S, Yogiashi Y, Kitagawa H, Yamada G, Takada S, Minami Y, Shibuya H, Matsumoto K, Kato S. 2007. A histone lysine methyltransferase activated by non‐canonical Wnt signalling suppresses PPAR‐gamma transactivation. Nat Cell Biol 9: 1273 – 1285.en_US
dc.identifier.citedreferenceVan de Laar I, Dooijes D, Hoefsloot L, Simon M, Hoogeboom J, Devriendt K. 2007. Limb anomalies in patients with CHARGE syndrome: an expansion of the phenotype. Am J Med Genet A 143A: 2712 – 2715.en_US
dc.identifier.citedreferenceWang XX, Wang X, Li ZL, Yi B, Liang C, Jia YL, Zou BS. 2009. Anterior maxillary segmental distraction for correction of maxillary hypoplasia and dental crowding in cleft palate patients: a preliminary report. Int J Oral Maxillofac Surg 38: 1237 – 1243.en_US
dc.identifier.citedreferenceWang Y, Song L, Zhou CJ. 2011. The canonical Wnt/beta‐catenin signaling pathway regulates Fgf signaling for early facial development. Dev Biol 349: 250 – 260.en_US
dc.identifier.citedreferenceWoo J, Miletich I, Kim BM, Sharpe PT, Shivdasani RA. 2011. Barx1‐mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo‐esophageal septation and epithelial differentiation. PLoS One 6: e22493.en_US
dc.identifier.citedreferenceWright EM, O'Connor R, Kerr BA. 2009. Radial aplasia in CHARGE syndrome: a new association. Eur J Med Genet 52: 239 – 241.en_US
dc.identifier.citedreferenceYu T, Meiners LC, Danielsen K, Wong MT, Bowler T, Reinberg D, Scambler PJ, van Ravenswaaij‐Arts CM, Basson MA. 2013. Deregulated FGF and homeotic gene expression underlies cerebellar vermis hypoplasia in CHARGE syndrome. Elife 2: e01305.en_US
dc.identifier.citedreferenceZentner GE, Layman WS, Martin DM, Scacheri PC. 2010. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A 152A: 674 – 686.en_US
dc.identifier.citedreferenceAdams ME, Hurd EA, Beyer LA, Swiderski DL, Raphael Y, Martin DM. 2007. Defects in vestibular sensory epithelia and innervation in mice with loss of Chd7 function: implications for human CHARGE syndrome. J Comp Neurol 504: 519 – 532.en_US
dc.identifier.citedreferenceAkisu M, Ozkinay F, Ozyurek R, Kucuktas A, Kultursay N. 1998. The CHARGE association in a newborn infant. Turk J Pediatr 40: 283 – 287.en_US
dc.identifier.citedreferenceBajpai R, Chen DA, Rada‐Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J. 2010. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463: 958 – 962.en_US
dc.identifier.citedreferenceBergman JEH, Bosman EA, van Ravenswaaij‐Arts CMA, Steel KP. 2010. Study of smell and reproductive organs in a mouse model for CHARGE syndrome. Eur J Hum Genet 18: 171 – 177.en_US
dc.identifier.citedreferenceBergman JEH, Janssen N, Hoefsloot LH, Jongmans MCJ, Hofstra RMW, van Ravenswaaij‐Arts CMA. 2011. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet 48: 334 – 342.en_US
dc.identifier.citedreferenceBosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, Steel KP. 2005. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet 14: 3463 – 3476.en_US
dc.identifier.citedreferenceBush JO, Jiang R. 2012. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development. Development 139: 231 – 243.en_US
dc.identifier.citedreferenceChapman KL, Hardin‐Jones MA, Goldstein JA, Halter KA, Havlik RJ, Schulte J. 2008. Timing of palatal surgery and speech outcome. Cleft Palate Craniofac J 45: 297 – 308.en_US
dc.identifier.citedreferenceCoppola D, Craven B. 2014. The effects of naris occlusion on mouse nasal turbinate development. J Exp Biol 217: 2044 – 2052.en_US
dc.identifier.citedreferenceDanielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. 1998. Modification of gene activity in mouse embryos in utero by a tamoxifen‐inducible form of Cre recombinase. Curr Biol 8: 1323 – 1326.en_US
dc.identifier.citedreferenceDoshi J, Krawiec ME. 2007. Clinical manifestations of airway malacia in young children. J Allergy Clin Immunol 120: 1276 – 1278.en_US
dc.identifier.citedreferenceEppley BL, van Aalst JA, Robey A, Havlik RJ, Sadove AM. 2005. The spectrum of orofacial clefting. Plast Reconstr Surg 115: 101e – 114e.en_US
dc.identifier.citedreferenceFujita K, Aida N, Asakura Y, Kurosawa K, Niwa T, Muroya K, Adachi M, Nishimura G, Inoue T. 2009. Abnormal basiocciput development in CHARGE syndrome. AJNR Am J Neuroradiol 30: 629 – 634.en_US
dc.identifier.citedreferenceGrocott T, Johnson S, Bailey AP, Streit A. 2011. Neural crest cells organize the eye via TGF‐beta and canonical Wnt signalling. Nat Commun 2: 265.en_US
dc.identifier.citedreferenceHebert JM, McConnell SK. 2000. Targeting of cre to the Foxg1 (BF‐1) locus mediates loxP recombination in the telencephalon and other developing head structures. Dev Biol 222: 296 – 306.en_US
dc.identifier.citedreferenceHughes SS, Welsh HI, Safina NP, Bejaoui K, Ardinger HH. 2014. Family history and clefting as major criteria for CHARGE syndrome. Am J Med Genet A 164A: 48 – 53.en_US
dc.identifier.citedreferenceHurd EA, Adams ME, Layman WS, Swiderski DL, Beyer LA, Halsey KE, Benson JM, Gong TW, Dolan DF, Raphael Y, Martin DM. 2011. Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hear Res 282: 184 – 195.en_US
dc.identifier.citedreferenceHurd EA, Capers PL, Blauwkamp MN, Adams ME, Raphael Y, Poucher HK, Martin DM. 2007. Loss of Chd7 function in gene‐trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome 18: 94 – 104.en_US
dc.identifier.citedreferenceHurd EA, Micucci JA, Reamer EN, Martin DM. 2012. Delayed fusion and altered gene expression contribute to semicircular canal defects in Chd7 deficient mice. Mech Dev 129: 308 – 323.en_US
dc.identifier.citedreferenceHurd EA, Poucher HK, Cheng K, Raphael Y, Martin DM. 2010. The ATP‐dependent chromatin remodeling enzyme CHD7 regulates pro‐neural gene expression and neurogenesis in the inner ear. Development 137: 3139 – 3150.en_US
dc.identifier.citedreferenceHusu E, Hove HD, Farholt S, Bille M, Tranebjaerg L, Vogel I, Kreiborg S. 2013. Phenotype in 18 Danish subjects with genetically verified CHARGE syndrome. Clin Genet 83: 125 – 134.en_US
dc.identifier.citedreferenceHutson MR, Kirby ML. 2007. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 18: 101 – 110.en_US
dc.identifier.citedreferenceJacob A, Chole RA. 2006. Survey anatomy of the paranasal sinuses in the normal mouse. Laryngoscope 116: 558 – 563.en_US
dc.identifier.citedreferenceJanssen N, Bergman JE, Swertz MA, Tranebjaerg L, Lodahl M, Schoots J, Hofstra RM, van Ravenswaaij‐Arts CM, Hoefsloot LH. 2012. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat 33: 1149 – 1160.en_US
dc.identifier.citedreferenceJiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. 2000. Fate of the mammalian cardiac neural crest. Development 127: 1607 – 1616.en_US
dc.identifier.citedreferenceKastl KG, Rettinger G, Keck T. 2009. The impact of nasal surgery on air‐conditioning of the nasal airways. Rhinology 47: 237 – 241.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.