Show simple item record

Plasminogen activator‐1 overexpression decreases experimental postthrombotic vein wall fibrosis by a non‐vitronectin‐dependent mechanism

dc.contributor.authorObi, A. T.en_US
dc.contributor.authorDiaz, J. A.en_US
dc.contributor.authorBallard‐lipka, N. L.en_US
dc.contributor.authorRoelofs, K. J.en_US
dc.contributor.authorFarris, D. M.en_US
dc.contributor.authorLawrence, D. A.en_US
dc.contributor.authorWakefield, T. W.en_US
dc.contributor.authorHenke, P. K.en_US
dc.date.accessioned2014-09-03T16:51:36Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-09-03T16:51:36Z
dc.date.issued2014-08en_US
dc.identifier.citationObi, A. T.; Diaz, J. A.; Ballard‐lipka, N. L. ; Roelofs, K. J.; Farris, D. M.; Lawrence, D. A.; Wakefield, T. W.; Henke, P. K. (2014). "Plasminogen activatorâ 1 overexpression decreases experimental postthrombotic vein wall fibrosis by a nonâ vitronectinâ dependent mechanism." Journal of Thrombosis and Haemostasis 12(8): 1353-1363.en_US
dc.identifier.issn1538-7933en_US
dc.identifier.issn1538-7836en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108289
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFibrosisen_US
dc.subject.otherPAI‐1en_US
dc.subject.otherPostthrombotic Syndromeen_US
dc.subject.otherVenous Thrombosisen_US
dc.subject.otherVitronectinen_US
dc.titlePlasminogen activator‐1 overexpression decreases experimental postthrombotic vein wall fibrosis by a non‐vitronectin‐dependent mechanismen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108289/1/jth12644.pdf
dc.identifier.doi10.1111/jth.12644en_US
dc.identifier.sourceJournal of Thrombosis and Haemostasisen_US
dc.identifier.citedreferenceGong Y, Hart E, Shchurin A, Hoover‐Plow J. Inflammatory macrophage migration requires MMP‐9 activation by plasminogen in mice. J Clin Invest 2008; 118: 3012 – 24.en_US
dc.identifier.citedreferenceSood V, Luke CE, Deatrick KB, Baldwin J, Miller EM, Elfline M, Upchurch GR Jr, Wakefield TW, Henke PK. Urokinase plasminogen activator independent early experimental thrombus resolution: MMP2 as an alternative mechanism. Thromb Haemost 2011; 104: 1174 – 83.en_US
dc.identifier.citedreferenceLaser A, Elfline M, Luke C, Slack D, Shah A, Sood V, Deatrick B, McEvoy B, Ostra C, Comerota A, Kunkel S, Hogaboam C, Henke PK. Deletion of cysteine‐cysteine receptor 7 promotes fibrotic injury in experimental post‐thrombotic vein wall remodeling. Arterioscler Thromb Vasc Biol 2014; 34: 377 – 85.en_US
dc.identifier.citedreferenceZeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. Endothelial‐to‐mesenchymal transition contributes to cardiac fibrosis. Nat Med 2007; 13: 952 – 61.en_US
dc.identifier.citedreferenceHogaboam CM, Steinhauser ML, Chensue SW, Kunkel SL. Novel roles for chemokines and fibroblasts in interstitial fibrosis. Kidney Int 1998; 54: 2152 – 9.en_US
dc.identifier.citedreferenceHumphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG. Monocyte chemotactic protein‐1 (MCP‐1) accelerates the organization and resolution of venous thrombi. J Vasc Surg 1999; 30: 894 – 9.en_US
dc.identifier.citedreferenceWakefield TW, Myers DD, Henke PK. Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 2008; 28: 387 – 91.en_US
dc.identifier.citedreferenceLegrand C, Polette M, Tournier JM, de Bentzmann S, Huet E, Monteau M, Birembaut P. uPA/plasmin system‐mediated MMP‐9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res 2001; 264: 326 – 36.en_US
dc.identifier.citedreferenceTakano A, Hirata A, Inomata Y, Kawaji T, Nakagawa K, Nagata S, Tanihara H. Intravitreal plasmin injection activates endogenous matrix metalloproteinase‐2 in rabbit and human vitreous. Am J Ophthalmol 2005; 140: 654 – 60.en_US
dc.identifier.citedreferenceBevilacqua MP, Schleef RR, Gimbrone MA Jr, Loskutoff DJ. Regulation of the fibrinolytic system of cultured human vascular endothelium by interleukin 1. J Clin Invest 1986; 78: 587 – 91.en_US
dc.identifier.citedreferenceSchleef RR, Bevilacqua MP, Sawdey M, Gimbrone MA Jr, Loskutoff DJ. Cytokine activation of vascular endothelium. Effects on tissue‐type plasminogen activator and type 1 plasminogen activator inhibitor. J Biol Chem 1988; 263: 5797 – 803.en_US
dc.identifier.citedreferenceLibby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation 2001; 103: 1718 – 20.en_US
dc.identifier.citedreferencevan de Craen B, Declerck PJ, Gils A. The Biochemistry, Physiology and Pathological roles of PAI‐1 and the requirements for PAI‐1 inhibition in vivo. Thromb Res 2012; 130: 576 – 85.en_US
dc.identifier.citedreferenceObi AT, Diaz JA, Ballard‐Lipka NL, Roelofs KJ, Farris DM, Lawrence DA, Henke PK, Wakefield TW. Low‐molecular‐weight heparin modulates vein wall fibrotic response in a plasminogen activator inhibitor 1‐dependent manner. J Vasc Surg Venous Lymphat Disord 2014; in press.en_US
dc.identifier.citedreferenceCarmeliet P, Moons L, Lijnen R, Janssens S, Lupu F, Collen D, Gerard RD. Inhibitory role of plasminogen activator inhibitor‐1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice. Circulation 1997; 96: 3180 – 91.en_US
dc.identifier.citedreferenceZhu Y, Farrehi PM, Fay WP. Plasminogen activator inhibitor type 1 enhances neointima formation after oxidative vascular injury in atherosclerosis‐prone mice. Circulation 2001; 103: 3105 – 10.en_US
dc.identifier.citedreferenceDeatrick KB, Luke CE, Elfline MA, Sood V, Baldwin J, Upchurch GR Jr, Jaffer FA, Wakefield TW, Henke PK. The effect of matrix metalloproteinase 2 and matrix metalloproteinase 2/9 deletion in experimental post‐thrombotic vein wall remodeling. J Vasc Surg 2013; 58: 1375 – 84 e2.en_US
dc.identifier.citedreferenceDeatrick KB, Obi A, Luke CE, Elfline MA, Sood V, Upchurch GR Jr, Jaffer F, Wakefield TW, Henke PK. Matrix metalloproteinase‐9 deletion is associated with decreased mid‐term vein wall fibrosis in experimental stasis DVT. Thromb Res 2013; 132: 360 – 6.en_US
dc.identifier.citedreferenceMartinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453 – 61.en_US
dc.identifier.citedreferenceWilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, Wynn TA. Bleomycin and IL‐1beta‐mediated pulmonary fibrosis is IL‐17A dependent. J Exp Med 2010; 207: 535 – 52.en_US
dc.identifier.citedreferenceZhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. Pulmonary expression of interleukin‐13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999; 103: 779 – 88.en_US
dc.identifier.citedreferenceFogo AB. Renal fibrosis: not just PAI‐1 in the sky. J Clin Invest 2003; 112: 326 – 8.en_US
dc.identifier.citedreferenceLi R, Ren M, Chen N, Luo M, Zhang Z, Wu J. Vitronectin increases vascular permeability by promoting VE‐cadherin internalization at cell junctions. PLoS ONE 2012; 7: e37195.en_US
dc.identifier.citedreferenceKahn SR, Shapiro S, Wells PS, Rodger MA, Kovacs MJ, Anderson DR, Tagalakis V, Houweling AH, Ducruet T, Holcroft C, Johri M, Solymoss S, Miron MJ, Yeo E, Smith R, Schulman S, Kassis J, Kearon C, Chagnon I, Wong T, et al. Compression stockings to prevent post‐thrombotic syndrome: a randomised placebo‐controlled trial. Lancet 2013; 383: 880 – 3.en_US
dc.identifier.citedreferenceKearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ, Nelson ME, Wells PS, Gould MK, Dentali F, Crowther M, Kahn SR. Antithrombotic therapy for VTE disease: antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines. Chest 2012; 141: e419S – 94S.en_US
dc.identifier.citedreferencePodor TJ, Peterson CB, Lawrence DA, Stefansson S, Shaughnessy SG, Foulon DM, Butcher M, Weitz JI. Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin. J Biol Chem 2000; 275: 19788 – 94.en_US
dc.identifier.citedreferenceDeitelzweig SB, Johnson BH, Lin J, Schulman KL. Prevalence of clinical venous thromboembolism in the USA: current trends and future projections. Am J Hematol 2011; 86: 217 – 20.en_US
dc.identifier.citedreferenceLloyd‐Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, et al. Heart Disease and Stroke Statistics–2010 Update. A Report From the American Heart Association. Circulation 2009; 119: e21 – 181.en_US
dc.identifier.citedreferenceBergan JJ, Schmid‐Schonbein GW, Smith PD, Nicolaides AN, Boisseau MR, Eklof B. Chronic venous disease. N Engl J Med 2006; 355: 488 – 98.en_US
dc.identifier.citedreferenceJohnson BF, Manzo RA, Bergelin RO, Strandness DE Jr. Relationship between changes in the deep venous system and the development of the postthrombotic syndrome after an acute episode of lower limb deep vein thrombosis: a one‐ to six‐year follow‐up. J Vasc Surg 1995; 21: 307 – 12.en_US
dc.identifier.citedreferenceHenke PK, Comerota AJ. An update on etiology, prevention, and therapy of postthrombotic syndrome. J Vasc Surg 2011; 53: 500 – 9.en_US
dc.identifier.citedreferenceKahn SR, Shapiro S, Wells PS, Rodger MA, Kovacs MJ, Anderson DR, Tagalakis V, Houweling AH, Ducruet T, Holcroft C, Johri M, Solymoss S, Miron MJ, Yeo E, Smith R, Schulman S, Kassis J, Kearon C, Chagnon I, Wong T, et al. Compression stockings to prevent post‐thrombotic syndrome: a randomised placebo‐controlled trial. Lancet 2014; 383: 880 – 8.en_US
dc.identifier.citedreferenceBaldwin JF, Sood V, Elfline MA, Luke CE, Dewyer NA, Diaz JA, Myers DD, Wakefield T, Henke PK. The role of urokinase plasminogen activator and plasmin activator inhibitor‐1 on vein wall remodeling in experimental deep vein thrombosis. J Vasc Surg 2012; 56: 1089 – 97.en_US
dc.identifier.citedreferencePreissner KT, Reuning U. Vitronectin in vascular context: facets of a multitalented matricellular protein. Semin Thromb Hemost 2011; 37: 408 – 24.en_US
dc.identifier.citedreferenceStefansson S, Haudenschild CC, Lawrence DA. Beyond fibrinolysis: the role of plasminogen activator inhibitor‐1 and vitronectin in vascular wound healing. Trends Cardiovasc Med 1998; 8: 175 – 80.en_US
dc.identifier.citedreferencePatsenker E, Popov Y, Wiesner M, Goodman SL, Schuppan D. Pharmacological inhibition of the vitronectin receptor abrogates PDGF‐BB‐induced hepatic stellate cell migration and activation in vitro. J Hepatol 2007; 46: 878 – 87.en_US
dc.identifier.citedreferenceKoukoulis GK, Shen J, Virtanen I, Gould VE. Vitronectin in the cirrhotic liver: an immunomarker of mature fibrosis. Hum Pathol 2001; 32: 1356 – 62.en_US
dc.identifier.citedreferenceCourey AJ, Horowitz JC, Kim KK, Koh TJ, Novak ML, Subbotina N, Warnock M, Xue B, Cunningham AK, Lin Y, Goldklang MP, Simon RH, Lawrence DA, Sisson TH. The vitronectin‐binding function of PAI‐1 exacerbates lung fibrosis in mice. Blood 2011; 118: 2313 – 21.en_US
dc.identifier.citedreferenceLazar MH, Christensen PJ, Du M, Yu B, Subbotina NM, Hanson KE, Hansen JM, White ES, Simon RH, Sisson TH. Plasminogen activator inhibitor‐1 impairs alveolar epithelial repair by binding to vitronectin. Am J Respir Cell Mol Biol 2004; 31: 672 – 8.en_US
dc.identifier.citedreferencePeng L, Bhatia N, Parker AC, Zhu Y, Fay WP. Endogenous vitronectin and plasminogen activator inhibitor‐1 promote neointima formation in murine carotid arteries. Arterioscler Thromb Vasc Biol 2002; 22: 934 – 9.en_US
dc.identifier.citedreferenceColeman KR, Braden GA, Willingham MC, Sane DC. Vitaxin, a humanized monoclonal antibody to the vitronectin receptor (alphavbeta3), reduces neointimal hyperplasia and total vessel area after balloon injury in hypercholesterolemic rabbits. Circ Res 1999; 84: 1268 – 76.en_US
dc.identifier.citedreferenceDufourcq P, Couffinhal T, Alzieu P, Daret D, Moreau C, Duplaa C, Bonnet J. Vitronectin is up‐regulated after vascular injury and vitronectin blockade prevents neointima formation. Cardiovasc Res 2002; 53: 952 – 62.en_US
dc.identifier.citedreferenceEitzman DT, Westrick RJ, Nabel EG, Ginsburg D. Plasminogen activator inhibitor‐1 and vitronectin promote vascular thrombosis in mice. Blood 2000; 95: 577 – 80.en_US
dc.identifier.citedreferenceKonstantinides S, Schafer K, Thinnes T, Loskutoff DJ. Plasminogen activator inhibitor‐1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation 2001; 103: 576 – 83.en_US
dc.identifier.citedreferenceFay WP, Parker AC, Ansari MN, Zheng X, Ginsburg D. Vitronectin inhibits the thrombotic response to arterial injury in mice. Blood 1999; 93: 1825 – 30.en_US
dc.identifier.citedreferenceZheng X, Saunders TL, Camper SA, Samuelson LC, Ginsburg D. Vitronectin is not essential for normal mammalian development and fertility. Proc Natl Acad Sci U S A 1995; 92: 12426 – 30.en_US
dc.identifier.citedreferenceEitzman DT, McCoy RD, Zheng X, Fay WP, Shen T, Ginsburg D, Simon RH. Bleomycin‐induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor‐1 gene. J Clin Invest 1996; 97: 232 – 7.en_US
dc.identifier.citedreferenceWojcik BM, Wrobleski SK, Hawley AE, Wakefield TW, Myers DD Jr, Diaz JA. Interleukin‐6: a potential target for post‐thrombotic syndrome. Ann Vasc Surg 2011; 25: 229 – 39.en_US
dc.identifier.citedreferenceMyers D Jr, Farris D, Hawley A, Wrobleski S, Chapman A, Stoolman L, Knibbs R, Strieter R, Wakefield T. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J Surg Res 2002; 108: 212 – 21.en_US
dc.identifier.citedreferenceHenke PK, Varma MR, Moaveni DK, Dewyer NA, Moore AJ, Lynch EM, Longo C, Deatrick CB, Kunkel SL, Upchurch GR Jr, Wakefield TW. Fibrotic injury after experimental deep vein thrombosis is determined by the mechanism of thrombogenesis. Thromb Haemost 2007; 98: 1045 – 55.en_US
dc.identifier.citedreferenceEagleton MJ, Peterson DA, Sullivan VV, Roelofs KJ, Ford JA, Stanley JC, Upchurch GR. Nitric oxide inhibition increases aortic wall matrix metalloproteinase‐9 expression. J Surg Res 2002; 104: 15 – 21.en_US
dc.identifier.citedreferenceDorffler‐Melly J, Schwarte LA, Ince C, Levi M. Mouse models of focal arterial and venous thrombosis. Basic Res Cardiol 2000; 95: 503 – 9.en_US
dc.identifier.citedreferenceUpchurch GR, Ford JW, Weiss SJ, Knipp BS, Peterson DA, Thompson RW, Eagleton MJ, Broady AJ, Proctor MC, Stanley JC. Nitric oxide inhibition increases matrix metalloproteinase‐9 expression by a rat aortic smooth muscle cells in vitro. J Vasc Surg 2001; 34: 76 – 83.en_US
dc.identifier.citedreferenceGinzinger DG. Gene quantification using real‐time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 2002; 30: 503 – 12.en_US
dc.identifier.citedreferenceHenke PK, Varga A, De S, Deatrick CB, Eliason J, Arenberg DA, Sukheepod P, Thanaporn P, Kunkel SL, Upchurch GR Jr, Wakefield TW. Deep vein thrombosis resolution is modulated by monocyte CXCR2‐mediated activity in a mouse model. Arterioscler Thromb Vasc Biol 2004; 24: 1130 – 7.en_US
dc.identifier.citedreferenceHenke PK, Pearce CG, Moaveni DM, Moore AJ, Lynch EM, Longo C, Varma M, Dewyer NA, Deatrick KB, Upchurch GR Jr, Wakefield TW, Hogaboam C, Kunkel SL. Targeted deletion of CCR2 impairs deep vein thombosis resolution in a mouse model. J Immunol 2006; 177: 3388 – 97.en_US
dc.identifier.citedreferenceDiaz JA, Ballard‐Lipka NE, Farris DM, Hawley AE, Wrobleski SK, Myers DD, Henke PK, Lawrence DA, Wakefield TW. Impaired fibrinolytic system in ApoE gene‐deleted mice with hyperlipidemia augments deep vein thrombosis. J Vasc Surg 2012; 55: 815 – 22.en_US
dc.identifier.citedreferenceJunqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 1979; 11: 447 – 55.en_US
dc.identifier.citedreferenceCuttle L, Nataatmadja M, Fraser JF, Kempf M, Kimble RM, Hayes MT. Collagen in the scarless fetal skin wound: detection with picrosirius‐polarization. Wound Repair Regen 2005; 13: 198 – 204.en_US
dc.identifier.citedreferenceMoaveni DK, Lynch EM, Luke C, Sood V, Upchurch GR, Wakefield TW, Henke PK. Vein wall re‐endothelialization after deep vein thrombosis is improved with low‐molecular‐weight heparin. J Vasc Surg 2008; 47: 616 – 24.en_US
dc.identifier.citedreferenceHenke PK, Mitsuya M, Luke CE, Elfline MA, Baldwin JF, Deatrick KB, Diaz JA, Sood V, Upchurch GR, Wakefield TW, Hogaboam C, Kunkel SL. Toll‐like receptor 9 signaling is critical for early experimental deep vein thrombosis resolution. Arterioscler Thromb Vasc Biol 2011; 31: 43 – 9.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.